• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solitary Potential in a Space Plasma Containing Dynamical Heavy Ions and Bi-Kappa Distributed Electrons of Two Distinct Temperatures

    2018-05-05 09:13:49SarkerHosenHossenandMamun
    Communications in Theoretical Physics 2018年1期

    M.Sarker,B.Hosen,M.R.Hossen,and A.A.Mamun

    1Department of Physics,Jahangirnagar University,Savar,Dhaka-1342,Bangladesh

    2Department of General Educational Development,Daffodil International University,Dhanmondi,Dhaka-1207,Bangladesh

    1 Introduction

    The propagation of ion-acoustic waves[1?4]in electronion(EI)plasmas has received a great deal of renewed interest because of their vital role in understanding different kinds of nonlinear electrostatic structures(viz.solitary waves,shock structures,double layers,etc.[5?18])observed in space[19?21]and laboratory devices.[22?24]The existence of heavy ions in astrophysical plasmas has been con firmed experimentally by detecting a noble gas molecular heavy ion in the crab nebula,[25]our(Milky Way)Galaxy,[26]polar region of neutron stars,[27]active galactic nuclei,[28]pulsar magnetosphere,[29]and the early universe,[30]etc.

    The particle distribution near equilibrium is often considered to be Maxwellian for the modeling of different plasma systems.However,for many space plasma environments,it has been proven that the presence of the heavy ion and electron populations are far o fffrom their thermal equilibrium state.The effects of external forces or wave particle interaction in numerous space[31?32]and laboratory[33?34]plasma situations indicate the existence of highly energetic(super-thermal)particles.The existence of accelerated,energetic(super-thermal)particles in the measurement of electron distribution in near-Earth space environments[32,35?36]suggests a signi ficant deviation from Maxwellian equilibrium.So for a proper treatment of a plasma system with super-thermal electrons,one should not consider Maxwellian distribution function(DF),but other kind of non-Maxwellian DF like super thermal(κ)DF.[37?39]The latter is given by

    where Γ is the usual gamma function;is the most probable speed of the high energetic electron species withbeing the Boltzman constant,Tebeing the characteristic kinetic temperature of electron species,andmebeing the mass of an electron;κis the spectral index,[40?41]which measures the deviation from the Maxwellian electron distribution.We note thatκ=∞corresponds to the Maxwellian electron distribution,and that asκdecreases within a rangethe deviation from the Maxwellian electron distribution increases.

    Recently, a numerousinvestigationshave been made by many authors on ion-acoustic solitary waves(IASWs)with single-temperature super-thermal(kappa distributed)electrons.[44?46]Schipperset al.[47]have combined a hot and a cold electron component,while both electrons are kappa distributed and a best fit for the electron velocity distribution is found.Balukuet al.[48]used this model for the study of ion-acoustic solitons in a plasma with two-temperature kappa distributed electrons.Pakzad[49]studied a dissipative plasma system with superthermal electrons and positrons,and found that the effects of ion kinematic viscosity and the super-thermal parameter on the ion-acoustic shock waves.Tasnimet al.[50?51]also considered two-temperature non-thermal ions,and discussed the properties of dust-acoustic solitary waves and double layers. Masudet al.[52]have studied the characteristics of DIA shock waves in an unmagnetized dusty plasma consisting of negatively charged static dust,inertial ions,Maxwellian distributed positively charged positrons,and super-thermal electrons with two distinct temperatures.Luet al.[53]have examined the electronacoustic waves in an electron-beam plasma system containing cold and hot electrons.El-Taibanyet al.[54]have made stability analysis of dust-ion acoustic solitary waves in a magnetized multicomponent dusty plasma containing negative heavy ions and stationary variable-charge dust particles.Shahmansouri[55]investigated the basic properties of ion-acoustic waves in an unmagnetized plasma containing cold and hot ions with kappa distributed electrons.Emaet al.[56?57]studied the effects of adiabacity on the heavy ion acoustic(HIA)solitary and shock waves in a strongly coupled nonextensive plasma.They observed that the roles of the adiabatic positively charged heavy ions,and nonextensivity of electrons have significantly modi fied the basic features(viz.polarity,amplitude,width,etc.) of the HIA solitary/shock waves.Hossenet al.[58?60]considered positively charged static heavy ions in a relativistic degenerate plasma and rigorously investigated the basic features of solitary and shock structures.Shahet al.[61?62]investigated the basic features of HIA solitary and shock waves by considering both planar and nonplanar geometry.

    We expect that dynamical heavy particles and higher order nonlinearity play an important role in modifying the basic non-linear features of ion-acoustic waves propagating in space and laboratory plasmas.Therefore,our main objective in this work is to investigate the effects of dynamics of heavy ions and higher non-linearity on(HIAWs)by deriving Korteweg-de Vries(K-dV),modi fied K-dV(MK-dV)equation,and higher order MK-dV(HMK-dV)and also is to consider the dynamics of heavy particles to describe heavy ion acoustic solitary waves(HIASWs)in such plasma system under consideration.

    The manuscript is organized as follows.The basic equations are provided in Sec.2.Three different types of nonlinear equations,namely K-dV,MK-dV,and HMK-dV are derived and analyzed analytically and numerically in Sec.3.A brief discussion is finally presented in Sec.4.

    2 Basic Equations

    We consider a three component magnetized plasma system containing positively charged heavy ions and kappa distributed electrons with two distinct temperaturesT1andT2(T1

    wherenhis the heavy ion number density normalized bynh0;uhis the heavy ion fluid speed normalized by(withkBbeing the Boltzmann constant,andmhbeing the heavy ion mass);?is the electrostatic wave potential normalized bykBT1/e(withebeing the magnitude of the charge of an electron);α=(withωch=ZheB0/mhcbeing the heavy ioncyclotron frequency,B0being the magnitude of the external static magnetic field,andbeing the heavy ion plasma frequency);1=1/(1+μ),andis the number density of low(high)temperature electron species;time variable is normalized byand the space variable is normalized by.We note that the external magnetic fieldB0is acting along thez-direction(i.e.,wherez? is the unit vector along thezdirection).

    The normalized cold and hot electron number densitiesn1andn2are,respectively given by

    3 Nonlinear Equations

    To study nonlinear propagation,we now consider different orders of nonlinearity by deriving and analyzing K-dV,MK-dV,and HMK-dV equations to identify the basic features of HIASWs formed a magnetized space plasma system containing dynamical heavy ions and kappa distributed electrons of two distinct temperatures.

    3.1 K-dV Equation

    To derive the K-dV equation,we use the reductive perturbation method,which lead to the stretched coordinates:[63?64]

    whereVpis the phase speed of the HIAWs,?is a smallness parameter measuring the weakness of the dispersion(0

    Now,substituting Eqs.(7)–(12)into Eqs.(2)–(4),and then taking the terms containing?3/2from Eqs.(2)and(3),and?from Eq.(4),we obtain

    We note that Eq.(17)describes the linear dispersion relation for the propagation of the HIAWs in the magnetized plasma under consideration and thatlz=cosδ(whereδis the angle between the directions of external magnetic field and wave propagation).To the next higher order of?,we again substitute Eqs.(7)–(12)into Eqs.(2),z-component of Eq.(3),and Eq.(4)and take the terms containing?5/2from Eq.(2)andz-component of Eq.(3),and?2from Eq.(4).We then use Eqs.(15)–(17)to obtain a set of equations in the form

    Equation(25)is the K-dV equation describing the nonlinear dynamics of the HIASWs.Now,using the appropriate boundary conditions,viz.?=0,d?/dξ=0,and d2?/dξ2=0 at,the stationary solitary wave solution of Eq.(25)is given by

    where?m= 3u0/A1is the amplitude,and ? =(4B1/u0)1/2is the width of the HIASWs. To obtain the basic features(viz.polarity,amplitude,and width)of the ESPPs,we have numerically analyzed the solution,Eq.(28)for different plasma situations.The results are displayed in Figs.1–10,which clearly indicate that

    (i)The ESPPs with?(1)>0(?(1)<0)exist forμ>μc(μ<μc)as shown in Figs.1–4,8,and 9.

    Fig.1 (Color online)The electrostatic solitary potential pro files(ESPPs)with ?(1)>0 forμ > μc,u0=0.01,σ =0.25,μ =0.7,κ2=3,δ=15,α =0.5,κ1=24(dashed curve),κ1=26(solid curve),and κ1=28(dotted curve).

    Fig.2 (Color online)The ESPPs with ?(1)<0 forμ < μc,u0=0.01,σ =0.25,μ =0.7,κ2=3,δ=15,α =0.5,κ1=24(dashed curve),κ1=26(solid curve),and κ1=28(dotted curve).

    (ii)The amplitude and width of the ESPPs(with both?(1)>0 and?(1)<0)increase with the increase inκ1,κ2,andδas shown in Figs.1–5.

    Fig.3 (Color online)The ESPPs with ?(1)>0 forμ> μc,u0=0.01,σ =0.25,μ=0.7,κ1=24,δ=15,α =0.5,κ2=2.98(dashed curve),κ2=3.00(solid curve),and κ2=3.05(dotted curve).

    Fig.4 (Color online)The ESPPs with ?(1)<0 forμ< μc,u0=0.01,σ =0.25,μ=0.7,κ1=24,δ=15,α =0.5,κ2=2.98(dashed curve),κ2=3.00(solid curve),and κ2=3.05(dotted curve).

    Fig.5 (Color online)The ESPPs with ?(1)>0 forμ > μc,u0=0.01,σ =0.25,μ =0.7,κ1=20,κ2=3,α =0.5,δ=15(dashed curve),δ=30(solid curve),and δ=45(dotted curve).

    (iii)The width of the ESPPs(with?(1)>0)increases(decreases)with the increase inδfor its lower(upper)range,but it decreases with the increase inαas shown in Fig.6;(iv)The amplitude and width of the ESPPs[with?(1)>0]increase with the decrease inσas shown in Fig.7;(v)The amplitude and width of the ESPPs(with both?(1)>0 and?(1)<0)decrease with the increase inμas shown in Figs.8 and 9.

    (vi)the width of the ESPPs(with?(1)>0)decreases with the increase inμas shown in Fig.10.

    Fig.6 (Color online)The width of the ESPPs forμ > μc,u0=0.01,σ =0.25,μ =0.7,κ1=20,κ2=3,α =0.5(dashed curve),α =0.6(solid curve),and α=0.7(dotted curve).

    Fig.7 (Color online)The ESPPs with ?(1)>0 forμ > μc,u0=0.01,δ=15,μ =0.7,κ1=20,κ2=3,α=0.5,σ=0.5(dashed curve),σ=0.7(solid curve),and σ=0.9(dotted curve).

    Fig.8 (Color online)The ESPPs with ?(1)>0 forμ > μc,u0=0.01,δ=15,σ =0.25,κ1=20,κ2=3,α=0.5,μ=0.66(dashed curve),μ=0.67(solid curve),andμ=0.70(dotted curve).

    Fig.9 (Color online)The ESPPs with ?(1)<0 forμ < μc,u0=0.01,δ=15,σ =0.25,κ1=20,κ2=3,α=0.5,μ=0.60(dashed curve),μ=0.61(solid curve),andμ=0.62(dotted curve).

    Fig.10 (Color online)The width of the ESPPs with ?(1)>0 for u0=0.01,δ =15,σ =0.25,κ1=20,κ2=3,α=0.5,μ=0.65(dashed curve),μ=0.75(solid curve),andμ=0.90(dotted curve).

    3.2 MK-dV Equation

    To derive the MK-dV equation we use the same stretched co-ordinates de fined by Eqs.(7)and(8),but the different types of expansion of the dependent variables:

    To further higher order of?,substituting Eqs.(7),(8),and(29)–(32)into Eqs.(2)–(4),and then taking the terms containing?2from Eq.(2)and thez-component of Eq.(3),and?3/2from Eq.(4),we obtain another set of equations:

    To solve this MK-dV,We consider a frameξ=η ?u0T(moving with speedu0).The stationary solitary wave solution of the MK-dV equation(Eq.(41))is given by

    (i)The MK-dV equation admits solitary wave solution with?(1)>0 only;(ii)The amplitude and width of the ESPPs increase with the increase in(κ2)as shown in Fig.11.

    Fig.11 (Color online)The ESPPs with ?(1)>0 for u0=0.01,σ =0.25,μ =0.7,κ1=20,δ=15,α =0.5,κ2=3.0(dashed curve),κ2=2.5(solid curve),and κ2=2.0(dotted curve).

    Fig.12 (Color online)The ESPPs with ?(1)>0 for u0=0.01,δ=15,μ =0.70,κ1=20,κ2=3,α =0.5,σ=0.50(dashed curve),σ=0.70(solid curve),and σ=0.90(dotted curve).

    Fig.13 (Color online)The ESPPs with ?(1)>0 for u0=0.01,δ=15,σ =0.25,κ1=20,κ2=3,α =0.5,μ=0.65(dashed curve),μ=0.75(solid curve),andμ=0.85(dotted curve).

    (iii)The amplitude and width of the ESPPs increase with the increase inσas shown in Fig.12.

    (iv)The amplitude and width of the ESPPs decrease with the increase inμas shown in Fig.13.

    3.3 HMK-dV Equation

    To examine the effects of further higher order nonlinearity on the K-dV or MK-dV equations describing HIAWs in a magnetized plasma(containing containing dynamical heavy ions and bi-kappa distributed electrons of two distinct temperatures),one can derive a further higher order nonlinear equation.The latter(after performing few steps of mathematical calculations)can be directly given by[65?66]

    Fig.14 (Color online)The ESPPs(with ?(1)>0)for u0=0.01,σ =0.25,μ =0.7,κ2=3,δ=15,α =0.5,κ1=10(dashed curve),κ1=15(solid curve),and κ1=30(dotted curve).

    4 Discussion

    We have considered a magnetized plasma system consisting of inertial heavy ions and kappa distributed electrons of two distinct temperatures.We have derived the K-dV,MK-dV,and HMK-dV equations by using the reductive perturbation method to identify the basic features(polarity,amplitude,and width)of the ESPPs formed in such a magnetized plasma system.The results,which have been obtained from this theoretical investigation,can be pin-pointed as follows:

    (i)The K-dV and HMK-dV equations admit HIASW solutions with either?(1)>0(compressive)or?(1)<0(rarefactive).The polarity of the HIASWs depends on the critical valueμc(whereμc=0.64 forκ1=20,κ2=3,δ=15,σ=0.25,andα=0.5).On the other-hand,the MK-dV equation admits only HIASW solution with?(1)>0(compressive).

    (ii)The amplitude of the K-dV solitons become inif nitely large forA1?0,and thus the K-dV equation is no longer valid atA1?0,which has been avoided by deriving MK-dV and HMK-dV equations to study more highly nonlinear HIASWs.

    (iii)The amplitude and width of both positive and negative HIASWs(obtained from the numerical analysis of the solution of the K-dV equation)increase with the increase inκ1andκ2.However the amplitude of the positive HIASWs increases with the increase inδ.On the other-hand,the width decreases with the increase inα,and increases(decreases)with the increase inδfor its lower(upper)range.

    (iv)The amplitude of the K-dV HIASWs increases with the increase inT2andn01,but decreases with the rise ofT1andn02.

    (v)The width of K-dV HIASWs rises with the increase(decrease)inn01(n02).

    (vi)The amplitude and the width of the MK-dV HIASWs increase with the increase inκ2,T2andn01,but decrease with the increase inT1andn02.

    (vii)The amplitude and the width of the HMK-dV HIASWs slightly increase with the increase inκ1.This means that the effect of higher nonlinearity on K-dV and MK-dV HIASWs is insigni ficant.

    To conclude,the results of our present investigation are relevant to space(viz.Saturns magnetosphere,[43]pulsar magnetosphere,[67]upper part of the ionosphere,[68?70]lower part of the magnetosphere,[68?70]etc.).The dip shape solitary structures(known as cavitons[68?70])observed by Freja satellite[68,70]and Viking spacecraft[69?70]are similar to those predicted by our present theoretical investigation.We finally hope that our results should be useful in understanding the nonlinear eloctrostatic disturbances in the space plasma systems containing heavy ions and super-thermal electrons of two distinct temperatures.

    M.Sarker,B.Hosen,and M.R.Hossen are grateful to the Ministry of Science and Technology(Bangladesh)for awarding the National Science and Technology(NST)fellowship.

    [1]X.Gao,Q.Lu,X.Li,et al.,Phys.Plasmas 20(2013)072902.

    [2]X.Gao,Q.Lu,X.Tao,et al.,Phys.Plasmas 20(2013)092106.

    [3]X.Gao,Q.Lu,X.Li,et al.,Astrophys.J.780(2014)56.

    [4]Y.Ke,X.Gao,Q.Lu,and S.Wang,Phys.Plasmas 24(2017)012108.

    [5]F.F.Chen,Introduction to Plasma Physics and Controlled Fusion,2nd ed.,Plenum Press,New York(1984)p.297.

    [6]I.R.Durrani,G.Murtaza,and H.U.Rahman,Can.J.Phys.57(1979)642.

    [7]R.C.Davidson,Methods in Nonlinear Plasma Theory,Academic Press,New York(1972)p.15.

    [8]J.K.Chawla,M.K.Mishra,and R.S.Tiwary,Astrophys.Space Sci.347(2013)283.

    [9]A.A.Mamun,Phys.Rev.E 55(1997)1852.

    [10]M.R.Hossen,L.Nahar,S.Sultana,and A.A.Mamun,Astrophys.Space Sci.353(2014)123.

    [11]M.R.Hossen and A.A.Mamun,Braz.J.Phys.44(2014)673.

    [12]M.R.Hossen,L.Nahar,and A.A.Mamun,J.Korean Phys.Soc.65(2014)1863.

    [13]M.R.Hossen,L.Nahar,and A.A.Mamun,J.Astrophys.2014(2014)653065.

    [14]B.Hosen,M.G.Shah,M.R.Hossen,and A.A.Mamun,Euro.Phys.J.Plus 131(2016)81.

    [15]Q.M.Lu,B.Lembege,J.B.Tao,and S.Wang,J.Geophys.Res.113(2008)A11219.

    [16]M.Wu,Q.Lu,C.Huang,and S.Wang,J.Geophys.Res.115(2010)A10245.

    [17]R.Wang,Q.Lu,Y.V.Khotyaintsev,et al.,Geophys.Res.Lett.41(2014)4851.

    [18]C.Huang,Q.Lu,P.Wang,et al.,J.Geophys.Res.119(2014)6445.

    [19]E.Witt and W.Lotko,Phys.Fluids 26(1983)2176.

    [20]S.Qian,W.Lotko,and M.K.Hudson,Phys.Fluids 31(1988)2190.

    [21]V.A.Marchenko and M.K.Hudson,J.Geophys.Res.100(1995)19791.

    [22]K.E.Lonngren,Plasma Phys.25(1983)943.

    [23]Y.Nakamura,J.L.Ferreira,and G.O.Ludwig,J.Plasma Phys.33(1985)237.

    [24]Y.Nakamura,T.Ito,and K.Koga,J.Plasma Phys.49(1993)331.

    [25]M.J.Barlow,B.M.Swinyard,P.J.Owen,et al.,Science 342(2013)1343.

    [26]M.L.Burns,A.K.Harding,and R.Ramaty,Positronelectron Pairs in Astrophysics,American Institute of Physics,New York(1983).

    [27]F.C.Michel,Theory of Neutron Star Magnetosphere,Chicago University Press,Chicago(1991).

    [28]H.R.Miller and P.J.Witta,Active Galactic Nuclei,Springer,Berlin(1987).

    [29]P.Goldreich and W.H.Julian,Astrophys.J.157(1969)869.

    [30]M.J.Rees,inThe Very Early Universe,eds.by G.W.Gibbons,S.W.Hawking,and S.Siklas,Cambridge University Press,Cambridge(1983).

    [31]C.Vocks and G.Mann,Astrophys.J.593(2003)1134.

    [32]G.Gloeckler and L.A.Fisk,Astrophys.J.648(2006)L63.

    [33]Y.Yagi,V.Antoni,M.Bagatin,et al.,Plasma Phys.Cont.Fusion 39(1997)1915.

    [34]S.Preische,P.C.Efthimion,and S.M.Kaye,Phys.Plasmas 3(1996)4065.

    [35]C.C.Chaston,Y.D.Hu,and B.J.Fraser,Geophys.Res.Lett.24(1997)2913.

    [36]M.Maksimovic,V.Pierrard,and J.F.Lemaire,Astron.Astrophys.324(1997)725.

    [37]V.M.Vasyliunas,J.Geophys.Res.73(1968)2839.

    [38]D.Summers and R.M.Thorne,Phys.Fluids B 3(1991)1835.

    [39]M.A.Hellberg,R.L.Mace,T.K.Baluku,et al.,Plasmas 16(2009)094701.

    [40]T.Cattaert,M.A.Helberg,and R.L.Mace,Phys.Plasmas 14(2007)082111.

    [41]M.S.Alam,M.M.Masud,and A.A.Mamun,Plasma Phys.Rep.39(2013)1011.

    [42]B.Basu,Phys.Plasmas 15(2008)042108.

    [43]T.K.Baluku and M.A.Hellberg,Phys.Plasmas 19(2012)012106.

    [44]S.Hussain,Chin.Phys.Lett.29(2012)065202.

    [45]M.Shahmansouri,B.Shahmansouri,and D.Darabi,Indian J.Phys.87(2013)711.

    [46]S.Sultana and I.Kourakis,Plasma Phys.Control.Fusion 53(2011)045003.

    [47]P.Schippers,M.Blanc,N.Andre,et al.,J.Geophys.Res.113(2008)07208.

    [48]T.K.Baluku,M.A.Hellberg,and R.L.Mace,J.Geophys.Res.116(2011)04227.

    [49]H.R.Pakzad,Astrophys.Space Sci.331(2011)169.

    [50]I.Tasnim,M.M.Masud,M.Asaduzzaman,and A.A.Mamun,Chaos 23(2013)013147.

    [51]I.Tasnim,M.M.Masud,and A.A.Mamun,Astrophys.Space Sci.343(2013)647.

    [52]M.M.Masud,S.Sultana,and A.A.Mamun,Astrophys.Space.Sci.348(2013)99.

    [53]Q.Lu,S.Wang,and X.Dou,Phys.Plasmas 12(2005)072903.

    [54]W.F.El-Taibany,N.A.El-Bedwehy,and E.F.El-Shamy,Phys.Plasmas 18(2011)033703.

    [55]M.Shahmansouri,Astrophys.Space Sci.29(2012)105201.

    [56]S.A.Ema,M.R.Hossen,and A.A.Mamun,Phys.Plasmas 22(2015)092108.

    [57]S.A.Ema,M.R.Hossen,and A.A.Mamun,Contrib.Plasma Phys.55(2015)596.

    [58]M.R.Hossen,L.Nahar,S.Sultana,and A.A.Mamun,High Energy Density Phys.13(2014)13.

    [59]M.R.Hossen,L.Nahar,and A.A.Mamun,Phys.Scr.89(2014)105603.

    [60]M.R.Hossen and A.A.Mamun,Plasma Sci.Technol.17(2015)177.

    [61]M.G.Shah,M.M.Rahman,M.R.Hossen,and A.A.Mamun,Commun.Theor.Phys.64(2015)208.

    [62]M.G.Shah,M.M.Rahman,M.R.Hossen,and A.A.Mamun,Plasma Phys.Rep.42(2016)168.

    [63]P.K.Shukla and M.Y.Yu,J.Math.Phys.19(1978)2506.

    [64]A.A.Mamun,Astrophys.Space Sci.260(1998)507.

    [65]S.A.Elwakil,E.M.Abulwafa,E.K.El-Shewy,and H.M.Abd-El-Hamid,Adv.Space Res.48(2011)1578.

    [66]M.G.Shah,M.R.Hossen,and A.A.Mamun,J.Plasma Phys.81(2015)905810517.

    [67]S.K.Kundu,D.K.Ghosh,P.Chatterjee,and B.Das,Bulg.J.Phys.38(2011)409.

    [68]P.O.Dovner,A.I.Eriksson,R.Bostr¨om,and B.Holback,Geophys.Res.Lett.21(1994)1827.

    [69]R.Bostr¨om,G.Gustafsson,B.Holback,et al.,Phys.Rev.Lett.61(1988)82.

    [70]R.A.Cairns,A.A.Mamun,R.Bingham,et al.,Geophys.Res.Lett.22(1995)2709.

    黄频高清免费视频| 亚洲人成电影观看| 高清视频免费观看一区二区| 999精品在线视频| 日韩中文字幕欧美一区二区| 亚洲国产精品成人久久小说| 中文字幕高清在线视频| 我的亚洲天堂| 男男h啪啪无遮挡| 欧美亚洲日本最大视频资源| 欧美激情极品国产一区二区三区| 久久精品久久久久久噜噜老黄| 亚洲情色 制服丝袜| 色播在线永久视频| 国产成人欧美| 美女高潮到喷水免费观看| 国产一区二区三区av在线| 国产亚洲午夜精品一区二区久久| 侵犯人妻中文字幕一二三四区| 精品亚洲乱码少妇综合久久| 亚洲精品美女久久久久99蜜臀| 免费看十八禁软件| 欧美精品av麻豆av| 亚洲精品在线美女| 亚洲精品美女久久久久99蜜臀| 在线观看免费日韩欧美大片| 搡老乐熟女国产| 国产精品一区二区精品视频观看| 91麻豆精品激情在线观看国产 | a 毛片基地| 国产真人三级小视频在线观看| 精品国产乱码久久久久久男人| 久久精品久久久久久噜噜老黄| 亚洲国产精品一区三区| 欧美乱码精品一区二区三区| 午夜日韩欧美国产| 国产日韩一区二区三区精品不卡| 少妇人妻久久综合中文| 美女主播在线视频| 99热网站在线观看| 亚洲综合色网址| 99热网站在线观看| 色综合欧美亚洲国产小说| 国产免费一区二区三区四区乱码| 亚洲精品第二区| 国产成人欧美在线观看 | 色94色欧美一区二区| 成年人免费黄色播放视频| 丝袜美腿诱惑在线| av网站在线播放免费| 欧美人与性动交α欧美软件| 久久久久久人人人人人| 巨乳人妻的诱惑在线观看| 亚洲全国av大片| 一区二区三区激情视频| 国产成+人综合+亚洲专区| 五月天丁香电影| 侵犯人妻中文字幕一二三四区| 狂野欧美激情性bbbbbb| 亚洲伊人色综图| 在线天堂中文资源库| 成年美女黄网站色视频大全免费| 欧美xxⅹ黑人| 国产免费现黄频在线看| 最近中文字幕2019免费版| 久久人妻熟女aⅴ| 麻豆av在线久日| 亚洲av国产av综合av卡| 久久久精品国产亚洲av高清涩受| 法律面前人人平等表现在哪些方面 | 十八禁人妻一区二区| 色精品久久人妻99蜜桃| 亚洲精品中文字幕一二三四区 | 日韩熟女老妇一区二区性免费视频| 国产精品.久久久| 久久精品久久久久久噜噜老黄| 中文字幕高清在线视频| 男人添女人高潮全过程视频| 91成年电影在线观看| 国产成人影院久久av| 男女边摸边吃奶| 国产成人精品无人区| 亚洲黑人精品在线| 男女边摸边吃奶| 天天操日日干夜夜撸| 久久99一区二区三区| 丝袜人妻中文字幕| 操出白浆在线播放| 国产色视频综合| 男人操女人黄网站| 日本av免费视频播放| 波多野结衣一区麻豆| 久久久国产成人免费| 十分钟在线观看高清视频www| 国产成人免费无遮挡视频| 国产精品一二三区在线看| 丝瓜视频免费看黄片| 每晚都被弄得嗷嗷叫到高潮| 国产成人欧美| 婷婷成人精品国产| 国产精品影院久久| 国产av一区二区精品久久| 久久中文看片网| 中文字幕另类日韩欧美亚洲嫩草| 国产97色在线日韩免费| 午夜福利视频精品| 少妇 在线观看| 成人av一区二区三区在线看 | 天天添夜夜摸| 免费观看人在逋| 久久性视频一级片| 香蕉国产在线看| 亚洲成国产人片在线观看| 一本久久精品| 日本欧美视频一区| 久久毛片免费看一区二区三区| 国产精品香港三级国产av潘金莲| 日韩视频在线欧美| 人人妻人人爽人人添夜夜欢视频| 国产在线视频一区二区| 男女之事视频高清在线观看| 欧美精品一区二区大全| 18禁黄网站禁片午夜丰满| 久久国产亚洲av麻豆专区| 日韩一区二区三区影片| 青春草视频在线免费观看| 国产成人系列免费观看| 天天影视国产精品| 91成人精品电影| 久久亚洲国产成人精品v| 亚洲精品粉嫩美女一区| 99国产精品一区二区蜜桃av | 亚洲伊人色综图| 久久精品国产a三级三级三级| 丁香六月天网| 国产av一区二区精品久久| 成在线人永久免费视频| 母亲3免费完整高清在线观看| 亚洲av国产av综合av卡| 久久综合国产亚洲精品| 91成人精品电影| av网站免费在线观看视频| 国产高清videossex| 欧美精品亚洲一区二区| tube8黄色片| 涩涩av久久男人的天堂| 美女午夜性视频免费| 精品人妻在线不人妻| 人人妻人人爽人人添夜夜欢视频| 俄罗斯特黄特色一大片| 午夜精品久久久久久毛片777| www.熟女人妻精品国产| 黄色视频在线播放观看不卡| 亚洲第一av免费看| 日本五十路高清| 美女午夜性视频免费| 亚洲成人国产一区在线观看| 免费观看人在逋| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机午夜十八禁免费视频| 黑人猛操日本美女一级片| 在线 av 中文字幕| 国产亚洲精品第一综合不卡| 巨乳人妻的诱惑在线观看| 日韩电影二区| 黄片小视频在线播放| 亚洲精品美女久久久久99蜜臀| 国产免费福利视频在线观看| 日韩有码中文字幕| 精品国产乱子伦一区二区三区 | 乱人伦中国视频| 精品国产一区二区三区四区第35| 少妇被粗大的猛进出69影院| 成人亚洲精品一区在线观看| 十八禁人妻一区二区| 国产国语露脸激情在线看| 精品国产乱子伦一区二区三区 | 亚洲综合色网址| 韩国高清视频一区二区三区| 少妇裸体淫交视频免费看高清 | 日本一区二区免费在线视频| 男人操女人黄网站| 女人精品久久久久毛片| 搡老乐熟女国产| 免费日韩欧美在线观看| 人人妻,人人澡人人爽秒播| www.av在线官网国产| 亚洲第一欧美日韩一区二区三区 | 咕卡用的链子| 丝袜在线中文字幕| 女人高潮潮喷娇喘18禁视频| 新久久久久国产一级毛片| 在线观看免费视频网站a站| 亚洲av电影在线进入| 午夜福利在线观看吧| 成人三级做爰电影| 成人av一区二区三区在线看 | 在线 av 中文字幕| 欧美97在线视频| av有码第一页| 90打野战视频偷拍视频| 视频在线观看一区二区三区| 日韩一卡2卡3卡4卡2021年| 久久99热这里只频精品6学生| 美国免费a级毛片| 女人高潮潮喷娇喘18禁视频| 制服诱惑二区| 91精品国产国语对白视频| 久久久久久久国产电影| 美女高潮到喷水免费观看| 丝袜人妻中文字幕| 日韩大片免费观看网站| 黄色a级毛片大全视频| 成年人午夜在线观看视频| 三上悠亚av全集在线观看| 在线观看免费视频网站a站| 美女高潮到喷水免费观看| 两性夫妻黄色片| 欧美大码av| 狂野欧美激情性bbbbbb| av在线老鸭窝| 久久中文字幕一级| 国产日韩一区二区三区精品不卡| 久久久久久免费高清国产稀缺| 99国产精品免费福利视频| 最黄视频免费看| 黄色怎么调成土黄色| 欧美精品亚洲一区二区| 国产精品影院久久| 欧美日本中文国产一区发布| 亚洲精品久久久久久婷婷小说| 搡老乐熟女国产| 国产精品一区二区精品视频观看| 少妇精品久久久久久久| 精品国产乱码久久久久久男人| 9色porny在线观看| 国产av一区二区精品久久| 色婷婷av一区二区三区视频| 男人爽女人下面视频在线观看| 在线永久观看黄色视频| 日韩大码丰满熟妇| 自拍欧美九色日韩亚洲蝌蚪91| 国产人伦9x9x在线观看| 丝袜脚勾引网站| 少妇精品久久久久久久| 亚洲人成77777在线视频| 亚洲五月婷婷丁香| 国产av国产精品国产| 日韩欧美一区视频在线观看| 成人手机av| 亚洲中文日韩欧美视频| 日韩欧美国产一区二区入口| 欧美黑人欧美精品刺激| 99国产精品一区二区蜜桃av | 欧美人与性动交α欧美软件| 乱人伦中国视频| 麻豆av在线久日| 91老司机精品| 国产成人欧美| 亚洲av美国av| 亚洲黑人精品在线| 爱豆传媒免费全集在线观看| 国产成人免费无遮挡视频| 天天躁夜夜躁狠狠躁躁| 日韩熟女老妇一区二区性免费视频| 久久这里只有精品19| 在线 av 中文字幕| 亚洲国产精品999| 久久免费观看电影| 国产av又大| 两个人看的免费小视频| 国产亚洲av高清不卡| 他把我摸到了高潮在线观看 | 黄色视频,在线免费观看| 777米奇影视久久| 国产精品一二三区在线看| 亚洲精品一二三| 69av精品久久久久久 | a级毛片在线看网站| 男女高潮啪啪啪动态图| 亚洲精品一卡2卡三卡4卡5卡 | 国产伦人伦偷精品视频| 免费在线观看日本一区| 国产精品麻豆人妻色哟哟久久| 永久免费av网站大全| 国产麻豆69| 国产一区二区 视频在线| 久久国产精品影院| 巨乳人妻的诱惑在线观看| 美女大奶头黄色视频| 中文字幕最新亚洲高清| 亚洲精品一卡2卡三卡4卡5卡 | 视频在线观看一区二区三区| 97人妻天天添夜夜摸| 日韩欧美免费精品| 久久精品国产综合久久久| 在线观看免费视频网站a站| 久久性视频一级片| 久久人人爽av亚洲精品天堂| 侵犯人妻中文字幕一二三四区| 国产真人三级小视频在线观看| 久久精品人人爽人人爽视色| 日韩有码中文字幕| 啦啦啦在线免费观看视频4| 成人国产一区最新在线观看| 青草久久国产| 热re99久久精品国产66热6| 黄色视频,在线免费观看| 欧美国产精品一级二级三级| 侵犯人妻中文字幕一二三四区| 日韩精品免费视频一区二区三区| 91成年电影在线观看| 国产国语露脸激情在线看| 午夜福利视频精品| 91字幕亚洲| 亚洲性夜色夜夜综合| 777米奇影视久久| 蜜桃国产av成人99| avwww免费| 纯流量卡能插随身wifi吗| 国产不卡av网站在线观看| 91国产中文字幕| 免费一级毛片在线播放高清视频 | 日本wwww免费看| 老司机亚洲免费影院| 亚洲精品久久成人aⅴ小说| 在线观看免费午夜福利视频| 五月天丁香电影| 亚洲久久久国产精品| 三级毛片av免费| 色婷婷久久久亚洲欧美| 亚洲成av片中文字幕在线观看| 精品一区二区三区四区五区乱码| 欧美日韩国产mv在线观看视频| 成年av动漫网址| 国产一区二区三区综合在线观看| 中文字幕人妻熟女乱码| 欧美日韩国产mv在线观看视频| 99久久人妻综合| 电影成人av| 大片免费播放器 马上看| www.999成人在线观看| 久久影院123| 国产又色又爽无遮挡免| 婷婷丁香在线五月| 国产高清视频在线播放一区 | 亚洲自偷自拍图片 自拍| 欧美黑人精品巨大| 波多野结衣一区麻豆| 精品国产乱子伦一区二区三区 | 亚洲七黄色美女视频| 国产高清videossex| 亚洲精品国产区一区二| 日韩视频一区二区在线观看| 国产精品 欧美亚洲| 欧美 日韩 精品 国产| 肉色欧美久久久久久久蜜桃| 久久国产精品人妻蜜桃| 欧美97在线视频| 中文字幕色久视频| 12—13女人毛片做爰片一| 国产精品 国内视频| 国精品久久久久久国模美| 午夜福利视频在线观看免费| 欧美xxⅹ黑人| 国产男女内射视频| 亚洲精品一卡2卡三卡4卡5卡 | 欧美精品一区二区大全| 淫妇啪啪啪对白视频 | 岛国毛片在线播放| 人人妻人人添人人爽欧美一区卜| 日韩三级视频一区二区三区| 国产1区2区3区精品| www.av在线官网国产| 亚洲 欧美一区二区三区| 久热这里只有精品99| 桃花免费在线播放| 动漫黄色视频在线观看| 国产免费现黄频在线看| 在线av久久热| 亚洲一区中文字幕在线| 80岁老熟妇乱子伦牲交| tocl精华| av不卡在线播放| 久久av网站| 极品人妻少妇av视频| 精品国产超薄肉色丝袜足j| 国产成人精品无人区| 午夜福利视频精品| 久久久精品免费免费高清| 国产成人影院久久av| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三区在线| 国产av精品麻豆| 国产成人啪精品午夜网站| 久久久精品区二区三区| 国产精品自产拍在线观看55亚洲 | 国产在线视频一区二区| av又黄又爽大尺度在线免费看| 欧美成人午夜精品| 女人久久www免费人成看片| 精品久久蜜臀av无| 超碰97精品在线观看| 丝袜美腿诱惑在线| 久久午夜综合久久蜜桃| 国产日韩欧美亚洲二区| 免费人妻精品一区二区三区视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品无人区| 9色porny在线观看| 精品亚洲乱码少妇综合久久| 91国产中文字幕| 欧美精品亚洲一区二区| 免费人妻精品一区二区三区视频| 亚洲三区欧美一区| 天天操日日干夜夜撸| 久久精品国产综合久久久| 天天躁狠狠躁夜夜躁狠狠躁| 嫁个100分男人电影在线观看| 真人做人爱边吃奶动态| 欧美黑人精品巨大| 视频区图区小说| 欧美日韩精品网址| 久久人妻福利社区极品人妻图片| av在线播放精品| 在线永久观看黄色视频| 桃花免费在线播放| 亚洲精品国产区一区二| 一区在线观看完整版| www.自偷自拍.com| 国产男人的电影天堂91| 欧美老熟妇乱子伦牲交| 啦啦啦视频在线资源免费观看| 国产欧美亚洲国产| 黑人欧美特级aaaaaa片| 国产免费av片在线观看野外av| 一区在线观看完整版| 免费在线观看视频国产中文字幕亚洲 | 日韩欧美一区二区三区在线观看 | 天天躁日日躁夜夜躁夜夜| 亚洲男人天堂网一区| av在线播放精品| 大香蕉久久网| 人人妻人人添人人爽欧美一区卜| 在线永久观看黄色视频| 久久香蕉激情| 欧美 亚洲 国产 日韩一| 一区福利在线观看| 一进一出抽搐动态| 99热全是精品| 国产亚洲精品久久久久5区| 亚洲成人手机| 国产又色又爽无遮挡免| 18禁黄网站禁片午夜丰满| 一级a爱视频在线免费观看| 欧美精品人与动牲交sv欧美| 丰满饥渴人妻一区二区三| 在线观看免费午夜福利视频| 欧美av亚洲av综合av国产av| av天堂久久9| 国产精品九九99| 我的亚洲天堂| 久久人人爽人人片av| 亚洲三区欧美一区| 亚洲九九香蕉| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品第二区| 久久久久久久久久久久大奶| 国产激情久久老熟女| 国产又爽黄色视频| 99久久精品国产亚洲精品| www.自偷自拍.com| 老司机午夜十八禁免费视频| 精品一区二区三卡| 亚洲精品国产一区二区精华液| h视频一区二区三区| 国产激情久久老熟女| 蜜桃在线观看..| 黄色a级毛片大全视频| 亚洲精品美女久久久久99蜜臀| 91老司机精品| 一二三四社区在线视频社区8| 黄色毛片三级朝国网站| 女人久久www免费人成看片| 在线观看舔阴道视频| 亚洲一码二码三码区别大吗| 侵犯人妻中文字幕一二三四区| 亚洲五月婷婷丁香| 国产欧美日韩一区二区三区在线| 精品熟女少妇八av免费久了| 性色av一级| 一级片免费观看大全| 亚洲精品第二区| 如日韩欧美国产精品一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 免费高清在线观看日韩| 国产免费视频播放在线视频| 久久人人爽人人片av| 国产亚洲av高清不卡| 欧美在线黄色| 亚洲av欧美aⅴ国产| 国产高清videossex| 人人妻人人添人人爽欧美一区卜| 老司机在亚洲福利影院| 欧美黄色片欧美黄色片| 欧美日韩福利视频一区二区| 99久久综合免费| 涩涩av久久男人的天堂| 欧美在线一区亚洲| 亚洲 欧美一区二区三区| 啦啦啦免费观看视频1| 午夜精品久久久久久毛片777| 欧美人与性动交α欧美软件| 日本精品一区二区三区蜜桃| 国产精品亚洲av一区麻豆| 国产亚洲av高清不卡| 日韩视频一区二区在线观看| 精品一区在线观看国产| 乱人伦中国视频| 免费看十八禁软件| 人妻人人澡人人爽人人| 91精品三级在线观看| 精品久久蜜臀av无| 亚洲avbb在线观看| 成年人午夜在线观看视频| 一级,二级,三级黄色视频| 欧美日韩亚洲高清精品| 在线av久久热| 国产欧美日韩一区二区三 | 丝瓜视频免费看黄片| 久久久国产一区二区| 亚洲男人天堂网一区| netflix在线观看网站| 久久免费观看电影| 久久久久久久大尺度免费视频| 国产精品亚洲av一区麻豆| 国产一卡二卡三卡精品| 精品少妇内射三级| 人成视频在线观看免费观看| 不卡一级毛片| 18禁裸乳无遮挡动漫免费视频| 蜜桃在线观看..| 9191精品国产免费久久| 久久天躁狠狠躁夜夜2o2o| 男人舔女人的私密视频| 亚洲综合色网址| 中文字幕人妻丝袜一区二区| 亚洲欧美清纯卡通| 嫁个100分男人电影在线观看| 乱人伦中国视频| 国产高清videossex| 久久国产精品大桥未久av| 一级黄色大片毛片| 一进一出抽搐动态| 午夜福利乱码中文字幕| 日日摸夜夜添夜夜添小说| 纵有疾风起免费观看全集完整版| 丝袜在线中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧洲精品一区二区精品久久久| 性高湖久久久久久久久免费观看| 国产精品久久久久久精品电影小说| 别揉我奶头~嗯~啊~动态视频 | 看免费av毛片| 少妇裸体淫交视频免费看高清 | av超薄肉色丝袜交足视频| 久久久久久久大尺度免费视频| 欧美日韩亚洲国产一区二区在线观看 | 99久久99久久久精品蜜桃| 麻豆av在线久日| 国产精品影院久久| 久久久久精品国产欧美久久久 | xxxhd国产人妻xxx| 日本a在线网址| 妹子高潮喷水视频| av又黄又爽大尺度在线免费看| 日本黄色日本黄色录像| 国产成人精品久久二区二区免费| 又大又爽又粗| 丁香六月天网| 91老司机精品| 男女下面插进去视频免费观看| 久久久久久人人人人人| 人妻久久中文字幕网| 亚洲国产日韩一区二区| 亚洲国产精品成人久久小说| bbb黄色大片| 日韩欧美一区二区三区在线观看 | 夜夜夜夜夜久久久久| 欧美激情 高清一区二区三区| 日韩免费高清中文字幕av| 欧美精品一区二区免费开放| av在线app专区| 国产精品一区二区免费欧美 | 精品国产超薄肉色丝袜足j| 狂野欧美激情性xxxx| 久久久久精品人妻al黑| 国产精品久久久久久精品电影小说| 国产成人一区二区三区免费视频网站| 国产精品国产av在线观看| 丰满少妇做爰视频| 成年人黄色毛片网站| 国产xxxxx性猛交| 国产免费视频播放在线视频| 汤姆久久久久久久影院中文字幕| 午夜影院在线不卡| 真人做人爱边吃奶动态| 亚洲一区二区三区欧美精品| 精品亚洲成a人片在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产成人精品无人区| www.自偷自拍.com| 欧美久久黑人一区二区| 狠狠狠狠99中文字幕| 好男人电影高清在线观看|