• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Numerical Investigation of Nanocomposite of Copper and Titanium Dioxide in Water Based Fluid Influenced by Instigated Magnetic Region

    2018-08-02 07:36:18IqbalEhtshamAzharMarajandZaffarMehmood
    Communications in Theoretical Physics 2018年8期

    Z.Iqbal,Ehtsham Azhar,E.N.Maraj,and Zaffar Mehmood

    Department of Mathematics,Faculty of Sciences,HITEC University,Taxila 44700,Pakistan

    AbstractPresence of external electrical field plays a vital role in heat transfer and fluid flow phenomena.Keeping this in view present article is a numerical investigation of stagnation point flow of water based nanoparticles suspended fluid under the influence of induced magnetic field.A detailed comparative analysis has been performed by considering Copper and Titanium dioxide nanoparticles.Utilization of similarity analysis leads to a simplified system of coupled nonlinear differential equations,which has been tackled numerically by means of shooting technique followed by Runge-Kutta of order 5.The solutions are computed correct up to 6 decimal places.Influence of pertinent parameters is examined for fluid flow,induced magnetic field,and temperature profile.One of the key findings includes that magnetic parameter plays a vital role in directing fluid flow and lowering temperature profile.Moreover,it is concluded that Cu-water based nanofluid high thermal conductivity contributes in enhancing heat transfer efficiently.

    Key words:water based fluid,instigated magnetic region,nanoscale particles,Copper and titanium dioxide,stagnation point flow,numerical solutions

    1 Introduction

    In nature poor heat conductivity of typical fluids e.g.water,ethylene glycol,kerosene oil concoction has turned out to vital restriction in improvement heat exchange forms including traditional fluids.On contrast to fluids some metals such as silver,copper and gold ordinarily have higher heat conductivity.Exploiting high heat conductivity of metals to improve heat conductivity of customary fluids prompted possibility of nanofluids.Suspensions of nanometer measured metal particles in the base fluid concoct such fluids.As a result,the efficient thermal conductivity of nanofluids improves drastically as com-pared to the traditional base fluid.The term nanofluid was at first presented by Choi.[1]Most regularly utilized nanoparticles are prepared from metal oxides like CuO,Al2O3,and TiO2,metals such as Cu,Ag,and Au along with nitride/carbide earthenware production for example AlN,SiN,SiC,and TiC.Base fluids are normally common fluids like water,ethylene glycol,and oil.Nanofluids have ended up being extremely valuable in various mechanical and engineering appliances.Nanofluids are generally utilized as a part of various mechanical and manufacturing apparatuses such as coolants in atomic reactors,mechanical cooling,extraction of geothermal force,advanced medication conveyance frameworks,heat exchangers,indicative tests,disease treatment,and micro scale fluidic applications.[2]Depending on such wide convenience a few exploratory and hypothetical examinations were done to break down various parts of nanofluids.[3?10]

    Stagnation points exist at the surface of entity in the stream field where the fluid is conveyed to rest by the object.Stagnation stream depicts the smooth movement close to the stagnation locale where it experiences the most elevated pressure and most noteworthy rate of heat exchange and mass decay.This flow emerges in numerous applications and it has an unmistakable part particularly in transportation commercial enterprises on planning the rockets,air ships,submarines,and oil ships.The stagnation point flows over an extending surface is a traditional issue in fluid mechanics.Hiemenz[11]was the first to examine relentless flow in the vicinity of a stagnation point.From that point forward,countless and numerical studies clarifying different parts of boundary layer stagnation point flow over an extending/contracting surface have been done.[12?17]

    For flows where magnetic Reynolds number is not petite,instigated magnetic fields must be considered.[18]It is seen that there are a few astrophysical and geophysical problems in which prompted magnetic field assumes an imperative part in deciding flow features of the problem,specifically, fluid flow in earth’s inside,star arrangement,sunspots,and sunlight based flares in the Sun,turning attractive stars and planetary and sun based dynamo problems.Notwithstanding it,impelled magnetic fields assume a critical part in combination applications with plasma controls.[19]Also actuated magnetic fields could be utilized as a confirmation to anticipate the presence of salty fluid water subsurface seas in Europa and Callisto.[20]The traditional issue of Glauert[21]displayed an original examination for hydro magnetic boundary layer flow past a polarized level plate with uniform magnetic field in the flow heading at the plate.He got arrangement of development arrangements considering both huge what is more,little estimations of the electrical conductivity parameter for the speed and impelled magnetic fields.Impact of induced magnetic field on extensive scale throbbed MHD generator was analyzed by Koshiba et al.[22]Raptis and Soundalgekar[23]researched flow of an electrically directing fluid past a consistently moving unending vertical permeable plate in nearness of consistent heat flux and steady suction considering actuated magnetic field.In another study,Raptis and Masalas[24]considered impacts of impelled magnetic field on flimsy hydro magnetic stream of a thick,incompressible,electrically leading and optically thick emanating fluid past an unending vertical permeable plate.Influence of engendered magnetic field on hydro magnetic free convection flow was exposed by Ghosh et al.[25]Bég et al.[26]got environs non-likeness numerical arrangements for velocity,temperature and actuated magnetic field appropriations in constrained convection fluid metal limit layer stream past a non-leading plate for an extensive variety of attractive Prandtl numbers.Some recent attempts by means of numerical stimulations include Refs.[27–28].

    Aggravated by forward specified intriguing tries,present article is an endeavor to look at effect of actuated magnetic field on stagnation point flow of water based Copper and Titanium dioxide nanofluid.Prevailing problem is changed over to arrangement of four coupled differential equations by utilizing nonlinear similarity transformation.The very non straight arrangement of ODEs is handled by shooting technique alongside Runge-Kutta of order 5.The obtained solutions precision is up to 10?6.The impact of noteworthy parameters on velocity,induced magnetic field,nanoparticles temperature and concentration are inspected and uncovered through diagrams and tables.The fundamental accentuation is on investigating the effect of actuated magnetic field with fuse of extending proportion parameter.Moreover,a comparative analysis is carried out for the two types of particles suspended in water based nanofluids.Novel results of present investigation may be useful and beneficial in academic research and nanofluidic problems.

    2 Experimental Values and Properties of Nanocomposite Cu-TiO2/H2O

    In this investigation,we considering Copper and titanium dioxide nanoscale particles suspended in water base fluid.Moreover,thermal properties of base fluid and nanoparticles are expressed in Tables 1 and 2.

    Table 1 According to Ghadikolaei et al.[4]and Iqbal et al.,[7]expression for thermophysical characteristics for nanofluid are:

    where(ρcp)sis the volumetric heat capacity of solid nanoparticles,(ρcp)f,(ρcp)nfare volumetric heat capacity of base fluid and nanofluid,respectively.? is the particle volume fraction parameter of nanoparticles,ρfand μfare density and dynamic viscosity of base fluid,respectively.

    Table 2 Experimental values of density,specific heat and thermal conductivity for base fluids and nanoparticles(see Ref.[4]Ghadikolaei et al.and Ref.[7]Iqbal et al.)

    3 Description of Physical Proble m

    We consider steady two-dimensional stagnation point flow towards a linear stretching sheet at y=0.The fluid occupies the region y>0.The free stream velocity is assumed to be Ue(x)=ax and velocity of the stretching sheet is Uw(x)=cx,where a and c are the positive constants.Furthermore we assumed that H is induced magnetic field vector with magnetic field at free stream He(x)=H0x where H0is uniform magnetic field at infinity upstream.Present flow phenomenon is described in following physical flow diagram Fig.1.

    Fig.1(Color online)Physical flow structure.

    Governing boundary layer equations for electrically conducting viscous fluid(see Refs.[7]and[15])can be expressed as subject to boundary conditions

    where u,v,H1,and H2are velocity and magnetic components along the x-and y-directions respectively,ρnfis density of the nanofluid,μnfis dynamic viscosity of nanofluid,αnfis thermal diffusivity of nanofluid,T is the temperature of the fluid,knfis thermal conductivity of nanofluid,kfand ksare thermal conductivity of base fluid and solid nanoparticles,respectively.

    To further facilitate the present analysis,we introduce the subsequent conventional transformation and dimensionless variable η and f(η)in the following form

    Equations(1)and(2)are identically satisfied and other Eqs.(3)–(5)yield

    where prime indicates the differentiation with respect to η.Moreover Prandtl number Pr,stretching rate ratio parameter A,reciprocal magnetic Prandtl number λ and magnetic parameter β are de fined as

    Physical quantities such as skin friction and Nusselt number are given by

    where τwis wall shear stress,qwwall heat flux.Dimensionless form is

    where Rex=uwx/νfis local Reynolds number.

    4 Computational Procedure

    This segment is dedicated to tackle the solutions of system of nonlinear differential equations numerically.Thus,solution of coupled nonlinear governing boundary layer equations(9),(10),and(11)organized with boundary conditions(12)are computed by means of shooting method along Runge Kutta fifth order method.Firstly higher order nonlinear differential equations(9),(10),and(11)are transformed into a system of first order differential equations and further distorted into initial value problem by labeling the variables as

    According to the numerical procedure the above system of equations are formulated as:

    Above mentioned initial value problems have been solved numerically by RK5 method.Suitable values of the unknown and initial conditions are iteratively estimated by Newton method such that the solutions satisfy the boundary conditions at infinity with error less than 10?6.Furthermore,the existing numerical procedure is exemplified in Fig.2.

    Fig.2 (Color online)Algorithm flow chart.

    5 Theoretical Results Assessment

    The effects of several meaningful parameters on fluid flow,induced magnetic field and temperature for Cu-water and TiO2-water nanofluids are displayed and examined in this section.

    5.1 Physical Description of Velocity Field

    In this regard Figs.3–9 are portrayed to demonstrate the effect of stretching/shrinking parameter A,nanoparticles volume fraction ?,reciprocal of magnetic Prandtl number λ and magnetic parameter β for Cu-water and TiO2-water nanofluids,respectively.The analysis of Fig.3 reveals that velocity profile is concave down for A>1 and concave up for A<1 for both types of fluid.A>1 represents the scenario when stagnation velocity is greater than stretching rate whereas the alternate relation between these velocities holds for A>1.

    Fig.3 (Color online)Variation of A on f′(η);Red:f′(η):Cu-Water;Cyan:f′(η):TiO2-Water.

    Furthermore,boundary layer thickness is more for Cu-water based nanofluid as compared to TiO2-water nanofluid.Variation of nanoparticles volume fraction for two types of metals are displayed in Figs.4 and 5 respectively.It is depicted from these figures that for Cu-water based nanofluid flow reduce for increasing ? when A<1 while raising values of ? upsurges velocity for case of A>1 see Fig.4.However in case of TiO2-water nanofluid as shown in Fig.5 the rise in ? initially lessen fluid flow but latterly contributes in rising it when A<1.An opposite trend is witness for A>1 i.e.,for ?=0.05 fluid flow upsurges but for ?=0.20 it reduces.

    Figure 6 is devoted to examine the effect of λ for two classes for metal nanoparticles suspended fluids.It is observed that velocity appears to be a decreasing function of λ for A<1 and a rising function of it for A>1 for Cu as well as TiO2water based nanofluids.This happens mainly because increase in λ being the ratio of magnetic diffusivity to kinematic viscosity represents the rise in magnetic diffusivity which as a consequence results in lowering momentum boundary layer thickness and velocity for A<1.

    Fig.4 (Color online)Variation of ? on f′(η)for Cu-H2O;Red:A=0.5;Cyan:A=1.5.

    Fig.5 (Color online)Variation of ? on f′(η)for TiO2-H2O;Red:A=0.5;Cyan:A=1.5.

    Fig.6 (Color online)Variation of λ on f′(η)for Cu-H2O;Red:A=0.5;Cyan:A=1.5.

    Fig.7 (Color online)Variation of λ on f′(η)for TiO2-H2O;Red:A=0.5;Cyan:A=1.5.

    Fig.8 (Color online)Variation of β on f′(η)for Cu-H2O;Red:A=0.5;Cyan:A=1.5.

    Similar trend is witnesses for TiO2with a slight variation in magnitude see Fig.7.Influences of magnetic parameter on both types of nanofluids flow are portrayed in Figs.8 and 9.Study of these figures reveals that fluid velocity appears to be a rising relation with β.It shows that magnetic field strength contributes in rising momentum boundary layer thickness and fluid flow.

    Fig.9 (Color online)Variation of λ on f′(η)for TiO2-H2O;Red:A=0.5;Cyan:A=1.5.

    5.2 Physical Description of Induced Magnetic Field

    Induced magnetic field behavior examinations for various significant parameters in case of Cu and TiO2metallic particles are shown through Figs.10–16.It is observed that stretching parameter contributes in lowering induced magnetic field for both types of metal particles.However,this decrease is more evident for Cu-water based nanofluid as compare to TiO2-water based nanofluid see Fig.10.

    Effect of nanometal particles volume fractions are demonstrated in Figs.11 and 12 for copper and titanium dioxide nanoparticles,respectively.These graphical results reveal that the rise in ? for Cu contributes in rising induce magnetic field when A<1 and a reduction is observed for case of A>1 as displayed in Fig.11.However from Fig.12 it is concluded that TiO2nanoparticles volume fraction initially shows the similar trend as of Cu but for ?=0.20 the behavior alters for both studies i.e.,A<1 and A>1.

    Fig.10(Color online)Impact of A on g′(η);Blue:g′(η):Cu-Water;Magenta:g′(η):TiO2-water.

    Fig.11 (Color online)Variation of ? on g′(η)for Cu-H2O;Blue:A=0.5;Magenta:A=1.5.

    Fig.12(Color online)Variation of ? on g′(η)for TiO2-H2O;Blue:A=0.5;Magenta:A=1.5.

    Figure 13 illustrates the impact of reciprocal magnetic prandtl number on induced magnetic field for Cu and TiO2nano metals.It is revealed that λ contributes in rising induced magnetic field initially or both types of metals nanoparticles and afterwards a decrease in witness keeping A<1.A reverse trend is reported for the case of A>1.Furthermore,a slight change in magnitude is noticed for two types of nanoparticles in Fig.14.

    Fig.13 (Color online)Variation of λ on g′(η)for Cu-H2O;Blue:A=0.5;Magenta:A=1.5.

    Fig.14(Color online)Variation of λ on g′(η)for TiO2-H2O;Blue:A=0.5;Magenta:A=1.5.

    It happens mainly because the increase in λ indicates an increase in magnetic diffusivity as compare to viscous diffusivity,which leads to rise magnitude of induced magnetic field.Figures 15 and 16 are plotted to visualize the effect of magnetic parameter.It is seen that for both types of nanoparticle suspended fluids induced magnetic field lowers with a rise in β for A<1.This decrease is more in TiO2as compared to Cu.Moreover,it upsurges for increasing values of magnetic parameter for A>1.Notably,this increase is more significant in sense of magnitude for case of TiO2as compared to Cu.This happens due to the fact that magnetic parameter is the ratio of magnetic field magnitude to stretching velocity,thus an increase in β showed altered results for A<1 and A>1.Physically it indicates that induced magnetic field is effected by the stretching ratio.

    Fig.15 (Color online)Variation of β on g′(η)for Cu-H2O;Blue:A=0.5;Magenta:A=1.5.

    Fig.16 (Color online)Variation of β on g′(η)for TiO2-H2O;Blue:A=0.5;Magenta:A=1.5.

    5.3 Stream Pattern for Velocity and Induced Magnetic Field

    The fluid flow and induced magnetic field patterns are displayed in contour plots for Cu-water and TiO2-water nanofluids from Figs.17 and 18.It is evident that symmetry about vertical axis exists for fluid flow as well as induced magnetic field,respectively.

    Fig.17 Stream pattern for(a)velocity;(b)induced magnetic field for Cu-H2O when ?=20%.

    Fig.18 Stream pattern for(a)velocity;(b)induced magnetic field for TiO2-H2O when ?=20%.

    5.4 Physical Description of Temperature Profile

    Figures 19–21 are devoted for comparative study of temperature profiles of Copper and titanium dioxide water based nanofluids.Figure 19 exposed that temperature and thermal boundary layer thickness enhances with the usage of both types of nanofluids.Moreover,it shows that this increase in temperature is more in Cu as compared to TiO2water based nanofluid.Influence of magnetic parameter is portrayed in Fig.20,which demonstrates a temperature reduction for rising values of β.The reason behind it is the fact that β contributes in rising velocity as well as momentum boundary layer and as a consequence thermal boundary layer and temperature decreases.It is noted that temperature decreases more for titanium dioxide than copper nanoparticles.Figure 21 illustrates the effect of λ on temperature profile.Here temperature appears to be an increasing function of λ and this increase is more significant for Cu nanoparticles.Here it is worth mentioning that reciprocal of magnetic parameter acts like a resistive force,which decelerates fluid flow and upsurges fluid temperature.

    Fig.19 (Color online)Variation of ? on θ(η);Blue:TiO2-Water;Red:Cu-Water.

    Fig.20 (Color online)Variation of β on θ(η);Blue:TiO2-Water;Red:Cu-Water.

    Table 3 Influence of physical parameters on skinfriction and Nusselt number for Cu-Water.

    Fig.21(Color online)Variation of λ on θ(η);Blue:TiO2-Water;Red:Cu-Water.

    Table 4 Influence of physical parameters on skinfriction and Nusselt number for TiO2-Water.

    Tables 3 and 4 are presented to examine the effect of magnetic parameter β and reciprocal of magnetic prandtl number λ in absence and presence of Copper and titanium dioxide nanoparticles for rising values of volumetric fraction.From these tables it is evident that skin friction decreases as magnetic parameter rises while it reduces for rising values of λ.In presence of Cu and TiO2nanoparticles same trend is witness with the rise in magnitude.This rise in magnitude is increased for rising nanoparticles volumetric fraction.Moreover,magnitude of skin friction and Nusselt number is more for Cu than TiO2nanoparticles.

    Skin friction coefficient and Nusselt number are plotted for distinct values of important parameters in Figs.22–25.Figures 22 and 23 are skin friction graphs for Cu and TiO2plotted against volumetric fraction for rising values of magnetic parameter.These plots reveal that skin friction rises with the rise in ? while it lessens for rising magnetic parameter.Same trend is witness for TiO2with the only difference in raised magnitude scale.Furthermore,Nusselt number represents the heat flux at the surface.It is plotted against ? for rising values of β for the case of Cu and TiO2nanoparticles as shown in Figs.24 and 25,respectively.It is observed that Nu rises for increasing values of ? as well as magnetic parameter.Moreover this rise is more in magnitude for Cu-water based nanofluid(see Fig.25).

    Fig.22 (Color online)Variation of β on Cfagainst ? for Cu-H2O.

    Fig.23 (Color online)Variation of β on Cfagainst ? for TiO2-H2O.

    Fig.24 (Color online)Variation of β on Nuxagainst ? for Cu-H2O.

    Fig.25 (Color online)Variation of β on Nuxagainst ? for TiO2-H2O.

    6 Conclusion and Novelty of Article

    In present article comparative study was performed for two distinct metal nanoparticles namely,Copper and Titanium dioxide.These particles were chosen due to their significance in industry and manufacturing processes.Numerical investigation was performed for stagnation point flow over a linearly stretching surface in presence of induced magnetic field.Governing flow equations were reduced to system of differential equations by utilizing of similarity analysis.The reduced nonlinear coupled system was tackled numerically by means of shooting technique.Numerical analysis was performed in computational software MATLAB.From the above mentioned numerical investigation it was concluded that the usage of metallic nanoparticles in water based fluid was effective in improving thermal conductivity of the water.Cu nanoparticles were more efficient that TiO2nanoparticles.Nanoparticles volumetric fractions effected fluid flow and induced magnetic field significantly.Magnetic parameter and reciprocal of magnetic Prandtl number effected the temperature profile in an opposite manner to each other.Skin friction was an increasing function of ? and a decreasing function of magnetic parameter.Nusselt number seemed to be an increasing function of magnetic parameter and ?.Novel results of present investigation may be useful and beneficial in academic research and nanofluidic problems.

    亚洲国产欧美网| 亚洲av美国av| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区三区综合在线观看| 日日干狠狠操夜夜爽| x7x7x7水蜜桃| 日日爽夜夜爽网站| 国产精品98久久久久久宅男小说| 搡老岳熟女国产| 国产一区二区三区在线臀色熟女 | 一本综合久久免费| 自线自在国产av| 天堂动漫精品| 免费人成视频x8x8入口观看| 日本撒尿小便嘘嘘汇集6| 精品国内亚洲2022精品成人| 国产视频一区二区在线看| 国产精品香港三级国产av潘金莲| 男女之事视频高清在线观看| 99香蕉大伊视频| 国产精品一区二区在线不卡| a级毛片黄视频| 在线视频色国产色| 国产精品自产拍在线观看55亚洲| 国产欧美日韩一区二区精品| 久久热在线av| 国产视频一区二区在线看| 欧美黑人精品巨大| 欧美日韩乱码在线| x7x7x7水蜜桃| 精品高清国产在线一区| 99久久久亚洲精品蜜臀av| 岛国视频午夜一区免费看| 久久天躁狠狠躁夜夜2o2o| 精品日产1卡2卡| 精品久久久精品久久久| 99久久人妻综合| 19禁男女啪啪无遮挡网站| 欧美精品一区二区免费开放| 成人18禁高潮啪啪吃奶动态图| 777久久人妻少妇嫩草av网站| 一级a爱片免费观看的视频| 亚洲性夜色夜夜综合| 麻豆国产av国片精品| xxx96com| 一边摸一边做爽爽视频免费| avwww免费| 最近最新中文字幕大全免费视频| 老司机午夜福利在线观看视频| 久久精品亚洲精品国产色婷小说| 99久久人妻综合| 午夜福利免费观看在线| 人人妻人人澡人人看| 国产精品野战在线观看 | 性少妇av在线| 丝袜美足系列| 嫩草影视91久久| 国产精品九九99| 亚洲色图 男人天堂 中文字幕| 久久午夜综合久久蜜桃| 亚洲欧美日韩另类电影网站| 日韩欧美一区视频在线观看| 国产成人精品久久二区二区91| 亚洲第一欧美日韩一区二区三区| 日韩免费高清中文字幕av| 色在线成人网| 精品免费久久久久久久清纯| 国产单亲对白刺激| 精品国产国语对白av| av中文乱码字幕在线| 成在线人永久免费视频| 夜夜夜夜夜久久久久| 91九色精品人成在线观看| 亚洲精品在线观看二区| av在线天堂中文字幕 | 丝袜在线中文字幕| 亚洲精品美女久久av网站| 国产欧美日韩一区二区精品| 国产1区2区3区精品| 国产欧美日韩一区二区三区在线| 国产三级黄色录像| bbb黄色大片| 中文字幕高清在线视频| 亚洲精品在线观看二区| 久久人妻福利社区极品人妻图片| 欧美中文日本在线观看视频| 岛国在线观看网站| 日韩欧美一区视频在线观看| 亚洲一区二区三区色噜噜 | 国产成人欧美在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产一区在线观看成人免费| 免费人成视频x8x8入口观看| 亚洲欧洲精品一区二区精品久久久| 欧美成人午夜精品| 免费在线观看完整版高清| tocl精华| 一级毛片精品| 久久欧美精品欧美久久欧美| 极品教师在线免费播放| 中文字幕色久视频| 欧美不卡视频在线免费观看 | 脱女人内裤的视频| 亚洲全国av大片| 午夜福利免费观看在线| 亚洲成国产人片在线观看| a级毛片黄视频| 精品国产美女av久久久久小说| 国产精华一区二区三区| av国产精品久久久久影院| 亚洲全国av大片| 俄罗斯特黄特色一大片| 精品日产1卡2卡| 少妇 在线观看| 亚洲男人天堂网一区| 国产熟女午夜一区二区三区| 麻豆一二三区av精品| 婷婷精品国产亚洲av在线| 国产伦人伦偷精品视频| 国产精品 欧美亚洲| 天堂俺去俺来也www色官网| 91精品三级在线观看| 一进一出抽搐动态| 亚洲一区二区三区不卡视频| 午夜a级毛片| 十八禁人妻一区二区| 脱女人内裤的视频| 国产三级在线视频| 欧美成人免费av一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 日韩精品免费视频一区二区三区| 日韩高清综合在线| 可以在线观看毛片的网站| 亚洲精品在线观看二区| 99国产精品一区二区蜜桃av| 最新美女视频免费是黄的| 女人被躁到高潮嗷嗷叫费观| 亚洲精品国产精品久久久不卡| 午夜老司机福利片| 超碰成人久久| 国产av一区二区精品久久| 成人手机av| 脱女人内裤的视频| 亚洲美女黄片视频| 国产精品久久视频播放| av国产精品久久久久影院| 涩涩av久久男人的天堂| 免费搜索国产男女视频| 久久人人爽av亚洲精品天堂| 韩国精品一区二区三区| 亚洲欧美一区二区三区黑人| 搡老乐熟女国产| 老熟妇仑乱视频hdxx| 叶爱在线成人免费视频播放| 免费av中文字幕在线| 999精品在线视频| 精品久久久久久久毛片微露脸| 大码成人一级视频| 在线观看免费视频日本深夜| 久久久久久久午夜电影 | 午夜免费观看网址| 亚洲人成电影免费在线| 欧美性长视频在线观看| 久久中文看片网| 99热国产这里只有精品6| 国产伦一二天堂av在线观看| 国产蜜桃级精品一区二区三区| 成人黄色视频免费在线看| 午夜91福利影院| 日韩欧美一区视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美乱色亚洲激情| 精品国产美女av久久久久小说| 免费在线观看黄色视频的| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲欧美在线一区二区| 精品日产1卡2卡| 热re99久久精品国产66热6| 久久精品人人爽人人爽视色| 人妻久久中文字幕网| 欧美日韩黄片免| 国产av精品麻豆| 男女高潮啪啪啪动态图| 久久人人97超碰香蕉20202| 亚洲七黄色美女视频| 国产精品一区二区免费欧美| av天堂在线播放| 亚洲精华国产精华精| 黄片播放在线免费| 国产亚洲精品第一综合不卡| 视频在线观看一区二区三区| 色综合婷婷激情| 国产av一区二区精品久久| 国产极品粉嫩免费观看在线| 美女国产高潮福利片在线看| 亚洲av成人av| www国产在线视频色| 丰满饥渴人妻一区二区三| 嫩草影院精品99| 国产精品 欧美亚洲| 亚洲全国av大片| 精品福利永久在线观看| 亚洲 欧美一区二区三区| 免费少妇av软件| 久久九九热精品免费| 又黄又粗又硬又大视频| 深夜精品福利| 精品久久蜜臀av无| 麻豆久久精品国产亚洲av | 亚洲人成网站在线播放欧美日韩| 露出奶头的视频| 国产精品永久免费网站| 欧美+亚洲+日韩+国产| 亚洲黑人精品在线| 丁香六月欧美| 久久精品aⅴ一区二区三区四区| 国产欧美日韩综合在线一区二区| 777久久人妻少妇嫩草av网站| av有码第一页| svipshipincom国产片| 999久久久国产精品视频| 男女下面插进去视频免费观看| 免费观看精品视频网站| 国产又色又爽无遮挡免费看| 操出白浆在线播放| 国产精品免费视频内射| 天天添夜夜摸| 国产日韩一区二区三区精品不卡| 新久久久久国产一级毛片| 18禁裸乳无遮挡免费网站照片 | 国产精品亚洲av一区麻豆| 亚洲 欧美 日韩 在线 免费| 免费观看人在逋| 国产在线精品亚洲第一网站| 亚洲欧美日韩无卡精品| 后天国语完整版免费观看| 两个人看的免费小视频| 国产高清视频在线播放一区| 亚洲aⅴ乱码一区二区在线播放 | 国产精品久久久人人做人人爽| 精品久久久久久电影网| 精品国产亚洲在线| 欧美成人性av电影在线观看| 麻豆一二三区av精品| 婷婷六月久久综合丁香| 极品人妻少妇av视频| 激情视频va一区二区三区| 精品免费久久久久久久清纯| 国产1区2区3区精品| 免费av毛片视频| 亚洲一区高清亚洲精品| 99久久久亚洲精品蜜臀av| 电影成人av| 亚洲国产欧美网| 日韩欧美三级三区| 自拍欧美九色日韩亚洲蝌蚪91| 老司机靠b影院| 一个人观看的视频www高清免费观看 | 国内久久婷婷六月综合欲色啪| 神马国产精品三级电影在线观看 | 99久久人妻综合| 久久精品亚洲av国产电影网| 老熟妇乱子伦视频在线观看| 久久久久久大精品| 国产在线精品亚洲第一网站| 日本 av在线| 日本vs欧美在线观看视频| 亚洲精品国产区一区二| 电影成人av| 一本综合久久免费| 国产午夜精品久久久久久| 久久伊人香网站| 欧洲精品卡2卡3卡4卡5卡区| 国产精品综合久久久久久久免费 | 久久这里只有精品19| 动漫黄色视频在线观看| 亚洲国产精品一区二区三区在线| 欧美久久黑人一区二区| 欧美黑人精品巨大| 久久久国产成人精品二区 | 久久久国产一区二区| 神马国产精品三级电影在线观看 | 久久久国产欧美日韩av| 午夜精品久久久久久毛片777| 不卡av一区二区三区| 女性生殖器流出的白浆| 国产高清videossex| 丁香欧美五月| 国产成人一区二区三区免费视频网站| 热re99久久精品国产66热6| 久久亚洲真实| 在线观看舔阴道视频| 一二三四社区在线视频社区8| 在线播放国产精品三级| 国产又色又爽无遮挡免费看| 在线av久久热| 亚洲专区中文字幕在线| 亚洲av熟女| 韩国av一区二区三区四区| 一二三四社区在线视频社区8| 黄色丝袜av网址大全| 99re在线观看精品视频| 97超级碰碰碰精品色视频在线观看| 久久婷婷成人综合色麻豆| 久久精品成人免费网站| 手机成人av网站| 午夜亚洲福利在线播放| 亚洲av成人一区二区三| 美女高潮到喷水免费观看| 欧美久久黑人一区二区| 欧美午夜高清在线| 国产精品久久电影中文字幕| 在线观看一区二区三区激情| 国产精品美女特级片免费视频播放器 | 18禁观看日本| 久久九九热精品免费| 久热爱精品视频在线9| 久久精品国产亚洲av高清一级| 欧美日韩国产mv在线观看视频| 久久久水蜜桃国产精品网| 国产aⅴ精品一区二区三区波| 亚洲精品久久成人aⅴ小说| 中出人妻视频一区二区| 波多野结衣av一区二区av| x7x7x7水蜜桃| 嫩草影视91久久| 99精品久久久久人妻精品| 久久精品91蜜桃| 亚洲黑人精品在线| 亚洲色图综合在线观看| 巨乳人妻的诱惑在线观看| 如日韩欧美国产精品一区二区三区| 久久精品亚洲精品国产色婷小说| 免费高清视频大片| 三级毛片av免费| 激情在线观看视频在线高清| a级片在线免费高清观看视频| 狂野欧美激情性xxxx| 亚洲精品一区av在线观看| 黄色片一级片一级黄色片| 成人av一区二区三区在线看| 如日韩欧美国产精品一区二区三区| 亚洲欧美激情在线| 国产成人影院久久av| av免费在线观看网站| 人成视频在线观看免费观看| 欧美不卡视频在线免费观看 | 久久精品91蜜桃| 一边摸一边抽搐一进一小说| 又紧又爽又黄一区二区| 亚洲精华国产精华精| 欧美日韩精品网址| 亚洲黑人精品在线| 国产乱人伦免费视频| 久久久久久久精品吃奶| 亚洲av五月六月丁香网| 男女下面插进去视频免费观看| 热99国产精品久久久久久7| 叶爱在线成人免费视频播放| 国产伦一二天堂av在线观看| 中文字幕人妻丝袜制服| 亚洲va日本ⅴa欧美va伊人久久| 日本免费a在线| 亚洲一区二区三区不卡视频| 中文字幕人妻丝袜制服| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲精品久久久久5区| 在线观看舔阴道视频| 大陆偷拍与自拍| 咕卡用的链子| 亚洲性夜色夜夜综合| 午夜91福利影院| 国产av精品麻豆| 国产熟女xx| 国产av精品麻豆| av电影中文网址| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利影视在线免费观看| 免费女性裸体啪啪无遮挡网站| 欧美乱色亚洲激情| 日本a在线网址| 欧美精品啪啪一区二区三区| cao死你这个sao货| 亚洲欧美精品综合一区二区三区| 在线观看午夜福利视频| 天堂俺去俺来也www色官网| 成人手机av| 丝袜在线中文字幕| 99热国产这里只有精品6| 好男人电影高清在线观看| 国产精品秋霞免费鲁丝片| 婷婷精品国产亚洲av在线| 国产97色在线日韩免费| 啦啦啦免费观看视频1| 高清av免费在线| 一a级毛片在线观看| 日韩欧美在线二视频| 他把我摸到了高潮在线观看| 国产在线精品亚洲第一网站| 亚洲精品粉嫩美女一区| 看黄色毛片网站| 一进一出好大好爽视频| www国产在线视频色| 丁香欧美五月| 精品久久蜜臀av无| 亚洲av成人不卡在线观看播放网| 男人操女人黄网站| 久久人人97超碰香蕉20202| x7x7x7水蜜桃| 国产成人系列免费观看| √禁漫天堂资源中文www| 亚洲视频免费观看视频| 久久人妻av系列| 99国产精品免费福利视频| 99精品在免费线老司机午夜| 国产一区二区三区在线臀色熟女 | 嫁个100分男人电影在线观看| 一边摸一边做爽爽视频免费| 麻豆国产av国片精品| 成人国产一区最新在线观看| 色婷婷av一区二区三区视频| 国产一区在线观看成人免费| 亚洲精品国产色婷婷电影| 欧美黑人欧美精品刺激| 一级毛片高清免费大全| 久久中文字幕一级| 国产精品乱码一区二三区的特点 | 级片在线观看| 国产一区二区三区综合在线观看| 亚洲av成人一区二区三| 最近最新中文字幕大全免费视频| 少妇 在线观看| 久久九九热精品免费| 三上悠亚av全集在线观看| 午夜老司机福利片| 丁香欧美五月| 亚洲欧洲精品一区二区精品久久久| 人人妻人人爽人人添夜夜欢视频| 一区二区三区国产精品乱码| 亚洲欧美一区二区三区黑人| 亚洲精品成人av观看孕妇| 如日韩欧美国产精品一区二区三区| 日本免费一区二区三区高清不卡 | 国产伦一二天堂av在线观看| 免费搜索国产男女视频| 亚洲精品在线美女| x7x7x7水蜜桃| 男女下面进入的视频免费午夜 | 香蕉国产在线看| 亚洲专区中文字幕在线| 天堂√8在线中文| av国产精品久久久久影院| 国产一区二区三区在线臀色熟女 | 中文欧美无线码| 999精品在线视频| 女警被强在线播放| 啦啦啦免费观看视频1| 亚洲精品国产色婷婷电影| 一二三四社区在线视频社区8| 色综合婷婷激情| 狠狠狠狠99中文字幕| 国产精品亚洲一级av第二区| 黄色片一级片一级黄色片| 国产精品久久久av美女十八| 亚洲欧洲精品一区二区精品久久久| 亚洲熟妇熟女久久| 精品久久久精品久久久| 一级,二级,三级黄色视频| 国产无遮挡羞羞视频在线观看| 欧美色视频一区免费| 女人高潮潮喷娇喘18禁视频| svipshipincom国产片| www.999成人在线观看| 久久久久久久久中文| 久久99一区二区三区| 亚洲熟女毛片儿| 国产成人一区二区三区免费视频网站| 一a级毛片在线观看| 淫妇啪啪啪对白视频| 久久久精品欧美日韩精品| 欧美激情久久久久久爽电影 | 中文字幕最新亚洲高清| 国产精品日韩av在线免费观看 | av在线播放免费不卡| 9色porny在线观看| av在线天堂中文字幕 | 51午夜福利影视在线观看| 一二三四在线观看免费中文在| 久久香蕉激情| 日本欧美视频一区| 夜夜躁狠狠躁天天躁| 国产av精品麻豆| 黄色成人免费大全| 日韩有码中文字幕| 巨乳人妻的诱惑在线观看| 两个人看的免费小视频| 国产av精品麻豆| 变态另类成人亚洲欧美熟女 | 成人精品一区二区免费| 啪啪无遮挡十八禁网站| 国产高清视频在线播放一区| 精品日产1卡2卡| 国产精品一区二区三区四区久久 | 精品日产1卡2卡| 亚洲男人天堂网一区| 91九色精品人成在线观看| 久久精品91无色码中文字幕| 嫩草影视91久久| 欧洲精品卡2卡3卡4卡5卡区| 美女高潮到喷水免费观看| 久久久久国产精品人妻aⅴ院| 男人的好看免费观看在线视频 | 级片在线观看| 嫩草影院精品99| 久热爱精品视频在线9| 日本一区二区免费在线视频| 一区福利在线观看| 黄色毛片三级朝国网站| 夜夜爽天天搞| 成人国产一区最新在线观看| 日本三级黄在线观看| 亚洲精品粉嫩美女一区| 久久久久国产精品人妻aⅴ院| 男人操女人黄网站| 免费少妇av软件| 国产高清国产精品国产三级| 俄罗斯特黄特色一大片| 成人特级黄色片久久久久久久| 亚洲成a人片在线一区二区| 国产免费av片在线观看野外av| 成人精品一区二区免费| 午夜福利在线观看吧| 男人舔女人的私密视频| 欧美中文综合在线视频| 视频区欧美日本亚洲| 曰老女人黄片| 欧美成狂野欧美在线观看| 在线视频色国产色| 我的亚洲天堂| 亚洲av熟女| 纯流量卡能插随身wifi吗| 亚洲男人的天堂狠狠| 黄色视频不卡| 午夜激情av网站| 日本一区二区免费在线视频| 久久精品国产亚洲av香蕉五月| 中文字幕av电影在线播放| av网站免费在线观看视频| 伊人久久大香线蕉亚洲五| 欧洲精品卡2卡3卡4卡5卡区| 美女高潮到喷水免费观看| 欧美不卡视频在线免费观看 | 国产精品香港三级国产av潘金莲| 免费一级毛片在线播放高清视频 | 免费av中文字幕在线| 午夜福利在线免费观看网站| 国产精品亚洲一级av第二区| 十分钟在线观看高清视频www| 国产成年人精品一区二区 | 制服诱惑二区| 一a级毛片在线观看| 99国产精品99久久久久| 日韩大码丰满熟妇| 精品久久久久久,| 免费在线观看日本一区| 母亲3免费完整高清在线观看| 日韩免费av在线播放| 黑人猛操日本美女一级片| 老汉色av国产亚洲站长工具| 在线十欧美十亚洲十日本专区| av福利片在线| 久久亚洲精品不卡| 久久精品国产综合久久久| 成人手机av| 在线观看一区二区三区激情| 日韩大尺度精品在线看网址 | 少妇的丰满在线观看| 亚洲av成人av| 777久久人妻少妇嫩草av网站| 极品人妻少妇av视频| 美女高潮喷水抽搐中文字幕| 日韩精品中文字幕看吧| 国产极品粉嫩免费观看在线| 亚洲激情在线av| av电影中文网址| 欧美人与性动交α欧美精品济南到| 日本 av在线| 亚洲欧美一区二区三区久久| 如日韩欧美国产精品一区二区三区| 久久狼人影院| 9191精品国产免费久久| 一区二区三区精品91| 欧美+亚洲+日韩+国产| 精品第一国产精品| 日日干狠狠操夜夜爽| 国产深夜福利视频在线观看| 成熟少妇高潮喷水视频| 精品久久久久久久毛片微露脸| 精品一区二区三区视频在线观看免费 | 一本大道久久a久久精品| 99香蕉大伊视频| 精品国产美女av久久久久小说| 亚洲自偷自拍图片 自拍| 欧美日韩一级在线毛片| 久久精品国产清高在天天线| 久久精品亚洲熟妇少妇任你| 三级毛片av免费| 国产成年人精品一区二区 | 精品熟女少妇八av免费久了| 精品人妻在线不人妻| 成人永久免费在线观看视频| 在线观看免费午夜福利视频| 久久精品国产清高在天天线| 欧美日韩瑟瑟在线播放| 亚洲欧美激情综合另类|