• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron Acceleration by Beating of Two Intense Cross-Focused Hollow Gaussian Laser Beams in Plasma?

    2018-05-05 09:13:44SalehMahmoudRakhiGauniyalNafisAhmadPriyankaRawatandGunjanPurohit
    Communications in Theoretical Physics 2018年1期

    Saleh T.Mahmoud,Rakhi Gauniyal,Na fis Ahmad,Priyanka Rawat,and Gunjan Purohit

    1Department of Physics,College of Science,UAE University,P.O.Box 15551 Al-Ain,United Arab Emirates

    2Laser Plasma Computational Laboratory,Department of Physics,DAV(PG)College,Dehradun,Uttarakhand-248001,India

    1 Introduction

    Laser driven plasma-based accelerators are of great interest because of their ability to sustain extremely large acceleration gradients.[1?4]They have widespread applications in various fields such as particle physics,materials science,medicine(ranging from x-ray diagnostics to particle beam therapies),manufacturing industry and to produce extremely short electron bunches.In laser plasma interaction,various schemes are operative for particle acceleration such as laser wake field accelerator(LWFA),[5?7]plasma beat wave accelerator(PBWA),[5,8]multiple laser pulses,[9?10]self-modulated LWFA[11?12]etc.in which very high intense laser beams are used.The key requirement for achieving higher acceleration is the large amplitude of the electron plasma wave.A large amplitude plasma wave(with phase velocity near the speed of light)is driven by intense laser pulse in which plasma electrons can be trapped and accelerated to relativistic energies.Therefore,the excitation of electron plasma wave by intense laser beams in plasmas has been an active field of research for charged particle acceleration.

    There has been signi ficant interest in the beat wave excitation of electron plasma wave and its application in plasma based particle accelerators.The plasma beat-wave accelerator scheme is one of the most mature methods for plasma acceleration in laser plasma interaction.[5]In this scheme,two intense laser beams of slightly different frequenciesω1&ω2and corresponding wave numbersk1&k2are used to resonantly excite an electron plasma wave.The resonance conditions for beat wave excitation of electron plasma wave are:and.If the beat frequency?ωis close to the plasma frequencyωp0,a very large amplitude relativistic electron plasma wave can be generated,which can be used to accelerate electrons efficiently to high energies in short distances.In this process,self-focusing of an intense laser beam in plasmas plays an important role and arises due to increase of the on-axis index of refraction relative to the edge of the laser beam.When two intense laser beams with slightly different frequencies simultaneously propagates in plasma,self-focusing of one laser beam is affected by the self-focusing of another laser beam.Due to mutual interaction of two laser beams,cross-focusing takes place in plasma.This method is used to generate large amplitude electron plasma wave for ultrahigh gradient electron acceleration in PBWA scheme.A lot of theoretical and experimental work has been reported on the excitation of electron plasma wave and electron acceleration by beating of two laser beams in plasma.[5,13?37]

    It has been observed that the focusing of laser beams in plasma and the yield of electron acceleration depends on the spatial pro file of laser beams and the nonlinearities associated with plasma.Most of the earlier investigations on excitation of electron plasma wave and electron acceleration have been carried out by taking Gaussian intensity distribution of laser beams with ponderomo-tive/relativistic nonlinearity.In contrast with Gaussian pro file of laser beams,currently,the hollow Gaussian intensity pro file of laser beams with minimum field intensity at the center has attracted much more attentions because of their unique physical properties and applications.[38?40]The main feature of considered hollow Gaussian laser beams is having the same power at different beam orders with null intensity at the centre.The propagation dynamics of hollow Gaussian beams(HGBs)have been widely studied both experimentally and theoretically.[41?46]Various techniques[47?50]have been used to generate HGBs.These beams can be expressed as a superposition of a series of Lagurerre-Gaussian modes.[41]Moreover,when an ultra-intense laser beams propagates in plasma,both relativistic and ponderomotive nonlinearities arise simultaneously due to electron mass variation and electron density perturbations respectively,which depend on the time scale of the laser pulse.[51?52]Therefore,in comparison with only relativistic/ponderomotive nonlinearity,the dynamics of the propagation of laser beams in plasma is expected to be drastically affected by cumulative effects of relativistic-ponderomotive nonlinearity.It is also important to mention that the relativistic effect and ponderomotive nonlinearity contribute to focusing on a femtosecond time scale at very high intensity.Cross-focusing of HGBs with relativistic/ponderomotive or relativisticponderomotive nonlinearities in plasma have been investigated in detail[53?55]but no one has studied the excitation of EPW and electron acceleration. Moreover,donut wake fields generation for particle acceleration by Laguerre-Gaussian laser pulses(carrying a finite amount of orbital angular momentum)using particle-incell simulations have also been reported in under-dense plasma.[56?57]

    In the present study,we have considered the propagation of two intense hollow Gaussian beams in collisionless plasma.The intensity distribution of the beams along the axis is zero and the maximum is away from the axis.We have studied the cross-focusing of two intense hollow Gaussian laser beams in collisionless plasma with relativistic and ponderomotive nonlinearities and further its effect on the excitation of EPW and electron acceleration.The paraxial-ray approximation[58?59]is used to describe the focal region of the laser beam where all the relevant parameters correspond to a narrow range around the maximum irradiance of the HGBs.Section 2 presents the relativistic-ponderomotive focusing of two HGBs in plasma under paraxial-ray approximation.The effect of the cross-focusing of the HGBs on the excitation of the electron plasma wave and electron acceleration is studied in Sec.3.Section 4 deals with the results and discussion.The conclusions drawn from the results of present investigation have been summarized in Sec.5.

    2 Propagation of Hollow Gaussian Laser Beams in Collisional Plasma

    We consider two intense linearly polarized co-axial hollow Gaussian laser beams of frequenciesω1andω2propagating along thez-direction in the collisional plasma.The initial electric field distribution of the beams are given by

    whereris the radial coordinate of the cylindrical coordinate system,r10andr20are the initial spot size of the laser beams,E10andE20are the amplitude of HGBs maximumnis the order of the HGBs(n=0 corresponds to the fundamental Gaussian laser beam)and a positive integer,characterizing the shape of the HGBs an position of its irradiance maximum.

    For hollow Gaussian laser beams,transforming the(r,z)coordinate in to(η,z)coordinate by the relation[44]

    whereηis a reduced radial coordinate,f1,2is the beam width of HGBs,r=r10,20f1,2(2n)1/2is the position of the maximum irradiance for the propagating beams.Most of the power of HGBs are concentrated in the region aroundη=0.

    The ponderomotive force acting on the electrons in the presence of relativistic nonlinearity is given by[52?53]

    This force modi fies the background electron density because electrons are expelled away from the region of higher electric field.The modi fied electron density(nd)due to relativistic-ponderomotive force is given as[52]

    Using Eq.(3)into Eq.(7),the total electron density can be written as

    Hereare the intensities of first and second laser beams.

    The dielectric constant of the plasma is given by

    whereis the plasma frequency witheis the charge of an electron,m0is its rest mass,andn0is the density of plasma electrons in the absence of laser beam.The effective dielectric constant(?1,2)of the plasma(in the presence of relativistic-ponderomotive nonlinearity)at frequenciesω1andω2respectively is given by

    where?10,20is the linear part of dielectric constant of the plasma.The dielectric constant may be expended around the maximum of HGBs i.e.atη=0.For HGBs,one can express the dielectric constant?1,2(η,z),in terms of?1,2(r,z).Expanding dielectric constant aroundη=0 by Taylor expansion,one can write

    3 Beat Wave Excitation of Plasma Wave and Electron Acceleration

    Due to beating of two hollow Gaussian laser beams in plasma and modi fication in plasma density via relativisticponderomotive force,electron plasma wave(EPW)is generated.In this process,the contribution of ions is negligible because they only provide a positive background,i.e.,only plasma electrons are responsible for excitation of EPW.The amplitude of electron plasma wave(which depends on the background electron density)gets strongly coupled to the laser beams.To study the effect of relativistic and ponderomotive nonlinearities on the generation of the plasma wave by the beat wave process in paraxial region,we start with the following fluid equations:

    (i)The continuity equation:

    Equation(26)contains two plasma waves(both have different frequencies).The first one is supported by hot plasma and the second by the source term at the different frequency.Ifωp0/?ω≤1,the phase velocity is almost equal to the thermal velocity of the electron and Landau damping occur.But asωp0/?ω≈1,the phase velocity is very large as compared to the electron thermal velocity and Landau damping is negligible.The solution of Eq.(9)with in the WKB approximation can be expressed as

    The power associated with electron wave is given by[29]

    whereis the group velocity.Equation(38)has been solved numerically with the help of Eqs.(21),(36),and(37).

    The excited electron plasma wave transfers its energy to accelerate the electrons at the difference frequency of laser beams.The equation governing electron momentum

    whereE(?ω)is given by Eqs.(37)and(39)gives the electron energy.Equation(39)has been solved numerically,where we have usedf1andf2by Eq.(21).

    4 Numerical Results and Discussion

    In order to study the cross-focusing of two intense hollow Gaussian laser beams in collisonal plasma with dominant relativistic-ponderomotive nonlinearity and its effect on the generation of electron plasma wave and electron acceleration in paraxial-ray approximation,numerical computation of Eqs.(19),(21),(38),and(39)has been performed for the typical laser plasma parameters.The following set of the parameters has been used in the numerical calculation:ω1=1.776×1015rad/s,ω2=1.716×1015rad/s,r1=15μm,r2=20μm,ωp0=0.3ω2,a1=3,a2=2,2.4,2.8,andn=1,2,3.For initial plane wave fronts of the beams,the initial conditions forf1,2aref1,2=1 and df1,2/dz=0 atz=0.

    When two intense hollow Gaussian laser beams of slightly different frequencies simultaneously propagate through the plasma,the background electron density of plasma is modi fied due to ponderomotive force.Equation(19)describes the intensity pro file of HGBs in plasma along the radial direction in presence of relativistic and ponderomotive nonlinearities,while Eq.(21)determines the focusing/defocusing of the hollow Gaussian beams along the distance of propagation in the plasma,where the first term on the right hand side shows the diffraction behaviour of laser beams and remaining terms on the right hand side show the converging behaviour that arises due to the relativistic and ponderomotive nonlinearity.The focusing/defocusing behaviour of laser beams depends on the magnitudes of the nonlinear coupling terms.It is clear from Eq.(19),the intensity pro file of both laser beams depends on the focusing/defocusing of the laser beams i.e.beam width parametersf1,2.

    Fig.1 (Color online)Variation of the beam width parameters(f1and f2)with the normalized distance of propagation(ξ)of first and second HGBs:(a)For different orders of n(red,black and blue colors are for n=1,2 and 3)with a1=3,a2=2.4 and ωp0=0.3ω2.(b)For different values of a2(red,black,and blue colors are for a2=2,2.4,2.8)with a1=3,n=2 and ωp0=0.3ω2.(c)For different values of ωp0(red,black,and blue colors are for ωp0=0.2ω2,0.3ω2,and 0.4ω2)with a1=3,a2=2.4.and n=2,respectively,when relativistic and ponderomotive nonlinearities are operative.The solid line represents f1and the dotted line represents f2.

    Fig.2 (Color online)Variation of the normalized intensity of HGBs with the normalized distance of propagation(ξ)for different orders of n(red,black and blue colors are for n=1,2 and 3)keeping a1=3,a2=2.4,ωp0=0.3ω2,when relativistic and ponderomotive nonlinearities are operative.(a)and(b)are for first and second laser beam.

    The results of Eqs.(19)and(21)are presented in Figs.1 and 2 respectively.Figures 1(a)–1(c)illustrate the focusing behavior of two hollow Gaussian laser beams in plasma with normalized distance of propagation.It is clear that both of the beams show oscillatory self focusing.One can see from Fig.1(a)as the order of the hollow Gaussian beam(n)increases focusing of both beams also increases,which implies that with the increase innthe hollow space across the beam also increases.It is observed from Figs.1(b)and 1(c)that with an increase in the intensity of incident laser beam and plasma density there is an increase in the extent of self-focusing of both the laser beams.This is due to the fact that with an increase in plasma density the number of electrons contributing to the pondermotive-relativistic nonlinearity also increases.These results indicate that focusing of one beam is signi ficantly affected by the presence of another beam.Figures 2(a)and 2(b)represent the normalized intensity of first and second laser beam in plasma respectively along with the normalized distance of propagation for different n.It is observed from the figures that with an increase inn,normalized intensity of both laser beams also increases.It has also been observed that the intensity of laser beams is higher at higher plasma density and incident laser beam intensity(results not shown here).This is due to the strong focusing of both HGBs at higher values ofnand plasma density respectively.Such kind of highly self-focused intense laser beams interact with each other and generate large amplitude electron plasma wave.

    Fig.3(Color online)Variation of the normalized power(P)of electron plasma wave with normalized distance(ξ):(a)For different orders of n(red,black and blue colors are for n=1,2 and 3)with a1=3,a2=2.4,and ωp0=0.3ω2.(b)For different values of a2(red,black,and blue colors are for a2=2,2.4,2.8)with a1=3,n=2,and ωp0=0.3ω2,respectively,when relativistic and ponderomotive nonlinearities are operative.

    To see the effect of cross-focusing of two intense hollow Gaussian laser beams on the generation of electron plasma wave,we have studied the excitation of the electron plasma wave by the beat wave process in the presence of relativistic and ponderomotive nonlinearities.It is important to mention here that beating between two copropagating intense laser beams in plasma can generate a longitudinal electron plasma wave with a high electric field and a relativistic phase velocity.The beat plasma wave is very efficient for electron acceleration up to ultrarelativistic energies.Equation(38)describes the normalized power of electron plasma wave generated as a result of beating of the two laser beams.It is evident from Eq.(38),the power of electron plasma wave depends upon the focusing of laser beams in plasma(f1,2),focusing of electron plasma wave(fp)and the electric field associated with electron plasma waveE(?ω).The same set of parameters has been used for numerical calculations as in Figs.1–2.Figures 3(a)and 3(b)show the effect of changing the order of HGBs and the initial intensity of second laser beam(a2)on the power of generated electron plasma wave,at the position of optimum irradiance of the beams(η=0).By increasing laser beam orders and the intensity of second laser beam,the power of generated electron plasma wave increases.This is because the power of generated electron plasma wave depends on the focusing behaviour of laser beams(f1,2),fpand intensity of laser beams.

    Fig.4(Color online)Variation of the(γ)of the electron with normalized distance(ξ):(a)For different orders of n(red,black and blue colors are for n=1,2 and 3)with a1=3,a2=2.4,and ωp0=0.3ω2.(b)For different values of a2(red,black,and blue colors are for a2=2,2.4,2.8)with a1=3,n=2,and ωp0=0.3ω2,respectively,when relativistic and ponderomotive nonlinearities are operative.

    The large amplitude electron plasma wave can be used to accelerate the electrons in plasma beat wave accelerator scheme.Equation(39)gives the expression for energy gain by the electrons.This equation has been solved numerically with the help of Eq.(37)i.e.energy gain depends on the electric field associated with excited electron plasma wave.Figures 4(a)and 4(b)respectively illustrate the effect of changing the value ofnand the intensity of second laser beam(a2)on energy gain by the electrons.These figures clearly indicate that the maximum energy gain by electrons is signi ficantly increased by increasing the value ofbanda2.Although,the nature of these results are similar to Figs.3(a)and 3(b)due to the same reasons as discussed above.Thus,we see that cross-focusing of laser beams plays a crucial role for efficient generation of electron plasma wave and electron acceleration.

    5 Conclusions

    In conclusion,plasma wave generation and electron acceleration by beating of two intense HGBs in collisionless plasma with dominant relativistic-ponderomotive nonlinearity has been discussed.Paraxial-ray approximation has been used to establish the given formulation.Effects of laser and plasma parameters on the focusing of two HGBs in plasma at difference frequency,generation of electron plasma wave and particle acceleration process is examined.Following conclusions are made from the results:

    (i)The order of the hollow Gaussian laser beams plays an important role in plasma beat wave accelerator scheme.

    (ii)Focusing of both hollow Gaussian laser beams in plasma is enhanced by increasing the laser beam orders,incident laser intensity,and plasma density.

    (iii) The intensity of both laser beams in plasma is higher for higher orders of the HGBs.

    (iv)Maximum power of generated electron plasma wave depends on the extent of focusing of laser beams in plasma and the electric field associated with electron plasma wave respectively.

    (v)The power of electron plasma wave increases by increasing the laser beam orders and the initial intensity of second/ first laser beams.

    (vi)The maximum energy gain also depends on the electric field associated with electron plasma wave and increases by increasing the laser beam orders and the initial intensity of second/ first laser beams.

    The results of the present investigation are relevant to laser beat wave based particle accelerators,terahertz generation and in other applications requiring multiple laser beams.

    [1]S.M.Hooker,Nature Photonics 7(2013)775.

    [2]E.Esarey,C.B.Schroeder,and W.P.Leemans,Rev.Mod.Phys.81(2009)1229.

    [3]V.Malka,J.Faure,Y.A.Gauduel,et al.,Nature Physics 4(2008)447.

    [4]R.Bingham,Phil.Trans.R.Soc.A.364(2006)559.

    [5]T.Tajima and J.M.Dawson,Phys.Rev.Lett.43(1979)267.

    [6]A.Pukhov and J.Meyer-ter-vehn,Appl.Phys.B 74(2002)355.

    [7]F.Albert,A.G.R.Thomas,S.P.D.Mangles,et al.,Plasma Phys.Control.Fusion 56(2014)084015.

    [8]C.V.Filip,R.Narang,S.Ya.Tochitsky,et al.,Phys.Rev.E 69(2004)026404.

    [9]K.Nakajima,Phys.Rev.A 45(1992)1149.

    [10]D.Umstadter,E.Esarey,and J.Kim,Phys.Rev.Lett.72(1994)1224.

    [11]W.P.Leemans,P.Catravas,E.Esarey,et al.,Phys.Rev.Lett.89(2002)174802.

    [12]W.Chen,T.Chien,C.Lee,et al.,Phys.Rev.Lett.92(2004)075003.

    [13]M.N.Rosenbluth and C.S.Liu,Phys.Rev.Lett.29(1972)701.

    [14]C.Joshi,W.B.Mori,T.Katsouleas,et al.,Nature(London)311(1984)525.

    [15]Y.Kitagawa,T.Matsumoto,T.Minamihata,et al.,Phys.Rev.Lett.68(1992)48.

    [16]C.M.Tang,P.Sprangle,and R.N.Sudan,Appl.Phys.Lett.45(1984)375.

    [17]A.Modena,Z.Najmudin,A.E.Dangor,et al.,Nature(London)377(2002)606.

    [18]C.E.Clayton,C.Joshi,C.Darrow,and D.Umstadter,Phys.Rev.Lett.54(1985)2343.

    [19]N.A.Ebrahim,P.Lavigne,and S.Aithal,IEEE Trans.Nucl.Sci.32(1985)3539.

    [20]C.E.Clayton,K.A.Marsh,A.Dyson,et al.,Phys.Rev.Lett.70(1993)37.

    [21]M.Everett,A.Lal,D.Gordon,et al.,Nature(London)368(1994)527.

    [22]N.A.Ebrahim,J.Appl.Phys.76f50(1994)7645.

    [23]F.Amirano ff,D.Bernard,B.Cros,et al.,Phys.Rev.Lett.74(1995)5220.

    [24]A.Ghizzo,P.Bertrand,J.Lebas,et al.,Phys.Plasmas 5(1998)4044.

    [25]S.Y.Tochitsky,R.Narang,C.V.Filip,et al.,Phys.Rev.Lett.92(2004)095004.

    [26]C.V.Filip,R.Narang,S.Ya.Tochitsky,et al.,Phys.Rev.E 69(2004)026404.

    [27]B.Walton,Z.Najmudin,M.S.Wei,et al.,Phys.Plasmas 13(2006)013103.

    [28]S.Kalmykov,S.A.Yi,and G.Shvets,Plasma Phys.Control.Fusion 51(2009)024011.

    [29]D.N.Gupta,M.Singh,and H.Suk,J.Plasma Phys.81(2015)905810324.

    [30]A.Singh and N.Gupta,Phys.Plasmas 22(2015)062115.

    [31]M.S.Sodha,Govind,D.P.Tewari,et al.,J.Appl.Phys.50(1979)158.

    [32]S.T.Mahmoud,H.D.Pandey,and R.P.Sharma,J.Plasma Phys.69(2003)45.

    [33]P.Chauhan,S.T.Mahmoud,R.P.Sharma,and H.D.Pandey,J.Plasma Phys.73(2007)117.

    [34]G.Purohit,P.K.Chauhan,and R.P.Sharma,Phys.Scr.77(2008)065503.

    [35]M.K.Gupta,R.P.Sharma,and V.L.Gupta,Phys.Plasmas 12(2005)123101.

    [36]R.P.Sharma and P.K.Chauhan,Phys.Plasmas 15(2008)063103.

    [37]P.Rawat,R.K.Singh,R.P.Sharma,and G.Purohit,Eur.Phys.J.D 68(2014)57.

    [38]J.Yin,W.Gao,and Y.Zhu,Progress in Optics 44(2003)119.

    [39]Y.Yuan,Y.Cai,J.Qu,et al.,Opt.Express 17(2009)17344.

    [40]X.Xu,Y.Wang,and W.Jhe,J.Opt.Soc.Am.B 17(2002)1039.

    [41]Y.Cai,X.Lu,and Q.Lin,Opt.Lett.28(2003)1084.

    [42]Y.Cai and Q.Lin,J.Opt.Soc.Am.A 21(2004)1058.

    [43]Z.Mei and D.Zhao,J.Opt.Soc.Am.A 22(2005)1898.

    [44]M.S.Sodha,S.K.Mishra,and S.Misra,J.Plasma Phys.75(2009)731.

    [45]N.A.Chaitanya,M.V.Jabir,J.Banerji,and G.K.Samanta,Sci.Report 6(2016)32464.

    [46]S.Misra and S.K.Mishra,Prog.Electromagnetics Res.B 16(2009)291.

    [47]R.M.Herman and T.A.Wiggins,J.Opt.Soc.Am.A 8(1991)932.

    [48]X.Wang and M.G.Littman,Opt.Lett.1(1993)767.

    [49]C.Paterson and R.Smith,Opt.Commun.124(1996)121.

    [50]C.Zhao,Y.Cai,F.Wang,et al.,Opt.Lett.33(2008)1389.

    [51]A.B.Borisov,A.V.Borovskiy,O.B.Shiryaev,et al.,Phys.Rev.A 45(1992)5830.

    [52]H.S.Brandi,C.Manus,G.Mainfray,and T.Lehner,Phys.Rev.E 47(1993)3780.

    [53]R.Gupta,P.Sharma,M.Rafat,and R.P.Sharma,Laser part.Beams 29(2011)227.

    [54]P.Sharma,A.K.Bhardwaj,and R.P.Sharma,J.Phys.:Conf.Ser.534(2014)012049.

    [55]P.Sharma,Laser Part.Beams 33(2015)755.

    [56]J.T.Mendonca and J.Vieira,Phys.Plasmas 21(2014)033107.

    [57]J.Vieira and J.T.Mendonca,Phys.Rev.Lett.112(2014)215001.

    [58]A.S.Akhmanov,A.P.Sukhorukov,and R.V.Khokhlov,Sov.Phys.Usp.10(1968)609.

    [59]M.S.Sodha,V.K.Tripathi,and A.K.Ghatak,Prog.Optics 13(1976)169.

    [60]J.Krall,A.Ting,E.Esarey,and P.Sprangle,Phys.Rev.E 48(1993)2157.

    亚洲第一欧美日韩一区二区三区 | 少妇粗大呻吟视频| 亚洲国产av影院在线观看| 成年人黄色毛片网站| 日本一区二区免费在线视频| 免费在线观看黄色视频的| 欧美日韩福利视频一区二区| 亚洲第一欧美日韩一区二区三区 | 欧美日韩福利视频一区二区| 在线观看免费日韩欧美大片| 一区在线观看完整版| 欧美日韩一级在线毛片| 欧美成狂野欧美在线观看| 国产成人影院久久av| 亚洲精品中文字幕一二三四区 | 一个人免费在线观看的高清视频 | 日本wwww免费看| 制服诱惑二区| 久久久水蜜桃国产精品网| 亚洲久久久国产精品| 成人免费观看视频高清| 大型av网站在线播放| 亚洲精华国产精华精| 国产av又大| 大码成人一级视频| 国产av国产精品国产| 水蜜桃什么品种好| 黑人巨大精品欧美一区二区蜜桃| 性色av一级| 岛国在线观看网站| 97人妻天天添夜夜摸| 亚洲自偷自拍图片 自拍| 一区二区三区四区激情视频| av天堂久久9| 欧美日韩亚洲国产一区二区在线观看 | 色婷婷久久久亚洲欧美| 国产亚洲午夜精品一区二区久久| 亚洲av国产av综合av卡| 欧美精品一区二区大全| 欧美日韩精品网址| 超碰成人久久| 女性被躁到高潮视频| 日韩 亚洲 欧美在线| 久久久久久免费高清国产稀缺| 男人舔女人的私密视频| 人人妻,人人澡人人爽秒播| 国产深夜福利视频在线观看| 丁香六月天网| 国产精品久久久久久精品古装| 国产高清视频在线播放一区 | av超薄肉色丝袜交足视频| 汤姆久久久久久久影院中文字幕| 中文字幕色久视频| 亚洲av片天天在线观看| 黑人巨大精品欧美一区二区mp4| 激情视频va一区二区三区| 精品第一国产精品| 午夜成年电影在线免费观看| 精品国产乱码久久久久久小说| 18在线观看网站| 男女免费视频国产| 天天添夜夜摸| 在线精品无人区一区二区三| 国产一区二区三区综合在线观看| 欧美黄色片欧美黄色片| 成人免费观看视频高清| 国产欧美日韩一区二区三区在线| 狂野欧美激情性bbbbbb| 亚洲 欧美一区二区三区| 国产成人a∨麻豆精品| 亚洲三区欧美一区| 丰满少妇做爰视频| 咕卡用的链子| 亚洲va日本ⅴa欧美va伊人久久 | 夜夜骑夜夜射夜夜干| 亚洲av片天天在线观看| 中国国产av一级| 欧美一级毛片孕妇| 精品一区二区三区四区五区乱码| 欧美精品一区二区免费开放| 肉色欧美久久久久久久蜜桃| 久久女婷五月综合色啪小说| 午夜福利,免费看| 精品国产一区二区三区四区第35| 91字幕亚洲| 丰满饥渴人妻一区二区三| 少妇粗大呻吟视频| 国产亚洲一区二区精品| 午夜日韩欧美国产| 亚洲 欧美一区二区三区| 热re99久久国产66热| 国产免费视频播放在线视频| 黄片播放在线免费| 午夜日韩欧美国产| 国精品久久久久久国模美| 精品一区在线观看国产| 日本猛色少妇xxxxx猛交久久| 亚洲精品乱久久久久久| 91麻豆av在线| 操美女的视频在线观看| 少妇的丰满在线观看| 免费在线观看黄色视频的| 色婷婷av一区二区三区视频| 国产成人免费观看mmmm| 菩萨蛮人人尽说江南好唐韦庄| 久久ye,这里只有精品| 国产成人a∨麻豆精品| 精品卡一卡二卡四卡免费| 一本综合久久免费| 婷婷色av中文字幕| 在线永久观看黄色视频| 美女高潮到喷水免费观看| 国产在线视频一区二区| 亚洲视频免费观看视频| 亚洲精品国产精品久久久不卡| 国产亚洲精品久久久久5区| 亚洲第一青青草原| 欧美变态另类bdsm刘玥| 午夜福利免费观看在线| 精品免费久久久久久久清纯 | 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲三区欧美一区| 蜜桃国产av成人99| 国产欧美日韩一区二区三区在线| 久久精品国产a三级三级三级| 婷婷成人精品国产| 99国产极品粉嫩在线观看| 少妇精品久久久久久久| 国产日韩欧美在线精品| 久久人人97超碰香蕉20202| 久久久国产欧美日韩av| 精品亚洲乱码少妇综合久久| 亚洲黑人精品在线| 亚洲中文av在线| 国产免费福利视频在线观看| 两性夫妻黄色片| 午夜老司机福利片| 久久久久视频综合| 成人影院久久| 99国产精品99久久久久| 一本综合久久免费| 少妇 在线观看| 男人舔女人的私密视频| 久久久久久久大尺度免费视频| 一区福利在线观看| 色94色欧美一区二区| 成人黄色视频免费在线看| 精品久久久久久电影网| 美女扒开内裤让男人捅视频| 我的亚洲天堂| 国产在视频线精品| 色婷婷久久久亚洲欧美| 亚洲中文字幕日韩| 午夜免费成人在线视频| 欧美午夜高清在线| 男女免费视频国产| 欧美国产精品一级二级三级| 咕卡用的链子| 国产精品99久久99久久久不卡| 天天躁夜夜躁狠狠躁躁| 悠悠久久av| 国产日韩欧美亚洲二区| 一个人免费看片子| 亚洲精品一二三| 中文字幕人妻丝袜一区二区| 国产在线免费精品| 狠狠婷婷综合久久久久久88av| 最近最新免费中文字幕在线| 如日韩欧美国产精品一区二区三区| 欧美精品一区二区免费开放| 热99re8久久精品国产| 亚洲综合色网址| 50天的宝宝边吃奶边哭怎么回事| 大片免费播放器 马上看| 水蜜桃什么品种好| 精品人妻1区二区| 嫩草影视91久久| 国产野战对白在线观看| 久久久水蜜桃国产精品网| 少妇裸体淫交视频免费看高清 | 欧美久久黑人一区二区| 色视频在线一区二区三区| 欧美乱码精品一区二区三区| 欧美日韩精品网址| 丰满饥渴人妻一区二区三| 狠狠精品人妻久久久久久综合| videos熟女内射| 欧美午夜高清在线| 黄色视频不卡| 高清黄色对白视频在线免费看| 91国产中文字幕| 女人精品久久久久毛片| 亚洲国产中文字幕在线视频| 久久影院123| 国精品久久久久久国模美| 两性午夜刺激爽爽歪歪视频在线观看 | 99re6热这里在线精品视频| 亚洲av电影在线进入| 69av精品久久久久久 | 亚洲熟女精品中文字幕| 婷婷丁香在线五月| 国产99久久九九免费精品| 亚洲国产精品成人久久小说| 另类精品久久| 丝袜喷水一区| 18禁国产床啪视频网站| 国产免费现黄频在线看| 69av精品久久久久久 | 视频在线观看一区二区三区| 国产欧美日韩一区二区精品| 可以免费在线观看a视频的电影网站| av一本久久久久| 国产99久久九九免费精品| 两性午夜刺激爽爽歪歪视频在线观看 | kizo精华| 99国产综合亚洲精品| 亚洲人成电影观看| 久久这里只有精品19| 午夜久久久在线观看| 精品一区二区三区av网在线观看 | 国产一区二区在线观看av| 国产精品欧美亚洲77777| 亚洲av成人一区二区三| 亚洲欧美日韩另类电影网站| 嫩草影视91久久| 国产精品国产av在线观看| 亚洲av日韩精品久久久久久密| 国产1区2区3区精品| 一二三四在线观看免费中文在| 91字幕亚洲| 两个人免费观看高清视频| 久久精品人人爽人人爽视色| a级毛片在线看网站| 国产成人av教育| 欧美另类一区| 99久久99久久久精品蜜桃| 亚洲国产欧美日韩在线播放| 亚洲成人免费av在线播放| 亚洲第一青青草原| 美女脱内裤让男人舔精品视频| 免费高清在线观看视频在线观看| 日本vs欧美在线观看视频| 欧美国产精品一级二级三级| netflix在线观看网站| 天堂俺去俺来也www色官网| av在线老鸭窝| 中文字幕人妻丝袜一区二区| 国产亚洲精品久久久久5区| 欧美日韩福利视频一区二区| 国产精品 欧美亚洲| 国产免费一区二区三区四区乱码| 黄色视频在线播放观看不卡| 亚洲国产欧美日韩在线播放| 国产主播在线观看一区二区| 亚洲av电影在线进入| 久久精品久久久久久噜噜老黄| 夫妻午夜视频| 王馨瑶露胸无遮挡在线观看| 国产精品国产三级国产专区5o| 国产成人系列免费观看| av有码第一页| 久久性视频一级片| 免费久久久久久久精品成人欧美视频| 91九色精品人成在线观看| 亚洲专区中文字幕在线| 美女高潮喷水抽搐中文字幕| 欧美精品一区二区大全| 中文字幕色久视频| 9191精品国产免费久久| 另类精品久久| 亚洲视频免费观看视频| 午夜福利在线观看吧| 日本猛色少妇xxxxx猛交久久| 一本大道久久a久久精品| 午夜影院在线不卡| 精品国产乱码久久久久久男人| 三级毛片av免费| 我的亚洲天堂| 一级a爱视频在线免费观看| 极品少妇高潮喷水抽搐| 在线天堂中文资源库| 中文欧美无线码| 国产片内射在线| 一边摸一边抽搐一进一出视频| 免费黄频网站在线观看国产| 在线天堂中文资源库| 久久久久久久久久久久大奶| 一级片'在线观看视频| 无限看片的www在线观看| av线在线观看网站| 国产免费现黄频在线看| 国产国语露脸激情在线看| 脱女人内裤的视频| 国产一级毛片在线| 男女床上黄色一级片免费看| 桃红色精品国产亚洲av| 国产精品欧美亚洲77777| 欧美日韩av久久| 美女中出高潮动态图| 男女免费视频国产| 大片电影免费在线观看免费| 在线十欧美十亚洲十日本专区| 午夜福利视频在线观看免费| 欧美日韩亚洲综合一区二区三区_| 欧美日韩一级在线毛片| 国产成人免费无遮挡视频| 不卡一级毛片| 人妻一区二区av| 国产精品偷伦视频观看了| 亚洲avbb在线观看| 免费日韩欧美在线观看| av在线老鸭窝| 日韩欧美免费精品| 日韩大片免费观看网站| 高清欧美精品videossex| 国产野战对白在线观看| 中文字幕人妻丝袜制服| 桃花免费在线播放| 丰满少妇做爰视频| videos熟女内射| 成在线人永久免费视频| 色婷婷av一区二区三区视频| netflix在线观看网站| 精品亚洲乱码少妇综合久久| 免费高清在线观看日韩| 色婷婷av一区二区三区视频| 精品久久久精品久久久| 成人av一区二区三区在线看 | 2018国产大陆天天弄谢| 丝袜美足系列| 欧美精品高潮呻吟av久久| 亚洲一码二码三码区别大吗| 正在播放国产对白刺激| 97精品久久久久久久久久精品| 欧美午夜高清在线| 后天国语完整版免费观看| 精品卡一卡二卡四卡免费| 国产日韩欧美亚洲二区| 亚洲人成77777在线视频| 亚洲伊人久久精品综合| 天天躁日日躁夜夜躁夜夜| 国产成人系列免费观看| 满18在线观看网站| 欧美另类亚洲清纯唯美| 亚洲午夜精品一区,二区,三区| 日韩精品免费视频一区二区三区| 国产精品久久久久久人妻精品电影 | 日本黄色日本黄色录像| 视频在线观看一区二区三区| 欧美另类亚洲清纯唯美| 91成年电影在线观看| 日本wwww免费看| 久久精品国产综合久久久| 男女午夜视频在线观看| 久久99一区二区三区| 熟女少妇亚洲综合色aaa.| 亚洲成人免费电影在线观看| 一本一本久久a久久精品综合妖精| 欧美精品一区二区免费开放| 99久久综合免费| 美女中出高潮动态图| 亚洲激情五月婷婷啪啪| 亚洲欧美日韩高清在线视频 | 国产成人欧美| cao死你这个sao货| 一本久久精品| 日韩三级视频一区二区三区| 夫妻午夜视频| 丝瓜视频免费看黄片| 91av网站免费观看| 欧美少妇被猛烈插入视频| 男人舔女人的私密视频| 免费看十八禁软件| 精品国产国语对白av| 99精品欧美一区二区三区四区| 十分钟在线观看高清视频www| 欧美 亚洲 国产 日韩一| 日本精品一区二区三区蜜桃| 成年女人毛片免费观看观看9 | 啦啦啦 在线观看视频| 日韩大片免费观看网站| 久久人人爽人人片av| 亚洲av日韩精品久久久久久密| av又黄又爽大尺度在线免费看| 97精品久久久久久久久久精品| 丝袜美腿诱惑在线| 欧美国产精品一级二级三级| 黑人巨大精品欧美一区二区蜜桃| 天堂中文最新版在线下载| 久久久久精品国产欧美久久久 | 在线观看www视频免费| 午夜福利,免费看| 天堂中文最新版在线下载| 国产亚洲欧美精品永久| 国产精品国产三级国产专区5o| 国产欧美亚洲国产| 爱豆传媒免费全集在线观看| 美女视频免费永久观看网站| 国产黄色免费在线视频| 91九色精品人成在线观看| 在线精品无人区一区二区三| 国产成人一区二区三区免费视频网站| 高清欧美精品videossex| 久久天堂一区二区三区四区| 69精品国产乱码久久久| 无限看片的www在线观看| 欧美老熟妇乱子伦牲交| 国产成人一区二区三区免费视频网站| 欧美精品啪啪一区二区三区 | 国产精品av久久久久免费| 亚洲精品国产一区二区精华液| 性色av一级| 免费观看人在逋| 高潮久久久久久久久久久不卡| 97在线人人人人妻| 1024视频免费在线观看| 久久 成人 亚洲| 欧美av亚洲av综合av国产av| 中文欧美无线码| 一本综合久久免费| 久久久欧美国产精品| 日韩制服骚丝袜av| 老熟妇乱子伦视频在线观看 | a级毛片在线看网站| 啦啦啦在线免费观看视频4| 天天躁狠狠躁夜夜躁狠狠躁| 汤姆久久久久久久影院中文字幕| 日日摸夜夜添夜夜添小说| 青春草视频在线免费观看| 最黄视频免费看| 在线十欧美十亚洲十日本专区| 欧美老熟妇乱子伦牲交| 国产97色在线日韩免费| 九色亚洲精品在线播放| 岛国毛片在线播放| 少妇的丰满在线观看| 蜜桃国产av成人99| 欧美xxⅹ黑人| 人人妻人人添人人爽欧美一区卜| 中文字幕制服av| 精品人妻熟女毛片av久久网站| 狂野欧美激情性xxxx| 亚洲精品国产av蜜桃| 这个男人来自地球电影免费观看| 人人妻人人添人人爽欧美一区卜| 国产成人系列免费观看| 如日韩欧美国产精品一区二区三区| 欧美 亚洲 国产 日韩一| 欧美黄色片欧美黄色片| 成人国产av品久久久| 亚洲 欧美一区二区三区| 亚洲av美国av| 久久久久精品国产欧美久久久 | 91成年电影在线观看| 亚洲精品国产一区二区精华液| 91字幕亚洲| 亚洲激情五月婷婷啪啪| 国产成人精品久久二区二区免费| h视频一区二区三区| 亚洲人成电影免费在线| 国产精品99久久99久久久不卡| 国产在线免费精品| 丰满人妻熟妇乱又伦精品不卡| 乱人伦中国视频| 欧美日韩成人在线一区二区| 午夜日韩欧美国产| kizo精华| 国产精品亚洲av一区麻豆| 国产无遮挡羞羞视频在线观看| 亚洲一码二码三码区别大吗| 亚洲成人手机| 午夜福利,免费看| 人妻久久中文字幕网| 午夜视频精品福利| 99国产精品一区二区蜜桃av | 亚洲精品美女久久av网站| 日韩一卡2卡3卡4卡2021年| 老司机在亚洲福利影院| 国产精品自产拍在线观看55亚洲 | avwww免费| 69精品国产乱码久久久| 午夜福利影视在线免费观看| www.av在线官网国产| 黑人猛操日本美女一级片| 精品亚洲成a人片在线观看| av福利片在线| 在线观看www视频免费| 1024视频免费在线观看| 岛国在线观看网站| 久久人妻熟女aⅴ| 少妇猛男粗大的猛烈进出视频| 一本一本久久a久久精品综合妖精| 午夜成年电影在线免费观看| 日韩视频在线欧美| e午夜精品久久久久久久| 999久久久国产精品视频| 香蕉国产在线看| 国产亚洲av高清不卡| 亚洲国产欧美一区二区综合| 我要看黄色一级片免费的| 90打野战视频偷拍视频| 精品少妇久久久久久888优播| 一区二区日韩欧美中文字幕| 成人国语在线视频| 欧美+亚洲+日韩+国产| 亚洲色图 男人天堂 中文字幕| 亚洲欧美日韩另类电影网站| 男女免费视频国产| 亚洲欧美一区二区三区久久| 十八禁网站网址无遮挡| 两个人看的免费小视频| 久久天堂一区二区三区四区| 国产精品免费大片| 国产成人系列免费观看| 亚洲免费av在线视频| 在线亚洲精品国产二区图片欧美| 午夜福利在线观看吧| 精品国产国语对白av| 国产精品自产拍在线观看55亚洲 | 亚洲中文av在线| av网站在线播放免费| 波多野结衣av一区二区av| 日韩制服骚丝袜av| 男人舔女人的私密视频| 波多野结衣一区麻豆| 亚洲成人免费电影在线观看| 亚洲激情五月婷婷啪啪| 激情视频va一区二区三区| 国产精品 国内视频| www日本在线高清视频| 91av网站免费观看| 一本久久精品| 天天添夜夜摸| 在线观看免费高清a一片| 精品人妻熟女毛片av久久网站| 精品第一国产精品| 欧美老熟妇乱子伦牲交| 国产片内射在线| 国产精品国产av在线观看| 国产成人啪精品午夜网站| 精品一区二区三卡| 精品欧美一区二区三区在线| 日本91视频免费播放| 国产欧美日韩综合在线一区二区| 黄色 视频免费看| 波多野结衣一区麻豆| 婷婷色av中文字幕| 香蕉国产在线看| 亚洲精品国产区一区二| 亚洲色图 男人天堂 中文字幕| 国产精品一二三区在线看| 十八禁人妻一区二区| 国产亚洲av高清不卡| 亚洲精品久久久久久婷婷小说| 少妇 在线观看| 国产成人影院久久av| 国产精品国产三级国产专区5o| 嫁个100分男人电影在线观看| 午夜视频精品福利| 一区在线观看完整版| 人人妻,人人澡人人爽秒播| 亚洲综合色网址| 宅男免费午夜| 黄色毛片三级朝国网站| 黄频高清免费视频| 亚洲精品成人av观看孕妇| 久久香蕉激情| 午夜免费成人在线视频| 老司机午夜福利在线观看视频 | 女性被躁到高潮视频| 亚洲精品日韩在线中文字幕| 午夜两性在线视频| 免费在线观看黄色视频的| 午夜精品国产一区二区电影| 日本vs欧美在线观看视频| 亚洲少妇的诱惑av| 久久久久久亚洲精品国产蜜桃av| 国产野战对白在线观看| 欧美国产精品一级二级三级| 亚洲第一青青草原| 亚洲精品久久午夜乱码| 国产三级黄色录像| 不卡av一区二区三区| 中国美女看黄片| 一区二区三区激情视频| 别揉我奶头~嗯~啊~动态视频 | 中文欧美无线码| 亚洲国产欧美日韩在线播放| 女警被强在线播放| 嫩草影视91久久| 久久久久视频综合| 男人添女人高潮全过程视频| 欧美中文综合在线视频| 国产欧美日韩一区二区三 | 午夜激情av网站| 日韩大码丰满熟妇| 热re99久久精品国产66热6| 一区在线观看完整版| 老熟妇仑乱视频hdxx| 视频区图区小说| 极品少妇高潮喷水抽搐| 中文字幕色久视频| 日韩欧美一区视频在线观看| 国产成人啪精品午夜网站| 他把我摸到了高潮在线观看 | 久久久久精品国产欧美久久久 | 久久久久国内视频| 性色av一级| 别揉我奶头~嗯~啊~动态视频 | 两性夫妻黄色片| 老司机靠b影院| 国产极品粉嫩免费观看在线| 亚洲伊人色综图| 在线av久久热| 午夜福利乱码中文字幕|