• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Jeans Instability of Self Gravitating Dust Cloud in Presence of Effective Electrostatic Pressure

    2018-08-02 07:36:02PratikshyaBezbaruahPritamDasPrathanaBorahandNilakshiDas
    Communications in Theoretical Physics 2018年8期

    Pratikshya Bezbaruah,Pritam Das,Prathana Borah,and Nilakshi Das

    Department of Physics,Tezpur University,Assam 784028,India

    AbstractThe role of viscosity coefficient(η′),coulomb coupling parameter(Γ)and dust mass on the growth of jeans mode is investigated in strongly coupled dusty plasma using equations of Generalized Hydrodynamics(GH)Model.The novel aspect of this work is that the force arising due to electrostatic pressure caused by grain grain interaction has been included in the dynamics of dust particles.This force is found to play a significant role in counter balancing the self gravity effect,thereby reducing the growth rate of jeans instability.The present work may provide more physical insight in understanding the mechanisms behind formation of planetesimals,stars etc.

    Key words:generalized hydrodynamics model,interstellar medium,planetesimal

    1 Introduction

    Plasma and dust comprise a major fraction of the universe.The interesting features manifested by dusty plasma is commonly observed in many astrophysical environments such as in molecular clouds,interstellar and interplanetary regions,solar comets etc.[1]The process of astrophysical object formation is controlled by the interplay of self gravitational and electrostatic forces that operate among the dust grains in molecular clouds or in self gravitating dust clouds.For micron and sub micron sized grains the two forces turn out to be comparable for the range of parameters that are consistent in astrophysical regimes.[2?3]Gravitational instability is a mechanism responsible for the collapse of dust and gas particles present in the dense molecular cloud that eventually leads to planet formation.[4?6]Krishan et al.have mentioned the importance of gravitational instability in large scale structure formation in the universe.[7]It is also true that in many cases gravitational force dominates over electromagnetic force in astrophysical plasmas contrary to the case in laboratory plasma.[8]It is established that for grains with radius rd>1 micrometer,the effect due to self gravity plays a significant role thereby initiating process for gravitational collapse.[1]In astrophysical plasma environment,dust grains may be charged via different mechanisms such as electron-ion collection,secondary electron emission from the grain surface triggered by the highly energetic plasma particles being incident on the grain surface,photo detachment induced by ionizing radiations in space,radioactive charging etc.Several factors like material composition,size and shape of the grain may also determine the nature and extent of charging that a grain undergoes.[9]The charge on dust grains may fluctuate with charging frequency being of the order of mega-Hertz.In our work,dust charge has been taken to be constant as gravitational instability takes place in much lower frequency scale(~Hz)as compared to the frequency of charge fluctuation.[10]

    In the current study,it is assumed that grains are negatively charged due to interaction with background plasmas.Since the analytical model is focused on dealing with a system where gravity and electrostatic forces operate at the same scale,the dust mass and charge of grains are chosen in such a way that the ratiois of the order unity i.e.the forces due to self-gravity and that due to electrostatic force become comparable.At this scale the typical charge of the dust grains in astrophysical environments is around~102e.[3]

    Strongly coupled plasma may be common in various astrophysical objects like white dwarf,neutron star etc.The density in white dwarf stars may be very high.They do not burn fuel in the core and as a result,the star slowly cools down such that the coulomb coupling parameter Γ may exceed 172.[11]It is therefore,important to study various astrophysical phenomena in the strongly coupled regime.Strongly coupled dusty plasmas are of relevance to several Astrophysical situations like H II region of Interstellar Medium(ISM),Interstellar Cloud etc.The coulomb coupling parameter(Γ)de fining the ratio of dust potential to thermal energy can exceed unity in the compact dust configurations that is achieved during the collapse of dust cloud.[12]Two important but counteracting forces that act on the dust particles in Molecular cloud are due to self-gravity and electrostatic potential.The density fluctuation that may arise due to turbulence may lead to an instability when the dust cloud contract under self gravity.When the density of such dust cloud increases,a negative potential develops in the cloud that prohibits the ions to escape from the cloud.The competition between this effective pressure arising due to this potential and the gravitational force ultimately controls the collapse of the cloud that leads to the formation of planetesimal.In such compact dust cloud,the dust density may be very large and form a strongly coupled dusty plasma.Avinash et al.have numerically calculated the density profile of dust in self gravitating astrophysical dust cloud[13]where they have shown that at the center of the dust cloud,the dust density is very large.Thus,the strong correlation effect may be quite relevant during the process of gravitational collapse in Interstellar Medium(ISM).For such region the central density of the dusty cloud is estimated to be~ 102m?3and for typical dust temperature Td~ 80 K,the coulomb coupling parameter(Γ)takes a value~ 1.24.In the strongly coupled regime,the self gravitational effect may be counterbalanced by the force due to the electrostatic repulsion of similarly charged dust particles.It has been shown by several authors that this electrostatic interaction leads to the dust pressure in dusty plasma.[14?15]In strongly coupled dusty plasma,this effective pressure term may play a key role in the formation of large scale structures caused by self gravitational collapse.

    Ali et al.have studied the role of jeans frequency and dust temperature on the growth rate of electrostatic mode considering collisional effects in the system of positive,negative and neutral dust and have also discussed the stability of cometary dusty plasma.[8]The role of polarization force and magnetic field on jeans instability has been discussed in detail by Sharma.[16]The author also clarified that in hydrodynamic regime the modified jeans instability condition is unaffected by strong coupling effects.The combined effect of gravity and electrostatic force is better explained in terms of a ratiowhere G is the universal gravitational constant,mdis the dust mass and qdis the dust charge.Pandey et al.have explained the condition for condensation,levitation and dispersion in a system of dust grains considering that the two forces operate at the same scale such that the ratiois of the order unity.[3]Chhajlani et al.have studied the stabilizing effect of magnetic field and time relaxation parameter on the growth of the electrostatic mode in a self gravitating,strongly coupled dusty plasma.[17]Prajapati et al.have reported the stabilizing effect of visco elastic coefficient and dust thermal velocity and destabilizing impact of polarization force on the growth rate of the jeans mode.[18]

    In the present paper an analytical expression for growth rate of Jeans mode is derived using equations of Generalized Hydrodynamics model.The effective dust pressure is invoked in the model to take into account the electrostatic repulsion among the dust grains.[11]

    2 Theoretical Model

    We consider a self gravitating dusty plasma consisting of inertia less electrons,ions and negatively charged massive dust particles,which are in strongly coupled regime(Γ>1).Electrons and ions are assumed to follow Boltzmannian distribution while the dynamics of dust particles is described by momentum equation and continuity equation.In the system,dust particles of constant mass mdwith charge qd=?Zde for negatively charged grains is considered.The equilibrium quasi-neutrality condition ni0=ne0+Zdnd0is satisfied in the system with ni0,ne0,and nd0representing the densities due to ions,electrons and dust respectively.

    The motive of the present paper is to investigate the instability of Jeans mode for a viscous,strongly coupled dusty fluid.The system is modeled using the Generalized Hydrodynamics equations in Linear Response formalism.

    We assumed electron and ions to be inertia less as their thermal speed is very high in comparison to the phase speed of the perturbations,hence they are in thermal equilibrium and follow Boltzmannian distribution.Thus,the densities for electrons and ions are given as

    where ni(e)0being equilibrium ion and electron densities and ? is the plasma potential.

    The large scale structure formation in the universe may be attributed to the gravitational collapse of dust and gas.The spectra of mass and charge of dust grains may be very wide in astrophysical environment and it is very common to have situation where electrostatic forces compete with gravitational forces such thatIn the regime 1 ≤ Γ ≤ Γc(Γcis the critical coulomb coupling parameter beyond,which the dusty plasma transits to crystalline regime.)dusty plasma behaves as a visco elastic medium.The momentum equation describing such a system for negatively charged dust grains is given as

    where,nd,vdare the perturbed dust density and dust velocity respectively.ψ is the gravitational potential being experienced by the grains due to self gravity.η is the coefficient of viscosity.The momentum equation describes the forces experienced by the grains due to electrostatic interaction,self gravitational effect and the pressure gradient force arising due to strong coupling of grains.The last term in right hand side of Eq.(3)describes the dissipative force arising due to intrinsic viscosity of dust fluid.[19]

    The strong correlation among the particles interacting via Debye Hückel potentialhas been incorporated in our model by including a force term in the equation of motion for dust particles,which is derived from gradient of the effective electrostatic dust pressure,given aswhere Γ is the coulomb coupling parameter,Nnnis the number of nearest neighbors,Tdis the dust kinetic temperature ndis the dust density,κ is the screening constant.Corresponding to this,an effective temperature term may be de fined as T?=(Nnn/3)ΓTd(1+ κ)exp(?κ).Earlier the effective pressure term has been considered in several studies related to Dust Acoustic wave(DAW).[13,20]

    The continuity equation describing mass transport in the system is given as

    The above set of equations are closed by electrostatic Poisson’s equation

    The self gravitational effect appearing in the momentum equation can be dealt in using the gravitational Poisson’s equation

    Equations(3),(4),(5),and(6)are linearized such that the perturbed quantities vary aswhere ω is the frequency of the harmonic disturbance andis the wave number.The dispersion relation is derived using the above set of equations in the form

    In deriving the above dispersion relation the zero order gravitational field is taken to be zero and a homogeneous equilibrium is thus assumed in the system.However,the neglect of zero order field is difficult to justify in regimes where it is necessary to consider the interplay of electric and gravitational force.[3]In order to overcome this inconsistency,it is necessary to consider that equilibrium is homogeneous asymptotically.In this approach zero order fields are retained and a new field is modeled by combining electric and gravitational fields and the resultant effect is expressed through a new potential ψ0? (qd/md)?0.The Poisson’s equation for the new field is expressed as

    At equilibrium when electrostatic force balances gravity,the expression for equilibrium dust density(de fined in Eq.(9))used in our calculation is consistent with the quasi neutrality condition.The parametercorrelates the electrostatic repulsion and the gravitational attraction of the dust particles.

    Substituting nd0in Eq.(7)and simplifying we get a quadratic equation for ω

    Equation(10)is the final dispersion relation for a self gravitating strongly coupled viscous dusty plasma system.The above dispersion relation is normalized in frequency,mass,charge,density and wave vector by parameters ωpd,md,qd,nd0,and 1/λDrespectively.The normalized form of the dispersion relation is obtained as

    Simplifying the expression of ω′for the condition

    the normalized growth rate is obtained as

    It is observed that the modified growth rate of Jeans instability in the strongly coupled regime is governed by number of physical parameters like mass and charge of dust,intrinsic viscosity and the strength of inter particle interaction,which is a function of coulomb coupling parameter Γ and screening parameter κ.

    3 Results and Discussions

    The strongly coupled dust grains being affected by the self gravitational pull in the considered parameter regime,results in a continuous increment in the amplitude of the perturbation generated in the system.The unstable equilibrium supports the collapse of the ensemble of dust grains in the systems like dust clouds of H II region,Giant Molecular Clouds(GMC)etc.The outcome of the present work yields an analytical expression on growth rate of Jeans mode as a function of viscosity coefficient,effective temperature through strong coupling parameter Γ and dust mass.

    In Fig.1(a)normalized growth rate is plotted against wave vector for different values of normalized viscosity coefficient.The values for η′are taken from the Molecular Dynamics(MD)simulation work of Saigo et al.[21]and the chosen values are compatible with the range of parameters used in the present work.It is observed that the viscosity coefficient is responsible for destabilizing the Jeans mode for the parameter range studied here.

    It is mentioned in the Introduction that during the collapse,the density of dust at the center of the dense dusty cloud of H II region may achieve very large value.For our analysis the density,temperature of the dust particles are assumed to be of the order of102m?3and 80 K respectively.The plasma density is approximated for dense dust cloud of H II region with value ni=4.85×1014m?3.[22]The charge on dust grain with radius 1.5 × 10?6m,1.7×10?6m and 1.8×10?6m are 1.1×103e,1.2×103e and 1.3×103e respectively.The values of Coulomb coupling parameterfor the assumed dust density and dust charge are 1.243,1.480,and 1.737 respectively.In the considered parameter regime,Γ is greater then unity that signifies that the system of particles is in strongly coupled phase.For dust cloud of size≤109m[12]in the H II region that has been considered in this paper,the typical value of screening parameterwhere λDis the dusty plasma debye length)may vary in orderforwith the temperature of background plasmaThe electron density is calculated from quasi neutrality conditionFor the given values of nd0,ni0,and Qd,the equilibrium electron density is almost equal to that of ion density.Therefore in the present analysis

    Figure 1(b)depicts the variation in growth rate for different values of Coulomb coupling parameter Γ.When the coupling is strong i.e.at high effective temperature the grains are electrostatically bound to each other and can withstand the self gravity to a considerable extent.As a result the growth of the electrostatic mode is suppressed thereby hindering the collapse of the dusty cloud.

    Fig.1 (Color online)(a)Depicts the effect of viscosity coefficient on the growth rate of jeans mode forkg,and Zd0=1100e,ni0=4.85× 1014m?3,Γ =1.243,TD=80 K.(b)Shows the effect of strong coupling parameter on the growth rate of jeans mode formd=3×10?11kg,ni0=4.85×1014m?3,TD=80 K.

    Figure 2(a)shows the variation in the growth rate of the electrostatic mode for different values of dust mass.When dust grains are massive,the self gravitational pull exerted by the grains increases.In that case the electrostatic mode turns more unstable leading to an efficient mechanism for collapsing of the system. The effect is predominant in high frequency regime of the electrostatic mode.

    A comparison on the unstable nature of the electrostatic mode in presence and in absence of effective dust temperature is presented in Fig.2(b).In presence of effective temperature,system is strongly coupled and the growth is small in comparison to the case in absence of the effective temperature term.Thus,it can be inferred that the strongly coupled dust grains can stabilize the system resulting in a reduced growth of the electrostatic mode.The variation is pronounced only in large frequency regime.

    Fig.2 (Color online)(a)Depicts the role of dust mass on the growth rate of jeans mode for η′=0.05,and Zd0=1100e,ni0=4.85×1014m?3,TD=80 K.(b)Presents a comparison on the growth rate of jeans mode in presence and in absence of effective temperature term for dust densityplasma density ni0=4.85×1014m?3.

    Pandey et al.[4]have discussed the criterions for Jeans Instability in terms of the parameter de fined by the ratioThey have extensively discussed the conditions for levitation,condensation and dispersion of dust grains.In the present case,it is worth noting that the ratiois of the order unity for the considered parameter regime.The range for dust mass or dust charge chosen in the current analysis for growth rate do not affect the order of the ratio.The dust particles levitate by the balance of electrostatic and self-gravitational fields.In Ref.[4]the authors have mentioned that the frequency of the jeans mode is zero for marginally stable cloudsIn our case also we observe that the real frequency associated with the electrostatic mode to be zero signifying that the counteracting forces balance each other.However,the if nite growth of the electrostatic mode establishes the fact that the equilibrium is unstable.The present instability analysis differs from the work of Pandey et al.in two significant aspects;viz.the inclusion of effective electrostatic pressure that is controlled by coupling parameter and the viscous effect considered in the system.The viscosity coefficient can significantly control the growth rate.The viscous term is mainly responsible for driving the instability in the system.As a result in contrast to Pandey et al.work,where the condition for stable levitation is obtained whenwith no signature for instability,in our case the system is driven unstable in the same limit.The increase in provides a scope to resist the collapse that may be caused due to the effect of self-gravity.In this situationion density in the background has to exceed electron density for maintaining equilibrium.Pandey et al.have elaborated that the increase in ion density as compared to electron density supports a stable levitation with no evidence for instability in the system.In the present analysis of jeans instability,the increase in coupling parameter helps in minimizing the free energy content of the system for a given value of dust mass and viscosity coefficient.However,for the range of Γ considered in Fig.1(b),the growth rate is non zero and finite.This may correspond to an unstable nature of electrostatic levitation of the particles in the dust cloud.

    4 Conclusion

    The present work is focused on understanding the mechanism of Jeans Instability in a strongly coupled self gravitating,viscous dusty fluid.For understanding the role of strongly correlated dust in the process of collapse,we have calculated the growth rate for the self gravitating mode in Linear Response Formalism for strongly coupled dust grains.The approach undertaken involves the utility of asymptotic homogeneity in the equilibrium to understand the interplay of gravity and electrostatic forces.[3]

    The present work has addressed the role of dust charge and hence the coulomb coupling parameter(Γ)in controlling the effective pressure that tries to withstand the collapse caused by self gravity.Thus it becomes possible to analyze the role of strong coupling on stabilizing the self gravitating dusty cloud at a given density when the dust grains are compactly packed.

    The present work is an initial effort to visualize how dust mass,viscosity and effective electrostatic pressure control the growth of perturbation in self gravitating dusty cloud when the grains are strongly coupled.To our knowledge,the role of coulomb coupling parameter on Jeans Instability has not been extensively studied,whereas this parameter may play a significant role during the collapse of gravitating dusty cloud.The contribution of various parameters in driving the mode unstable is analyzed.The growth in the perturbation generated in the system is the signature of the unstable equilibrium,which tries to stabilize itself by undergoing a self gravitational collapse.

    In the present work we have observed that viscosity coefficient gets coupled with the gravitational term responsible for Jeans instability and contribute towards the enhancement of the growth rate as depicted in Fig.1(b)in contrast to its usual role of stabilizing or damping the modes.Increasing dust mass can also destabilize the jeans mode.Massive grains in a dusty cloud can effectively promote the physical process responsible for the formation of astrophysical objects.The strongly coupled dust grains can retard the growth rate of the system and thus the system is stabilized when Γ is large.

    It is observed that the growth of the Jeans mode experiences a hump at a particular value of wave vector,which again depends on viscosity coefficient,coulomb coupling parameter Γ and dust mass.The growth rate progresses smoothly when the system is not strongly coupled i.e.in absence of effective temperature term.The present study may be important to understand the role of strong coupling and intrinsic viscosity of dust fluid in the evolution of massive structures in astrophysical environments.

    男女午夜视频在线观看| 欧美国产精品一级二级三级| 国产精品无大码| 国产xxxxx性猛交| 久久久久久人人人人人| 久久人人97超碰香蕉20202| 欧美成人午夜精品| 免费在线观看视频国产中文字幕亚洲 | 最近最新中文字幕免费大全7| 亚洲伊人久久精品综合| 国产麻豆69| 日本vs欧美在线观看视频| 亚洲av福利一区| 黄片播放在线免费| 国产日韩一区二区三区精品不卡| 国产精品免费大片| 一区二区三区四区激情视频| 狂野欧美激情性bbbbbb| 亚洲精品一二三| 看免费成人av毛片| 美女脱内裤让男人舔精品视频| 九草在线视频观看| 热99国产精品久久久久久7| 亚洲精品中文字幕在线视频| 男女无遮挡免费网站观看| 免费看不卡的av| 欧美日韩综合久久久久久| 这个男人来自地球电影免费观看 | 成人影院久久| 国产精品无大码| 国产免费福利视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产男女内射视频| xxx大片免费视频| 国产精品 欧美亚洲| 欧美日韩视频高清一区二区三区二| 色视频在线一区二区三区| 国产av国产精品国产| 日韩欧美精品免费久久| 国产精品久久久久久精品电影小说| 97精品久久久久久久久久精品| 亚洲精品在线美女| 嫩草影视91久久| 搡老岳熟女国产| 尾随美女入室| av有码第一页| 午夜福利网站1000一区二区三区| 欧美亚洲 丝袜 人妻 在线| 又大又黄又爽视频免费| 亚洲精品国产一区二区精华液| 黄色怎么调成土黄色| 亚洲综合精品二区| 丰满饥渴人妻一区二区三| 妹子高潮喷水视频| 国产成人啪精品午夜网站| 国产精品欧美亚洲77777| 最近最新中文字幕免费大全7| 国产精品三级大全| av国产精品久久久久影院| 欧美中文综合在线视频| 精品少妇久久久久久888优播| 国精品久久久久久国模美| 999久久久国产精品视频| 成年av动漫网址| 国产av一区二区精品久久| 久久女婷五月综合色啪小说| 纵有疾风起免费观看全集完整版| 我的亚洲天堂| 2018国产大陆天天弄谢| 激情五月婷婷亚洲| 免费av中文字幕在线| 色综合欧美亚洲国产小说| 如日韩欧美国产精品一区二区三区| 美女中出高潮动态图| 99re6热这里在线精品视频| 看免费成人av毛片| 宅男免费午夜| 国产熟女欧美一区二区| 一区二区av电影网| 日日摸夜夜添夜夜爱| 一级黄片播放器| 丝袜在线中文字幕| 日本欧美视频一区| 夫妻性生交免费视频一级片| 1024视频免费在线观看| 丝袜喷水一区| 在线观看免费高清a一片| 女人爽到高潮嗷嗷叫在线视频| 咕卡用的链子| 久久人人爽人人片av| 最近手机中文字幕大全| 视频在线观看一区二区三区| 纵有疾风起免费观看全集完整版| 在线看a的网站| 国产精品无大码| 国产男人的电影天堂91| 久久青草综合色| www日本在线高清视频| 老汉色∧v一级毛片| 搡老岳熟女国产| 国产欧美亚洲国产| 日韩人妻精品一区2区三区| 日韩精品有码人妻一区| 亚洲欧洲日产国产| 好男人视频免费观看在线| 欧美成人午夜精品| 天天影视国产精品| 美女中出高潮动态图| 亚洲国产精品一区三区| 亚洲精品国产av成人精品| 另类精品久久| 日韩精品免费视频一区二区三区| 国产欧美亚洲国产| 亚洲av中文av极速乱| 亚洲精品国产一区二区精华液| 欧美人与性动交α欧美软件| 99久久人妻综合| 亚洲精华国产精华液的使用体验| 免费观看人在逋| 18禁裸乳无遮挡动漫免费视频| 两个人看的免费小视频| 国语对白做爰xxxⅹ性视频网站| 麻豆精品久久久久久蜜桃| 老汉色∧v一级毛片| 国产精品香港三级国产av潘金莲 | kizo精华| 国产有黄有色有爽视频| 91aial.com中文字幕在线观看| 亚洲精品乱久久久久久| 久久热在线av| 一本大道久久a久久精品| 亚洲成人一二三区av| 日韩电影二区| 亚洲欧美精品自产自拍| 一区二区av电影网| 国产av国产精品国产| 777久久人妻少妇嫩草av网站| 国产午夜精品一二区理论片| 久久久久精品久久久久真实原创| √禁漫天堂资源中文www| av网站在线播放免费| 亚洲精品美女久久久久99蜜臀 | 老熟女久久久| 80岁老熟妇乱子伦牲交| 99精国产麻豆久久婷婷| 在线观看免费午夜福利视频| 亚洲欧洲日产国产| 999久久久国产精品视频| 免费观看人在逋| 激情五月婷婷亚洲| 国产日韩欧美亚洲二区| 午夜日本视频在线| av电影中文网址| 日韩视频在线欧美| 久久国产精品大桥未久av| 免费观看av网站的网址| 午夜福利视频在线观看免费| 亚洲男人天堂网一区| 这个男人来自地球电影免费观看 | 亚洲国产欧美日韩在线播放| 丝袜喷水一区| 国产成人精品福利久久| 中文天堂在线官网| 色吧在线观看| av电影中文网址| 巨乳人妻的诱惑在线观看| av.在线天堂| 极品人妻少妇av视频| 精品久久久精品久久久| 国产爽快片一区二区三区| 久久精品亚洲熟妇少妇任你| 国产黄色视频一区二区在线观看| 欧美精品高潮呻吟av久久| 大陆偷拍与自拍| 观看av在线不卡| 国产亚洲欧美精品永久| 国产高清国产精品国产三级| 午夜91福利影院| 999久久久国产精品视频| 国产一卡二卡三卡精品 | 制服丝袜香蕉在线| 成人国产麻豆网| 亚洲精品久久午夜乱码| 日韩一区二区三区影片| 巨乳人妻的诱惑在线观看| 亚洲av中文av极速乱| 久久 成人 亚洲| 国产精品久久久av美女十八| 日韩av不卡免费在线播放| av在线播放精品| 自线自在国产av| 人成视频在线观看免费观看| 美女福利国产在线| 国产色婷婷99| 如日韩欧美国产精品一区二区三区| av国产久精品久网站免费入址| 国产精品香港三级国产av潘金莲 | 国产视频首页在线观看| 国产野战对白在线观看| 国产精品一国产av| 丝袜脚勾引网站| 日本黄色日本黄色录像| 狂野欧美激情性xxxx| 青春草国产在线视频| 老司机影院毛片| svipshipincom国产片| 晚上一个人看的免费电影| 国产免费福利视频在线观看| 亚洲国产欧美在线一区| 国产精品欧美亚洲77777| 丝袜人妻中文字幕| 少妇的丰满在线观看| 亚洲综合精品二区| 一个人免费看片子| 精品人妻熟女毛片av久久网站| 国产一区二区三区av在线| 亚洲美女视频黄频| 日韩中文字幕视频在线看片| 国产人伦9x9x在线观看| 国产黄色视频一区二区在线观看| 另类精品久久| 少妇精品久久久久久久| 国产成人精品福利久久| 人人妻人人澡人人爽人人夜夜| 亚洲成国产人片在线观看| 国产日韩欧美视频二区| 免费高清在线观看日韩| 综合色丁香网| 日韩欧美一区视频在线观看| 亚洲一级一片aⅴ在线观看| 精品国产超薄肉色丝袜足j| 99精国产麻豆久久婷婷| 观看美女的网站| 日韩视频在线欧美| 操美女的视频在线观看| 欧美日韩亚洲高清精品| av在线观看视频网站免费| av国产久精品久网站免费入址| 蜜桃在线观看..| 极品人妻少妇av视频| 韩国av在线不卡| 叶爱在线成人免费视频播放| 亚洲精品av麻豆狂野| 欧美在线黄色| 性少妇av在线| 亚洲三区欧美一区| 老鸭窝网址在线观看| 国产成人a∨麻豆精品| 国产成人午夜福利电影在线观看| 午夜老司机福利片| 亚洲一区中文字幕在线| 99re6热这里在线精品视频| 精品国产一区二区久久| 在线观看www视频免费| 51午夜福利影视在线观看| 青春草亚洲视频在线观看| 乱人伦中国视频| 久久99精品国语久久久| 国产老妇伦熟女老妇高清| 女性生殖器流出的白浆| 国产成人免费观看mmmm| 欧美久久黑人一区二区| 日韩一本色道免费dvd| 亚洲一级一片aⅴ在线观看| 亚洲精品av麻豆狂野| 国产片特级美女逼逼视频| 亚洲少妇的诱惑av| 老司机影院毛片| 亚洲天堂av无毛| 久久青草综合色| 九九爱精品视频在线观看| 90打野战视频偷拍视频| 成人国语在线视频| 亚洲精品日本国产第一区| 精品国产一区二区三区四区第35| 成人亚洲精品一区在线观看| 日韩伦理黄色片| 日日摸夜夜添夜夜爱| 在线观看人妻少妇| 久久天躁狠狠躁夜夜2o2o | 日本wwww免费看| 不卡av一区二区三区| 久久久久久久国产电影| 热99久久久久精品小说推荐| 亚洲av国产av综合av卡| 国产高清国产精品国产三级| 国产亚洲一区二区精品| 在线精品无人区一区二区三| 欧美日韩成人在线一区二区| 欧美日韩视频高清一区二区三区二| 美女中出高潮动态图| av免费观看日本| 男女国产视频网站| 黄片无遮挡物在线观看| 国产成人欧美在线观看 | 亚洲中文av在线| 一区二区av电影网| 狂野欧美激情性bbbbbb| 国产有黄有色有爽视频| 在线观看免费高清a一片| 亚洲第一青青草原| 国产激情久久老熟女| 如何舔出高潮| 在线看a的网站| 好男人视频免费观看在线| 人人妻人人爽人人添夜夜欢视频| 2018国产大陆天天弄谢| 少妇精品久久久久久久| 国产极品粉嫩免费观看在线| 国产成人欧美| 国产精品成人在线| 韩国av在线不卡| 欧美在线一区亚洲| 老司机深夜福利视频在线观看 | 国产精品国产av在线观看| 各种免费的搞黄视频| 自线自在国产av| 中文欧美无线码| 亚洲欧美精品综合一区二区三区| 免费观看av网站的网址| 一区二区三区乱码不卡18| 国产成人精品福利久久| 人人澡人人妻人| 久久久精品免费免费高清| 少妇的丰满在线观看| 久久久久久人妻| 哪个播放器可以免费观看大片| 99热全是精品| 国产精品国产三级专区第一集| 老司机亚洲免费影院| 免费高清在线观看日韩| 99久久综合免费| 亚洲国产日韩一区二区| 最近中文字幕高清免费大全6| 国产不卡av网站在线观看| 国产男人的电影天堂91| 国产又爽黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 精品亚洲成a人片在线观看| 日本色播在线视频| 婷婷色av中文字幕| 亚洲天堂av无毛| 国产乱来视频区| 久久天躁狠狠躁夜夜2o2o | 日韩视频在线欧美| 国产男人的电影天堂91| 国产日韩欧美在线精品| 大片电影免费在线观看免费| 一个人免费看片子| 免费不卡黄色视频| av线在线观看网站| 欧美日韩一级在线毛片| 日韩免费高清中文字幕av| 麻豆乱淫一区二区| 亚洲欧美日韩另类电影网站| 女性生殖器流出的白浆| 精品第一国产精品| 国产亚洲av片在线观看秒播厂| 香蕉丝袜av| 成人国产av品久久久| 国产伦人伦偷精品视频| 成人国语在线视频| 成年人午夜在线观看视频| 久久国产精品男人的天堂亚洲| 欧美在线一区亚洲| 美国免费a级毛片| 大香蕉久久网| 91精品国产国语对白视频| 国产探花极品一区二区| 高清不卡的av网站| videosex国产| 9191精品国产免费久久| 精品国产露脸久久av麻豆| 丝袜美足系列| 色94色欧美一区二区| 一区二区三区四区激情视频| 国产精品.久久久| 亚洲 欧美一区二区三区| 老汉色av国产亚洲站长工具| 亚洲精品av麻豆狂野| 99国产精品免费福利视频| 国产亚洲最大av| 赤兔流量卡办理| 色综合欧美亚洲国产小说| 日本欧美视频一区| 亚洲国产欧美在线一区| 成年动漫av网址| 中文精品一卡2卡3卡4更新| 在线观看人妻少妇| 又粗又硬又长又爽又黄的视频| 搡老岳熟女国产| 国产男人的电影天堂91| 成人午夜精彩视频在线观看| 国产亚洲最大av| 亚洲精华国产精华液的使用体验| 久久综合国产亚洲精品| www.av在线官网国产| 亚洲 欧美一区二区三区| 日韩,欧美,国产一区二区三区| 国产99久久九九免费精品| av有码第一页| 9191精品国产免费久久| 精品免费久久久久久久清纯 | 久久久久久久国产电影| 性少妇av在线| 亚洲国产毛片av蜜桃av| 亚洲国产欧美在线一区| 亚洲人成网站在线观看播放| 久久午夜综合久久蜜桃| 国产精品二区激情视频| 免费观看性生交大片5| 国产成人精品福利久久| 精品国产国语对白av| 99国产综合亚洲精品| 日韩免费高清中文字幕av| 黄频高清免费视频| a 毛片基地| 日韩av在线免费看完整版不卡| 一边摸一边做爽爽视频免费| 久久精品亚洲av国产电影网| 国产欧美日韩一区二区三区在线| 少妇人妻 视频| videos熟女内射| 亚洲成国产人片在线观看| 亚洲国产看品久久| 一级毛片电影观看| 99国产精品免费福利视频| 国精品久久久久久国模美| 中文字幕人妻丝袜一区二区 | 涩涩av久久男人的天堂| 如何舔出高潮| 国产欧美亚洲国产| 日韩av免费高清视频| 亚洲专区中文字幕在线 | 亚洲五月色婷婷综合| 18禁国产床啪视频网站| 亚洲一卡2卡3卡4卡5卡精品中文| 99九九在线精品视频| 欧美人与善性xxx| 久久久国产一区二区| 成年av动漫网址| 久久天躁狠狠躁夜夜2o2o | 咕卡用的链子| 十八禁网站网址无遮挡| 欧美少妇被猛烈插入视频| 国产一区有黄有色的免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 水蜜桃什么品种好| 99国产综合亚洲精品| 国产av国产精品国产| 少妇被粗大的猛进出69影院| 亚洲国产av影院在线观看| 国产精品国产三级国产专区5o| 在线看a的网站| 亚洲欧美清纯卡通| 国产成人精品福利久久| www.精华液| 亚洲精品第二区| 欧美 亚洲 国产 日韩一| 人妻一区二区av| 国产一区亚洲一区在线观看| 熟妇人妻不卡中文字幕| 如日韩欧美国产精品一区二区三区| 成人亚洲精品一区在线观看| 丰满乱子伦码专区| 国产精品久久久av美女十八| 久久久精品国产亚洲av高清涩受| 亚洲欧美一区二区三区黑人| 我要看黄色一级片免费的| 久久99一区二区三区| 国产精品嫩草影院av在线观看| 成人毛片60女人毛片免费| 国产精品免费视频内射| 制服诱惑二区| 高清在线视频一区二区三区| 国产男女内射视频| 国产成人一区二区在线| 中文字幕高清在线视频| 肉色欧美久久久久久久蜜桃| 女性被躁到高潮视频| 久久久亚洲精品成人影院| 热re99久久精品国产66热6| 美女主播在线视频| 97在线人人人人妻| 国产精品免费大片| 不卡视频在线观看欧美| 久久精品国产综合久久久| 制服丝袜香蕉在线| 一区二区三区激情视频| 精品一区二区免费观看| h视频一区二区三区| 国产成人av激情在线播放| 国产精品一区二区在线观看99| 丰满少妇做爰视频| 日韩av在线免费看完整版不卡| 欧美成人精品欧美一级黄| bbb黄色大片| 精品一区二区三卡| 我的亚洲天堂| 成人亚洲欧美一区二区av| 曰老女人黄片| 黄片无遮挡物在线观看| 亚洲伊人色综图| 中文精品一卡2卡3卡4更新| 国产成人一区二区在线| 一级毛片我不卡| 最近最新中文字幕大全免费视频 | 婷婷色av中文字幕| 日韩制服骚丝袜av| 一级爰片在线观看| 在线观看国产h片| 岛国毛片在线播放| 亚洲四区av| 亚洲精品久久久久久婷婷小说| 成年av动漫网址| 一本—道久久a久久精品蜜桃钙片| 久热这里只有精品99| 9色porny在线观看| 波野结衣二区三区在线| 欧美国产精品va在线观看不卡| 国产黄色免费在线视频| 嫩草影视91久久| 一级片'在线观看视频| 亚洲视频免费观看视频| 丰满少妇做爰视频| 丝袜美腿诱惑在线| av卡一久久| 久热爱精品视频在线9| 啦啦啦 在线观看视频| 精品一区二区三区av网在线观看 | 免费日韩欧美在线观看| 国产伦理片在线播放av一区| 亚洲综合色网址| 久久精品国产a三级三级三级| 亚洲av中文av极速乱| 国产在视频线精品| 五月开心婷婷网| 我的亚洲天堂| 免费在线观看完整版高清| 美女扒开内裤让男人捅视频| 波多野结衣av一区二区av| 日本wwww免费看| 国产精品久久久久久久久免| 免费高清在线观看视频在线观看| 婷婷色综合www| 人体艺术视频欧美日本| 毛片一级片免费看久久久久| 黄色一级大片看看| 最近中文字幕高清免费大全6| 久久av网站| 成人18禁高潮啪啪吃奶动态图| 国产成人午夜福利电影在线观看| 国产激情久久老熟女| 丝袜喷水一区| av片东京热男人的天堂| 黑人巨大精品欧美一区二区蜜桃| 波多野结衣一区麻豆| 亚洲成人一二三区av| 午夜老司机福利片| 精品人妻在线不人妻| 日本爱情动作片www.在线观看| 亚洲欧美一区二区三区黑人| 国产欧美日韩一区二区三区在线| 精品午夜福利在线看| 欧美黄色片欧美黄色片| 超碰成人久久| 香蕉国产在线看| 亚洲欧美色中文字幕在线| 日本av手机在线免费观看| 黄频高清免费视频| 超碰97精品在线观看| 亚洲综合色网址| 19禁男女啪啪无遮挡网站| 欧美日韩精品网址| 精品一区二区三区四区五区乱码 | 男女床上黄色一级片免费看| 99九九在线精品视频| 日韩大码丰满熟妇| av在线app专区| 男女高潮啪啪啪动态图| 久久国产精品大桥未久av| 国产亚洲一区二区精品| 菩萨蛮人人尽说江南好唐韦庄| 热99久久久久精品小说推荐| 日韩免费高清中文字幕av| 母亲3免费完整高清在线观看| 久久久久久人妻| 欧美精品av麻豆av| 欧美激情高清一区二区三区 | 桃花免费在线播放| 99re6热这里在线精品视频| 不卡av一区二区三区| 两性夫妻黄色片| 巨乳人妻的诱惑在线观看| 亚洲精品av麻豆狂野| 中文天堂在线官网| 韩国精品一区二区三区| 久久午夜综合久久蜜桃| 国产av码专区亚洲av| 老司机靠b影院| 国产精品免费大片| 欧美最新免费一区二区三区| 久久精品久久久久久久性| 成年女人毛片免费观看观看9 | 99国产综合亚洲精品| 亚洲精品国产区一区二| 18禁裸乳无遮挡动漫免费视频| 国产成人精品福利久久| 亚洲五月色婷婷综合| 亚洲精品乱久久久久久| 99re6热这里在线精品视频| 免费日韩欧美在线观看| 最黄视频免费看| 亚洲欧美成人精品一区二区| 女人爽到高潮嗷嗷叫在线视频|