• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatial Dependent Spontaneous Emission of an Atom in a Semi-In finite Waveguide of Rectangular Cross Section?

    2018-05-05 09:13:36HaiXiSong宋海希XiaoQiSun孫曉祺JingLu盧競andLanZhou周蘭
    Communications in Theoretical Physics 2018年1期

    Hai-Xi Song(宋海希),Xiao-Qi Sun(孫曉祺),Jing Lu(盧競),and Lan Zhou(周蘭)

    Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education,Department of Physics and Synergetic Innovation Center of Quantum Effects and Applications,Hunan Normal University,Changsha 410081,China

    1 Introduction

    Any quantum system inevitably interacts with its surroundings,which possess a huge amount of uncontrollable degrees of freedom.Such interaction causes the rapid destruction of quantum coherence,which is an essential requirement for quantum information processing to fully exploit the new possibilities opened by quantum mechanics.For example,the information stored in two-level systems(we refer to atoms hereafter)can be destroyed by their surrounding electromagnetic field.Spontaneous emission(SE)is one of the most prominent effects in the interaction of atoms with vacuum.It is an atomic radiation as follow:an atom is initially in an excited state relax to its ground state and emit a quanta of energy to its surrounding vacuum electromagnetic(EM) field,which carries away the difference in energy between the two levels.

    SE is not only useless but also harmful to quantum information process.However,recently studies have shown that it is useful to build a device in a quantum network for controlling single photon by a local atom,e.g.the atomic radiation leads to the total re flection of the single-photon propagating in one quantum channel,[1?2]the frequency converter for single photon,[3]and the transfer of single photon from one quantum channel to the other.[4]Nowadays,great interest has been paid on the use of atoms to act as a quantum node in extended communication networks and scalable computational devices.[15?18]As the SE rate of a single atom can be modi fied by a succession of short and strong pulses or measure to the quantum system,[19?22]a dynamical Quantum-Zeno-Effect(QZE)switch for single photon is proposed.[5]The quantum interference between multiple transition pathways of atomic internal states has been exploited to modify the transport property of the single photon in a quantum channel.[9]With the well-known result that the atomic SE depends on the electromagnetic vacuum environment that the atom is subjected to,a boundary has been used to increase the efficiency of the quantum router.[12]

    Actually,the SE rate of a single atom is one of the basic topic of quantum electrodynamics,numerous studies of the SE rates[23]have been carried out for atoms in free space(e.g.Ref.[24]),in a cavity(e.g.Ref.[25]),near a metallic mirror(e.g.Ref.[26])or a dielectric interfacer(e.g.Ref.[27]),between two mirrors(e.g.Ref.[28])or two dielectric interfaces(e.g.Ref.[29]).However,photons used to transmit information or distribute the entanglement along the network,are con fined in a one-dimensional(1D)waveguide.Similar to cavities,1D waveguide has a well-de fined mode spectrum and a relatively loss-free environment.However,unlike cavities,modes are available in waveguide for photons to propagate.The geometry constraint not only con fines the propagating direc-tion of photon,but also gives rise to an increasing of the interference effects.Since photons do not interact with each other,atoms implanted in waveguide are necessary to mediate the photon-photon interaction or redirect the possible propagating directions.The coupling strength of atoms to the waveguide is enhanced by decreasing the mode volume.Consequently,the atomic radiation in 1D waveguide plays an important role in controlling photons in quantum networks.And the studies on the atoms in 1D waveguide are now referred to by the term“waveguide quantum electrodynamics(QED).”

    Since the radiative properties of an atom in a con fined space differ fundamentally from that in free space,considerable interest has been paid on atoms in a semi-in finite or in finite 1D waveguide.However most works focus on 1D waveguide without a cross section.[30?34]In this paper,we study the radiative properties of an atom in a semiin finite waveguide of rectangular cross section,which is a typical 1D QED system.The termination of the waveguide is regarded as a perfect mirror,which re flects emitted photons back to the atom.We analyze the interaction of an initially excited two-level atom with the waveguide in vacuum.The Markovian approximation is first used to analyze the dependence of the SE rate on the density of states and the spatial pro file of the waveguide.To find the in fluence of the time that one-photon wave packet requires to bounce back and forth between the atom and the mirror,we perform the linear expansion of the dispersion relation for the atomic transition frequency far away from the cuto fffrequencies,and obtain a delay-differential equation.Then the atomic SE dynamics is studied by varying the cross section of the waveguide as well as the atomic location.

    This paper is organized as follows.In Sec.2,we introduce the system we have studied.In Sec.3,we derive the relevant equations describing the dynamics of the system in single-excitation subspace.In Sec.4,we do the Markovian approximation to study the effect of the mode pro file on the spontaneous rate.In Sec.5,the atomic dynamics is studied by linearly expanding the dispersion relation around the transition frequency,which is valid far from the branch threshold,where the delay time is introduced.Finally,we conclude this work in Sec.6.

    2 An Atom Inside a Rectangular Pipe Waveguide

    The system we studied is shown in Fig.1.A waveguide made of ideal perfect conducting walls is formed from surfaces at,and is placed along thezaxis.The waveguide is assumed to be in finite along thezdirection.The boundary condition restricts photons to travel without loss of power in two independent guiding modes:[35?36]TE modes whose electric field has no longitudinal component,and TM modes whose magnetic field has no longitudinal component.Letbe the wave vector.The relationskx=mπ/aandky=nπ/awith positive integersn,mcan be imposed by the condition that the tangential components of the electric field vanish at all the conducting wall,however,there is no constraint onk.Therefore,the waveguide allows a continuous range of frequencies described by the dispersion relation

    is the minimum frequency for a traveling wave.We note thatmandncannot both be zero.Ifa>b,TE10is the lowest guiding mode for the waveguide,[37]and the lowest TM modes occur form=1,n=1.Obviously,the waveguide modes form a one-dimensional continuum.Each guiding mode provides a quantum channel for photons to travel from one location to the other.

    Fig.1 (Color online)Schematic illustration for(a)the two-level atom embedded in a semi-in finite waveguide of rectangular cross section,and(b)the dispersion relation of the guiding modes,which interact with the atom atr=(a/2,b/2,z0)with a=2b.

    Atis an atom with transition frequencyωAbetween upper level|e>and lower level|g>,which is excited initially.The atom sits inside the hollow waveguide.z0is the distance between the atom to the wall(or the mirror)atz=0.The free Hamiltonian for the atom is described by

    whereis the rising(lowering)atomic operator.For the purpose of simplicity,the electric dipole of the stationary atom is assumed to be oriented along thezdirection,which means that the atom only interacts with the TMmnmodes.Since the number(m,n,k)speci fies the mode function of this air- filled metal pipe waveguide,we label the annihilation operator for each TM guiding mode byamnk.The free Hamiltonian for the waveguide is described by

    where the coupling strength Here,?0the permittivity of free space,dthe magnitude of the transition dipole moment of the atom and assumed to be real,A=abthe area of the rectangular cross section.Using the dispersion relation,the coupling strength can be rewritten as

    The cosine function in Eqs.(5)and(6)occurs due to the termination of the waveguide,which presents the difference from the in finite waveguide.Obviously,the atom located atx0=a/2 andy0=b/2 decouples to the TMmnguiding mode with even integermorn.The total system are described by Hamiltonian

    3 Evolution of the Atom-Vacuum System

    In this section we study the dynamics of the system when the atom is initially in the excited state|e>and the field is in the vacuum state|0>.Since the number of quanta is conserved in this system,we can write the wavefunction of the system as:

    in one quantum subspace.The first term in Eq.(7)describes the atom in the excited state with no photons in the field,ε(t)is the corresponding amplitude,whereas the second term in Eq.(7)describes the atom in the ground state with a photon emitted at a modekof the TMmnguiding mode,φmn(k,t)is the corresponding amplitude.The initial state of the system is denoted by the amplitudesε(0)=1,φmn(k,0)=0.The Schr¨odinger equation results in the following coupled equation of the amplitudes

    where the overdot indicates the derivative with respect to time.The population of the atomic excited state are usually analyzed by eliminating the field variables and focusing on the dynamics of the radiating system.We start by removing the high frequency term in Eq.(8)via the transformation

    Then we formally integrate equation of,which is later inserted into the equation for.The probability amplitude for the excited atomic state is determined by the following integro-differential equation

    Equation(10)shows that the value ofdepends on the values ofat all earlier time.

    4 Spatial Dependence of the Spontaneous Rate

    To see how the mode distribution of the quantum vacuum fluctuation modi fies the atomic spontaneous rate,weon the right-hand side of Eq.(10),and the amplitude of levelreads

    weighted by the strength of the coupling to the continuum.Since the dispersion relation of the semi-in finite waveguide is the same as that of the in finite rectangular waveguide,ρ(ω)in Eq.(14)is also the density of state of the in finite rectangular waveguide.For weak atom- field coupling,the amplitude of level|e>decays exponentially

    The modal pro file affects on the decay rate via location of the atom.If the atom is located atx0=a/2 andy0=b/2,no photons are radiated into the TMmnguiding mode with even integermornsince the guiding mode is standing waves in the transverse direction.The cuto fffrequencies also affect the decay rate via the local density of states.In Fig.1(b),we have given a schematic diagram of the dispersion relation of the guiding modes,which interact with the atom atr=(a/2,b/2,z0)fora=2b.If the transition frequencyωA

    In Fig.2(a),we have plotted the probability of finding the atom in its excited state as a function of Γtfor three different values ofz0=0,λ1A/8,λ1A/4,where

    It can be seen that in the intervalz0∈[nλ1A,nλ1A+λ1A/4]with integern,the SE rate decreases as the atommirror separation increases.However in the interval its SE rate increases asz0increases.Since cosxis a periodical function of the argumentx,the figure is only plotted inz0∈[0,λ1A/4].It can be seen that atz0=nλ1A+λ1A/4,the SE is completely suppressed.Since we have set thata=2b,TM51and TM13is the third and fourth guiding modes,which might be interacting with the atom.When ?31<ωA

    Fig.2 (Color online)Atomic excitation probability as function of Γt with a=2b.(a)The transition frequency ωA=(?11+?31)/2.The atom is located at three different positions z0=0(black dot-dashed line),z0= λ1A/8(blue solid line),z0= λ1A/4(red dashed line).(b)The transition frequency ωA=(?31+ ?51)/2.The atom is located at z0=λ1A/4.The red dashed line presents the contribution of the TM11mode.The blue solid line gives the contribution of both TM11and TM31modes.

    One can also obtain the spontaneous rate in Eq.(18)by replacing?ε(τ)with?ε(t)in Eq.(10)and making the up limit of integral tend to in finite.Hence,the Markovian approximation yields the same phenomenon in the context below Eq.(18),which means that retardation effect is neglected.

    5 Atomic Population of the Excited State

    An excited atom relaxes to its ground state accompanied by a release of a photon to the EM vacuum.In this hollow waveguide,the emitted photon propagates along the positive and negativezdirections.Since the termination of the waveguide imposes a hard-wall boundary condition on the field,which behaves as a perfect mirror,the photon traveling along the negativezaxis is retrore flected to the atom,and re-excites the atom,which leads to a non-Markovian type dynamics of the system.[40]In this section,we study the spontaneous emission dynamics involving the retardation time for atom located atr=(a/2,b/2,z0)witha=2b.For the convenience of discussion,we denote the transversally con fined propagating modes,which couple to the atom as TMjwithj=(m,n)according to the ascending order of the cuto fffrequencies.By assuming that the transition frequencyωAis far away from the cuto fffrequencies ?j,we can expand frequencyωjkaround the transition frequencyωAup to the linear term

    is different for different TMjguiding modes.We substitute Eq.(21)into integro-differential equation(10).Integrating over all wave vectorskgives rise to a linear combination ofδ(t±τj?τ)andδ(t?τ),whereτj=2z0/vjis the time that the emitted photon take the round trip between the atom and the mirror in the give transverse modej.We approximately obtain a delay-differential equation

    for the probability amplitude that the atom at timetis in the excited state,where

    The first term on the right hand side of Eq.(23)leads to the exponential decay of the atom.The second term involved the timeτjthat the light needs for the distance atom-mirror-atom,which represents the effect of the reflected radiation on the atom that was emitted at timeτjin the TMmnmode before it interacts again with the atom.

    5.1 SE Dynamics in Single Mode

    In the frequency band between ?11and ?31,the waveguide is said to be single-moded.The atom with the transition frequencyωA∈(?11,?31)only interacts with the TM11(j=1)guiding mode,the delay-differential equation reduces to

    where Γ1= Γ given in Eq.(20).For the case that the retarded argumentτ1→0,the memory effects inherent in the system disappear.The amplitude of state|e>becomes

    The SE rate and the frequency shift are presented by the real part 2Γ(1+cosφ1)and imagine part Γsinφ1,respectively.In the limitτ1→∞,the second term of Eq.(25)vanishes.Since the waveguide becomes in finite,the atomic population decays exponentially and the SE rate Γ is independent of the coordinatez0.

    Fig.3(Color online)Amplitude|?ε(t)|versus Γt with delay Γτ1=0.1(a)and Γτ1=1(b)in the following cases:no termination(black solid line),phase φ1=2nπ+π/2(blue dotted line),φ1=2nπ+π (red dashed line),φ1=2nπ (green dash-dotted line).We have set the following parameters:a=2b,ωA=(?11+?31)/2.Since both φ1and τ1are related to the distance z0,different phases are achieved by adjusting the ratio a/d.

    It can be seen from Eq.(25)that the time axis is divided into intervals of lengthτ1.We can formally integrate Eq.(25)and change the dummy integration variable,which is then substituted into the integrand.Proceeding inde finitely with iteration,the time behavior of the atomic state populations reads

    A step character is presented in Eq.(26).Fort∈[0,τ1],the atomic amplitude?ε(t)=exp(?Γt)decays exponentially,which coincides with the behavior of an excited atom in an in finite waveguide.The underlying physics is that the atom requires at least the timeτ1to recognize the mirror.Fort∈[τ1,2τ1],due to the emitted radiation re flected back to the atom,l=1 term has been included,which gives rise to the interference for finding the atom in the excited state.In Fig.3,we have plotted the norm|?ε(t)|of the atomic amplitude versus Γtwith delay Γτ1=0.1(a)and Γτ1=1(b).The exponential decay of the atom inside an in finite waveguide is plotted with the black solid line.When Γτ1?1,an exponential decay law is found,however,the SE can be either increased or descreased by the phase.The SE is completely suppressed when phaseφ1=(2n+1)π.When Γτ1≥1,the atom first decays exponentially,after the atom recognizes the mirror,it displays a behavior deviating from the exponential decay law,and a partial revival of the atomic population can be found.It is the interference between the emitted wave and the radiation wave re flected back to the atom,which makes the atom-mirror separationz0has signi ficant in fluence on the atomic dynamic via the phase.When the distance between the atom and the termination are further large(i.e.,Γτ1?1),it is found from Fig.5(a)that there is also a partial revival of the atomic population,however,the atom-mirror separationz0does not make any sense.In this case,the atom has already decayed to the ground state at the time that the photon bounces back to the atom,so there is no emitted wave to be interference with the wave re flected back to the atom,which means that the atomic revival is due to the atom being partially re-excited by the radiation.Since the light emitted in the positive direction has departed from the atom,the probability that the atom is re-excited becomes lower and lower.

    5.2 SE Dynamics in Multiple Modes

    An excited atom radiates waves into the continua of all modes resonant with the atom.When the cross area becomes larger,more modes are included in the resonance,then the atomic dynamics is not only affected by the timeτ1that light needs to bounce back and forth between the atom and the termination in the TM11mode,but also by other timeτjrequired for a photon emitted by the atom to propagate in the TMmnmode and reabsorbed by the atom.The de finition of delay timeτjtold us thatτj<τj+1.

    In this section,we assume that the atomic transition frequency is in the regime[?31,?51],which means that only two TM modes(i.e.TM11,TM31)in resonance with the atom,the delay-differential equation reduces to

    The space dependence enters via both the phasesφ1,φ2and the delay timeτ1,τ2of the different modes.If both argumentsτ1,τ2→0,the amplitude of state|e>becomes

    Two terms are consisted of in the above equation,the SE rateand frequency shift.Comparing to the single mode case,the SE rate is enhanced,however the frequency shift can be either increased or decreased due to the space dependence.In the limit,the second and third terms of Eq.(27)vanish.The amplitudeshows that the atomic population decays exponentially,Γ+Γ2is the SE rate that the atom interacts with the continuum of the TM11and TM31modes of an in finite waveguide,which is also independent of the coordinatez0.In the case thatτ1→0,the delay-differential equation reads

    Using Laplace transformation and geometric series expansion,the solution reads

    If the atom is located atz0satisfyingφ1=(2n+1)π,the SE that the TM11mode contributes to is completely suppressed,then one obtains the SE dynamics due to the emitted photon propagating only via the continuum of the TM31mode.In the case with finiteτ1andτ2→∞,the upper state amplitude becomes

    However,it is impossible for an atom inside a realistic waveguide to appear the dynamics described by Eq.(31).In Fig.4,we have numerically plotted the amplitudeas a function of Γtwith Γτ1=0.1(a)and 1(b).It can be seen that in the interval[0,τ1],the upper state population of the atom decays exponential with a rate Γ+Γ2.After timeτ1,photons emitted by the atom are re flected back to the atom by the mirror so that the atom-mirror distance has great in fluence on the SE dynamics via phaseandτj.Phaseφ1first gives arise to deviation from the decay with a rate Γ + Γ2in the interval[τ1,τ2].As soon ast>τ2,the wave propagating in the TM31mode is reflected back to the atom by the mirror,phasedeviates the atomic dynamics from that of finiteτ1andτ2→∞.In the weak coupling case(see,Fig.4(a),the excited state probability decreases as the time increases.However,in the strong coupling case,several peaks can be observed in Fig.4(b),which present partial revivals of the atom probability when Γτ1≥1.Comparing to the time evolution in Fig.3,the SE is enhanced for a given phaseφ1.Phaseφ2and retardation timeτ2shift the position of the peak and the dip.

    In Fig.5,we have numerically plotted the probabilityas a function of Γtwith delay Γτ1=10 for(a)single-moded and(b)double-moded cases.When the photon returns back to the atom,the atom has already decayed to its ground state,it is impossible for interference to occur so that the phasesφjhave no effect on the atomic dynamics.The peaks at timet>τ1owe to the re flected light reabsorbed by the atom.By comparing two figures in Fig.5,we found that the probability that the atom is reexcited by the radiation wave is lower in the multiple-mode case than that in the single-mode case,and more peaks appear in the intervalfor the multiple-mode case.Such observations are easy to understand because there are more transverse modes to interact with the atom.

    Fig.4(Color online)Amplitudeversus Γt with delay Γτ1=0.1(a)and Γτ1=1(b)in the following cases:no termination(black solid line),phase φ1=2nπ+π/2(blue dotted line),φ1=2nπ+π (red dashed line),φ1=2nπ (green dash-dotted line).We have set the following parameters:a=2b,ωA=(?31+?51)/2.

    Fig.5(Color on line)Probabilityversus Γt with delay Γτ1=10 with phase φ1=2nπ+π/2(blue dotted line),φ1=2nπ+π (red dashed line),φ1=2nπ (green dash-dotted line)in the following cases:(a)single modetwo modes ωA=(?31+?51)/2.Here,a=2b.

    6 Discussion and Conclusion

    We have studed the dynamics of an atom inside a hollow waveguide of rectangular cross sectionA=ab,made of ideal perfect conducting walls.Such 1D waveguide generally consists of both TE and TM waves,the atom with dipole along thez-direction interacts only with the TMmntransverse modes,their coupling strength depends on the atomic location.A two-level atom with location fixed at(a/2,b/2,z0)is considered,which decouples to fields of the TM modes with even integerm,n.We have first discussed the dependence of the SE rate on the atommirror separation and the density of states by Markovian approximation(i)Since the density of state vanishes below ?11,the SE is completely suppressed whenωAτ1,two situations should be distinguished.For short retardation time,the interference between the radiation wave and the emitted wave makes the dynamics is strongly dependent onφj.For long retardation time,the atom has already decay to its ground state when the photon returns back to the atom,the partial revivals and collapses are due to the photon reabsorbed and re-emitted by the atom.

    Appendix

    The quantization of the waveguide field is based on the classical Maxwell equations with the boundary condition of metallic rectangular waveguides.The electric field can

    wheren,mare non-negative integers,andA1,A2,A3are the normalization constants.There are two mode functions in the waveguide,the transverse electric wave(TE mode function)and the transverse magnetic wave(TM mode function).For TE mode function,the Maxwell equation requires?·E=0,which meanskxA1+kyA2=0,so TE mode function reads

    with the normalization condition.For TM mode function,the Maxwell equations require?·E=0,which means

    [1]J.T.Shen and S.Fan,Phys.Rev.Lett.95(2005)213001;Opt.Lett.30(2005)2001;ibid.98(2007)153003;Opt.Lett.30(2005)2001.

    [2]L.Zhou,Z.R.Gong,Y.X.Liu,et al.,Phys.Rev.Lett.101(2008)100501.

    [3]Z.H.Wang,L.Zhou,Y.Li,and C.P.Sun,Phys.Rev.A 89(2014)053813.

    [4]L.Zhou,L.P.Yang,Y.Li,and C.P.Sun,Phys.Rev.Lett.111(2013)103604;J.Lu,L.Zhou,L.M.Kuang,and F.Nori,Phys.Rev.A 89(2014)013805.

    whereA=abis the crosssection of rectangular waveguide.The dipole of the TLS oriented along thezdirection is only coupled to the TM modes.The dipole coupling of the TLS to the TM field is given bydegEmnk(r0)wheredegis the dipole of the TLS andr0is the location of the TLS,withr0=(a/2,b/2,z0)the coupling coefficientgmnkis given by

    [5]L.Zhou,S.Yang,Y.X.Liu,et al.,Phys.Rev.A 80(2009)062109.

    [6]H.X.Zheng,D.J.Gauthier,and H.U.Baranger,Phys.Rev.A 82(2010)063816;Phys.Rev.Lett.107(2011)223601;Phys.Rev.A 85(2012)043832;Phys.Rev.Lett.111(2013)090502.

    [7]D.Roy,Phys.Rev.Lett.106(2011)053601;Phys.Rev.B 81(2010)155117;Phys.Rev.A 83(2011)043823.

    [8]L.Zhou,H.Dong,Y.X.Liu,et al.,Phys.Rev.A 78(2008)063827;L.Zhou,Y.Chang,H.Dong,et al.,Phys.Rev.A 85(2012)013806.

    [9]Z.R.Gong,H.Ian,L.Zhou,and C.P.Sun,Phys.Rev.A 78(2008)053806.

    [10]T.S.Tsoi and C.K.Law,Phys.Rev.A 78(2008)063832.

    [11]L.Neumeier,M.Leib,and M.J.Hartmann,Phys.Rev.Lett.111(2013)063601.

    [12]L.Lu and L.Zhou,Opt.Express.23(2015)22955.

    [13]F.Lecocq,J.B.Clark,R.W.Simmonds,et al.,Phys.Rev.Lett.116(2015)043601.

    [14]C.H.Yan,L.F.Wei,W.Z.Jia,and J.T.Shen Phys.Rev.A 84(2011)045801.

    [15]M.T.Cheng,X.S.Ma,M.T.Ding,et al.,Phys.Rev.A 85(2012)053840.

    [16]P.Longo,P.Schmitteckert,and K.Busch,Phys.Rev.Lett.104(2010)023602;Phys.Rev.A 83(2011)063828(2011);P.Longo,J.H.Cole,and K.Busch,Opt.Express 20(2012)12326.

    [17]M.Alexanian,Phys.Rev.A 81(2010)015805.

    [18]T.Shi and C.P.Sun,Phys.Rev.B 79(2009)205111;T.Shi,S.Fan,and C.P.Sun,Phys.Rev.A 84(2011)063803;T.Shi and S.Fan,Phys.Rev.A 87(2013)063818.

    [19]Qi-Cheng Wu,Ye-Hong Chen,Bi-Hua Huang,et al.,Opt.Express.24(2016)22847.

    [20]Ye-Hong Chen,Qi-Cheng Wu,Bi-Hua Huang,et al.,Ann.Phys.2017(2017)00247.

    [21]Ye-Hong Chen,Zhi-Cheng Shi,Jie Song,et al.,Phys.Rev.A 96(2017)043853.

    [22]Qi-Cheng Wu,Ye-Hong Chen,Bi-Hua Huang,et al.,Phys.Rev.A 94(2016)053421.

    [23]H.Walther,Phys.Rep.219(1992)263.

    [24]J.Audretsch and R.M¨ullert,Phys.Rev.A 50(1994)1755.

    [25]D.Kleppner,Phys.Rev.Lett.47(1981)233.

    [26]R.J.Cook and P.W.Milonni,Phys.Rev.A 35(1987)5081;G.Alber,J.Z.Bern′ad,M.Stobi′nska,et al.,Phys.Rev.A 88(2013)023825.

    [27]C.K.Carniglia and L.Mandkl,Phys.Rev.D 3(1971)280.

    [28]W.Jhe,Phys.Rev.A 43(1991)5795;ibid.44(1991)5932.

    [29]H.P.Urbach and G.L.J.A.Rikken,Phys.Rev.A 57(1998)3913.

    [30]H.Dong,Z.R.Gong,H.Ian,L.Zhou,and C.P.Sun,Phys.Rev.A 79(2009)063847.

    [31]K.Koshino and Y.Nakamura,New J.Phys.14(2012)043005.

    [32]T.Tufarelli,F.Ciccarello,and M.S.Kim,Phys.Rev.A 87(2013)013820.

    [33]M.Bradford and J.T.Shen,Phys.Rev.A 87(2013)063830.

    [34]Y.L.L.Fang and H.U.Baranger,Phys.Rev.A 91(2015)053845.

    [35]Q.Li,L.Zhou,and C.P.Sun,Phys.Rev.A 89(2014)063810.

    [36]J.F.Huang,T.Shi,C.P.Sun,and F.Nori,Phys.Rev.A 88(2013)013836.

    [37]Jin Au Kong,Electromagnetic Wave Theory,John Wiley&Sons,New York(1986)pp.166-170.

    [38]A.G.Kofman and G.Kurizki,Nature(London)405(2000)546.

    [39]A.G.Kofman and G.Kurizki,Phys.Rev.Lett.87(2001)270405.

    [40]P.Zhang and M.W.Wu,Phys.Rev.B 76(2007)193312.

    中文天堂在线官网| 国产午夜精品一二区理论片| 天堂中文最新版在线下载 | 亚洲婷婷狠狠爱综合网| 18禁动态无遮挡网站| 在线播放无遮挡| 国产免费福利视频在线观看| 色吧在线观看| 18禁在线无遮挡免费观看视频| 久久人人爽人人片av| 国产一区有黄有色的免费视频| 久久久久国产网址| 久久久久精品久久久久真实原创| 免费观看无遮挡的男女| 99热全是精品| 99re6热这里在线精品视频| 男人舔奶头视频| 高清av免费在线| 禁无遮挡网站| 联通29元200g的流量卡| 永久免费av网站大全| 丰满人妻一区二区三区视频av| 一个人观看的视频www高清免费观看| 嘟嘟电影网在线观看| 午夜免费观看性视频| 午夜福利在线观看免费完整高清在| 久久久成人免费电影| 亚洲国产精品成人综合色| 超碰97精品在线观看| 久久亚洲国产成人精品v| 国产爱豆传媒在线观看| 搡老乐熟女国产| 国产精品99久久99久久久不卡 | 天美传媒精品一区二区| 欧美极品一区二区三区四区| 夫妻性生交免费视频一级片| 亚洲精品乱久久久久久| 下体分泌物呈黄色| 国产精品人妻久久久久久| 国产爱豆传媒在线观看| 18禁在线播放成人免费| 国产精品久久久久久久久免| 国产白丝娇喘喷水9色精品| 看非洲黑人一级黄片| 亚洲精品国产色婷婷电影| 大片免费播放器 马上看| 国模一区二区三区四区视频| 国产视频内射| 男人添女人高潮全过程视频| 看黄色毛片网站| 免费大片黄手机在线观看| 国产成人精品福利久久| 夜夜看夜夜爽夜夜摸| 亚洲自拍偷在线| 免费大片18禁| 啦啦啦啦在线视频资源| 黄色日韩在线| 自拍欧美九色日韩亚洲蝌蚪91 | 观看美女的网站| 热re99久久精品国产66热6| 国产毛片在线视频| 美女主播在线视频| 丰满少妇做爰视频| 成人美女网站在线观看视频| 国产乱人视频| 亚洲最大成人av| 99热6这里只有精品| 80岁老熟妇乱子伦牲交| 亚洲天堂av无毛| 亚洲精品久久午夜乱码| 亚洲国产精品国产精品| 纵有疾风起免费观看全集完整版| a级毛片免费高清观看在线播放| 国产人妻一区二区三区在| 联通29元200g的流量卡| 亚洲成人精品中文字幕电影| 午夜亚洲福利在线播放| 国产91av在线免费观看| 国产高清不卡午夜福利| 亚洲一级一片aⅴ在线观看| 欧美激情久久久久久爽电影| 最新中文字幕久久久久| 国语对白做爰xxxⅹ性视频网站| 中文在线观看免费www的网站| 日本免费在线观看一区| 成人特级av手机在线观看| 秋霞在线观看毛片| 免费看不卡的av| 国产极品天堂在线| 一二三四中文在线观看免费高清| 国产亚洲av片在线观看秒播厂| 国产有黄有色有爽视频| 有码 亚洲区| 51国产日韩欧美| 在线播放无遮挡| 亚洲精品日韩av片在线观看| 欧美激情在线99| 18禁动态无遮挡网站| 黄色日韩在线| 亚洲自偷自拍三级| 国产乱来视频区| 亚洲,欧美,日韩| 免费观看a级毛片全部| av国产精品久久久久影院| 国产爽快片一区二区三区| 成人亚洲欧美一区二区av| 成人国产av品久久久| 三级经典国产精品| 亚洲av免费在线观看| 好男人在线观看高清免费视频| 国产淫语在线视频| 国产 一区精品| 女人十人毛片免费观看3o分钟| 蜜桃久久精品国产亚洲av| 成人免费观看视频高清| 精品一区二区免费观看| 色婷婷久久久亚洲欧美| 国产毛片在线视频| 日韩大片免费观看网站| 青春草国产在线视频| 日韩国内少妇激情av| 成人国产麻豆网| 性色avwww在线观看| 男人添女人高潮全过程视频| 97人妻精品一区二区三区麻豆| 亚洲国产精品成人综合色| 中文在线观看免费www的网站| 麻豆久久精品国产亚洲av| 国产一区二区亚洲精品在线观看| 99热这里只有是精品在线观看| 中文资源天堂在线| www.色视频.com| 中文乱码字字幕精品一区二区三区| 免费av观看视频| 亚洲精品日韩av片在线观看| 免费观看的影片在线观看| 可以在线观看毛片的网站| 亚洲av国产av综合av卡| 免费观看无遮挡的男女| 秋霞伦理黄片| 国产精品av视频在线免费观看| 最近手机中文字幕大全| 熟女av电影| eeuss影院久久| 亚洲国产最新在线播放| 日日摸夜夜添夜夜添av毛片| 久久久成人免费电影| 中文乱码字字幕精品一区二区三区| 亚洲欧美成人精品一区二区| 亚洲国产av新网站| 久久人人爽人人片av| 国产成人精品福利久久| 亚洲国产欧美人成| 亚洲不卡免费看| 国产免费一级a男人的天堂| av一本久久久久| 久热久热在线精品观看| 插逼视频在线观看| 偷拍熟女少妇极品色| 99久久人妻综合| 亚洲av日韩在线播放| 嫩草影院精品99| 狠狠精品人妻久久久久久综合| 你懂的网址亚洲精品在线观看| 日韩av免费高清视频| 成年免费大片在线观看| 欧美三级亚洲精品| 亚洲精品国产成人久久av| 亚洲av不卡在线观看| 美女脱内裤让男人舔精品视频| 久久久久久国产a免费观看| 干丝袜人妻中文字幕| 人人妻人人澡人人爽人人夜夜| xxx大片免费视频| 久久精品国产亚洲网站| 天堂中文最新版在线下载 | 男人添女人高潮全过程视频| 成人国产麻豆网| 国产老妇伦熟女老妇高清| 久热这里只有精品99| 哪个播放器可以免费观看大片| 一区二区三区乱码不卡18| 国产伦精品一区二区三区四那| 欧美日韩在线观看h| 最后的刺客免费高清国语| 赤兔流量卡办理| 久久久久精品久久久久真实原创| 少妇猛男粗大的猛烈进出视频 | 国产乱人视频| 久久久久久久午夜电影| 男人和女人高潮做爰伦理| 建设人人有责人人尽责人人享有的 | 另类亚洲欧美激情| 久久久久久久久久人人人人人人| 在线观看av片永久免费下载| 七月丁香在线播放| 麻豆精品久久久久久蜜桃| h日本视频在线播放| 亚洲内射少妇av| 91精品国产九色| 亚洲av日韩在线播放| 最近中文字幕高清免费大全6| 真实男女啪啪啪动态图| 日韩伦理黄色片| 中文乱码字字幕精品一区二区三区| 内射极品少妇av片p| 高清日韩中文字幕在线| 99热6这里只有精品| 成人亚洲欧美一区二区av| 搡老乐熟女国产| videos熟女内射| 2022亚洲国产成人精品| 国内精品宾馆在线| 国产男女超爽视频在线观看| 在线观看美女被高潮喷水网站| 极品少妇高潮喷水抽搐| 欧美日韩视频精品一区| 99热6这里只有精品| 欧美日韩综合久久久久久| 精品一区二区三卡| 亚洲av男天堂| 国产精品久久久久久精品古装| 熟女电影av网| 听说在线观看完整版免费高清| 亚洲av在线观看美女高潮| 男女边摸边吃奶| 六月丁香七月| 日韩一区二区视频免费看| 看非洲黑人一级黄片| 国产精品99久久99久久久不卡 | 亚洲精品第二区| 亚洲成色77777| 噜噜噜噜噜久久久久久91| 亚洲图色成人| 亚洲精品成人久久久久久| 丝袜脚勾引网站| 伊人久久精品亚洲午夜| 色哟哟·www| 高清毛片免费看| 国产极品天堂在线| 国产精品99久久99久久久不卡 | 韩国av在线不卡| 高清午夜精品一区二区三区| 丝袜美腿在线中文| 欧美日本视频| 有码 亚洲区| 精品亚洲乱码少妇综合久久| 欧美bdsm另类| 啦啦啦啦在线视频资源| 我的老师免费观看完整版| 国产成人免费无遮挡视频| 看黄色毛片网站| av免费在线看不卡| 99久久人妻综合| 22中文网久久字幕| 国语对白做爰xxxⅹ性视频网站| 搞女人的毛片| 国产av不卡久久| 欧美高清性xxxxhd video| 午夜日本视频在线| 大香蕉97超碰在线| 成人亚洲欧美一区二区av| 在线观看美女被高潮喷水网站| 欧美潮喷喷水| 国产一区亚洲一区在线观看| 国产综合懂色| 国产精品av视频在线免费观看| 麻豆精品久久久久久蜜桃| 日本黄大片高清| 欧美成人a在线观看| 91狼人影院| 国产成人福利小说| 中文字幕久久专区| 久久久成人免费电影| 国产精品久久久久久精品古装| 久久久久久九九精品二区国产| 欧美日韩国产mv在线观看视频 | 免费av观看视频| 黄片无遮挡物在线观看| 在线免费观看不下载黄p国产| 熟女电影av网| 丝袜美腿在线中文| 久久久久国产网址| 91在线精品国自产拍蜜月| 国产又色又爽无遮挡免| 久久久精品94久久精品| 可以在线观看毛片的网站| 色吧在线观看| 精品人妻一区二区三区麻豆| 久久99热这里只有精品18| 国产精品久久久久久精品古装| 日韩av不卡免费在线播放| 亚洲最大成人手机在线| 国产av码专区亚洲av| 91在线精品国自产拍蜜月| 亚洲精品一二三| 国产男女内射视频| 成年女人在线观看亚洲视频 | 亚洲图色成人| 日本黄大片高清| 久久97久久精品| 精品视频人人做人人爽| 国产黄频视频在线观看| 99热全是精品| 日产精品乱码卡一卡2卡三| 在线免费十八禁| 欧美三级亚洲精品| 一区二区三区免费毛片| 久久久久久久久久久免费av| 91久久精品国产一区二区成人| 亚洲av中文字字幕乱码综合| 日韩av免费高清视频| 国产一区有黄有色的免费视频| 99久久精品热视频| 尤物成人国产欧美一区二区三区| 精品久久久久久电影网| 久久精品国产a三级三级三级| 国产 一区精品| 久久99热6这里只有精品| 日韩av不卡免费在线播放| 亚洲精品日本国产第一区| 你懂的网址亚洲精品在线观看| 六月丁香七月| 大陆偷拍与自拍| 欧美成人a在线观看| 黄色一级大片看看| 亚洲欧美日韩卡通动漫| 欧美人与善性xxx| 激情五月婷婷亚洲| 国产成人午夜福利电影在线观看| 欧美另类一区| 免费看不卡的av| 97在线视频观看| 日韩视频在线欧美| 国产国拍精品亚洲av在线观看| 老女人水多毛片| 亚洲怡红院男人天堂| 亚洲人成网站在线播| 日韩中字成人| 亚洲精品国产av蜜桃| 婷婷色综合大香蕉| 久久精品久久久久久久性| 成人亚洲欧美一区二区av| 成人国产av品久久久| 偷拍熟女少妇极品色| 国产伦精品一区二区三区四那| 亚洲av免费在线观看| 97在线人人人人妻| 国产一区二区在线观看日韩| 国产精品嫩草影院av在线观看| 丝瓜视频免费看黄片| 在现免费观看毛片| 真实男女啪啪啪动态图| 91狼人影院| 婷婷色综合大香蕉| 丝袜美腿在线中文| 99热这里只有是精品50| 精品人妻偷拍中文字幕| 国产成人aa在线观看| 交换朋友夫妻互换小说| 久久精品夜色国产| 国产精品偷伦视频观看了| 免费在线观看成人毛片| 只有这里有精品99| 香蕉精品网在线| 深夜a级毛片| 又爽又黄无遮挡网站| 亚洲欧美日韩无卡精品| 如何舔出高潮| 免费播放大片免费观看视频在线观看| 国产久久久一区二区三区| 日本wwww免费看| 内地一区二区视频在线| 色吧在线观看| 男女无遮挡免费网站观看| 亚洲怡红院男人天堂| 国产91av在线免费观看| 少妇人妻久久综合中文| 免费黄频网站在线观看国产| 国产精品人妻久久久影院| 成人美女网站在线观看视频| 国产男女内射视频| 男女无遮挡免费网站观看| 2018国产大陆天天弄谢| 欧美高清成人免费视频www| 久久影院123| 国产精品不卡视频一区二区| 国产精品国产三级国产av玫瑰| 美女内射精品一级片tv| 99九九线精品视频在线观看视频| 建设人人有责人人尽责人人享有的 | 大片电影免费在线观看免费| 亚洲成人一二三区av| 三级男女做爰猛烈吃奶摸视频| 大码成人一级视频| 久久久久国产精品人妻一区二区| 三级经典国产精品| 色哟哟·www| 亚洲av不卡在线观看| 午夜福利网站1000一区二区三区| 日日摸夜夜添夜夜爱| 人妻 亚洲 视频| 99热网站在线观看| 久久精品国产亚洲网站| 国产高清不卡午夜福利| 综合色av麻豆| 久久精品国产a三级三级三级| 国产黄色免费在线视频| 性色avwww在线观看| 国产伦在线观看视频一区| 久久99热这里只有精品18| 国产精品一区www在线观看| 大香蕉久久网| 国产亚洲最大av| av黄色大香蕉| 成人黄色视频免费在线看| 久久久久久久大尺度免费视频| 亚洲美女视频黄频| 国产高清三级在线| 亚洲欧洲日产国产| 色5月婷婷丁香| 嫩草影院新地址| 少妇高潮的动态图| 国模一区二区三区四区视频| 午夜福利网站1000一区二区三区| 国产视频内射| 成人国产麻豆网| 最近最新中文字幕大全电影3| 中文精品一卡2卡3卡4更新| 欧美潮喷喷水| 视频中文字幕在线观看| 三级经典国产精品| 五月天丁香电影| 男人舔奶头视频| 婷婷色av中文字幕| 精品久久久久久电影网| 青春草视频在线免费观看| 亚洲最大成人av| 亚洲最大成人中文| 婷婷色综合www| 午夜福利网站1000一区二区三区| 天堂俺去俺来也www色官网| 亚洲天堂av无毛| 日日啪夜夜爽| 有码 亚洲区| 色5月婷婷丁香| 91精品伊人久久大香线蕉| 日本免费在线观看一区| 久久久久国产精品人妻一区二区| av国产免费在线观看| 丝瓜视频免费看黄片| 大码成人一级视频| 亚洲国产精品999| 日日摸夜夜添夜夜爱| 国产av码专区亚洲av| 简卡轻食公司| 日本午夜av视频| 久久精品国产鲁丝片午夜精品| 国产亚洲91精品色在线| 国产伦在线观看视频一区| 国产精品久久久久久av不卡| 国产免费一级a男人的天堂| 免费在线观看成人毛片| 亚洲欧洲国产日韩| 免费人成在线观看视频色| 欧美性感艳星| 亚洲成人av在线免费| 国产淫片久久久久久久久| 国产精品偷伦视频观看了| 国产久久久一区二区三区| 国产成人精品婷婷| 一个人看视频在线观看www免费| 毛片一级片免费看久久久久| 91精品国产九色| 99视频精品全部免费 在线| 国产精品久久久久久av不卡| 看免费成人av毛片| 精品少妇久久久久久888优播| 免费av观看视频| 国产亚洲最大av| 小蜜桃在线观看免费完整版高清| 日韩av免费高清视频| 精品视频人人做人人爽| 五月玫瑰六月丁香| 国产日韩欧美在线精品| 18禁裸乳无遮挡动漫免费视频 | 国产精品av视频在线免费观看| 欧美 日韩 精品 国产| 久久国产乱子免费精品| 亚洲成人一二三区av| 国产精品成人在线| 国产乱来视频区| 蜜臀久久99精品久久宅男| 久久精品夜色国产| 久久久亚洲精品成人影院| 亚洲国产精品成人久久小说| 91久久精品电影网| 中文乱码字字幕精品一区二区三区| 国产成人精品久久久久久| 大香蕉97超碰在线| 国产成人精品久久久久久| 国产精品久久久久久精品电影小说 | 国产亚洲5aaaaa淫片| 亚洲美女搞黄在线观看| 大片电影免费在线观看免费| 亚洲欧美日韩东京热| 国产亚洲av嫩草精品影院| 免费看a级黄色片| 久久精品国产亚洲av天美| 国产av不卡久久| 十八禁网站网址无遮挡 | 少妇猛男粗大的猛烈进出视频 | 晚上一个人看的免费电影| 我的女老师完整版在线观看| 久久亚洲国产成人精品v| 国模一区二区三区四区视频| 亚洲精品日韩在线中文字幕| 久久精品国产亚洲av天美| 夫妻午夜视频| 亚洲经典国产精华液单| 97精品久久久久久久久久精品| 男女下面进入的视频免费午夜| 成人综合一区亚洲| 亚洲精品久久午夜乱码| av在线蜜桃| 如何舔出高潮| 亚洲内射少妇av| 搞女人的毛片| 少妇猛男粗大的猛烈进出视频 | 日韩,欧美,国产一区二区三区| 亚洲精品国产色婷婷电影| 亚洲无线观看免费| 日本爱情动作片www.在线观看| 日韩,欧美,国产一区二区三区| 综合色av麻豆| kizo精华| 欧美国产精品一级二级三级 | 毛片女人毛片| 国产午夜精品久久久久久一区二区三区| 国产综合懂色| 色视频在线一区二区三区| av.在线天堂| 热re99久久精品国产66热6| 各种免费的搞黄视频| 内射极品少妇av片p| 五月天丁香电影| 人人妻人人爽人人添夜夜欢视频 | 777米奇影视久久| 亚洲欧美日韩东京热| av女优亚洲男人天堂| 欧美日韩精品成人综合77777| 精品视频人人做人人爽| av卡一久久| 人妻夜夜爽99麻豆av| 国产精品久久久久久久久免| 少妇的逼好多水| 看十八女毛片水多多多| 亚洲精品第二区| 99久久中文字幕三级久久日本| 亚洲,欧美,日韩| 在线 av 中文字幕| 亚洲欧洲国产日韩| 在线播放无遮挡| 国产亚洲精品久久久com| 国产一区二区三区av在线| 欧美97在线视频| 国产免费视频播放在线视频| 久久热精品热| 涩涩av久久男人的天堂| 久久综合国产亚洲精品| 国产免费一级a男人的天堂| 免费黄网站久久成人精品| 高清av免费在线| 亚洲av二区三区四区| 一级黄片播放器| 中国三级夫妇交换| 亚洲最大成人中文| 狂野欧美激情性bbbbbb| 免费av毛片视频| 亚洲国产精品999| 五月天丁香电影| 搡女人真爽免费视频火全软件| 午夜免费男女啪啪视频观看| 精品久久久精品久久久| 亚洲天堂av无毛| 亚洲av中文字字幕乱码综合| 18禁裸乳无遮挡免费网站照片| 少妇人妻一区二区三区视频| 中文字幕久久专区| 18禁在线无遮挡免费观看视频| 国产精品偷伦视频观看了| 亚洲三级黄色毛片| 亚洲婷婷狠狠爱综合网| 黄片无遮挡物在线观看| 欧美潮喷喷水| 久久精品久久精品一区二区三区| 最近中文字幕2019免费版| 下体分泌物呈黄色| 女人久久www免费人成看片| 午夜激情久久久久久久| 成人鲁丝片一二三区免费| 七月丁香在线播放| 亚洲精品456在线播放app| 亚洲欧洲国产日韩| 亚洲av中文字字幕乱码综合| 黄色怎么调成土黄色| 亚洲成人av在线免费| 在线免费十八禁| 成人黄色视频免费在线看| 老女人水多毛片| 久久久久久久午夜电影| 日韩,欧美,国产一区二区三区| 天天躁日日操中文字幕| 国产爱豆传媒在线观看| 特大巨黑吊av在线直播|