• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Numerical Investigation of Nanocomposite of Copper and Titanium Dioxide in Water Based Fluid Influenced by Instigated Magnetic Region

    2018-08-02 07:36:18IqbalEhtshamAzharMarajandZaffarMehmood
    Communications in Theoretical Physics 2018年8期

    Z.Iqbal,Ehtsham Azhar,E.N.Maraj,and Zaffar Mehmood

    Department of Mathematics,Faculty of Sciences,HITEC University,Taxila 44700,Pakistan

    AbstractPresence of external electrical field plays a vital role in heat transfer and fluid flow phenomena.Keeping this in view present article is a numerical investigation of stagnation point flow of water based nanoparticles suspended fluid under the influence of induced magnetic field.A detailed comparative analysis has been performed by considering Copper and Titanium dioxide nanoparticles.Utilization of similarity analysis leads to a simplified system of coupled nonlinear differential equations,which has been tackled numerically by means of shooting technique followed by Runge-Kutta of order 5.The solutions are computed correct up to 6 decimal places.Influence of pertinent parameters is examined for fluid flow,induced magnetic field,and temperature profile.One of the key findings includes that magnetic parameter plays a vital role in directing fluid flow and lowering temperature profile.Moreover,it is concluded that Cu-water based nanofluid high thermal conductivity contributes in enhancing heat transfer efficiently.

    Key words:water based fluid,instigated magnetic region,nanoscale particles,Copper and titanium dioxide,stagnation point flow,numerical solutions

    1 Introduction

    In nature poor heat conductivity of typical fluids e.g.water,ethylene glycol,kerosene oil concoction has turned out to vital restriction in improvement heat exchange forms including traditional fluids.On contrast to fluids some metals such as silver,copper and gold ordinarily have higher heat conductivity.Exploiting high heat conductivity of metals to improve heat conductivity of customary fluids prompted possibility of nanofluids.Suspensions of nanometer measured metal particles in the base fluid concoct such fluids.As a result,the efficient thermal conductivity of nanofluids improves drastically as com-pared to the traditional base fluid.The term nanofluid was at first presented by Choi.[1]Most regularly utilized nanoparticles are prepared from metal oxides like CuO,Al2O3,and TiO2,metals such as Cu,Ag,and Au along with nitride/carbide earthenware production for example AlN,SiN,SiC,and TiC.Base fluids are normally common fluids like water,ethylene glycol,and oil.Nanofluids have ended up being extremely valuable in various mechanical and engineering appliances.Nanofluids are generally utilized as a part of various mechanical and manufacturing apparatuses such as coolants in atomic reactors,mechanical cooling,extraction of geothermal force,advanced medication conveyance frameworks,heat exchangers,indicative tests,disease treatment,and micro scale fluidic applications.[2]Depending on such wide convenience a few exploratory and hypothetical examinations were done to break down various parts of nanofluids.[3?10]

    Stagnation points exist at the surface of entity in the stream field where the fluid is conveyed to rest by the object.Stagnation stream depicts the smooth movement close to the stagnation locale where it experiences the most elevated pressure and most noteworthy rate of heat exchange and mass decay.This flow emerges in numerous applications and it has an unmistakable part particularly in transportation commercial enterprises on planning the rockets,air ships,submarines,and oil ships.The stagnation point flows over an extending surface is a traditional issue in fluid mechanics.Hiemenz[11]was the first to examine relentless flow in the vicinity of a stagnation point.From that point forward,countless and numerical studies clarifying different parts of boundary layer stagnation point flow over an extending/contracting surface have been done.[12?17]

    For flows where magnetic Reynolds number is not petite,instigated magnetic fields must be considered.[18]It is seen that there are a few astrophysical and geophysical problems in which prompted magnetic field assumes an imperative part in deciding flow features of the problem,specifically, fluid flow in earth’s inside,star arrangement,sunspots,and sunlight based flares in the Sun,turning attractive stars and planetary and sun based dynamo problems.Notwithstanding it,impelled magnetic fields assume a critical part in combination applications with plasma controls.[19]Also actuated magnetic fields could be utilized as a confirmation to anticipate the presence of salty fluid water subsurface seas in Europa and Callisto.[20]The traditional issue of Glauert[21]displayed an original examination for hydro magnetic boundary layer flow past a polarized level plate with uniform magnetic field in the flow heading at the plate.He got arrangement of development arrangements considering both huge what is more,little estimations of the electrical conductivity parameter for the speed and impelled magnetic fields.Impact of induced magnetic field on extensive scale throbbed MHD generator was analyzed by Koshiba et al.[22]Raptis and Soundalgekar[23]researched flow of an electrically directing fluid past a consistently moving unending vertical permeable plate in nearness of consistent heat flux and steady suction considering actuated magnetic field.In another study,Raptis and Masalas[24]considered impacts of impelled magnetic field on flimsy hydro magnetic stream of a thick,incompressible,electrically leading and optically thick emanating fluid past an unending vertical permeable plate.Influence of engendered magnetic field on hydro magnetic free convection flow was exposed by Ghosh et al.[25]Bég et al.[26]got environs non-likeness numerical arrangements for velocity,temperature and actuated magnetic field appropriations in constrained convection fluid metal limit layer stream past a non-leading plate for an extensive variety of attractive Prandtl numbers.Some recent attempts by means of numerical stimulations include Refs.[27–28].

    Aggravated by forward specified intriguing tries,present article is an endeavor to look at effect of actuated magnetic field on stagnation point flow of water based Copper and Titanium dioxide nanofluid.Prevailing problem is changed over to arrangement of four coupled differential equations by utilizing nonlinear similarity transformation.The very non straight arrangement of ODEs is handled by shooting technique alongside Runge-Kutta of order 5.The obtained solutions precision is up to 10?6.The impact of noteworthy parameters on velocity,induced magnetic field,nanoparticles temperature and concentration are inspected and uncovered through diagrams and tables.The fundamental accentuation is on investigating the effect of actuated magnetic field with fuse of extending proportion parameter.Moreover,a comparative analysis is carried out for the two types of particles suspended in water based nanofluids.Novel results of present investigation may be useful and beneficial in academic research and nanofluidic problems.

    2 Experimental Values and Properties of Nanocomposite Cu-TiO2/H2O

    In this investigation,we considering Copper and titanium dioxide nanoscale particles suspended in water base fluid.Moreover,thermal properties of base fluid and nanoparticles are expressed in Tables 1 and 2.

    Table 1 According to Ghadikolaei et al.[4]and Iqbal et al.,[7]expression for thermophysical characteristics for nanofluid are:

    where(ρcp)sis the volumetric heat capacity of solid nanoparticles,(ρcp)f,(ρcp)nfare volumetric heat capacity of base fluid and nanofluid,respectively.? is the particle volume fraction parameter of nanoparticles,ρfand μfare density and dynamic viscosity of base fluid,respectively.

    Table 2 Experimental values of density,specific heat and thermal conductivity for base fluids and nanoparticles(see Ref.[4]Ghadikolaei et al.and Ref.[7]Iqbal et al.)

    3 Description of Physical Proble m

    We consider steady two-dimensional stagnation point flow towards a linear stretching sheet at y=0.The fluid occupies the region y>0.The free stream velocity is assumed to be Ue(x)=ax and velocity of the stretching sheet is Uw(x)=cx,where a and c are the positive constants.Furthermore we assumed that H is induced magnetic field vector with magnetic field at free stream He(x)=H0x where H0is uniform magnetic field at infinity upstream.Present flow phenomenon is described in following physical flow diagram Fig.1.

    Fig.1(Color online)Physical flow structure.

    Governing boundary layer equations for electrically conducting viscous fluid(see Refs.[7]and[15])can be expressed as subject to boundary conditions

    where u,v,H1,and H2are velocity and magnetic components along the x-and y-directions respectively,ρnfis density of the nanofluid,μnfis dynamic viscosity of nanofluid,αnfis thermal diffusivity of nanofluid,T is the temperature of the fluid,knfis thermal conductivity of nanofluid,kfand ksare thermal conductivity of base fluid and solid nanoparticles,respectively.

    To further facilitate the present analysis,we introduce the subsequent conventional transformation and dimensionless variable η and f(η)in the following form

    Equations(1)and(2)are identically satisfied and other Eqs.(3)–(5)yield

    where prime indicates the differentiation with respect to η.Moreover Prandtl number Pr,stretching rate ratio parameter A,reciprocal magnetic Prandtl number λ and magnetic parameter β are de fined as

    Physical quantities such as skin friction and Nusselt number are given by

    where τwis wall shear stress,qwwall heat flux.Dimensionless form is

    where Rex=uwx/νfis local Reynolds number.

    4 Computational Procedure

    This segment is dedicated to tackle the solutions of system of nonlinear differential equations numerically.Thus,solution of coupled nonlinear governing boundary layer equations(9),(10),and(11)organized with boundary conditions(12)are computed by means of shooting method along Runge Kutta fifth order method.Firstly higher order nonlinear differential equations(9),(10),and(11)are transformed into a system of first order differential equations and further distorted into initial value problem by labeling the variables as

    According to the numerical procedure the above system of equations are formulated as:

    Above mentioned initial value problems have been solved numerically by RK5 method.Suitable values of the unknown and initial conditions are iteratively estimated by Newton method such that the solutions satisfy the boundary conditions at infinity with error less than 10?6.Furthermore,the existing numerical procedure is exemplified in Fig.2.

    Fig.2 (Color online)Algorithm flow chart.

    5 Theoretical Results Assessment

    The effects of several meaningful parameters on fluid flow,induced magnetic field and temperature for Cu-water and TiO2-water nanofluids are displayed and examined in this section.

    5.1 Physical Description of Velocity Field

    In this regard Figs.3–9 are portrayed to demonstrate the effect of stretching/shrinking parameter A,nanoparticles volume fraction ?,reciprocal of magnetic Prandtl number λ and magnetic parameter β for Cu-water and TiO2-water nanofluids,respectively.The analysis of Fig.3 reveals that velocity profile is concave down for A>1 and concave up for A<1 for both types of fluid.A>1 represents the scenario when stagnation velocity is greater than stretching rate whereas the alternate relation between these velocities holds for A>1.

    Fig.3 (Color online)Variation of A on f′(η);Red:f′(η):Cu-Water;Cyan:f′(η):TiO2-Water.

    Furthermore,boundary layer thickness is more for Cu-water based nanofluid as compared to TiO2-water nanofluid.Variation of nanoparticles volume fraction for two types of metals are displayed in Figs.4 and 5 respectively.It is depicted from these figures that for Cu-water based nanofluid flow reduce for increasing ? when A<1 while raising values of ? upsurges velocity for case of A>1 see Fig.4.However in case of TiO2-water nanofluid as shown in Fig.5 the rise in ? initially lessen fluid flow but latterly contributes in rising it when A<1.An opposite trend is witness for A>1 i.e.,for ?=0.05 fluid flow upsurges but for ?=0.20 it reduces.

    Figure 6 is devoted to examine the effect of λ for two classes for metal nanoparticles suspended fluids.It is observed that velocity appears to be a decreasing function of λ for A<1 and a rising function of it for A>1 for Cu as well as TiO2water based nanofluids.This happens mainly because increase in λ being the ratio of magnetic diffusivity to kinematic viscosity represents the rise in magnetic diffusivity which as a consequence results in lowering momentum boundary layer thickness and velocity for A<1.

    Fig.4 (Color online)Variation of ? on f′(η)for Cu-H2O;Red:A=0.5;Cyan:A=1.5.

    Fig.5 (Color online)Variation of ? on f′(η)for TiO2-H2O;Red:A=0.5;Cyan:A=1.5.

    Fig.6 (Color online)Variation of λ on f′(η)for Cu-H2O;Red:A=0.5;Cyan:A=1.5.

    Fig.7 (Color online)Variation of λ on f′(η)for TiO2-H2O;Red:A=0.5;Cyan:A=1.5.

    Fig.8 (Color online)Variation of β on f′(η)for Cu-H2O;Red:A=0.5;Cyan:A=1.5.

    Similar trend is witnesses for TiO2with a slight variation in magnitude see Fig.7.Influences of magnetic parameter on both types of nanofluids flow are portrayed in Figs.8 and 9.Study of these figures reveals that fluid velocity appears to be a rising relation with β.It shows that magnetic field strength contributes in rising momentum boundary layer thickness and fluid flow.

    Fig.9 (Color online)Variation of λ on f′(η)for TiO2-H2O;Red:A=0.5;Cyan:A=1.5.

    5.2 Physical Description of Induced Magnetic Field

    Induced magnetic field behavior examinations for various significant parameters in case of Cu and TiO2metallic particles are shown through Figs.10–16.It is observed that stretching parameter contributes in lowering induced magnetic field for both types of metal particles.However,this decrease is more evident for Cu-water based nanofluid as compare to TiO2-water based nanofluid see Fig.10.

    Effect of nanometal particles volume fractions are demonstrated in Figs.11 and 12 for copper and titanium dioxide nanoparticles,respectively.These graphical results reveal that the rise in ? for Cu contributes in rising induce magnetic field when A<1 and a reduction is observed for case of A>1 as displayed in Fig.11.However from Fig.12 it is concluded that TiO2nanoparticles volume fraction initially shows the similar trend as of Cu but for ?=0.20 the behavior alters for both studies i.e.,A<1 and A>1.

    Fig.10(Color online)Impact of A on g′(η);Blue:g′(η):Cu-Water;Magenta:g′(η):TiO2-water.

    Fig.11 (Color online)Variation of ? on g′(η)for Cu-H2O;Blue:A=0.5;Magenta:A=1.5.

    Fig.12(Color online)Variation of ? on g′(η)for TiO2-H2O;Blue:A=0.5;Magenta:A=1.5.

    Figure 13 illustrates the impact of reciprocal magnetic prandtl number on induced magnetic field for Cu and TiO2nano metals.It is revealed that λ contributes in rising induced magnetic field initially or both types of metals nanoparticles and afterwards a decrease in witness keeping A<1.A reverse trend is reported for the case of A>1.Furthermore,a slight change in magnitude is noticed for two types of nanoparticles in Fig.14.

    Fig.13 (Color online)Variation of λ on g′(η)for Cu-H2O;Blue:A=0.5;Magenta:A=1.5.

    Fig.14(Color online)Variation of λ on g′(η)for TiO2-H2O;Blue:A=0.5;Magenta:A=1.5.

    It happens mainly because the increase in λ indicates an increase in magnetic diffusivity as compare to viscous diffusivity,which leads to rise magnitude of induced magnetic field.Figures 15 and 16 are plotted to visualize the effect of magnetic parameter.It is seen that for both types of nanoparticle suspended fluids induced magnetic field lowers with a rise in β for A<1.This decrease is more in TiO2as compared to Cu.Moreover,it upsurges for increasing values of magnetic parameter for A>1.Notably,this increase is more significant in sense of magnitude for case of TiO2as compared to Cu.This happens due to the fact that magnetic parameter is the ratio of magnetic field magnitude to stretching velocity,thus an increase in β showed altered results for A<1 and A>1.Physically it indicates that induced magnetic field is effected by the stretching ratio.

    Fig.15 (Color online)Variation of β on g′(η)for Cu-H2O;Blue:A=0.5;Magenta:A=1.5.

    Fig.16 (Color online)Variation of β on g′(η)for TiO2-H2O;Blue:A=0.5;Magenta:A=1.5.

    5.3 Stream Pattern for Velocity and Induced Magnetic Field

    The fluid flow and induced magnetic field patterns are displayed in contour plots for Cu-water and TiO2-water nanofluids from Figs.17 and 18.It is evident that symmetry about vertical axis exists for fluid flow as well as induced magnetic field,respectively.

    Fig.17 Stream pattern for(a)velocity;(b)induced magnetic field for Cu-H2O when ?=20%.

    Fig.18 Stream pattern for(a)velocity;(b)induced magnetic field for TiO2-H2O when ?=20%.

    5.4 Physical Description of Temperature Profile

    Figures 19–21 are devoted for comparative study of temperature profiles of Copper and titanium dioxide water based nanofluids.Figure 19 exposed that temperature and thermal boundary layer thickness enhances with the usage of both types of nanofluids.Moreover,it shows that this increase in temperature is more in Cu as compared to TiO2water based nanofluid.Influence of magnetic parameter is portrayed in Fig.20,which demonstrates a temperature reduction for rising values of β.The reason behind it is the fact that β contributes in rising velocity as well as momentum boundary layer and as a consequence thermal boundary layer and temperature decreases.It is noted that temperature decreases more for titanium dioxide than copper nanoparticles.Figure 21 illustrates the effect of λ on temperature profile.Here temperature appears to be an increasing function of λ and this increase is more significant for Cu nanoparticles.Here it is worth mentioning that reciprocal of magnetic parameter acts like a resistive force,which decelerates fluid flow and upsurges fluid temperature.

    Fig.19 (Color online)Variation of ? on θ(η);Blue:TiO2-Water;Red:Cu-Water.

    Fig.20 (Color online)Variation of β on θ(η);Blue:TiO2-Water;Red:Cu-Water.

    Table 3 Influence of physical parameters on skinfriction and Nusselt number for Cu-Water.

    Fig.21(Color online)Variation of λ on θ(η);Blue:TiO2-Water;Red:Cu-Water.

    Table 4 Influence of physical parameters on skinfriction and Nusselt number for TiO2-Water.

    Tables 3 and 4 are presented to examine the effect of magnetic parameter β and reciprocal of magnetic prandtl number λ in absence and presence of Copper and titanium dioxide nanoparticles for rising values of volumetric fraction.From these tables it is evident that skin friction decreases as magnetic parameter rises while it reduces for rising values of λ.In presence of Cu and TiO2nanoparticles same trend is witness with the rise in magnitude.This rise in magnitude is increased for rising nanoparticles volumetric fraction.Moreover,magnitude of skin friction and Nusselt number is more for Cu than TiO2nanoparticles.

    Skin friction coefficient and Nusselt number are plotted for distinct values of important parameters in Figs.22–25.Figures 22 and 23 are skin friction graphs for Cu and TiO2plotted against volumetric fraction for rising values of magnetic parameter.These plots reveal that skin friction rises with the rise in ? while it lessens for rising magnetic parameter.Same trend is witness for TiO2with the only difference in raised magnitude scale.Furthermore,Nusselt number represents the heat flux at the surface.It is plotted against ? for rising values of β for the case of Cu and TiO2nanoparticles as shown in Figs.24 and 25,respectively.It is observed that Nu rises for increasing values of ? as well as magnetic parameter.Moreover this rise is more in magnitude for Cu-water based nanofluid(see Fig.25).

    Fig.22 (Color online)Variation of β on Cfagainst ? for Cu-H2O.

    Fig.23 (Color online)Variation of β on Cfagainst ? for TiO2-H2O.

    Fig.24 (Color online)Variation of β on Nuxagainst ? for Cu-H2O.

    Fig.25 (Color online)Variation of β on Nuxagainst ? for TiO2-H2O.

    6 Conclusion and Novelty of Article

    In present article comparative study was performed for two distinct metal nanoparticles namely,Copper and Titanium dioxide.These particles were chosen due to their significance in industry and manufacturing processes.Numerical investigation was performed for stagnation point flow over a linearly stretching surface in presence of induced magnetic field.Governing flow equations were reduced to system of differential equations by utilizing of similarity analysis.The reduced nonlinear coupled system was tackled numerically by means of shooting technique.Numerical analysis was performed in computational software MATLAB.From the above mentioned numerical investigation it was concluded that the usage of metallic nanoparticles in water based fluid was effective in improving thermal conductivity of the water.Cu nanoparticles were more efficient that TiO2nanoparticles.Nanoparticles volumetric fractions effected fluid flow and induced magnetic field significantly.Magnetic parameter and reciprocal of magnetic Prandtl number effected the temperature profile in an opposite manner to each other.Skin friction was an increasing function of ? and a decreasing function of magnetic parameter.Nusselt number seemed to be an increasing function of magnetic parameter and ?.Novel results of present investigation may be useful and beneficial in academic research and nanofluidic problems.

    两个人看的免费小视频| 久久热在线av| 国产亚洲午夜精品一区二区久久| 久久97久久精品| 女性被躁到高潮视频| 国产 精品1| 99热全是精品| 国产精品久久久av美女十八| 91精品三级在线观看| 国产在线视频一区二区| 欧美日韩一区二区视频在线观看视频在线| 尾随美女入室| 欧美激情极品国产一区二区三区| 免费观看av网站的网址| 午夜福利免费观看在线| 亚洲,欧美,日韩| 亚洲,欧美精品.| av在线老鸭窝| 亚洲精品美女久久久久99蜜臀 | 欧美日韩亚洲综合一区二区三区_| 亚洲av欧美aⅴ国产| 日本vs欧美在线观看视频| 色视频在线一区二区三区| 亚洲精品av麻豆狂野| 久久国产亚洲av麻豆专区| 一二三四中文在线观看免费高清| 国产视频首页在线观看| 亚洲精品久久午夜乱码| 日韩欧美精品免费久久| 欧美日韩av久久| 丰满饥渴人妻一区二区三| www.自偷自拍.com| 国产色婷婷99| 在线精品无人区一区二区三| 国产男女超爽视频在线观看| 国产成人精品无人区| 国产黄频视频在线观看| 日韩不卡一区二区三区视频在线| 熟女少妇亚洲综合色aaa.| 成人漫画全彩无遮挡| 老司机深夜福利视频在线观看 | 久久综合国产亚洲精品| 999久久久国产精品视频| 亚洲国产日韩一区二区| 日本vs欧美在线观看视频| 丝袜美足系列| 免费黄频网站在线观看国产| 永久免费av网站大全| 欧美人与性动交α欧美精品济南到| 亚洲精品一二三| 悠悠久久av| 国产乱人偷精品视频| 男人添女人高潮全过程视频| 欧美激情 高清一区二区三区| 赤兔流量卡办理| 日韩精品免费视频一区二区三区| 国产精品久久久av美女十八| 午夜影院在线不卡| 欧美老熟妇乱子伦牲交| 成人亚洲欧美一区二区av| 亚洲av中文av极速乱| 亚洲伊人久久精品综合| 国产片内射在线| 高清不卡的av网站| 99久国产av精品国产电影| 亚洲精品第二区| 老熟女久久久| 国产不卡av网站在线观看| www.av在线官网国产| 久久久亚洲精品成人影院| 亚洲国产av新网站| 久久久久人妻精品一区果冻| 欧美乱码精品一区二区三区| 丝瓜视频免费看黄片| 日韩熟女老妇一区二区性免费视频| 亚洲美女视频黄频| 亚洲国产精品成人久久小说| 国产毛片在线视频| 日本vs欧美在线观看视频| 亚洲欧美一区二区三区国产| 国产不卡av网站在线观看| 十八禁人妻一区二区| 制服人妻中文乱码| 国产欧美日韩一区二区三区在线| 美女脱内裤让男人舔精品视频| 国产成人免费观看mmmm| 水蜜桃什么品种好| 少妇被粗大的猛进出69影院| 亚洲av国产av综合av卡| 久久青草综合色| 亚洲国产成人一精品久久久| 国产成人精品久久久久久| 成人三级做爰电影| 妹子高潮喷水视频| 国产高清不卡午夜福利| 国产精品 欧美亚洲| 国产黄色视频一区二区在线观看| 一区二区日韩欧美中文字幕| 男人操女人黄网站| 亚洲精品av麻豆狂野| 亚洲av在线观看美女高潮| 成人亚洲欧美一区二区av| 亚洲精品乱久久久久久| 久久精品亚洲熟妇少妇任你| 亚洲精品一二三| 一区在线观看完整版| 亚洲精品av麻豆狂野| 国产在线一区二区三区精| 最近中文字幕2019免费版| 精品久久蜜臀av无| 国产乱来视频区| 十八禁网站网址无遮挡| 日韩不卡一区二区三区视频在线| 国产精品久久久久久精品电影小说| 国产精品香港三级国产av潘金莲 | 久久免费观看电影| 国产成人一区二区在线| 午夜91福利影院| 免费在线观看视频国产中文字幕亚洲 | 精品亚洲乱码少妇综合久久| 九草在线视频观看| 一级片免费观看大全| 少妇被粗大猛烈的视频| 国产极品粉嫩免费观看在线| 亚洲免费av在线视频| 丰满迷人的少妇在线观看| 日韩免费高清中文字幕av| 老汉色∧v一级毛片| 久热这里只有精品99| 在线天堂最新版资源| 一区在线观看完整版| 久久久久精品国产欧美久久久 | 五月开心婷婷网| 最新的欧美精品一区二区| 成年女人毛片免费观看观看9 | 少妇人妻久久综合中文| av片东京热男人的天堂| 国产一区有黄有色的免费视频| 男女无遮挡免费网站观看| 男女床上黄色一级片免费看| 一级片免费观看大全| 亚洲成国产人片在线观看| 在线观看免费高清a一片| 亚洲熟女毛片儿| 午夜福利乱码中文字幕| 一级毛片黄色毛片免费观看视频| 国产精品一国产av| 久久ye,这里只有精品| 国产老妇伦熟女老妇高清| 十八禁高潮呻吟视频| av有码第一页| 亚洲欧洲国产日韩| 亚洲色图综合在线观看| 精品人妻一区二区三区麻豆| 亚洲人成电影观看| 无限看片的www在线观看| 午夜福利乱码中文字幕| av免费观看日本| 欧美乱码精品一区二区三区| 男女床上黄色一级片免费看| 久久久国产一区二区| 啦啦啦啦在线视频资源| 国产伦人伦偷精品视频| 看免费av毛片| 国产又爽黄色视频| 国产极品粉嫩免费观看在线| 免费黄色在线免费观看| 国产av码专区亚洲av| 国产片内射在线| 18禁观看日本| 国产福利在线免费观看视频| 久久久久人妻精品一区果冻| av在线app专区| 伊人亚洲综合成人网| 啦啦啦中文免费视频观看日本| 亚洲少妇的诱惑av| av网站免费在线观看视频| 中国国产av一级| 亚洲av在线观看美女高潮| 老鸭窝网址在线观看| 我的亚洲天堂| 天天影视国产精品| 在线观看免费午夜福利视频| 亚洲精品第二区| videosex国产| 一级毛片电影观看| 一个人免费看片子| 69精品国产乱码久久久| 亚洲五月色婷婷综合| 国产欧美亚洲国产| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品一区蜜桃| 青草久久国产| 国产 精品1| 成人免费观看视频高清| 搡老乐熟女国产| 老熟女久久久| 国产黄频视频在线观看| 欧美 亚洲 国产 日韩一| 免费在线观看完整版高清| 操美女的视频在线观看| 国产精品蜜桃在线观看| 亚洲激情五月婷婷啪啪| 亚洲精品国产av成人精品| kizo精华| 中文字幕色久视频| 国产欧美日韩一区二区三区在线| 欧美亚洲 丝袜 人妻 在线| 国产精品亚洲av一区麻豆 | 午夜日本视频在线| 久久精品亚洲熟妇少妇任你| 久久精品人人爽人人爽视色| 制服人妻中文乱码| 精品一品国产午夜福利视频| 久久精品久久久久久噜噜老黄| a 毛片基地| 日韩熟女老妇一区二区性免费视频| √禁漫天堂资源中文www| 在线亚洲精品国产二区图片欧美| 这个男人来自地球电影免费观看 | 天天躁夜夜躁狠狠久久av| 日日摸夜夜添夜夜爱| 日韩电影二区| 国产成人免费观看mmmm| 久久久久久久国产电影| 久久99一区二区三区| 看免费av毛片| a级片在线免费高清观看视频| 亚洲伊人久久精品综合| 在线观看www视频免费| 精品国产乱码久久久久久男人| 亚洲av电影在线观看一区二区三区| 丁香六月天网| 精品国产一区二区久久| 老司机靠b影院| 男女免费视频国产| 毛片一级片免费看久久久久| 99re6热这里在线精品视频| 又粗又硬又长又爽又黄的视频| 国产精品蜜桃在线观看| 久久性视频一级片| 亚洲五月色婷婷综合| 欧美激情高清一区二区三区 | 天堂中文最新版在线下载| 看免费av毛片| 国产伦理片在线播放av一区| 大片电影免费在线观看免费| 少妇精品久久久久久久| av片东京热男人的天堂| www.自偷自拍.com| 99香蕉大伊视频| 一二三四在线观看免费中文在| 久久女婷五月综合色啪小说| 日日摸夜夜添夜夜爱| 国产午夜精品一二区理论片| 日韩av免费高清视频| 老熟女久久久| 久久精品久久久久久噜噜老黄| 精品少妇一区二区三区视频日本电影 | 亚洲欧美成人综合另类久久久| 九色亚洲精品在线播放| 欧美xxⅹ黑人| 91精品伊人久久大香线蕉| 熟女av电影| 爱豆传媒免费全集在线观看| 国产日韩欧美亚洲二区| 视频区图区小说| 秋霞在线观看毛片| 日韩av不卡免费在线播放| 日韩欧美精品免费久久| 午夜福利在线免费观看网站| 国产免费视频播放在线视频| 国产一区二区三区综合在线观看| 一级毛片电影观看| avwww免费| 精品一区二区免费观看| 免费黄网站久久成人精品| 亚洲av国产av综合av卡| 最近2019中文字幕mv第一页| 天堂中文最新版在线下载| 男男h啪啪无遮挡| 欧美黄色片欧美黄色片| 丰满乱子伦码专区| 国产淫语在线视频| 久久久久国产一级毛片高清牌| 国产欧美日韩一区二区三区在线| 免费观看a级毛片全部| 水蜜桃什么品种好| 在线看a的网站| 色播在线永久视频| 午夜福利免费观看在线| 国产成人a∨麻豆精品| av在线老鸭窝| 午夜日本视频在线| 大码成人一级视频| 99久国产av精品国产电影| 国产精品久久久av美女十八| av.在线天堂| 欧美国产精品一级二级三级| 久久久久久免费高清国产稀缺| 久久精品人人爽人人爽视色| 亚洲综合色网址| 韩国av在线不卡| 大香蕉久久网| 成年女人毛片免费观看观看9 | 可以免费在线观看a视频的电影网站 | 欧美黑人精品巨大| 91aial.com中文字幕在线观看| 狂野欧美激情性bbbbbb| 国产福利在线免费观看视频| 女性被躁到高潮视频| 欧美日韩亚洲综合一区二区三区_| 卡戴珊不雅视频在线播放| 免费在线观看完整版高清| 黑人猛操日本美女一级片| 少妇精品久久久久久久| 中文字幕色久视频| 国产成人系列免费观看| 成年女人毛片免费观看观看9 | 亚洲欧美成人精品一区二区| 久久午夜综合久久蜜桃| 考比视频在线观看| 美女扒开内裤让男人捅视频| 一区二区日韩欧美中文字幕| 美女扒开内裤让男人捅视频| 精品一品国产午夜福利视频| 多毛熟女@视频| 无遮挡黄片免费观看| 精品一区二区免费观看| 精品人妻一区二区三区麻豆| 亚洲免费av在线视频| 亚洲av在线观看美女高潮| 久久久久精品久久久久真实原创| 嫩草影视91久久| 两性夫妻黄色片| 亚洲五月色婷婷综合| 纵有疾风起免费观看全集完整版| 欧美 亚洲 国产 日韩一| 欧美最新免费一区二区三区| 丰满少妇做爰视频| 国产高清不卡午夜福利| 9191精品国产免费久久| 欧美日韩亚洲综合一区二区三区_| 午夜日韩欧美国产| 99国产综合亚洲精品| 国产成人免费无遮挡视频| 成年人免费黄色播放视频| 人人妻人人添人人爽欧美一区卜| 亚洲精品美女久久av网站| 91老司机精品| 看免费成人av毛片| 毛片一级片免费看久久久久| 国产高清不卡午夜福利| 夜夜骑夜夜射夜夜干| 国产高清不卡午夜福利| 最近手机中文字幕大全| 黄频高清免费视频| 免费日韩欧美在线观看| 天天操日日干夜夜撸| 美女国产高潮福利片在线看| 老鸭窝网址在线观看| 亚洲欧美中文字幕日韩二区| 一级片免费观看大全| 日韩 亚洲 欧美在线| 电影成人av| 狂野欧美激情性bbbbbb| 亚洲精品,欧美精品| 日韩中文字幕欧美一区二区 | 亚洲av电影在线观看一区二区三区| 免费看不卡的av| 国产高清国产精品国产三级| 亚洲在久久综合| 成人漫画全彩无遮挡| 久久av网站| 精品第一国产精品| 国产在线视频一区二区| 哪个播放器可以免费观看大片| 一本久久精品| 精品免费久久久久久久清纯 | 午夜福利乱码中文字幕| 国产高清国产精品国产三级| 99re6热这里在线精品视频| 日韩成人av中文字幕在线观看| 在线精品无人区一区二区三| 一二三四中文在线观看免费高清| 精品国产一区二区三区久久久樱花| 女人爽到高潮嗷嗷叫在线视频| 天天添夜夜摸| 国产精品嫩草影院av在线观看| av有码第一页| 日本猛色少妇xxxxx猛交久久| 9色porny在线观看| 久久久久视频综合| 亚洲欧美中文字幕日韩二区| 亚洲精品美女久久av网站| 亚洲精品乱久久久久久| 啦啦啦啦在线视频资源| 精品免费久久久久久久清纯 | 最新的欧美精品一区二区| 一级毛片我不卡| 男女床上黄色一级片免费看| 亚洲成国产人片在线观看| 秋霞在线观看毛片| 在线天堂最新版资源| 日本爱情动作片www.在线观看| 青春草视频在线免费观看| 日韩伦理黄色片| 中文字幕亚洲精品专区| 国产成人免费观看mmmm| 国产精品香港三级国产av潘金莲 | 青春草国产在线视频| 制服诱惑二区| av线在线观看网站| 精品午夜福利在线看| 午夜福利乱码中文字幕| 久久人人爽av亚洲精品天堂| videosex国产| 免费日韩欧美在线观看| 日韩大码丰满熟妇| 在线亚洲精品国产二区图片欧美| 亚洲免费av在线视频| 美女午夜性视频免费| 国产成人啪精品午夜网站| 另类亚洲欧美激情| 亚洲 欧美一区二区三区| 国产精品.久久久| 99久久99久久久精品蜜桃| 久久人妻熟女aⅴ| 国产老妇伦熟女老妇高清| 麻豆av在线久日| 妹子高潮喷水视频| 极品人妻少妇av视频| 国产精品久久久av美女十八| 成人影院久久| 五月开心婷婷网| 一区二区三区乱码不卡18| 亚洲欧美精品自产自拍| 少妇人妻精品综合一区二区| 99精品久久久久人妻精品| 十八禁高潮呻吟视频| 国产精品人妻久久久影院| av视频免费观看在线观看| 国产日韩一区二区三区精品不卡| 九草在线视频观看| 欧美人与性动交α欧美软件| 成人毛片60女人毛片免费| 久久人人爽人人片av| 国产精品无大码| 狠狠精品人妻久久久久久综合| 欧美激情高清一区二区三区 | 黄片无遮挡物在线观看| 狂野欧美激情性bbbbbb| 成人毛片60女人毛片免费| 精品一区二区三区av网在线观看 | 久久精品国产亚洲av高清一级| 久久99热这里只频精品6学生| 久久国产精品男人的天堂亚洲| 午夜日本视频在线| 亚洲一区中文字幕在线| 久久久久久久久久久免费av| 午夜免费鲁丝| 青春草视频在线免费观看| 国产一区二区在线观看av| 老汉色∧v一级毛片| 国产黄色免费在线视频| 国产老妇伦熟女老妇高清| 久久女婷五月综合色啪小说| 黄色怎么调成土黄色| 久热这里只有精品99| 精品午夜福利在线看| 自线自在国产av| 日韩大片免费观看网站| 国产午夜精品一二区理论片| 国产1区2区3区精品| 精品免费久久久久久久清纯 | 高清视频免费观看一区二区| 午夜日韩欧美国产| 母亲3免费完整高清在线观看| 在线观看www视频免费| 国产一区二区在线观看av| avwww免费| 校园人妻丝袜中文字幕| 九草在线视频观看| 中文字幕av电影在线播放| 久久久精品区二区三区| 精品亚洲乱码少妇综合久久| 又大又爽又粗| 丰满少妇做爰视频| 亚洲成人av在线免费| 美国免费a级毛片| 国产成人午夜福利电影在线观看| 亚洲综合色网址| 欧美精品高潮呻吟av久久| 久久久久视频综合| 亚洲欧美色中文字幕在线| 少妇的丰满在线观看| 国产精品麻豆人妻色哟哟久久| 精品久久久久久电影网| 免费黄网站久久成人精品| 中文欧美无线码| 国产一级毛片在线| 欧美亚洲 丝袜 人妻 在线| 韩国av在线不卡| 国产极品天堂在线| 少妇人妻精品综合一区二区| 高清黄色对白视频在线免费看| 99久久99久久久精品蜜桃| 免费女性裸体啪啪无遮挡网站| 天天躁日日躁夜夜躁夜夜| 不卡视频在线观看欧美| 狂野欧美激情性xxxx| 午夜福利视频在线观看免费| 菩萨蛮人人尽说江南好唐韦庄| 伊人久久大香线蕉亚洲五| 亚洲免费av在线视频| 中文字幕制服av| 日本色播在线视频| 国产无遮挡羞羞视频在线观看| 久久久亚洲精品成人影院| 热re99久久精品国产66热6| 久久久久久久久久久久大奶| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品自拍成人| 亚洲一区中文字幕在线| 人成视频在线观看免费观看| 曰老女人黄片| 国产免费现黄频在线看| 亚洲欧美清纯卡通| 51午夜福利影视在线观看| 五月天丁香电影| 欧美在线一区亚洲| a级毛片黄视频| 美女大奶头黄色视频| 精品少妇一区二区三区视频日本电影 | 欧美亚洲 丝袜 人妻 在线| 一区二区av电影网| 99久久人妻综合| 日本一区二区免费在线视频| 男人舔女人的私密视频| 最黄视频免费看| 国产欧美日韩一区二区三区在线| 黄片无遮挡物在线观看| 飞空精品影院首页| 亚洲一卡2卡3卡4卡5卡精品中文| 超碰97精品在线观看| 亚洲av成人精品一二三区| 亚洲伊人色综图| 国产97色在线日韩免费| 久久久国产欧美日韩av| 亚洲一级一片aⅴ在线观看| 涩涩av久久男人的天堂| 国产一区亚洲一区在线观看| 国产野战对白在线观看| 狂野欧美激情性xxxx| 一区福利在线观看| 男女国产视频网站| 午夜福利一区二区在线看| 我的亚洲天堂| 国产一区二区三区综合在线观看| 卡戴珊不雅视频在线播放| 国产成人精品福利久久| 中文字幕精品免费在线观看视频| 叶爱在线成人免费视频播放| 中文字幕精品免费在线观看视频| 午夜福利免费观看在线| 欧美人与性动交α欧美软件| 亚洲av欧美aⅴ国产| 秋霞在线观看毛片| 香蕉国产在线看| 丝袜在线中文字幕| 亚洲一级一片aⅴ在线观看| 秋霞伦理黄片| 久久免费观看电影| 亚洲国产精品成人久久小说| 国产在视频线精品| 男女无遮挡免费网站观看| 日本午夜av视频| 99热全是精品| 在线看a的网站| 免费日韩欧美在线观看| 嫩草影视91久久| 哪个播放器可以免费观看大片| 国产精品国产三级国产专区5o| 美女主播在线视频| 丝袜脚勾引网站| 精品少妇黑人巨大在线播放| 男女高潮啪啪啪动态图| 免费看不卡的av| 久久久久久久久免费视频了| 亚洲,欧美,日韩| 成人国产av品久久久| 国产免费现黄频在线看| 中文乱码字字幕精品一区二区三区| 日本色播在线视频| 国产精品女同一区二区软件| 中文字幕另类日韩欧美亚洲嫩草| 热re99久久精品国产66热6| 爱豆传媒免费全集在线观看| 精品少妇黑人巨大在线播放| 国产 精品1| 亚洲伊人久久精品综合| 亚洲,欧美精品.| 夜夜骑夜夜射夜夜干| 如日韩欧美国产精品一区二区三区| av在线老鸭窝| 人人澡人人妻人| 国产成人精品久久二区二区91 | 亚洲激情五月婷婷啪啪| 人人妻,人人澡人人爽秒播 | av卡一久久| 国产精品国产三级专区第一集| 波多野结衣av一区二区av| 久久综合国产亚洲精品| 亚洲av日韩在线播放| 天天躁夜夜躁狠狠躁躁|