• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discrete Boltzmann Method with Maxwell-Type Boundary Condition for Slip Flow?

    2018-05-05 09:13:42YuDongZhang張玉東AiGuoXu許愛國(guó)GuangCaiZhang張廣財(cái)andZhiHuaChen陳志華
    Communications in Theoretical Physics 2018年1期
    關(guān)鍵詞:外校愛國(guó)競(jìng)賽

    Yu-Dong Zhang(張玉東)Ai-Guo Xu(許愛國(guó))? Guang-Cai Zhang(張廣財(cái)) and Zhi-Hua Chen(陳志華)

    1Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    2Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing 210094,China

    3Center for Applied Physics and Technology,MOE Key Center for High Energy Density Physics Simulations,College of Engineering,Peking University,Beijing 100871,China

    1 Introduction

    In recent years,the development of natural science and engineering technology has moved towards miniaturization.One of the most typical examples is Micro-Electro-Mechanical System(MEMS).[1?4]It is extremely important to investigate the underlying physics of unconventional phenomena at the micro-scale.Those unconventional phenomena cannot be explained by the traditional macro-model and has become a key bottleneck limiting the further development of MEMS.Among these unconventional physical problems,the gas flow and heat transfer characteristics at the mico-scale are especially critical.

    Due to the reduction of the geometric scale,the mean free path of gas molecules may be comparable to the length scale of the device.The Knudsen number(Kn),a dimensionless parameter used to measure the degree of rarefaction of the flow and de fined as the ratio of the mean free path of molecules to characteristic length of the device,may be larger than 0.001 and reaches slipflow regime(0.001

    In practical,gas flow in a microchannel may encounter continuum,slip and transition regimes simultaneously.Traditionally macro-scale models cannot apply to such a broad range of Knudsen numbers by only one set of equations.Besides,the numerical solutions of higher order macro-equations are difficult to obtain because of the numerical stability problem.[3]It is commonly accepted that Direct Simulation Monte Carlo(DSMC)[4,8]is an accurate method for rare fied gas flow,which has been veri fied by experimental data.However,the computation cost in numerical simulations is too expensive for low speed gas flow.To reduce the huge ratio of the noise to the useful information,extremely large sample size is needed.Although,the information preservation(IP)method was presented to treat this problem,[9]the contradiction between the noise problem and sample size has not been well solved.

    It has been know that rare fied gas dynamics are represented properly by the Boltzmann equation due to its kinetic nature.That is continuum,slip and transition regimes can be described by one equation.Unfortunately,the Boltzmann equation is a 6-dimensional problem and the computational cost is formidable to solve such an equation by numerical method directly.In order to alleviate the heavy computational burden of directly solving Boltzmann equation,a variety of Boltzmann equationbased methods,such as the uni fied gas-kinetic scheme(UGKS),[10?11]the discrete velocity method(DVM),[12]the discrete uni fied gas-kinetic scheme(DUGKS),[13?14]the lattice Boltzmann method(LBM),[2,15?26]have been presented and well developed.Recently,Discrete Boltzmann Method(DBM)has also been developed and widely used in various complex flow simulations,[27?29]such as multiphase flows,[30]flow instability,[31?32]combustion and detonation,[33?34]etc. From the viewpoint of numerical algorithm,similar to finite-different LBM,the velocity space is substituted by a limited number of particle velocities in DBM.However,the discrete distribution function in DBM satis fies more moment relations,which make it fully compatible with the macroscopic hydrodynamic equations including energy equation.The macroscopic quantities,including density,momentum,and energy are calculated from the same set of discrete distribution functions.From the viewpoint of physical modeling,beyond the traditional macroscopic description,the DBM presents two sets of physical quantities so that the nonequilibrium behaviors can have a more complete and precise description.One set includes the dynamical comparisons of nonconserved kinetic moments of distribution function and those of its corresponding equilibrium distribution function.The other includes the viscous stress and heat flux.The former describes the speci fic nonequilibrium flow state,the latter describes the in fluence of current state on system evolution.The study on the former helps understanding the latter and the nonlinear constitutive relations.[35]The new observations brought by DBM have been used to understand the mechanisms for formation and effects of shock wave,phase transition,energy transformation,and entropy increase in various complex flows,[30,34,36]and to study the in fluence of compressibility on Rayleigh–Taylor instability.[31?32]In a recent study,it is interesting to find that the maximum value point of the thermodynamic nonequilibrium strength can be used to divide the two stages,spinnodal decomposition and domain growth,of liquid-vapor separation.

    Some of the new observations brought by DBM,for example,the nonequilibrium fine structures of shock waves,have been con firmed and supplemented by the results of molecular dynamics.[37?39]It should be pointed out that the molecular dynamics simulations can also give microscopic view of points to the origin of the slip near boundary,such as the non-isotropic strong molecular evaporation flux from the liquid,[40]which might help to develop more physically reasonable mesoscopic models for slip- flow regime.

    In order to extend DBM to the micro- fluid,it is critical to develop a physically reasonable kinetic boundary condition.Many efforts have been made to devise mesoscopic boundary condition for LBM to capture the slip phenomenon.[2,22?26]However,the previous works are most suitable for two-dimensional(2D)models with a very small number of particle velocities and can not be directly applicable to the DBM.On the other hand,those boundary conditions fail to capture flow characteristics in the Knudsen layer so the effective viscosity or effective relaxation time approach needs to be adopted.[15,19]Besides,the results of LBM and DBM should be veri fied by the results of continuous Botlzmann equation.In 2009,Watari[16]gave a general diffuse re flection boundary for his thermal LB model[41]and investigated the velocity slip and temperature jump in the slip- flow regime.Then,in his sequent work,[42]he compared the relationship between accuracy and number of particle velocities in velocity slip.Two types of 2D models,octagon family and D2Q9 model,are used.It was found that D2Q9 model fails to represent a relaxation process in the Knudsen layer and the accuracy of the octagon family is improved with the increase in the number of particle velocities.However,all the boundary conditions were set as diffuse re flection wall and the tangential momentum accommodation coefficient(TMAC)was not taken into account.

    Because of the dependence of the mean free path on microscopic details of molecular interaction,especially the collision frequency,the Knudsen number may have different values in various interaction models for the same macroscopic properties.

    In this paper,we first clarify the de finitions of Knudsen number and the connection between the hard sphere model and BGK model for three-dimensional(3D)condition so that the results obtained from various models can be compared dynamically.Then a general Maxwell-type boundary condition for DBM is represented and accommodation coefficient is introduced to implement a gas-surface interaction model.Two kinds of gas flows,Couette flow and Poiseuille flow,in a microchannel are simulated.In the section of Couette flow,the relation between the analysis solutions based on hard sphere and BGK model are veri fied.The simulation results with various Knudsen numbers and accommodation coefficients are compared with analytical ones based on linear Boltzmann equation in the literature not only on the velocity slip but on the Knudsen pro files.While in the section of Poiseuille flow,the simulation results are compared with analytical solution based on Navier–Stokes equation and the second order slip boundary condition.

    2 Models and Methods

    2.1 De finition of Knudsen Number

    The Knudsen number is de fined as the ratio of the free path of molecules(λ)to the characteristic length(L),

    Throughout the paper,we consider the characteristic lengthLas unit,so the Knudsen numberKnis equal to the value ofλ.

    For the hard sphere collision model,the molecules are considered as hard spheres with diameterd,the mean free path of moleculesλHScan be calculated by

    wherenis the number density of molecules.[4]According to Chapman and Enskog,[43]the viscosity coefficientμof hard sphere molecules can be expressed by

    wherekis the Boltzmann constant,mis the molecular mass,andTis the temperature.It should be noted that gas constantRcan be expressed byR=k/m.Combining the state equation of ideal gas(p=ρRT),we have the following relationship betweenλHSand macroscopic quantities:

    For the BGK model,the mean free path of moleculesλBGKis de fined as

    whereτis the reciprocal of collision frequency and called relaxation time,ˉcis the average thermal speed.[4]The definition ofKnin DBM is in accordance with the de finition here.

    According to the kinetic theory of gas molecules,is expressed by

    in 3D case.From the Chapman–Enskog expansion,we know thatτhas the following relation with macroscopic quantities:

    The comparison of Eq.(4)and Eq.(8)yields the relationship between viscosity-based mean free pathλHSandλBGK,

    2.2 Discrete Boltzmann Model

    The 3D discrete Boltzmann model taking into account the effect of the external force was presented based on the thermal model represented by Watari.[41]The evolution of the discrete distribution functionfkifor the velocity particlevkiis given as

    To recover the NS equations,the local equilibrium distribution function should retain up to the fourth order terms of flow velocity.The discrete local equilibrium distributioncontaining the fourth rank tensor is written as

    The velocity particlesvkiconsist of a rest particle and 32 moving particles.Each moving particle has four speeds and can be obtained from the unit vectors in Table 1 multiplied by differenceck.The speedsckof moving particle is determined according to the method presented by Watari in Ref.[16].

    Table 1 Discrete velocity model,where λ=

    Table 1 Discrete velocity model,where λ=

    i direaction Unit vector(vix,viy,viz)i=1–8 λ(±1,±1,±1)i=9–12 λ(0,±φ?1,±φ)i=13–16 λ(±φ,0,±φ?1)i=17–20 λ(±φ?1,±φ,0)i=21–24 ?(0,±φ,±1)i=25–28 ?(±1,0,±φ)i=29–32 ?(±φ,±1,0)

    TheFkin Eq.(11)is the weighting coefficient for the particle velocityvkiand is determined byckusing the following equations:

    2.3 Boundary Condition Models

    To solve the evolution equation(10),finite-difference method is adopted.The spatial derivative is solved by the second-order upwind scheme and time derivative is solved by the first-order forward scheme.Then the evolution equation(10)can be rewritten as

    Fig.1 Schematic of the space grid.

    Forvkiα≥0,the evolution equation(17)with Eq.(18)is applied fromI=3 up to the right wall.However,at the nodeI=2,the second-order upwind scheme in Eq.(18)is not applicable.The first-order upwind scheme,

    is applied there.Forvkiα<0,the evolution equation(17)with Eq.(18)is applied from the left wall to the nodeI=N?2.Likewise,at the nodeI=N?1,the firstorder upwind scheme,

    is applied.

    To solve the value of the distribution function on the left wall forvkiα>0 and on the right wall forvkiα<0,boundary condition models are required.

    對(duì)于每一位學(xué)生而言都有實(shí)現(xiàn)以上目標(biāo)的可能性。成績(jī)回報(bào)、與外校同學(xué)建立人脈,是可以自我控制的。參加技能競(jìng)賽方面,一個(gè)院校往往至少派一個(gè)隊(duì)(四名同學(xué))參加,因此只要個(gè)人努力,參加競(jìng)賽的可能性還是很大的。

    (i)Diffuse re flection boundary

    The complete diffuse re flection model assumes that the molecules leaving the surface with a local equilibrium Maxwellian distribution irrespective of the shape of the distribution of the incident velocity.It can be expressed as

    The equilibrium distribution functions,and,are determined from the wall conditions including the velocities and the surface temperatures.Using the zero-mass flow normal to the wall,[16]the densityandcan be respectively calculated by the following two equations:

    As a result,the distribution function on the left wall(fki,1)forvkiα>0 and on the right wall(fki,N)forvkiα<0 are solved under the diffuse re flection boundary condition.

    (ii)Specular re flection boundary

    The specular re flection model assumes that the incident molecules re flect on the wall surface as the elastic spheres re flect on the entirely elastic surface.The component of the relative velocity normal to the surfaces reverses its direction while the components parallel to the surface remain unchanged.As an example,the direction normal to the wall surface parallels to thexaxis,then the molecules leave the surface with a distribution as Since the distribution functionforvkix<0 andcan be solved by Eq.(17)with Eq.(18),the distribution function on the right wall(fki,N)forvkix<0 and on the left wall(fki,1)forvkix>0 are easy calculated from Eqs.(25)and(26).

    (iii)Maxwell-type boundary

    In practice,the real re flection of molecules on the body surfaces cannot be described properly by complete diffuse re flection or pure specular re flection.So the Maxwell-type re flection model which is composed of the two re flection modes is needed.The TMAC,αis introduced to measure the proportion of complete diffuse re flection.[4]Theαportion of the incident molecules re flect diffusely and the other(1?α)portion re flect specularly.The value of TMAC is used to characterize the degree to which the re flected molecules has adjusted to the tangential momentum of the surface,

    whereτiandτrare the tangential components of the momentum fluxes of the incident and re flected molecules,respectively.τwis the tangential momentum fluxes of the molecules in the wall.α=1 corresponds to the case of complete tangential momentum accommodation and the molecules re flect with the Maxwellian distribution under wall condtion,uwandTw.α=0 corresponds to the case when the incident molecules are entirely not adjusted to the conditions of the surface,τr=τi.

    Under this boundary condition,the distribution function on the right wall,(fki,N),forvkix<0 and on the left wall,(fki,1),forvkix>0 are solved by the following equations,respectively,

    3 Simulation Restlts

    3.1 Couette Flow

    Fig.2 Schemtic of typical velocity pro file for Couette flow with slip effect(right half).

    Consider a gas flow between two parallel walls,one atx=?Land the other atx=L.The two plates are kept at uniform temperatureT0and move with velocity(0,?v,0)and velocity(0,v,0),respectively.Velocity slip becomes more signi ficant with the decrease of the distance between the two plates or with the increase of the mean free path of the molecules,more exactly,with the increase of Knudsen number.the NS flow area.The flow near the wall possesses pronounced non-equilibrium characteristics,and the corresponding flow layer is known as the Knudsen layer whose thickness is of the order of the mean free path.In Fig.2,the linear portionA-B,whose gradient is dv/dx,corresponds to the NS flow area and the portionB-Dcorresponds to the Knudsen layer.The lineB-Cis extended from the lineA-Band the pointCis the cross point of the extended line with the right wall.The slip velocityvslipis de fined as the difference between the velocity of the right wall(the value the pointW)and the velocity value of the pointC.Considering the complete diffuse re flection,Sone gave the relation betweenvslipand the mean free pathλin Ref.[44].

    For the hard sphere model,

    The typical velocity pro file between parallel plates in the slip- flow regime is depicted in Fig.2.Only right half of the pro file is shown because of its antisymmetry.The gas flow away from the wall can be described by NS equations,and the corresponding flow area is referred to as

    The relationship betweenλHSandλBGKdeduced in Subsec.2.1 is veri fied by Eq.(30)and Eq.(31)since 1.2540λHS≈1.0162λBGK.

    Knudsen pro file?vis de fined as the difference between the curves,B-DandB-C.Sone[44]gave also the relation between ?vandλ,by introducing the so-called Knudsen layer function,Y0(η),whereηis a coordinate transformed fromxthrough the following conversion:

    The Knudsen layer function for hard sphere model,and for BGK model,,are both shown in Fig.3.The correction of the functionaccording to the relation in Eq.(9)is also plotted.It can be seen that,the pro file of the corrected function is in excellent agreement with the pro file.As a consequence,the Eq.(9)is revalidated.In addition,the results based on hard sphere model can be compared with those from BGK model under same macro conditions by using the relation of Eq.(9).

    Considering the Maxwell-type boundary condition,Onishi[45]gave the expression of slip velocity and Knudsen layer functionY(α)0(η)under various TMACs as

    Aiandksis the coefficient calculated by re fined moment methods.[45?46]According to Onishi,[45]the solutions ofN=7 are good approximations with high and sufficient accuracy to the exact ones.The coefficients for partial values ofαare listed in Table 2.It should be noted thatis in complete agreement withY0(η)shown in Fig.3 whenα=1.

    Fig.3 Pro files of the function Y0(η).A local enlargement of the curves is shown in the inset.The solid line is for the Hard Sphere(HS)model.The dashed line is for the BGK,and the dash-dotted line is for the Hard Sphere model with correction(HS-corrected).

    Table 2 Coefficients for several kinds of values of α.

    Fig.4 DBM simulation results for different Knudsen numbers under complete diffusion re flection boundary conditions.(a)Velocity pro files for different Knudsen numbers.(b)Slip velocities from DBM and those from Sone’s formulas.

    The DBM simulation results for the Couette flow with different Knudsen numbers under complete diffusion boundary condition are shown in Fig.4.Results for different Knudsen numbers are obtained by changing the relaxation-time constantτaccording to Eq.(5).

    Figure 4(a)shows that the phenomena of velocity slip become more signi ficant with the increase ofKn.Comparison of the values of slip velocity normalized by dv/dxbetween the DBM results and Sone’s results is shown in Fig.4(b).The two kinds of results are in excellent agreement with each other.The DBM accurately capture the velocity slip.Besides,the Knudsen layer is also well de-scribed by DBM.As shown in Fig.5,comparison of normalized Knudsen pro files calculated from DBM are also in excellent agreement with Sone’s results.The Knudsen pro files?vin Fig.5 are normalized by

    TakingtheTMAC (α)into consideration,the Maxwell-type boundary condition is adopted in the following simulation.The DBM simulation results with several different values ofαare shown in Fig.6.From Fig.6(a),we can see that the phenomena of velocity slip are more signi ficant with the decrease ofα.The values of velocity slip for different values ofαare compared with those given by Eq.(34).Figure 6(b)shows good agreement of DBM simulation results with those of Onishi.[45]The results offor various values ofαare compared in Fig.7.The DBM results also show good agreement with those of Eq.(35).

    Fig.5 Comparison of normalized Knudsen pro files from DBM simulations and those from analysis.

    Fig.6 DBM simulation results for different values of α under Maxwell-type re flection boundary conditions.(a)uy(x)pro files for different values of α.The various dashed lines are for DBM simulation results and the solid lines are for linear fitting results.A local enlargement is shown in the inset.(b)Comparison of normalized slip velocities from DBM simulations and those from analysis under different values of α.

    3.2 Poiseuille Flow

    Pressure driven gas flow,known as Poiseuille flow,in a microchannel is also very common in MEMS.In the slipflow regime,the Navier–Stokes equations with slip boundary condition are applicable.Accurate second-order slip coefficients are of signi ficantly since they directly determine the accuracy of the results given by Navier–Stokes equations.[47]The first second-order slip model was presented by Cercignani.Using the BGK approximation he obtained

    It is clear that the pressure gradient and the viscosity coefficient vanish in the nondimensionalizedU(y).

    Fig.7 Comparison of normalized Knudsen pro files from DBM simulations with those from analysis for different values of α.A local enlargement is shown in the inset.

    Fig.8 Comparison of velocity pro files between DBM results and analysis for different Knudsen numbers.Symbols represent the DBM results while lines represent the analytic ones.

    The simulation results by DBM for different Knudsen numbers are shown in Fig.8.It can be found that the velocity slip is signi ficant with the increase of Knudsen number.The nondimensional velocity has a higher maximum value for a smaller Knudsen number.The velocity pro file described by Eq.(41)withα=1 is also plotted for comparison.The simulation results show good agreement with the expression of Eq.(41).

    Fig.9 Comparison of velocity pro files between DBM results and analysis for different values of α.Symbols represent the DBM results while lines represent the analytic results.

    Considering the behaviours of velocity slip under various TMACs.Then the Maxwell-type boundary condition is used.It can be seen from Fig.9 that the velocity slip is more signi ficant with the decrease of TMAC and the nondimensional velocity has the highest maximum value when the complete diffuse re flection occurs.It is concluded that the effect of Knudsen and TMAC on velocity is in the opposite direction.The numerical results are in well agreement with Eq.(41)for different values ofαwhich verify the accuracy of the Maxwell-type boundary condition.

    4 Conclusion

    A discrete Boltzmann method with Maxwell-type boundary condition for slip flow is presented.The de finition of Knudsen number is clari fied for DBM.The relation between the Knudsen number based on hard sphere model and that based on BGK model is given.Two kinds of gas flows,including Couette flow and Poiseuille flow,are simulated to verify and validate the new model.The results show that the DBM with Maxwell-type can reasonably capture both the velocity slip and the flow characteristics in Kundsen layer under various Knudsen numbers and tangential momentum accommodation coefficients.

    Acknowledgement

    The authors would like to thank Drs.Wei Jiang,Hongwei Zhu,Wei Wang,and Ge Zhang for fruitful discussions on discrete Boltzmann modeling of slip flows.

    [1]M.Gad-El-Hak,Mec.Indust.2(2001)313.

    [2]Y.Zhang,R.Qin,Y.Sun,et al.,J.Stat.Phys.121(2005)257.

    [3]F.Bao and J.Lin,Inter.J.Nonlinear Sci.Numer.Simul.6(2005)295.

    [4]C.Shen,Rare fied Gas Dynamics:Fundamentals,Simulations and Micro Flows,Springer,Berlin Heidelberg(2005).

    [5]D.Burnett,Proceedings of the London Mathematical Society 40(1935)382.

    [6]W.Chen,W.Zhao,Z.Jiang,and H.Liu,Phys.Gases 1(2016)5.

    [7]H.Grad,Commun.Pure Appl.Math.2(1949)331.

    [8]G.Bird,Molecular Gas Dynamics and the Direct Simulation of Gas Flows,Clarendon Press,Oxford(2003).

    [9]J.Fan and C.Shen,J.Comput.Phys.167(2001)393.

    [10]K.Xu and Z.Li,J.Fluid Mech.513(2004)87.

    [11]K.Xu,Commun.Comput.Phys.314(2016)305.

    [12]L.Yang,C.Shu,J.Wu,and Y.Wang,J.Comput.Phys.306(2016)291.

    [13]Z.Guo,K.Xu,and R.Wang,Phys.Rev.E:Stat.Nonlinear and Soft Matter Phys.88(2013)033305.

    [14]Z.Guo,R.Wang,and K.Xu,Phys.Rev.E:Stat.Nonlinear and Soft Matter Phys.91(2015)033313.

    [15]Z.L.Guo,B.C.Shi,and C.G.Zheng,EPL 80(2007)24001.

    [16]M.Watari,Phys.Rev.E 79(2009)066706.

    [17]X.Shan,X.Yuan,and H.Chen,J.Fluid Mech.550(2006)413.

    [18]V.Sofonea and R.F.Sekerka,J.Comput.Phys.207(2005)639.

    [19]G.H.Tang,Y.H.Zhang,X.J.Gu,and D.R.Emerson,EPL 83(2008)226.

    [20]Q.Li,Y.L.He,G.H.Tang,and W.Q.Tao,Micro fluid.Nano fluid.10(2011)607.

    [21]Q.Li,K.Luo,Q.Kang,et al.,Prog.Energy Combust.Sci.52(2016)62.

    [22]S.Ansumali and I.V.Karlin,Phys.Rev.E:Stat.Nonlinear and Soft Matter Phys.66(2002)026311.

    [23]S.Succi,Phys.Rev.Lett.89(2002)064502.

    [24]X.D.Niu,C.Shu,and Y.T.Chew,EPL 67(2004)600.

    [25]G.H.Tang,W.Q.Tao,and Y.L.He,Phys.Fluids 17(2005)329.

    [26]Z.Guo,B.Shi,T.S.Zhao,and C.Zheng,Phys.Rev.E:Stat.,Nonlinear,Soft Matter Phys.76(2007)056704.

    [27]A.Xu,G.Zhang,and Y.Ying,Acta Phys.Sin.Ch.Ed.64(2015)184701.

    [28]A.Xu,G.Zhang,and Y.Gan,Mech.Eng.38(2016)361.

    [29]A.G.Xu,G.C.Zhang,Y.J.Ying,and C.Wang,Sci.China:Phys.,Mech.Astron.59(2016)650501.

    [30]Y.Gan,A.Xu,G.Zhang,and S.Succi,Soft Matter 11(2015)5336.

    [31]H.Lai,A.Xu,G.Zhang,et al.,Phys.Rev.E 94(2016)023106.

    [32]F.Chen,A.Xu,and G.Zhang,Front.Phys.11(2016)114703.

    [33]C.Lin,A.Xu,G.Zhang,and Y.Li,Combust.Flame 164(2016)137.

    [34]Y.Zhang,A.Xu,G.Zhang,et al.,Combust.Flame 173(2016)483.

    [35]A.Xu,G.Zhang,Y.Li,and H.Li,Prog.Phys.34(2014)136.

    [36]C.Lin,A.Xu,G.Zhang,et al.,Phys.Rev.E:Stat.Nonlinear&Soft Matter Phys.89(2014)013307.

    [37]H.Liu,W.Kang,Q.Zhang,et al.,Front.Phys.11(2016)1.

    [38]H.Liu,Y.Zhang,K.Wei,et al.,Phys.Rev.E 95(2017)023201.

    [39]H.Liu,W.Kang,H.Duan,et al.,Sci.China:Phys.,Mech.Astron.47(2017)070003.

    [40]W.Kang,U.Landman,and A.Glezer,Appl.Phys.Lett.93(2008)123116.

    [41]M.Watari and M.Tsutahara,Physica A 364(2006)129.

    [42]M.Watari,J.Fluids Eng.132(2010)101401.

    [43]S.Chapman and S.T.Cowling,The Mathematical Theory of Non-Uniform Gases:An Account of the Kinetic Theory of Viscosity,Thermal Conduction and Diffusion in Gases,Cambridge University Press,Cambridge(1953).

    [44]Y.Sone,Molecular Gas Dynamics:Theory,Techniques,and Applications,Springer Science&Business Media(2007)91.

    [45]Y.Onishi,Osaka Prefecture University Bulletin 22(1974).

    [46]Y.Sone and Y.Onishi,J.Phys.Soc.Jpn.35(1973)1773.

    [47]N.G.Hadjiconstantinou,Phys.Fluids 15(2003)2352.

    猜你喜歡
    外校愛國(guó)競(jìng)賽
    愛國(guó)擁軍矢志不渝 扶危濟(jì)困不遺余力
    公民與法治(2022年5期)2022-07-29 00:48:08
    2020絲綢之路數(shù)學(xué)競(jìng)賽
    愛國(guó)學(xué)·曬佳作
    我看競(jìng)賽
    創(chuàng)新思維競(jìng)賽(3)
    愛國(guó)是心中唱不完的歌
    青年歌聲(2017年9期)2017-03-15 03:33:18
    談社外校對(duì)的管理
    出版參考(2014年21期)2014-12-25 22:52:16
    外校隊(duì)伍建設(shè)與管理問(wèn)題研究
    外校隊(duì)伍建設(shè)與管理問(wèn)題研究
    發(fā)現(xiàn)同學(xué)跟外校同學(xué)做壞事
    狠狠狠狠99中文字幕| 精品久久久久久久久久免费视频| 中文字幕熟女人妻在线| 亚洲精品粉嫩美女一区| 国内毛片毛片毛片毛片毛片| 俄罗斯特黄特色一大片| 香蕉丝袜av| 麻豆av在线久日| 欧美zozozo另类| 后天国语完整版免费观看| 亚洲成a人片在线一区二区| 精品欧美一区二区三区在线| 天堂影院成人在线观看| 91大片在线观看| 欧美另类亚洲清纯唯美| 最新美女视频免费是黄的| 国产又黄又爽又无遮挡在线| 中文字幕久久专区| 搞女人的毛片| 成年版毛片免费区| av在线播放免费不卡| 欧美日韩亚洲综合一区二区三区_| 欧美人与性动交α欧美精品济南到| 黄色丝袜av网址大全| 少妇熟女aⅴ在线视频| 此物有八面人人有两片| 精品久久久久久,| 免费无遮挡裸体视频| 在线看三级毛片| 成熟少妇高潮喷水视频| 久久久久久久久免费视频了| 黄色丝袜av网址大全| 成人欧美大片| 色尼玛亚洲综合影院| 级片在线观看| 欧美国产日韩亚洲一区| 亚洲欧美精品综合久久99| 欧美3d第一页| 国产v大片淫在线免费观看| 校园春色视频在线观看| 亚洲欧洲精品一区二区精品久久久| 人妻丰满熟妇av一区二区三区| 国产熟女xx| 亚洲午夜精品一区,二区,三区| 精品不卡国产一区二区三区| 国产爱豆传媒在线观看 | 久久久久久久久久黄片| 亚洲无线在线观看| 色播亚洲综合网| 毛片女人毛片| 最新美女视频免费是黄的| 亚洲人成网站在线播放欧美日韩| 国产高清视频在线观看网站| 无人区码免费观看不卡| 久久精品国产综合久久久| 日韩欧美国产一区二区入口| 制服丝袜大香蕉在线| 两人在一起打扑克的视频| 久久久久久久久中文| 97碰自拍视频| 一夜夜www| 精品无人区乱码1区二区| 50天的宝宝边吃奶边哭怎么回事| 桃色一区二区三区在线观看| 午夜福利18| 国产一区二区激情短视频| 亚洲五月天丁香| 精品欧美国产一区二区三| 桃红色精品国产亚洲av| bbb黄色大片| 色av中文字幕| 国产又黄又爽又无遮挡在线| 香蕉久久夜色| 欧美不卡视频在线免费观看 | 最近视频中文字幕2019在线8| 51午夜福利影视在线观看| 18禁裸乳无遮挡免费网站照片| tocl精华| 婷婷丁香在线五月| 免费观看精品视频网站| 欧美精品亚洲一区二区| 神马国产精品三级电影在线观看 | 欧美大码av| 亚洲免费av在线视频| 天天添夜夜摸| 国产一区二区三区在线臀色熟女| 国产精品日韩av在线免费观看| 哪里可以看免费的av片| 俺也久久电影网| 一本精品99久久精品77| 一本大道久久a久久精品| 精品电影一区二区在线| 久久精品国产亚洲av香蕉五月| 国产成人精品久久二区二区91| 国产成人av教育| 真人做人爱边吃奶动态| 欧美一区二区精品小视频在线| 深夜精品福利| 国模一区二区三区四区视频 | 桃红色精品国产亚洲av| 精品日产1卡2卡| 国产精品亚洲美女久久久| 成人特级黄色片久久久久久久| 国产主播在线观看一区二区| 久久久久久久精品吃奶| 99精品久久久久人妻精品| 欧美另类亚洲清纯唯美| 国产精品永久免费网站| 久久久精品大字幕| 国产乱人伦免费视频| 久久久久亚洲av毛片大全| 一级a爱片免费观看的视频| 日韩欧美精品v在线| 国产精品久久久人人做人人爽| 黄频高清免费视频| 国产亚洲av嫩草精品影院| www.精华液| 亚洲午夜精品一区,二区,三区| 亚洲国产高清在线一区二区三| 一区福利在线观看| 女生性感内裤真人,穿戴方法视频| a级毛片a级免费在线| 欧美成人一区二区免费高清观看 | 欧美日韩乱码在线| 日韩高清综合在线| 国产av又大| 法律面前人人平等表现在哪些方面| 国产激情欧美一区二区| 免费在线观看视频国产中文字幕亚洲| 在线观看www视频免费| 久久精品国产亚洲av香蕉五月| 在线观看美女被高潮喷水网站 | 国产私拍福利视频在线观看| 免费看美女性在线毛片视频| 最近在线观看免费完整版| √禁漫天堂资源中文www| 欧美最黄视频在线播放免费| 久久国产精品影院| 好男人电影高清在线观看| 亚洲美女视频黄频| 亚洲精品中文字幕一二三四区| 久久久国产成人免费| 此物有八面人人有两片| 黄色成人免费大全| 成人国产综合亚洲| 精品高清国产在线一区| 天堂av国产一区二区熟女人妻 | 午夜福利成人在线免费观看| 精品一区二区三区四区五区乱码| 免费在线观看黄色视频的| 性欧美人与动物交配| 精品无人区乱码1区二区| 最近最新中文字幕大全免费视频| 久久久久久久久久黄片| 国产成年人精品一区二区| 少妇人妻一区二区三区视频| 午夜福利18| 长腿黑丝高跟| 亚洲七黄色美女视频| 高清毛片免费观看视频网站| 欧美色视频一区免费| 法律面前人人平等表现在哪些方面| 国产探花在线观看一区二区| 老司机深夜福利视频在线观看| 看黄色毛片网站| 欧美激情久久久久久爽电影| 久久精品亚洲精品国产色婷小说| 超碰成人久久| 亚洲专区中文字幕在线| 国产精品av视频在线免费观看| 99精品欧美一区二区三区四区| 狠狠狠狠99中文字幕| 18禁黄网站禁片午夜丰满| 国产激情久久老熟女| 午夜日韩欧美国产| 国产精品久久久久久久电影 | 亚洲色图 男人天堂 中文字幕| www国产在线视频色| 午夜精品一区二区三区免费看| 欧美 亚洲 国产 日韩一| 一区二区三区高清视频在线| 久久精品国产亚洲av香蕉五月| 我要搜黄色片| 丝袜人妻中文字幕| 麻豆国产av国片精品| 久久久久国产一级毛片高清牌| 国产成人av激情在线播放| 日本熟妇午夜| 久久香蕉精品热| 国产99白浆流出| 久久精品人妻少妇| 午夜福利18| 日韩欧美一区二区三区在线观看| 19禁男女啪啪无遮挡网站| 69av精品久久久久久| 国产av又大| 国产aⅴ精品一区二区三区波| 两性午夜刺激爽爽歪歪视频在线观看 | 国产伦一二天堂av在线观看| 在线观看www视频免费| 香蕉av资源在线| 国模一区二区三区四区视频 | 欧美黑人欧美精品刺激| 亚洲国产欧美人成| 最近视频中文字幕2019在线8| 亚洲精品久久国产高清桃花| 欧美3d第一页| 日日夜夜操网爽| 一二三四在线观看免费中文在| 巨乳人妻的诱惑在线观看| 男女下面进入的视频免费午夜| 亚洲精品美女久久久久99蜜臀| 男女之事视频高清在线观看| 在线观看免费日韩欧美大片| АⅤ资源中文在线天堂| 欧美性猛交黑人性爽| 久久久水蜜桃国产精品网| 男人的好看免费观看在线视频 | 小说图片视频综合网站| 国产av一区二区精品久久| 欧美zozozo另类| 女人被狂操c到高潮| 精品一区二区三区av网在线观看| 老熟妇乱子伦视频在线观看| 国产在线观看jvid| cao死你这个sao货| 亚洲成人久久爱视频| 窝窝影院91人妻| 日本免费一区二区三区高清不卡| 老汉色av国产亚洲站长工具| 俺也久久电影网| 俺也久久电影网| 老司机午夜十八禁免费视频| 欧美中文综合在线视频| 丁香六月欧美| 熟女电影av网| 色噜噜av男人的天堂激情| 亚洲欧美一区二区三区黑人| 午夜福利视频1000在线观看| 亚洲第一电影网av| 两个人的视频大全免费| 99热只有精品国产| 久久中文字幕一级| 欧美成人一区二区免费高清观看 | 69av精品久久久久久| 香蕉国产在线看| 人妻丰满熟妇av一区二区三区| 精品人妻1区二区| 亚洲中文av在线| 久久性视频一级片| 丰满人妻熟妇乱又伦精品不卡| 国产成+人综合+亚洲专区| 91字幕亚洲| 国产精品一区二区三区四区久久| 51午夜福利影视在线观看| 好男人在线观看高清免费视频| 国产区一区二久久| 伦理电影免费视频| 成人精品一区二区免费| 婷婷精品国产亚洲av| 国产一区二区三区视频了| 国产一区二区激情短视频| 成在线人永久免费视频| 国产av又大| 亚洲人成网站高清观看| 老熟妇乱子伦视频在线观看| 午夜福利在线在线| 国产成年人精品一区二区| 岛国在线免费视频观看| 亚洲人与动物交配视频| 91大片在线观看| 国产精品一区二区精品视频观看| 女同久久另类99精品国产91| 亚洲乱码一区二区免费版| 欧美日韩中文字幕国产精品一区二区三区| 午夜免费激情av| 成人三级做爰电影| 免费一级毛片在线播放高清视频| 成人精品一区二区免费| 久久国产精品影院| 搡老岳熟女国产| a级毛片a级免费在线| 日韩大码丰满熟妇| 欧美3d第一页| 看片在线看免费视频| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩一区二区三| tocl精华| 亚洲 欧美一区二区三区| av福利片在线观看| 美女免费视频网站| 午夜福利在线观看吧| 丰满人妻熟妇乱又伦精品不卡| 欧美性长视频在线观看| 亚洲精品中文字幕在线视频| 日韩欧美一区二区三区在线观看| a级毛片在线看网站| 亚洲欧美精品综合久久99| 国产熟女xx| 国产三级在线视频| 51午夜福利影视在线观看| 成人18禁高潮啪啪吃奶动态图| 少妇熟女aⅴ在线视频| 丁香欧美五月| 一个人观看的视频www高清免费观看 | 国产伦在线观看视频一区| 麻豆久久精品国产亚洲av| 亚洲精品色激情综合| 欧美成人一区二区免费高清观看 | 狂野欧美白嫩少妇大欣赏| 99久久综合精品五月天人人| 欧美最黄视频在线播放免费| 成人av一区二区三区在线看| 欧美黄色片欧美黄色片| 又大又爽又粗| 欧美成人免费av一区二区三区| 香蕉久久夜色| 亚洲av成人不卡在线观看播放网| 亚洲男人天堂网一区| 日韩高清综合在线| 日本三级黄在线观看| 岛国在线观看网站| 搡老岳熟女国产| 久久中文字幕人妻熟女| 男人的好看免费观看在线视频 | 999久久久国产精品视频| 88av欧美| 国产亚洲av嫩草精品影院| 亚洲第一电影网av| 777久久人妻少妇嫩草av网站| 搡老岳熟女国产| 黄频高清免费视频| 国产亚洲欧美98| 中文字幕av在线有码专区| ponron亚洲| 国产一区二区激情短视频| 很黄的视频免费| 国产伦在线观看视频一区| 国产不卡一卡二| 18禁裸乳无遮挡免费网站照片| 亚洲在线自拍视频| 亚洲电影在线观看av| 日韩欧美三级三区| cao死你这个sao货| 可以免费在线观看a视频的电影网站| 午夜激情av网站| 中文字幕人妻丝袜一区二区| 久久九九热精品免费| 欧美极品一区二区三区四区| 欧美日韩精品网址| 天堂动漫精品| 两性夫妻黄色片| 最近最新中文字幕大全电影3| 亚洲人成网站在线播放欧美日韩| 久久精品国产清高在天天线| 久久久国产成人免费| 特级一级黄色大片| 99久久精品热视频| aaaaa片日本免费| 欧美日韩黄片免| 午夜亚洲福利在线播放| 欧美最黄视频在线播放免费| 国产免费av片在线观看野外av| 久久这里只有精品19| 在线观看66精品国产| 欧美午夜高清在线| 久久午夜亚洲精品久久| 男女那种视频在线观看| 日韩免费av在线播放| 最近视频中文字幕2019在线8| 美女扒开内裤让男人捅视频| 韩国av一区二区三区四区| 人人妻人人澡欧美一区二区| 岛国在线免费视频观看| 男女那种视频在线观看| 成人av一区二区三区在线看| 亚洲av日韩精品久久久久久密| av片东京热男人的天堂| 麻豆一二三区av精品| 国产三级在线视频| 99国产精品一区二区蜜桃av| 亚洲精品国产一区二区精华液| 亚洲人成网站在线播放欧美日韩| 长腿黑丝高跟| 很黄的视频免费| 免费在线观看视频国产中文字幕亚洲| 一a级毛片在线观看| 亚洲欧美激情综合另类| 国产亚洲精品av在线| 欧美+亚洲+日韩+国产| 久久久久久久精品吃奶| 中文在线观看免费www的网站 | 久久精品aⅴ一区二区三区四区| 黄片大片在线免费观看| 天堂av国产一区二区熟女人妻 | 露出奶头的视频| 特大巨黑吊av在线直播| 欧美成人午夜精品| 国产一区二区激情短视频| 久久精品国产99精品国产亚洲性色| 色老头精品视频在线观看| 丰满人妻一区二区三区视频av | 啦啦啦韩国在线观看视频| 午夜福利18| av超薄肉色丝袜交足视频| 99热这里只有是精品50| 在线视频色国产色| 一边摸一边抽搐一进一小说| 脱女人内裤的视频| 2021天堂中文幕一二区在线观| 久久精品成人免费网站| 国产精品野战在线观看| 99re在线观看精品视频| 国产精华一区二区三区| 好看av亚洲va欧美ⅴa在| 香蕉av资源在线| 国产成人一区二区三区免费视频网站| 白带黄色成豆腐渣| www.999成人在线观看| www国产在线视频色| 亚洲一区二区三区色噜噜| 日日干狠狠操夜夜爽| 日韩欧美在线二视频| 日本免费一区二区三区高清不卡| 欧美黑人巨大hd| 看免费av毛片| 无遮挡黄片免费观看| 日韩高清综合在线| 麻豆一二三区av精品| 亚洲国产精品999在线| 色精品久久人妻99蜜桃| 脱女人内裤的视频| 丁香欧美五月| av福利片在线| 国产伦一二天堂av在线观看| 男女做爰动态图高潮gif福利片| 久久久久国内视频| 中文字幕最新亚洲高清| 欧美三级亚洲精品| 久久久久久久久久黄片| 欧美日韩一级在线毛片| 亚洲精品av麻豆狂野| 亚洲乱码一区二区免费版| 亚洲精品美女久久久久99蜜臀| 国产野战对白在线观看| 中亚洲国语对白在线视频| 人人妻人人看人人澡| 一级a爱片免费观看的视频| 1024手机看黄色片| 国内精品一区二区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 婷婷丁香在线五月| 亚洲av成人不卡在线观看播放网| 中亚洲国语对白在线视频| 日韩欧美在线乱码| 久久天堂一区二区三区四区| 桃色一区二区三区在线观看| 亚洲人成网站在线播放欧美日韩| 国产成人精品无人区| 久久久久久久久中文| 日韩欧美三级三区| 法律面前人人平等表现在哪些方面| 一边摸一边做爽爽视频免费| 久久久精品欧美日韩精品| 午夜久久久久精精品| 日韩欧美精品v在线| 国产欧美日韩一区二区精品| 欧美成人午夜精品| 精品国产乱码久久久久久男人| 久久国产精品人妻蜜桃| av欧美777| 精品无人区乱码1区二区| 欧美三级亚洲精品| 国产精品 国内视频| 99久久99久久久精品蜜桃| 黄片小视频在线播放| 91麻豆av在线| 嫩草影视91久久| 日本一二三区视频观看| 又黄又爽又免费观看的视频| 亚洲精品粉嫩美女一区| 熟女少妇亚洲综合色aaa.| 国产av在哪里看| www.www免费av| 久久精品亚洲精品国产色婷小说| 亚洲熟妇熟女久久| 国内久久婷婷六月综合欲色啪| 国产三级在线视频| 欧美日韩一级在线毛片| 国产视频一区二区在线看| 欧美zozozo另类| 欧美精品啪啪一区二区三区| 91成年电影在线观看| 日日摸夜夜添夜夜添小说| 国产91精品成人一区二区三区| 99热这里只有精品一区 | 久久人妻av系列| 美女午夜性视频免费| 夜夜夜夜夜久久久久| 成人国产一区最新在线观看| 久久久久九九精品影院| 又黄又爽又免费观看的视频| 精品国产乱码久久久久久男人| 男男h啪啪无遮挡| 久久久久久久久久黄片| 亚洲av电影不卡..在线观看| 午夜免费成人在线视频| 亚洲成av人片免费观看| 欧美成人午夜精品| 久久性视频一级片| 国产成人精品久久二区二区91| 一级毛片精品| 精品少妇一区二区三区视频日本电影| 性色av乱码一区二区三区2| 精品福利观看| 色精品久久人妻99蜜桃| 麻豆久久精品国产亚洲av| 九色成人免费人妻av| 亚洲av中文字字幕乱码综合| 床上黄色一级片| 一级毛片精品| 久久久久久国产a免费观看| 成人欧美大片| 少妇熟女aⅴ在线视频| 国产爱豆传媒在线观看 | 国产伦一二天堂av在线观看| 亚洲av电影在线进入| 香蕉久久夜色| 午夜亚洲福利在线播放| 国产精品免费视频内射| 禁无遮挡网站| 人妻夜夜爽99麻豆av| 一进一出抽搐动态| 精品人妻1区二区| 成人三级做爰电影| 欧美午夜高清在线| 久久久精品大字幕| 波多野结衣高清作品| 男男h啪啪无遮挡| 亚洲av日韩精品久久久久久密| 一本大道久久a久久精品| videosex国产| 亚洲欧美日韩东京热| 亚洲av电影在线进入| 91老司机精品| 久久精品人妻少妇| 夜夜夜夜夜久久久久| 一进一出抽搐gif免费好疼| 99国产精品一区二区蜜桃av| 一级毛片女人18水好多| 88av欧美| 日本一本二区三区精品| 成人三级黄色视频| 午夜成年电影在线免费观看| 亚洲国产看品久久| 一本精品99久久精品77| 国产精品免费一区二区三区在线| 精品久久久久久久久久久久久| 国产高清视频在线观看网站| 中文字幕高清在线视频| 国产av不卡久久| 久久精品国产综合久久久| 色综合站精品国产| 国产伦在线观看视频一区| 精品免费久久久久久久清纯| 欧美不卡视频在线免费观看 | 午夜激情av网站| 日本免费a在线| 国产精品1区2区在线观看.| 日本 欧美在线| 久久香蕉精品热| 操出白浆在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 又爽又黄无遮挡网站| 亚洲真实伦在线观看| 欧美乱妇无乱码| 午夜视频精品福利| 久9热在线精品视频| 色哟哟哟哟哟哟| 亚洲九九香蕉| 国产成+人综合+亚洲专区| 亚洲精品美女久久久久99蜜臀| 亚洲av成人精品一区久久| 国产黄a三级三级三级人| 成人永久免费在线观看视频| 亚洲av第一区精品v没综合| 精品少妇一区二区三区视频日本电影| 国产精品久久视频播放| 国产高清视频在线播放一区| 欧美3d第一页| 国产精品久久久av美女十八| 中文字幕最新亚洲高清| 国产黄a三级三级三级人| 又黄又粗又硬又大视频| 制服丝袜大香蕉在线| 一二三四在线观看免费中文在| 久久久久九九精品影院| 欧美又色又爽又黄视频| 免费在线观看亚洲国产| 久久亚洲精品不卡| 亚洲 欧美一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| а√天堂www在线а√下载| 日本熟妇午夜| 老鸭窝网址在线观看| 国产视频一区二区在线看| 在线观看午夜福利视频| 国产精品一区二区精品视频观看| 给我免费播放毛片高清在线观看| 妹子高潮喷水视频| 国产成人av教育| 人人妻人人澡欧美一区二区| 精品久久久久久成人av| 色综合亚洲欧美另类图片| xxx96com|