• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ti Impurity Effect on the Optical Coefficients in 2D Cu2Si:A DFT Study?

    2018-05-05 09:13:48BromandNouroziArashBoochaniAhmadAbdolmalekiElmiraSartpiPezhmanDarabiandSirvanNaderi
    Communications in Theoretical Physics 2018年1期

    Bromand Nourozi,Arash Boochani,Ahmad Abdolmaleki,Elmira Sartpi,Pezhman Darabi, and Sirvan Naderi

    1Department of Physics,Islamic Azad University,Kermanshah Branch,Kermanshah,Iran

    2Department of Physics,Lorestan University,Khoramabad,Iran

    3Young Researchers and Elite Club,Kermanshah Branch,Islamic Azad University,Kermanshah,Iran

    1 Introduction

    The amazing electronic behavior of graphene leads to a high mobility concluding from the hexagonal sheet structure.[1]Considering the Dirac cone graphene materials,several electronic and spintronic behaviors[2?5]such as ballistic charge transport,[6]high mobility,[7]and quantum Hall effects[8]are appeared.According to some restriction in carbon graphenes,many 2D materials are synthesized and predicted such as Silicene,Germanene,[9]and Ti2B.[10]It is reported that 2D materials with the honeycomb structure have different physical behaviors than those in bulk phase.[11]Hence,it is necessary to find a new class of 2D materials with new electronic,magnetic and optical properties to use in some industrial applications such as optoelectronic,spintronic,and solar cell devices.

    After discovery of graphene,[12]new 2D materials have been considered such as BN,[13?14]tertialy B-C-N,[15]etc.These 2D materials have more unique physical properties than carbon graphene and are very attractive in the electronic and optoelectronic industries.Most of the 2D chemical and physical structures have tri-coordinated motifs,as their graphene structures are illustrated,[16?22]so only a few samples of these materials have been reported by quasiplanar tetra coordinated structure.Hoffmanet al.,were the first group reportingbased on tetra coordinated carbon motifs.In addition,new planar hexacoordinated structures,such as the 2D boron were predicted by computational studies.[23]

    In recent years,making planar hyper coordinate 2D materials has been a big challenge as their compound elements do not mach. The planar hyper coordinate molecules were firstly predicted by Schlegeret al.,[24]a class of materials,which are very interesting in scienti fic and industrial points of view,and also B2C monolayer in the quasi planar hexa-coordinate carbon shape has been recently investigated.[25]

    Due to the transition metals applications in the electronic industry,they are even more attractive.The 2D materials based the Cu atom have the interesting electronic and optical treatment.Recently,2D Cu2Si has been synthesized by laying down the Cu cluster on Si(111),[25]also,as well as ab-initio calculations indicated the good stability of this 2D material.The electronic calculations by Yanget al.[26]have shown the metallic behavior for the 2D Cu2Si.Furthermore,this 2D material has strong chemical bonding between atoms and high implant sti ffness.The optical properties of the 2D Cu2Si have been less considered so far,and also according to the metallic behavior of the 2D Cu2Si,it is expected that by absorbing Ti to its structure,the electronic and the optical properties of the 2D Cu2Si:Ti have been improved for optoelectronic and solar cell applications.

    Since Ti belongs to the transition metals,there is a good compatibility between its electronic structure and Cu atom,thus Ti is placed instead of Cu in the 2D Cu2Si.By doping Ti into the 2D Cu2Si,the electronic and the optical properties are changed signi ficantly.Additionally,it is noticeable that by adding Ti,magnetic behaviors emerge in the 2D Cu2Si:Ti especially at the Fermi level.In Sec.2 the computational details are explained and the thermodynamic stability,the electronic and the magnetic properties are calculated in Sec.3.Finally,the optical properties are reported in Sec.4.

    2 Computational Methods

    Calculations are based on the density functional theory(DFT)framework and the FP-LAPW method with the GGA approximations.[27?29]After optimization of the input parameter,the RKmax,Gmax,and KPoint are selected as 8.0,13.0,5000,and 8.0,13.5,500 for the pure and the impurity cases respectively. The lattice parameters of the 2D Cu2Si hexagonal super lattice are set toa=b=23.374(Bohr)andc=18.897(Bohr).The structures are relaxed by miniposition command with 1.0 a.u./dyne accuracy,and the optical calculations are performed by the RPA approximation.[30]For better comparison,the 2D Cu2Si and the 2D Cu2Si:Ti shapes are shown in Fig.1.

    Fig.1 (Color online)(a)The 2D Cu2Si structure,(b)The 2D Cu2Si:Ti lattice by XCrysden code.

    3 Results and Discussion

    3.1 Electronic and Magnetic Properties

    According to the other studies,the 2D Cu2Si has not good metallic treatment due to a few electron states at the Fermi level and lack of the magnetic property.[25?26]In the electronic discussions,the DOS diagram shows important information about metallic or non-metallic and magnetic or non-magnetic properties of matter.Figure 2(a)illustrates the 2D Cu2Si DOS at up and down spins indicating a completely isotropic behavior at the all energies below and above the Fermi level con firming the non-magnetic property of this compound,which is in good agreement with the other works.[25?26]

    Considering Ar3d24s2and Ar3d104s1electronic structures of Ti and Cu atoms respectively,they are different in 4sand 3dorbitals so that Cu-3dis occupied while two electrons are located in Ti-3dorbital.It is clear that the Ti atoms produce the magnetic moment in the 2D Cu2Si:Ti compound,so the electronic calculations are based on spin polarization.The DOS diagram of the 2D Cu2Si:Ti is shown in Fig.2(b)in the up and down spins;it is clear that they have different behaviors especially at the Fermi level.It is shown that the DOS in both mentioned spins at the range of?10 eV to?2.5 eV have a completely isotropic behavior,but at the Fermi area[–1 eV,1 eV],it shows an anisotropic behavior(see Fig.2(c))claimed to the magnetic properties of 2D Cu2Si:Ti.So,the total and interstitial magnetic moments of the 2D Cu2Si:Ti are listed in Table 1.Moreover,the cohesive energy(EC)represents that the 2D Cu2Si:Ti has a good thermodynamic stability(Table 1)con firmed by Ti-Si bond length,which is less than the Cu-Si one.

    Fig.2 (Color online)(a)Total 2D Cu2Si DOS versus energy,(b)Total 2D Cu2Si:Ti DOS versus energy,(c)Total DOS of 2D Cu2Si:Ti at Fermi area.

    Table 1 The bond length of 2D Cu2Si in pure and impurity cases(?A)with Cohesive energy(Ec),Atomic bond length(?A)and Total magnetic moment(μB).

    3.2 Optical Properties

    The optical properties are described by the response of matter to incident light leading to the electronic structure such as the energy band gap,the conductivity,the semiconductor behavior and the glassiness.The 2D Cu2Si and Cu2Si:Ti have two symmetric directionsxandz,wherexis on the plane of the structure andzis perpendicular to it.The real part of the dielectric function Re(ε(ω))of the 2D Cu2Si is shown in Fig.3 for the two mentioned directions of the incident photon.After 10 eV of the photon energy,the Re(ε(ω))inxand thezdirections are completely similar and tend to a constant value about 1,therefore,at this energy range,the 2D Cu2Si response to incident light has not been changed.However,in the infrared and visible regions,their behaviors are completely different so the static value of Re(ε(ω))in thexandzdirections are 2 and screaming value,respectively indicating the metallic behavior in thexdirection.At(0–2)eV and(4–10.5)eV,the Re(ε(ω))xsign is negative while the Re(ε(ω))zin the vicinity of 9 eV is negative.Hence,no optical transitions occurred at these energy intervals.In addition,several roots are appeared at 3 eV and 9 eV for the Re(ε(ω))xand 8.5 eV and 9.5 eV for the Re(ε(ω))z,which by comparing the Im(ε(ω))and the Eloss curve,the Plasmon frequencies have been con firmed at the mentioned energies.

    Fig.3(Color online)Real part of dielectric function for x and z directions for 2D Cu2Si and 2D Cu2Si with Ti impurity versus photon energy.

    The Real part of dielectric function Re(ε(ω))of the 2D Cu2Si:Ti alongxandzdirections are shown in Fig.3,representing the metallic and semiconductor behaviors in both directions,and the static values of the real part of the dielectric function Re(ε(0))are in finitive and 2.2 forzandxdirections,respectively.By increasing photon energy,the Re(ε(ω))xis considerably increased and dramatically decrease at+1 eV(infrared region),respectively,so it has two roots in this region indicating the metallic treatment in the infrared region,and getting incident photons at low energies,the surface electrons are vibrated causing the Plasmon frequencies.The Re(ε(ω))xreaches to a constant and small value in the UV area indicating no response to the incident photon energy.

    A quick look at the Re(ε(ω))xgraph indicates lack of sensible fluctuations in the visible area,but a moderate loop in the Re(ε(ω))zis observed in Fig.3.The Re(ε(ω))xreaches a plateau after the two roots(4.4 eV and 5.5 eV)in the UV edge showing low response of the 2D Cu2Si:Ti to incident light at the mentioned energy range.In contrast,the Re(ε(ω))zhas a different behavior in UV area so that by increasing photon energy,a signi ficant escalation is observed while there are two roots at the energy range of 9 eV to 10 eV.

    It is noticeable that Re(ε(ω))xfrom 1 eV to 2.2 eV and Re(ε(ω))zfrom 9 eV to 10 eV have negative sign con firming the occurrence of no optical transition at the mentioned energy ranges for the 2D Cu2Si:Ti compound.The imaginary part of the dielectric function Im(ε(ω))illustrates the electronic structure of matter.Each peak of the Im(ε(ω))represents the electron transition from an occupied to an unoccupied level.Comparing the diagrams of Fig.3,it is clear that adding Ti to the 2D Cu2Si causes no signi ficant change in thezdirection,while inxdirection,owing to its high fluctuations in lower energy((0–2)eV),the metallic behavior is observed con firming the intraband transition.

    The Im(ε(ω))for the coplanar and the perpendicular components(xandz)of the 2D Cu2Si are illustrated in Fig.4.From zero to 10 eV,they are extremely anisotropic so that the static amount of Im(ε(ω))xtends to in finity.By increasing the photon energy in the visible area,the Im(ε(ω))xis considerably dropped con firming the Re(ε(ω))xroot and the first Plasmon frequency in this area.Moreover,the high amount of the Im(ε(ω))xin the infrared region indicates the high metallic behavior and the intraband transitions.

    Afterward,the second main peak of Im(ε(ω))xis appeared on the UV edge(4 eV),but no peak exists for the Im(ε(ω))zbefore 2 eV con firming the semiconductor behavior in the optical view.It has three peaks in the UV region,each peak indicates the electron transition from occupied to unoccupied levels(from Cu-p,Cu-dand Ti-dto Cu-dand Ti-dorbitals)causing the intraband or interband transitions.

    The Im(ε(ω))of the 2D Cu2Si:Ti graphene is shown in Fig.4 for thexand thezdirections. The optical anisotropy of this parameters for the mentioned directions is observed so that the Im(?ε(ω))xreaches its highest peak at 0 eV to 4 eV,and it is decreased by increasing the photon energy.Another small peak is seen at 4.2 eV(UV edge).However,the Im(ε(ω))zhas a completely different behavior so that it is started at 4.2 eV and reached its highest peak at 5.7 eV,then two smaller peaks occurred in the area of 8 eV to 10 eV.

    Fig.4 (Color online)The Imaginary part of dielectric function of 2D Cu2Si&2D Cu2Si:Ti versus photon energy in the x&z directions.

    It is noticeable that the all Im(ε(ω))curves in both directions are leveled out to zero after fluctuations at 12 eV,and after this energy the incident light completely transmits in both directions.On the visible edge(2 eV),the Im(ε(ω))xtends to in finity indicating the high metallic behavior and intraband transition in this direction.The different response of the 2D Cu2Si:Ti to the incident photons in thexandzdirections indicates a promising optical sensor for electronic and optoelectronic devices.It should be mentioned that by adding Ti to the 2D Cu2Si,the second peak of the Im(ε(ω))xis decreased and in contrast,the first peak is increased showing a greater tendency to the metallic properties in the 2D Cu2Si:Ti.

    The energy loss function diagram(Eloss)involves important information about the optical properties such as absorption,refraction and Plasmon frequency.Figure 5 shows the 2D Cu2Si and the 2D Cu2Si:Ti energy loss function curves in thexandzdirections.As it is clear from the Im(ε(ω))diagram,the most electron transitions belong to thexdirection,so the Eloss-xis occurred at lower energies than the Eloss-z.Each Eloss peak indicates the energy loss of the incident light lead to the Plasmon frequency or the light refraction.For example,the Elossxof the imaginary case has a peak at 4 eV equivalent to Re(ε(ω))xroot and signi ficant reduction of the re flectivity at this energy.It is concluded that the Plasmon frequency occurs at 4 eV photon energy,and also several peaks have been observed in Re(ε(ω))xfrom 6 eV to 8 eV.However,no loss of the incident light is occurred at the energy range of 0 eV to 5 eV,which by comparing with the Im(ε(ω))z,the lack of any electron transition at the mentioned energy range have been seen and the Re(ε(ω))zhas a relatively constant behavior.At 6 eV photon energy,the first Eloss-zpeak is occurred and the absorption and the re flection of the Re(ε(ω))zare decreased while conductivity is increased.Hence,this Eloss peak can not be a sign for the Plasmon frequency.The major Eloss-xand-zpeaks are at 10 eV and 11 eV,respectively.By comparing the Re(ε(ω))and the Im(ε(ω))curves,it is concluded that the volume Plasmon frequency area is located at this energy range,which the optical conductivity diagram con firms the above points in Fig.5.Comparing the pure and the impurity cases of 2D Cu2Si in Fig.5 indicates that there is no peak until 2.5 eV unlike the 2D Cu2Si:Ti.The first Eloss-xpeak in pure case is occurred at 2.5 eV that is smaller than the impurity case,and the main Eloss-xpeak is located at 11 eV,which is greater than the impurity case.In thezdirection,the maximum energy loss function is nearly half of thexdirection in maximum case.

    Fig.5 (Color online)Eloss function of 2D Cu2Si and(:Ti)cases versus photon energy in x and z directions.

    The optical conductivity is resulted from the electron transitions to the conduction bands caused by the incident radiation to matter including the important electronic and the optical information about the material.The optical conductivity in thexandzdirections are in agreement with the above discussions.The optical conductivity of the 2D Cu2Si in thexandzdirections are shown in Fig.6 and show high conducting property at zero energy along thexdirection with a gradually reduction at 2.5 eV.While the Plasmon frequency is occurred at this photon energy,the next peak occurs at 5 eV.Moreover,no conduction is observed until 3 eV in thezdirection,and in the UV region(6 eV,8 eV,and 9 eV)three peaks are seen.By increasing the photon energy after the main Plasmon frequency,the conductivity for both mentioned axes are decreased and tend to zero.

    Figure 6 indicates a sharp reduction in the optical conductivity at 1 eV area for thexdirection con firming the Plasmon frequency at this energy(compatible with Re(ε(ω))xdiagram).Furthermore,the optical conductivity reduces gradually on the visible edge and reaches a plateau in the UV area by increasing the photon energy.A brief like in optical conductivity onzdirection shows that there is no conductivity before 2 eV con firming the semiconductor behavior and it experiences a steady improvement on the visible edge to reach a maximum at 5.5 eV,which is in agreement with the Re(ε(ω))zcurve.By adding the Ti impurity to the 2D Cu2Si,the conductivity behavior in thezdirection remains nearly the same as the pure case,but the static conductivity is finite and its maximum occurs in the infrared region.An important note is that the conductivity increases to a constant amount at higher energies(Fig.6).

    Fig.6 (Color online)2D Cu2Si,2D Cu2Si:Ti conductivity in x and z directions versus photon energy.

    The absorption peaks of the 2D Cu2Si are presented in Fig.7.In the bothxandzdirections,absorption gaps are about 2.5 eV and then it is started the mentioned directions,respectively.The maximum absorption is at 10 eV photon energy,and the anisotropy behavior is clear from 2.5 eV to 11 eV.After 25 eV,the absorption drops to zero,i.e.the light is completely transmitted through the matter.

    Fig.7 (Color online)Absorption function of 2D Cu2Si in pure and impurity cases versus photon energy in the in-plane and normal directions.

    The 2D Cu2Si:Ti absorption diagram in thexandzdirections are shown in Fig.7.The absorption diagram in thexdirection is increased immediately by photon energy,thus the 2D Cu2Si:Ti has a good metallic behavior.The absorption diagram experiences a moderate escalation and reaches two higher peaks in the visible and UV area,and then it is decreased by increasing the photon energy to reach a smaller constant value.Conversely,there is no absorption in infrared region for thezdirection(an absorption gap).The absorption-zreaches a maximum at 5.5 eV,while the Re(ε(ω))zand the Im(ε(ω))zhave minimum and maximum,respectively.Two peaks are also located at the energy range of 9 eV to 9.7 eV indicating the main Plasmon frequencies.

    Re flection parameter is an important optical parameter for matter representing the percentage of the light transmission and re flection in the material surfaces;metals have high re flection(about 90%),for example shining matters and non-metals are opaque.The 2D Cu2Si has complete re flection at zero energy in thexdirection,but it is nearly zero for thezdirection indicating the different behaviors for the two mentioned directions so that the light is fully transmitted in the direction perpendicular to 2D Cu2Si surface,and completely re flected in the coplanar state.By increasing the photon energy,the re flectivity in thezdirection is dropped signi ficantly at 3.5 eV(the visible area)to reach its second maximum at 4.7 eV.Figure 8 shows that for all energy ranges,the re flection in thezdirection is smaller than thexone con firming the high metallic behavior of the optical point of view.

    It is clear that the static amount of the re flection for the 2D Cu2Si:Ti in thexdirection is 90%con firming its metallic behavior,whereas this compound shows the semiconductor behavior in thezdirection due to a low static re flectivity(Fig.8).By increasing the intensity of the incident light,where Re(ε(ω))zhas roots,a gradual reduction in the re flection on thezdirection is observed.The 2D Cu2Si:Ti re flection in thexdirection reaches a plateau(zero)after 10 eV and the optical incident light is transmitted completely.Moreover,this phenomenon is similarly occurred in thezdirection.

    Fig.8 (Color online)Re flection index of 2D Cu2Si&2D Cu2Si:Ti versus photon energy in x&z directions.

    4 Conclusion

    In summary,calculations of the Ti impurity effect on the 2D Cu2Si are performed based on the DFT framework by the GGA approximation.In the pure case,the DOS diagrams cut the Fermi level and do not have magnetic moment,but the 2D Cu2Si:Ti has half-metallic behavior with the magnetic moment of 3.256μB.Furthermore,the Ti effect causes changing in the optical parameters,especially in the infrared and the visible area.

    In the pure case,no optical transition occurred in thexdirection in the infrared and the visible areas,but in the impurity case,it has a Dirac peak in the infrared area.The major electron transitions are occurred from the Cudand the Ti-dto theS-pand the Cu-dorbitals.The absorption gap is reduced to zero in thexdirection and is sensitive to the incident light,but it is relatively the same in the pure and the impurity cases in thezdirection.According to the Ti atomic structure,the 2D Cu2Si:Ti has lower metallicity in zero energy,whereas its optical conductivity and re flectivity are smaller than the 2D Cu2Si case.

    Owing to the semi-metallic behavior of Cu2Si:Ti at the Fermi level,it is expected that this compound will be used in the spintronics and giant magnetoresistance(GMR).In addition,by adding Ti to the 2D structure of Cu2Si,the light absorption gap alongxxhas been vanished,and an increase in the light absorption can be observed in the infrared and visible regions making this composition suitable for solar cells and optical devices.

    [1]P.R.Wallace,Phys.Rev.71(1947)622.

    [2]F.Ma,Y.Jiao,G.Gao,et al.,Nano Lett.16(2016)3022.

    [3]A.J.Wang,H.Li,H.Huang,Z.S.Qian,and Jiu-Ju Feng,J.Mater.Chem.C 4(2016)8146.

    [4]D.Mhamane,et al.,J.Mater.Chem.A 4(2016)5578.

    [5]K.S.Nosolov,et al.,Nature(London)438(2005)197.

    [6]Y.P.Bliokh,V.Freilikher,and F.Nori,Phys.Rev.B 87(2013)245134.

    [7]A.H.Castro Neto,et al.,Rev.Mod.Phys.81(2009)109.

    [8]Y.Zhang,Y.W.Tan,H.L.Stormer,and P.Kim,Nature(London)438(2005)201.

    [9]S.Cahangirov,M.Topsakal,E.Akturk,et al.,Phys.Rev.Lett.102(2009)236804.

    [10]X.F.Zhou,X.Dong,A.R.Oganov,et al.,Phys.Rev.Lett.112(2014)085502.

    [11]X.Li,S.Yu,S.Wu,et al.,J.Phys.Chem.C 117(2013)15347.

    [12]K.S.Noselov,A.K.Geim,S.V.Morozov,et al.,Science 306(2004)666.

    [13]K.S.Noselov,D.Jiang,F.Schedin,et al.,Proc.Natl.U.S.A 102(2005)10451.

    [14]C.Jin,F.Lin,K.Suenaga,and S.Iijima,Phys.Rev.Lett.102(2009)195505.

    [15]L.Ci,L.Song,C.Jin,et al.,Nat.Mater 9(2010)430.

    [16]M.Xu,T.Liang,M.Shi,and H.Chen,Chem.Rev.113(2013)3766.

    [17]Sheng-Li Zhang,Zhong Yan,Ya-Fei Li,et al.,Angew.Chem.Int.Ed.54(2015)3112.

    [18]I.Khromova,M.Navarro-Ca,I.Brener,et al.,Appl.Phys.Lett.107(2015)022102.

    [19]Sheng-Li Zhang,Mei-Qiu Xie,Feng-Yu Li,et al.,Angew.Chem.Int.Ed.55(2016)1666.

    [20]Sheng-Li Zhang,Mei-Qiu Xie,Bo Cai,et al.,Phys.Rev.B 93(2016)245303.

    [21]Sheng-Li Zhang,Shi-Ying Guo,Ya-Xin Huang,et al.,2D Materials 4(2016)015030.

    [22]Sheng-Li Zhang,Wen-Han Zhou,Yan-Dong Ma,et al.,Nano Lett.17(2017)34343440.

    [23]H.Tang and S.Ismail-Beigi,Phys.Rev.Lett.99(2007)115501.

    [24]L.M.Yang,E.Ganz,Z.Chen,et al.,Angew.Chem.Int.ed.53(2014)7248.

    [25]A.A.Saranin,A.V.Zotov,O.A.Uta,et al.,Surface Science 603(2009)2874.

    [26]L.M.Yang,V.Basic,I.A.Popov,et al.,JACS 137(2015)2757.

    [27]P.Blaha,K.Schwarz,P.Sorantin,and S.B.Tricky,Comput.Phys.Commun.59(1990)399.

    [28]P.Blaha,K.Schwarz,G.K.H.Madesen,et al.,WIEN2K an Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties,Karlheinz Schwarz,Techn.Universitaetwien,Wien,Austria(2001).

    [29]J.Perdew,J.A.Chevary,S.H.Vosko,et al.,Phys.Rev.B 46(1992)6671.

    [30]R.L.Kronig,J.Opt.Soc.Am.12(1926)547.

    美女脱内裤让男人舔精品视频| 99精品久久久久人妻精品| 亚洲伊人久久精品综合| 9191精品国产免费久久| 999久久久精品免费观看国产| av欧美777| 精品国产一区二区三区久久久樱花| 麻豆国产av国片精品| 搡老乐熟女国产| 亚洲专区字幕在线| 搡老岳熟女国产| 精品国产一区二区三区久久久樱花| 操出白浆在线播放| 男男h啪啪无遮挡| 免费在线观看影片大全网站| 美女高潮喷水抽搐中文字幕| 桃红色精品国产亚洲av| 制服人妻中文乱码| 一级黄色大片毛片| 久久av网站| 男女边摸边吃奶| 少妇人妻久久综合中文| 久久久久国产一级毛片高清牌| 自拍欧美九色日韩亚洲蝌蚪91| 制服人妻中文乱码| 我的亚洲天堂| 制服人妻中文乱码| 国产99久久九九免费精品| 搡老熟女国产l中国老女人| av免费在线观看网站| 婷婷成人精品国产| 999久久久精品免费观看国产| 飞空精品影院首页| 国产亚洲精品第一综合不卡| 在线永久观看黄色视频| av有码第一页| 国产伦人伦偷精品视频| 亚洲精品中文字幕一二三四区 | 狠狠婷婷综合久久久久久88av| 国产成人影院久久av| 亚洲伊人久久精品综合| 正在播放国产对白刺激| 精品一区在线观看国产| 欧美大码av| 久久久精品94久久精品| 一级毛片电影观看| 久久久久久久久免费视频了| 啦啦啦中文免费视频观看日本| 中文字幕精品免费在线观看视频| 又紧又爽又黄一区二区| 自线自在国产av| 久久亚洲精品不卡| 日韩三级视频一区二区三区| 男女之事视频高清在线观看| 又大又爽又粗| 最新在线观看一区二区三区| 人人澡人人妻人| 亚洲 欧美一区二区三区| 国产精品久久久久久精品古装| 欧美午夜高清在线| 成人黄色视频免费在线看| 黑人欧美特级aaaaaa片| 亚洲精品国产av蜜桃| 女人久久www免费人成看片| 99香蕉大伊视频| 91老司机精品| 超碰97精品在线观看| 一本一本久久a久久精品综合妖精| 欧美日韩成人在线一区二区| 两个人看的免费小视频| 婷婷成人精品国产| 一个人免费在线观看的高清视频 | 亚洲av男天堂| 九色亚洲精品在线播放| 人妻一区二区av| 成年人黄色毛片网站| 久久综合国产亚洲精品| 国产高清视频在线播放一区 | 免费在线观看视频国产中文字幕亚洲 | 欧美日韩一级在线毛片| 在线观看www视频免费| 亚洲五月色婷婷综合| 国产又爽黄色视频| 欧美激情 高清一区二区三区| 美女大奶头黄色视频| 老司机午夜福利在线观看视频 | 久久九九热精品免费| 欧美一级毛片孕妇| 精品高清国产在线一区| 日韩中文字幕欧美一区二区| 国产淫语在线视频| 最近中文字幕2019免费版| 午夜福利在线观看吧| 自拍欧美九色日韩亚洲蝌蚪91| 一本久久精品| 纯流量卡能插随身wifi吗| 在线永久观看黄色视频| 日本a在线网址| 午夜精品久久久久久毛片777| 各种免费的搞黄视频| 丁香六月欧美| 五月天丁香电影| 亚洲中文字幕日韩| 亚洲精品国产av蜜桃| avwww免费| 成人免费观看视频高清| 色精品久久人妻99蜜桃| 精品国产一区二区久久| 午夜免费鲁丝| 欧美精品亚洲一区二区| 午夜影院在线不卡| 日韩三级视频一区二区三区| 亚洲av欧美aⅴ国产| 午夜老司机福利片| 国产亚洲午夜精品一区二区久久| 丝袜美足系列| 三上悠亚av全集在线观看| 日韩欧美一区二区三区在线观看 | 成人18禁高潮啪啪吃奶动态图| 欧美性长视频在线观看| 日韩制服丝袜自拍偷拍| 91麻豆精品激情在线观看国产 | 男人爽女人下面视频在线观看| 午夜福利乱码中文字幕| 99香蕉大伊视频| 中文字幕高清在线视频| 国产精品久久久av美女十八| 男女免费视频国产| 国产成人啪精品午夜网站| 国产精品久久久久久精品电影小说| 十八禁高潮呻吟视频| 蜜桃国产av成人99| 十分钟在线观看高清视频www| av网站在线播放免费| 啦啦啦视频在线资源免费观看| 亚洲专区国产一区二区| 国产精品久久久av美女十八| 国产精品九九99| 超色免费av| 亚洲精品国产一区二区精华液| 在线观看舔阴道视频| 老熟妇仑乱视频hdxx| 99精品欧美一区二区三区四区| 纵有疾风起免费观看全集完整版| 亚洲国产av新网站| 一级毛片女人18水好多| 老熟妇仑乱视频hdxx| 美女脱内裤让男人舔精品视频| 欧美另类亚洲清纯唯美| 老熟妇仑乱视频hdxx| 国产亚洲精品久久久久5区| 日本猛色少妇xxxxx猛交久久| 9热在线视频观看99| 在线观看一区二区三区激情| 国产黄色免费在线视频| 高潮久久久久久久久久久不卡| 老熟妇仑乱视频hdxx| 久久久国产精品麻豆| 高清黄色对白视频在线免费看| 国产熟女午夜一区二区三区| 夫妻午夜视频| 一本综合久久免费| 欧美变态另类bdsm刘玥| 久9热在线精品视频| 热re99久久国产66热| 国产一区有黄有色的免费视频| 一级片免费观看大全| 久久热在线av| 精品人妻1区二区| 国产免费福利视频在线观看| 欧美中文综合在线视频| 午夜视频精品福利| 欧美xxⅹ黑人| 午夜免费鲁丝| 日韩 欧美 亚洲 中文字幕| 又大又爽又粗| 精品久久久精品久久久| 久久久欧美国产精品| 国产一区二区三区av在线| 亚洲中文日韩欧美视频| h视频一区二区三区| 亚洲精品日韩在线中文字幕| 亚洲精品av麻豆狂野| av在线老鸭窝| 成年人黄色毛片网站| 精品少妇内射三级| 热99久久久久精品小说推荐| 日韩制服骚丝袜av| 两性午夜刺激爽爽歪歪视频在线观看 | 老司机影院成人| 午夜福利一区二区在线看| 一区在线观看完整版| 亚洲av成人一区二区三| 欧美午夜高清在线| 久久精品成人免费网站| 国产成人a∨麻豆精品| 一个人免费看片子| 麻豆国产av国片精品| 日韩免费高清中文字幕av| 欧美黑人精品巨大| 国产成人一区二区三区免费视频网站| 久久久久网色| videosex国产| 中文字幕最新亚洲高清| 久久人人97超碰香蕉20202| 午夜福利免费观看在线| 中文字幕最新亚洲高清| 99国产极品粉嫩在线观看| 99国产综合亚洲精品| 国产高清videossex| 99国产极品粉嫩在线观看| 视频在线观看一区二区三区| 夜夜骑夜夜射夜夜干| 国产91精品成人一区二区三区 | 欧美日韩国产mv在线观看视频| 精品人妻在线不人妻| 午夜老司机福利片| 又紧又爽又黄一区二区| 狠狠婷婷综合久久久久久88av| www.熟女人妻精品国产| 日韩欧美国产一区二区入口| 国产精品自产拍在线观看55亚洲 | 日本wwww免费看| 一级毛片精品| 欧美精品亚洲一区二区| 国产在线一区二区三区精| 亚洲欧美一区二区三区黑人| 成年女人毛片免费观看观看9 | 欧美日韩中文字幕国产精品一区二区三区 | 人人澡人人妻人| 国产熟女午夜一区二区三区| 男女高潮啪啪啪动态图| 一级a爱视频在线免费观看| 亚洲精品久久成人aⅴ小说| 天天操日日干夜夜撸| 欧美另类一区| a 毛片基地| 久热这里只有精品99| 又大又爽又粗| 中文字幕最新亚洲高清| 亚洲成人免费电影在线观看| 99精品欧美一区二区三区四区| 狂野欧美激情性xxxx| 欧美亚洲日本最大视频资源| 汤姆久久久久久久影院中文字幕| 在线 av 中文字幕| 美女脱内裤让男人舔精品视频| 国产成人av激情在线播放| 国产一区有黄有色的免费视频| 日本av免费视频播放| 欧美日韩国产mv在线观看视频| 午夜福利,免费看| 色综合欧美亚洲国产小说| 亚洲全国av大片| 午夜福利在线观看吧| 美国免费a级毛片| 亚洲国产看品久久| 精品免费久久久久久久清纯 | 51午夜福利影视在线观看| 一进一出抽搐动态| 精品久久久精品久久久| 欧美97在线视频| 亚洲黑人精品在线| 亚洲欧洲精品一区二区精品久久久| 国产精品免费视频内射| 亚洲国产精品999| 大香蕉久久成人网| 久久ye,这里只有精品| 欧美日韩黄片免| 在线天堂中文资源库| 别揉我奶头~嗯~啊~动态视频 | 男人操女人黄网站| 一边摸一边做爽爽视频免费| 国产免费福利视频在线观看| 一区二区三区乱码不卡18| 亚洲久久久国产精品| 法律面前人人平等表现在哪些方面 | 国产精品 国内视频| 一区二区三区乱码不卡18| 日韩三级视频一区二区三区| 久久久久久久精品精品| 亚洲视频免费观看视频| 高清在线国产一区| 久久久精品免费免费高清| 99热网站在线观看| av线在线观看网站| 精品国产一区二区久久| 好男人电影高清在线观看| 中文欧美无线码| 欧美国产精品va在线观看不卡| 国产免费现黄频在线看| 天堂8中文在线网| 久热这里只有精品99| 少妇的丰满在线观看| 亚洲av成人不卡在线观看播放网 | 久久久国产欧美日韩av| 性少妇av在线| 日韩制服丝袜自拍偷拍| 18禁黄网站禁片午夜丰满| 一边摸一边做爽爽视频免费| 亚洲精品日韩在线中文字幕| 少妇 在线观看| 国产福利在线免费观看视频| 我要看黄色一级片免费的| 国产免费现黄频在线看| 国产成人a∨麻豆精品| 在线观看免费视频网站a站| 如日韩欧美国产精品一区二区三区| 国产伦理片在线播放av一区| 中文字幕人妻丝袜制服| 99热国产这里只有精品6| 国精品久久久久久国模美| 在线亚洲精品国产二区图片欧美| 国产一区二区激情短视频 | 人妻人人澡人人爽人人| 人人妻,人人澡人人爽秒播| 免费女性裸体啪啪无遮挡网站| 男女高潮啪啪啪动态图| 女人被躁到高潮嗷嗷叫费观| 大陆偷拍与自拍| www.熟女人妻精品国产| 欧美在线黄色| 亚洲av国产av综合av卡| 午夜福利视频精品| 日本欧美视频一区| 免费人妻精品一区二区三区视频| 啦啦啦视频在线资源免费观看| 欧美97在线视频| 亚洲激情五月婷婷啪啪| 黄色毛片三级朝国网站| 精品一品国产午夜福利视频| 人妻久久中文字幕网| 十八禁高潮呻吟视频| 日本一区二区免费在线视频| 天天躁夜夜躁狠狠躁躁| 欧美成狂野欧美在线观看| 亚洲精品第二区| 亚洲黑人精品在线| 狂野欧美激情性bbbbbb| 久久天躁狠狠躁夜夜2o2o| 9热在线视频观看99| 亚洲七黄色美女视频| 午夜91福利影院| 亚洲精品美女久久久久99蜜臀| 国产精品一区二区在线不卡| 亚洲精品一二三| 午夜久久久在线观看| 免费少妇av软件| 各种免费的搞黄视频| 亚洲成人免费av在线播放| 精品久久久久久电影网| 91成人精品电影| 夜夜夜夜夜久久久久| 精品人妻一区二区三区麻豆| 亚洲精品乱久久久久久| 欧美在线黄色| 午夜成年电影在线免费观看| 欧美午夜高清在线| 黑人欧美特级aaaaaa片| 日本黄色日本黄色录像| 丰满迷人的少妇在线观看| tube8黄色片| 成人黄色视频免费在线看| 日韩免费高清中文字幕av| 国产欧美日韩精品亚洲av| 久久久久视频综合| 嫩草影视91久久| 久久精品亚洲av国产电影网| 欧美人与性动交α欧美软件| 精品少妇黑人巨大在线播放| 日本猛色少妇xxxxx猛交久久| 91成人精品电影| 国产成人一区二区三区免费视频网站| 国产精品一区二区精品视频观看| 国产在线免费精品| 欧美大码av| 极品少妇高潮喷水抽搐| 国产精品偷伦视频观看了| 欧美国产精品va在线观看不卡| 日韩熟女老妇一区二区性免费视频| 久久ye,这里只有精品| 国产一区有黄有色的免费视频| 18禁黄网站禁片午夜丰满| 国产亚洲一区二区精品| 少妇裸体淫交视频免费看高清 | 亚洲伊人色综图| 国产一区二区在线观看av| 十八禁高潮呻吟视频| 最新在线观看一区二区三区| 亚洲少妇的诱惑av| 亚洲综合色网址| 成年动漫av网址| 夫妻午夜视频| 高清视频免费观看一区二区| 高潮久久久久久久久久久不卡| 亚洲成av片中文字幕在线观看| 黄片播放在线免费| 女性生殖器流出的白浆| 亚洲精品国产av成人精品| 国内毛片毛片毛片毛片毛片| 欧美 亚洲 国产 日韩一| 51午夜福利影视在线观看| 国产老妇伦熟女老妇高清| 大型av网站在线播放| 狂野欧美激情性bbbbbb| 欧美精品一区二区免费开放| 亚洲 国产 在线| 老司机午夜十八禁免费视频| 亚洲欧美色中文字幕在线| 一级片'在线观看视频| 日本欧美视频一区| 伦理电影免费视频| 日本黄色日本黄色录像| 欧美日韩国产mv在线观看视频| 肉色欧美久久久久久久蜜桃| 国产精品99久久99久久久不卡| 男女免费视频国产| 99久久99久久久精品蜜桃| 国产真人三级小视频在线观看| 日韩制服丝袜自拍偷拍| 大型av网站在线播放| 日韩中文字幕视频在线看片| 欧美 日韩 精品 国产| 日韩欧美免费精品| 久久综合国产亚洲精品| 日韩电影二区| 三级毛片av免费| 超碰97精品在线观看| 中亚洲国语对白在线视频| 夜夜骑夜夜射夜夜干| 日韩三级视频一区二区三区| 成人18禁高潮啪啪吃奶动态图| 男人添女人高潮全过程视频| 日韩制服骚丝袜av| 欧美 日韩 精品 国产| 亚洲精品久久久久久婷婷小说| 男人爽女人下面视频在线观看| 成在线人永久免费视频| 啦啦啦中文免费视频观看日本| 久久亚洲国产成人精品v| 亚洲五月婷婷丁香| 日韩中文字幕欧美一区二区| 视频区图区小说| 午夜福利视频在线观看免费| 一级毛片电影观看| 国产欧美亚洲国产| 老司机深夜福利视频在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 久久影院123| 久久av网站| 91精品国产国语对白视频| 俄罗斯特黄特色一大片| 九色亚洲精品在线播放| 麻豆国产av国片精品| 日本五十路高清| 欧美一级毛片孕妇| 久久中文看片网| 免费一级毛片在线播放高清视频 | 成年女人毛片免费观看观看9 | 丰满少妇做爰视频| 国产精品.久久久| 91老司机精品| 国产精品香港三级国产av潘金莲| 色婷婷av一区二区三区视频| 黄色 视频免费看| 嫁个100分男人电影在线观看| 777久久人妻少妇嫩草av网站| 欧美xxⅹ黑人| 国产成人a∨麻豆精品| 欧美黑人欧美精品刺激| 成年人黄色毛片网站| 大片免费播放器 马上看| 国产欧美日韩精品亚洲av| 久久国产精品人妻蜜桃| 少妇被粗大的猛进出69影院| 欧美另类亚洲清纯唯美| 亚洲国产精品一区二区三区在线| 亚洲成人手机| www.av在线官网国产| 黄片播放在线免费| 久久亚洲国产成人精品v| 久久久久精品国产欧美久久久 | 伊人亚洲综合成人网| 国产老妇伦熟女老妇高清| 51午夜福利影视在线观看| 国产精品久久久久成人av| 国产精品一区二区在线观看99| 亚洲色图综合在线观看| 久久久国产精品麻豆| 老司机影院成人| 国产精品成人在线| 91成人精品电影| 亚洲精品国产色婷婷电影| 国产三级黄色录像| 热99国产精品久久久久久7| 免费人妻精品一区二区三区视频| 精品人妻1区二区| 欧美国产精品一级二级三级| 大香蕉久久网| 亚洲午夜精品一区,二区,三区| 在线观看免费日韩欧美大片| 日韩欧美国产一区二区入口| 国产精品 欧美亚洲| 亚洲精品美女久久久久99蜜臀| 一本久久精品| 黄片大片在线免费观看| 新久久久久国产一级毛片| 男女国产视频网站| av有码第一页| a 毛片基地| 欧美日韩一级在线毛片| 男人添女人高潮全过程视频| 国产99久久九九免费精品| 男女之事视频高清在线观看| 另类精品久久| 亚洲第一欧美日韩一区二区三区 | 亚洲性夜色夜夜综合| 九色亚洲精品在线播放| 国产成人av教育| 欧美黑人精品巨大| 91精品国产国语对白视频| 人成视频在线观看免费观看| 纯流量卡能插随身wifi吗| 大片电影免费在线观看免费| 日本黄色日本黄色录像| 色老头精品视频在线观看| 久久久国产成人免费| 免费少妇av软件| 日本av手机在线免费观看| 性色av乱码一区二区三区2| 日韩中文字幕欧美一区二区| 首页视频小说图片口味搜索| 人人妻人人爽人人添夜夜欢视频| 美国免费a级毛片| 在线观看免费日韩欧美大片| av在线老鸭窝| 精品少妇久久久久久888优播| 亚洲欧美一区二区三区黑人| 亚洲国产欧美日韩在线播放| 欧美另类亚洲清纯唯美| 女性生殖器流出的白浆| 久热爱精品视频在线9| 国产国语露脸激情在线看| 国产精品香港三级国产av潘金莲| 丁香六月欧美| 久久免费观看电影| 国产精品影院久久| 久久午夜综合久久蜜桃| 最近中文字幕2019免费版| 亚洲成人免费电影在线观看| 国产精品亚洲av一区麻豆| 亚洲国产精品999| 我要看黄色一级片免费的| 国产一区二区三区av在线| 天天影视国产精品| 中文字幕av电影在线播放| 老鸭窝网址在线观看| 亚洲av成人不卡在线观看播放网 | 色94色欧美一区二区| 久热爱精品视频在线9| 亚洲伊人久久精品综合| 精品乱码久久久久久99久播| 欧美 亚洲 国产 日韩一| 欧美人与性动交α欧美精品济南到| 日韩电影二区| 丝袜美足系列| 国产精品偷伦视频观看了| 国产精品久久久av美女十八| 国精品久久久久久国模美| 最近最新免费中文字幕在线| 女人高潮潮喷娇喘18禁视频| 精品一区二区三区av网在线观看 | 日本av免费视频播放| 欧美97在线视频| 在线观看免费高清a一片| 国产精品 国内视频| 十八禁高潮呻吟视频| 青青草视频在线视频观看| 久久99一区二区三区| 好男人电影高清在线观看| av天堂久久9| 99精国产麻豆久久婷婷| 亚洲精品中文字幕在线视频| 国产精品免费大片| 国产精品自产拍在线观看55亚洲 | 777久久人妻少妇嫩草av网站| 菩萨蛮人人尽说江南好唐韦庄| 欧美黄色片欧美黄色片| 久久久久网色| 久久香蕉激情| 极品少妇高潮喷水抽搐| 午夜久久久在线观看| 国产欧美日韩精品亚洲av| 无限看片的www在线观看| 久久天躁狠狠躁夜夜2o2o| 国产成人欧美| 99热网站在线观看| 一区二区日韩欧美中文字幕| 久久99热这里只频精品6学生| 成在线人永久免费视频| a级毛片黄视频| 香蕉国产在线看| 99国产极品粉嫩在线观看| 亚洲国产精品一区三区| 亚洲欧美精品自产自拍| 自线自在国产av| 黑人欧美特级aaaaaa片| 欧美精品一区二区大全| 亚洲精品在线美女| 极品人妻少妇av视频| 美女中出高潮动态图| 亚洲欧洲精品一区二区精品久久久| www.999成人在线观看| 午夜日韩欧美国产| 国产伦人伦偷精品视频|