• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge?

    2021-05-06 08:55:10XiangYunLv呂翔云FeiGao高飛QuanZhiZhang張權(quán)治andYouNianWang王友年
    Chinese Physics B 2021年4期
    關(guān)鍵詞:王友

    Xiang-Yun Lv(呂翔云), Fei Gao(高飛), Quan-Zhi Zhang(張權(quán)治), and You-Nian Wang(王友年)

    Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams(Ministry of Education),School of Physics,Dalian University of Technology,Dalian 116024,China

    Keywords: pulse inductively coupled plasma,overshoot,spatial distribution

    1. Introduction

    Pulse inductively coupled plasma (PICP) is widely used in various applied fields(semiconductor etching,surface modification, thin film deposition) due to its high etch selectivity and high etch rate, strong controllability of plasma parameters,good uniformity,and small substrate damage. Therefore,the characteristics in pulse inductively coupled plasma have been widely studied.[1–7]Kushner et al.[8]discussed the calculation results of pulsed ICP(power matching dynamics)by using a fixed impedance matching network and their influences on plasma characters. They found that H mode delays due to power mismatch in E mode. Then they used high-low pulsed power to adjust the minimum plasma density, which reduces ignition delay and enhances plasma stability.[9]Han et al.[10]measured the time-resolved magnetic field, electron density,and electron temperature for pulsed argon plasma. They found that a “ring” shape density profile appears at the initial stage of discharge,which then evolves to a peak in the middle of the chamber.

    In the investigations of pulsed discharge, the time evolution curve of plasma parameters (electron density, electron temperature, and relative light intensity) often has the phenomenon of overshoot at the initial pulse,[11–15]i.e.,they first increase to maximum and then drops to a stable value. Sirse et al.[16]observed overshoot phenomenon during pulse off when measuring electron density in oxygen plasma, and established a qualitative model to explain the variation trend of negative ion density and temperature. The overshoot and undershoot of coils current is greatly weaken by using exponentially rising control signals by Ye et al.[17]In the pressure range of 27 kPa–101 kPa, the overshoot in coils current of Ar–H2plasma is obvious,while the overshoot phenomenon in Ar–N2plasma almost vanishes with rising pressure.Subramonium et al.[18]simulated argon plasma by employing a twodimensional plasma model. Their models capture the overshoot of the electron temperature at the start-on-time, which become even more pronounced at low frequencies. Kwon et al.[19]analyzed the influence of time-varying edge-centre density ratio(h factor)on plasma parameters,and solved the space average transport equation in a self-consistent way. They found that when the h factor decreases, the electron temperature decreases at the active-glow,and the overshoot behavior of the electron temperature gradually disappears.

    In industry,overshoot phenomenon is an important issue which has effect on the uniformity of plasma and generating high-energy ions,which could damage the chip.The study of overshoot phenomenon is beneficial to understand it and improve the uniformity of plasma. The temporal evolutions of input power and electron density in Ar and Ar/CF4pulsed ICP were investigated by Gao et al.[20]They found that the input power appears two peaks and the electron density presents an overshoot during the initial pulse-on stage, and the overshoot decays at lower powers and higher pressures. The work in this paper goes into the previous work by focus more on the dependence of overshoot phenomenon on spatial positions. In fact,the closer to the coils and the discharge centre,the more obvious overshoot phenomenon appear,that is,stronger radio frequency induction field generally induces more pronounced overshoot phenomenon.

    In this work the temporal evolutions of the electron density and the relative light intensity in pulsed ICP are studied.The organization of this paper is as follows. In Section 2,descriptions of the experimental device are provided. In Section 3, experimental results of the time evolutions of electron density and relative light intensity in axial and radial distributions are given. Overshoot phenomenon appears near the coils location and varies at different spatial positions. Finally,a short conclusion will be given in Section 4.

    2. Experimental setup

    The experimental setup for this study is schematically shown in Fig.1. The ICP reactor is comprised of two planar spiral copper coils, which are cooled by recycling water inside. The coils have been energized by a 13.56-MHz radio frequency (RF) power through a matching network. The grounded substrate with a diameter of 26 cm, is placed at 10.5 cm below the quartz window. The vacuum reactor is connected to a turbine molecular pump and a mechanical pump,and the base pressure of the reactor can reach 10?3mTorr(1 Torr=1.33322×102Pa). More detailed description of the reactor can be found in our previous works.[21–23]A timeresolved power diagnostic system (Octiev Suite VI probe,Impedans,Ltd.),fixed between the matching network and the power source, can measure the instantaneous RF power and display complex waveform.

    Fig.1. The schematic diagram of the experimental apparatus.

    In addition,the temporal evolution of the electron density is measured by a commercial Langmuir probe,which is set at 3.0 cm and 7.0 cm away from the quartz window,and can be moved from the side wall to the centre of the chamber. The probe tip(5 mm in length and 0.2 mm in diameter)is made of tungsten wire.

    The plasma was generated by planar coils with a pulsed power of 13.56 MHz. The pulse frequency is 1 kHz with 50%duty cycle. The gas used in this paper is pure Ar and Ar/CF4mixture gas. The total flow rate is fixed at 50 sccm (standard cubic centimetres per minute). The pressure is between 1 mTorr and 80 mTorr, suitable for most plasma processing applications. The power is varied from 200 W to 700 W.

    3. Results and discussion

    3.1. Axial distribution in Ar discharge

    In Fig.2,the temporal evolutions of the relative intensity(a),electron density(b),and effective electron temperature(c)for different axial positions are given at 10 mTorr, 300 W, in Ar discharge, with a pulse frequency of 1 kHz and 50%duty cycle. The electron density and effective electron temperature are measured by Langmuir probe at 3 cm and 7 cm from coils at the discharge centre,due to the probe measurement limitation. The relative light intensity measurement is a line integral,measured every 2 cm by an optical probe at axial 1 cm–9 cm from the coils. We selected the strongest spectral line 811.5 nm,which is excited from Ar(2P9). There are two kinds of energy level transitions,see Eqs.(1)–(3),one direct excitation from ground state(Ar(1S0))with a threshold of 13.08 eV,the other is excited by the metastable state (Ar(1S5)) in two steps excitation with a threshold of 1.53 eV.[24,25]

    In Fig.2(a),when the power is applied,the relative light intensity at all positions first increases rapidly and then decreases. This is the so-called overshoot phenomenon(marked in Fig.2),which can be explained by the generation and transmission of plasma.[23]At the initial stage of the pulse,the remaining electrons in the previous pulse period are heated to high-energy electrons, promptly. Due to the relatively high temperature of electrons, the consequent ionization rate is higher than the loss rate of electrons. The plasma density finally reaches a steady state with convergent density. The overshoot phenomenon is distinct at various positions. As seen in Fig.2(a),the overshoot phenomenon is obvious near the coils(1 cm–5 cm). With the increase of axial distance, the overshoot phenomenon gradually decays. At 3 cm, the overshoot is about 19.4% higher than that in stable period. However,there is almost no overshoot at 9 cm. This is because that there are pretty few residual electrons left from the previous period,which allows the RF field to penetrate into a deep position at initial pulse-on stage. The residual electrons can respond instantly to the RF field and are heated into high-energy. The number of high-energy electrons decreases at a deeper location with reduced RF electric field,which can be revealed from the reduced high-energy tail(around 5 eV smaller)in EEPF at 7 cm than at 3 cm,resulting in lower ionization rate and excitation rate. The overshoot phenomenon thus becomes weaker when locating away from the coil.

    In addition,with the increase of axial distance, the overshoot phenomenon delays. For instance, it takes about 75 μs for the plasma to reach the maximum value at 3 cm, while it takes about 200 μs at 9 cm. This is because on one hand the energy near the coils is first coupled into the plasma, which takes a certain time to diffuse downward. On the other hand,the RF electric field strength is greater close to the coils,producing more high-energy electrons (as shown in Fig.3), the ionization rate and excitation rate are high, and the electron density and light intensity grow rapidly. Whereas, the light intensity increases slowly and the overshoot phenomenon decays at the location with a larger distance away from the coils.In addition,the strength of light intensity during pulse on first increases and then decreases slightly with the increase of the axial distance.[26]The light intensity at all positions immediately decreases to 0,when the power is turned off.

    Fig.2. Temporal evolutions of the relative intensity of 811.4 nm for different axial positions(a),the electron density(b),and the effective electron temperature(c)at 10 mTorr,300 W in Ar discharge,with a pulse frequency of 1 kHz and 50%duty cycle.

    Figure 2(b) exhibits the temporal evolutions of the electron density at different axial positions measured by Langmuir probe. Similar to the evolutions in Fig.2(a), when the power is turned on, the electron density first increases to a peak value,then decrease to a convergent value,i.e.,the overshoot phenomenon appears. When the power is turned off,the electron density first rises slightly to a peak and then significantly decrease. This density peak may be caused by the release of charge by capacitance and inductance in RF power resource.[20]

    Figure 2(c) displays the temporal evolutions of effective electron temperature at different axial positions. It can be seen from the diagram that the effective electron temperature is high when the power is turned on, and then decreases gradually. This change is with opposite trend of electron density(Fig.2(b)). It can be explained that when the power is turned on, the energy is directly coupled to a small amount of electrons left from the previous pulse period, producing high energy electron, and inducing very high electron temperature.The electron density increases due to the intense collisions caused by high energy electrons, while the average coupling power of a single electron gradually decreases, leading to a decreased effective electron temperature. When the electron density is stabilized, the effective electron temperature also reaches a stable value. After the power is turned off,the effective electron temperature drops rapidly. The effective electron temperature at 3 cm is always higher than that at 7 cm (with lower density).

    The EEPFs evolutions at different times with axial height of 3 cm and 7 cm are given in Fig.3. As can be seen from the figure, there are abundant high energy electrons at the early stage of pulse-on (50 μs), which dominates the initial discharge. These high energy electrons are mainly produced by the fact that the power is coupled to a small number of electrons at the initial stage of active-glow.This corresponds to the low electron density and high effective electron temperature at the initial active-glow, as shown in Figs. 2(b) and 2(c). Furthermore, the EEPF shows a maximum of high-energy electrons at 75 μs, which corresponds to the time of the overshoot in measured light intensities at 3 cm. When the plasma reaches the steady state, the electron energy distribution becomes rather stable(after 150μs).In addition,the high-energy electron tails in EEPF at 7 cm are relatively lower than that at 3 cm,due to the reduced RF field at 7 cm.

    Fig.3. EEPFs at different times with axial height of 3 cm(a)and 7 cm(b),at 10 mTorr,300 W,Ar discharge. The pulse frequency of 1 kHz with 50%duty cycle.

    3.2. Axial distribution in Ar/CF4 discharge

    Figure 4 reveals the temporal evolutions of the relative light intensities,the electron density,and the effective electron temperature at different axial positions at 10 mTorr, 300 W,Ar/CF4=90/10 discharges,with a pulse frequency of 1 kHz and 50%duty cycle. It is obvious that the temporal evolution of relative light intensities in Ar/CF4discharges exhibit similar characteristics with Ar discharges(Fig.2(a)). But the intensities decrease monotonously when increasing the axial distance from 3 cm to 9 cm away from the coils.

    The temporal evolutions of electron densities (shown in Fig.4(c)), measured by Langmuir probe, have similar trend with the relative light intensities, i.e., the electron density at 3 cm is about 1.75 times the value at 7 cm when the discharge approaches steady. It is worth noting that, the overshoot at 3 cm in Ar/CF4discharge is obviously smaller than that in pure Ar discharge, which almost presents no overshoot at 7 cm.Furthermore, it takes only 70 μs to reach the steady state in Ar/CF4discharge, which takes about 200 μs in pure Ar discharge. This is probably due to that there are much more collision reactions in Ar/CF4discharge, and consequently more loss channels of electrons (especially high energy electrons),limiting the development of overshoot phenomenon.[27,28]

    Figure 4(d) displays the temporal evolutions of the effective electron temperature measured by Langmuir probe at different axial positions. The evolution of the effective electron temperature also exhibits the same trend with pure Ar discharge, i.e., the electron temperature is pretty high when the power is turned on, and then decreases to a stable value, and finally becomes very small when the power is turned off.

    In Fig.5, the EEPFs at different time at 3 cm and 7 cm(axial distance from the coils)are shown at 10 mTorr,300 W with Ar/CF4=90/10 and the pulse frequency of 1 kHz and 50% duty cycle. As can be seen from Fig.5(b), the time for EEPF to reach the steady state is pretty short,which only took 75 μs at 7 cm in the Ar/CF4discharge. This is again due to the existence of more collision mechanisms in the Ar/CF4discharge.

    Fig.4. Temporal evolutions of the relative intensities of Ar 811.4 nm(a)and F 641.4 nm(b),the electron density(c),and the effective electron temperature(d)for different axial positions at 10 mTorr,300 W,in Ar/CF4 (90/10)discharge,with a pulse frequency of 1 kHz and 50%duty cycle.

    Fig.5. The EEPFs at different resolve times at 3 cm and 7 cm(axial distance from the coils),at 10 mTorr,300 W,Ar/CF4=90/10 and the pulse frequency of 1 kHz and duty 50%cycle.

    3.3. Radial distribution

    Figure 6 reveals the temporal evolutions of the electron density for different radial positions at 3 cm and 7 cm (axial distance from the coils) in Ar and Ar/CF4=90/10 discharges at 10 mTorr, 300 W, measured by Langmuir probe,with a pulse frequency of 1 kHz and 50% duty cycle. It can be seen from the diagram that the rising time of electron density at all radial positions are similar,which indicates that the plasma in the horizontal direction almost respond to the power supply at the same time when the pulse is turned on.

    The electron density gradually becomes smaller when approaching the reactor wall, and the overshoot phenomenon is most pronounced at the positions near the coils and the centre. With the increase of the radial and axial distances (from the centre and coils),the overshoot phenomenon gradually decays. In Ar/CF4discharge, the overshoot is significantly reduced with respect to the pure Ar discharge, due to the more collision mechanisms in CF4discharge.

    Fig.6. Temporal evolutions of the electron density at different radial positions at 3 cm(a)and 7 cm(b)in Ar discharge,3 cm(c)and 7 cm(d)in Ar/CF4=90/10 discharge at 10 mTorr,300 W,measured by Langmuir probe,with a pulse frequency of 1 kHz and 50%duty cycle.

    4. Conclusions

    In this work, we report for the first time the relationship between overshoot phenomenon and spatial positions in pulsed inductively coupled Ar and Ar/CF4discharges. The electron density, effective electron temperature, and relative light intensity at different spatial positions were measured by using a time-resolved diagnostic system,i.e.,Langmuir probe and optical probe, under the conditions of pulse frequency of 1 kHz and duty cycle of 50%.

    In pure Ar discharges, when the power is turned on, the relative light intensity first increases to a peak value,then falls to a stable value, i.e., the overshoot appears, which is related to the generation rate and loss rate of electrons. With the increase of axial position,the overshoot phenomenon decays and the time consumed for the relative light intensity to reaches the maximum becomes even longer,for instance it takes about 75 μs at 3 cm but 200 μs at 9 cm. The temporal evolutions of electron density are similar to those of relative light intensity,but the electron density at 3 cm responds faster to power supply comparing to the case at 7 cm, as the radio frequency electric field is stronger and consequently the number of highenergy electrons is larger for the position closer to the coils.

    The effective electron temperature is pretty high when the power is turned on,then gradually decreases to a stable value,and finally significantly decrease after the power is turned off.Therefore,the high-energy electrons dominate the discharge at the initial stage of the pulse,which is supposed to play a role in the overshoot phenomenon. The effective electron temperature is always higher for the position near the coils due to the stronger electric field.

    In Ar/CF4discharge, the temporal evolutions of relative light intensity have very similar trend with Ar discharge. But the relative light intensity greatly decreases when increasing the axial position from 3 cm to 9 cm away from the coils,and the overshoot phenomenon becomes much weaker, which is probably due to the more collision reactions in Ar/CF4discharge,inducing rapid reduction of high energy electrons.

    Furthermore,the overshoot phenomenon and plasma density are found to be more pronounced near the reactor centre,which gradually decays when approaching the reactor wall.

    猜你喜歡
    王友
    3D fluid model analysis on the generation of negative hydrogen ions for negative ion source of NBI
    Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
    Conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled plasmas
    High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma
    Multi-layer structure formation of relativistic electron beams in plasmas
    Influence of magnetic filter field on the radiofrequency negative hydrogen ion source of neutral beam injector for China Fusion Engineering Test Reactor
    Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model?
    Modulation of the plasma uniformity by coil and dielectric window structures in an inductively coupled plasma
    Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas?
    Experimental investigation of the electromagnetic effect and improvement of the plasma radial uniformity in a large-area,very-high frequency capacitive argondischarge
    日日夜夜操网爽| 满18在线观看网站| 青春草视频在线免费观看| 亚洲精品成人av观看孕妇| 男女国产视频网站| 婷婷丁香在线五月| 欧美日韩一级在线毛片| 男女免费视频国产| 19禁男女啪啪无遮挡网站| 久久鲁丝午夜福利片| 成年人免费黄色播放视频| 天天躁狠狠躁夜夜躁狠狠躁| 9热在线视频观看99| 五月天丁香电影| 777久久人妻少妇嫩草av网站| 黄网站色视频无遮挡免费观看| 亚洲成人免费电影在线观看 | 国产精品麻豆人妻色哟哟久久| 啦啦啦视频在线资源免费观看| 又粗又硬又长又爽又黄的视频| 亚洲国产欧美在线一区| 中文字幕最新亚洲高清| 欧美久久黑人一区二区| 99国产精品99久久久久| 最近手机中文字幕大全| 亚洲av片天天在线观看| 欧美国产精品一级二级三级| 国产视频首页在线观看| 后天国语完整版免费观看| 99精国产麻豆久久婷婷| 丝袜美腿诱惑在线| 精品国产乱码久久久久久男人| 亚洲av日韩在线播放| 91国产中文字幕| 日韩大码丰满熟妇| 亚洲精品成人av观看孕妇| 国产精品 欧美亚洲| 久9热在线精品视频| 国产精品一国产av| 国产精品成人在线| 91国产中文字幕| 欧美精品一区二区免费开放| 精品少妇黑人巨大在线播放| 亚洲伊人色综图| 97精品久久久久久久久久精品| 狂野欧美激情性bbbbbb| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久国产电影| 亚洲专区中文字幕在线| 男人舔女人的私密视频| 亚洲av综合色区一区| 欧美日韩av久久| 777久久人妻少妇嫩草av网站| 亚洲av综合色区一区| 久久国产精品影院| 亚洲一区中文字幕在线| 一本久久精品| av电影中文网址| 国产成人精品久久二区二区免费| 欧美精品啪啪一区二区三区 | 久久av网站| 国产在线观看jvid| 国产主播在线观看一区二区 | 大码成人一级视频| 日本av免费视频播放| 久久鲁丝午夜福利片| 国产精品香港三级国产av潘金莲 | 日韩大码丰满熟妇| 精品国产乱码久久久久久男人| 深夜精品福利| 国产主播在线观看一区二区 | 久久精品久久久久久噜噜老黄| 一本—道久久a久久精品蜜桃钙片| 美女扒开内裤让男人捅视频| 亚洲综合色网址| 日韩av不卡免费在线播放| 成人免费观看视频高清| 人妻 亚洲 视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲午夜精品一区,二区,三区| 国产免费视频播放在线视频| 欧美国产精品一级二级三级| 在线观看国产h片| 制服人妻中文乱码| 久久青草综合色| 丝袜美足系列| 欧美性长视频在线观看| 亚洲国产欧美在线一区| 国产欧美日韩综合在线一区二区| 久9热在线精品视频| 少妇人妻 视频| 日韩av免费高清视频| 久久青草综合色| 免费日韩欧美在线观看| 亚洲欧美精品综合一区二区三区| www日本在线高清视频| 亚洲国产欧美网| 9热在线视频观看99| 日韩一区二区三区影片| 黑人巨大精品欧美一区二区蜜桃| 天天影视国产精品| 少妇粗大呻吟视频| 欧美精品啪啪一区二区三区 | 黄频高清免费视频| 大香蕉久久成人网| 精品一区二区三区四区五区乱码 | 亚洲五月色婷婷综合| 亚洲国产成人一精品久久久| 国产视频一区二区在线看| 精品少妇内射三级| 久久99热这里只频精品6学生| 亚洲中文日韩欧美视频| 男男h啪啪无遮挡| av电影中文网址| 韩国高清视频一区二区三区| 涩涩av久久男人的天堂| 80岁老熟妇乱子伦牲交| 国产欧美日韩精品亚洲av| 久久久国产精品麻豆| 久久久亚洲精品成人影院| 久久精品亚洲av国产电影网| 免费在线观看黄色视频的| av又黄又爽大尺度在线免费看| 午夜免费鲁丝| 欧美性长视频在线观看| 欧美 亚洲 国产 日韩一| 97人妻天天添夜夜摸| 黑人巨大精品欧美一区二区蜜桃| 国产不卡av网站在线观看| 欧美激情极品国产一区二区三区| 国产亚洲精品久久久久5区| 青草久久国产| 国产精品成人在线| 18在线观看网站| 精品久久久久久久毛片微露脸 | 丝袜在线中文字幕| 久久精品熟女亚洲av麻豆精品| www.999成人在线观看| 尾随美女入室| 黄色片一级片一级黄色片| 青草久久国产| 亚洲熟女精品中文字幕| 中文字幕人妻熟女乱码| 日本午夜av视频| 成年人黄色毛片网站| 别揉我奶头~嗯~啊~动态视频 | 日韩制服丝袜自拍偷拍| 中文字幕人妻熟女乱码| 精品国产一区二区久久| 亚洲国产欧美在线一区| 99国产精品99久久久久| 日韩一区二区三区影片| 国产成人系列免费观看| videosex国产| 免费看十八禁软件| 久久九九热精品免费| 亚洲欧洲国产日韩| 亚洲精品国产一区二区精华液| 啦啦啦在线免费观看视频4| 曰老女人黄片| 精品亚洲成国产av| 黄片小视频在线播放| 久久鲁丝午夜福利片| a级片在线免费高清观看视频| av欧美777| 欧美日本中文国产一区发布| 天天操日日干夜夜撸| 国产精品秋霞免费鲁丝片| 黑人猛操日本美女一级片| 99久久综合免费| 国产亚洲一区二区精品| 亚洲精品一区蜜桃| 国产野战对白在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产淫语在线视频| 五月开心婷婷网| 你懂的网址亚洲精品在线观看| 两性夫妻黄色片| 亚洲国产精品一区三区| 欧美日韩av久久| tube8黄色片| 国产欧美日韩精品亚洲av| 麻豆av在线久日| 老司机午夜十八禁免费视频| 日韩av免费高清视频| 91精品国产国语对白视频| 亚洲三区欧美一区| 国产91精品成人一区二区三区 | 欧美人与性动交α欧美精品济南到| 成人三级做爰电影| 好男人视频免费观看在线| 少妇粗大呻吟视频| 91麻豆精品激情在线观看国产 | 午夜激情久久久久久久| 国产高清国产精品国产三级| 免费在线观看日本一区| 国产精品三级大全| 一本大道久久a久久精品| 亚洲欧美激情在线| 日韩中文字幕欧美一区二区 | 国产三级黄色录像| 啦啦啦 在线观看视频| 亚洲久久久国产精品| 免费看不卡的av| 精品视频人人做人人爽| 少妇被粗大的猛进出69影院| 久久久国产欧美日韩av| 精品人妻熟女毛片av久久网站| 免费看不卡的av| 免费少妇av软件| 国产欧美日韩一区二区三 | www.熟女人妻精品国产| 亚洲国产中文字幕在线视频| 免费久久久久久久精品成人欧美视频| 国产一区亚洲一区在线观看| 日韩中文字幕视频在线看片| 国产精品免费大片| 免费av中文字幕在线| 日本av手机在线免费观看| 欧美人与性动交α欧美软件| 日韩中文字幕欧美一区二区 | 97在线人人人人妻| 欧美日韩亚洲高清精品| 亚洲图色成人| 久久久国产欧美日韩av| 91精品三级在线观看| 叶爱在线成人免费视频播放| 国产熟女午夜一区二区三区| 精品欧美一区二区三区在线| 99九九在线精品视频| 老司机深夜福利视频在线观看 | 欧美中文综合在线视频| 9191精品国产免费久久| 精品少妇一区二区三区视频日本电影| 人人妻,人人澡人人爽秒播 | 久久狼人影院| 无遮挡黄片免费观看| 国产午夜精品一二区理论片| 成年人免费黄色播放视频| 一级,二级,三级黄色视频| 午夜老司机福利片| 久久久久久久精品精品| 另类精品久久| 国产淫语在线视频| av欧美777| 久久鲁丝午夜福利片| 亚洲人成电影观看| 色婷婷av一区二区三区视频| 国产激情久久老熟女| 日韩中文字幕欧美一区二区 | 精品国产乱码久久久久久男人| 男人操女人黄网站| 国产男女内射视频| 99热全是精品| 久久久欧美国产精品| 亚洲人成电影免费在线| 一区二区三区乱码不卡18| 亚洲视频免费观看视频| 欧美日韩福利视频一区二区| 啦啦啦中文免费视频观看日本| 日韩人妻精品一区2区三区| 国产一区二区三区av在线| 可以免费在线观看a视频的电影网站| 国产免费视频播放在线视频| 久久国产亚洲av麻豆专区| 下体分泌物呈黄色| 欧美精品高潮呻吟av久久| 久久久久精品人妻al黑| 亚洲一区二区三区欧美精品| 一级片'在线观看视频| 亚洲一区中文字幕在线| 国产在线观看jvid| 男女床上黄色一级片免费看| 欧美激情高清一区二区三区| 精品国产一区二区久久| 亚洲av电影在线观看一区二区三区| 亚洲熟女毛片儿| 18禁国产床啪视频网站| 宅男免费午夜| 国产亚洲精品久久久久5区| 操出白浆在线播放| 国产一区二区 视频在线| 亚洲一区中文字幕在线| 亚洲专区中文字幕在线| 日韩,欧美,国产一区二区三区| 永久免费av网站大全| 日本一区二区免费在线视频| av网站在线播放免费| 两个人看的免费小视频| 不卡av一区二区三区| 成年av动漫网址| 黄片小视频在线播放| 精品久久久久久久毛片微露脸 | 一区二区三区激情视频| 国产av一区二区精品久久| 99国产精品免费福利视频| 亚洲av电影在线进入| 麻豆av在线久日| 香蕉国产在线看| 国产成人欧美在线观看 | 又大又爽又粗| 国产精品秋霞免费鲁丝片| 国产精品 欧美亚洲| 亚洲欧美精品综合一区二区三区| 97在线人人人人妻| 久久99一区二区三区| av网站在线播放免费| 黄片播放在线免费| 男女国产视频网站| 在线观看免费高清a一片| 久久精品久久久久久噜噜老黄| 最新在线观看一区二区三区 | 国产主播在线观看一区二区 | 桃花免费在线播放| 91精品伊人久久大香线蕉| 午夜免费成人在线视频| 欧美人与善性xxx| 成在线人永久免费视频| 国产一区二区三区av在线| 亚洲国产中文字幕在线视频| 欧美精品亚洲一区二区| 国产精品国产av在线观看| 性色av乱码一区二区三区2| 日本午夜av视频| 中国国产av一级| 欧美乱码精品一区二区三区| 国产一级毛片在线| 久久天堂一区二区三区四区| 亚洲黑人精品在线| 黑人欧美特级aaaaaa片| a级毛片黄视频| 少妇被粗大的猛进出69影院| 十八禁人妻一区二区| 国产成人av激情在线播放| 91九色精品人成在线观看| 精品国产超薄肉色丝袜足j| 久久精品国产a三级三级三级| 久久天堂一区二区三区四区| 国产高清不卡午夜福利| 女警被强在线播放| 曰老女人黄片| 国产一区二区三区综合在线观看| 久久性视频一级片| 制服人妻中文乱码| 91字幕亚洲| 美女高潮到喷水免费观看| 操出白浆在线播放| 美女福利国产在线| 国产成人欧美| 国产亚洲欧美在线一区二区| 高清黄色对白视频在线免费看| 99香蕉大伊视频| 亚洲欧洲精品一区二区精品久久久| 99九九在线精品视频| 亚洲图色成人| 亚洲成色77777| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色毛片三级朝国网站| 久久久久久久国产电影| 国产成人精品在线电影| 日韩制服骚丝袜av| 日日夜夜操网爽| 九色亚洲精品在线播放| 国产欧美日韩一区二区三 | 亚洲午夜精品一区,二区,三区| 嫩草影视91久久| 人体艺术视频欧美日本| 日韩伦理黄色片| 一本综合久久免费| 天天躁狠狠躁夜夜躁狠狠躁| 成年美女黄网站色视频大全免费| 一级毛片电影观看| 国产精品国产三级国产专区5o| 99久久人妻综合| 亚洲国产毛片av蜜桃av| 欧美日本中文国产一区发布| 制服诱惑二区| 黄色a级毛片大全视频| 久久久久久久国产电影| 国产伦人伦偷精品视频| 国产男女内射视频| 国产日韩欧美视频二区| 亚洲第一青青草原| 天堂中文最新版在线下载| 国产成人91sexporn| 中文字幕av电影在线播放| 欧美日韩黄片免| 精品少妇黑人巨大在线播放| 婷婷色麻豆天堂久久| 可以免费在线观看a视频的电影网站| 好男人视频免费观看在线| 纯流量卡能插随身wifi吗| 中文字幕人妻丝袜一区二区| 久久精品久久久久久噜噜老黄| 国产老妇伦熟女老妇高清| av视频免费观看在线观看| 欧美人与性动交α欧美精品济南到| 欧美人与性动交α欧美软件| 午夜福利视频在线观看免费| 亚洲,欧美,日韩| 亚洲一码二码三码区别大吗| 99久久精品国产亚洲精品| 超碰成人久久| 久久久久久久久免费视频了| 国产日韩欧美在线精品| 80岁老熟妇乱子伦牲交| 99久久精品国产亚洲精品| 一区二区三区精品91| 亚洲激情五月婷婷啪啪| av国产久精品久网站免费入址| kizo精华| 成人国产av品久久久| 亚洲av片天天在线观看| h视频一区二区三区| 日韩熟女老妇一区二区性免费视频| 久久久国产一区二区| 欧美日韩亚洲高清精品| 国产成人精品久久二区二区91| 两个人看的免费小视频| 老汉色∧v一级毛片| 国产精品 国内视频| 极品人妻少妇av视频| 亚洲欧美日韩另类电影网站| 日本a在线网址| 亚洲综合色网址| 美女福利国产在线| 国产欧美日韩综合在线一区二区| 久久九九热精品免费| av在线播放精品| 国产爽快片一区二区三区| 熟女av电影| 啦啦啦在线观看免费高清www| 国产精品一区二区精品视频观看| 国产伦理片在线播放av一区| av又黄又爽大尺度在线免费看| 亚洲精品第二区| 大话2 男鬼变身卡| 亚洲成人手机| 欧美人与善性xxx| 国产亚洲欧美精品永久| 国产一级毛片在线| 母亲3免费完整高清在线观看| 两个人看的免费小视频| 久久久久久久精品精品| 手机成人av网站| 亚洲人成网站在线观看播放| 午夜老司机福利片| 欧美成人精品欧美一级黄| 久久亚洲国产成人精品v| 国产亚洲欧美在线一区二区| 男的添女的下面高潮视频| 啦啦啦在线免费观看视频4| 青春草视频在线免费观看| av福利片在线| 亚洲欧美激情在线| 在线天堂中文资源库| 国产男女内射视频| 久久久精品区二区三区| 精品国产乱码久久久久久男人| 国产男人的电影天堂91| 国产欧美日韩一区二区三区在线| 日韩大码丰满熟妇| 亚洲欧美清纯卡通| 国产一区二区激情短视频 | 日韩av在线免费看完整版不卡| 亚洲成人手机| 亚洲成人国产一区在线观看 | 欧美 日韩 精品 国产| 狠狠婷婷综合久久久久久88av| 可以免费在线观看a视频的电影网站| 蜜桃国产av成人99| cao死你这个sao货| 亚洲欧洲精品一区二区精品久久久| 亚洲av在线观看美女高潮| 中国美女看黄片| 好男人视频免费观看在线| 少妇被粗大的猛进出69影院| 久久久久国产一级毛片高清牌| 欧美亚洲日本最大视频资源| 日韩熟女老妇一区二区性免费视频| 国产成人一区二区三区免费视频网站 | 亚洲av欧美aⅴ国产| 国产成人av激情在线播放| 99久久人妻综合| 99热国产这里只有精品6| 手机成人av网站| 亚洲成色77777| 精品一区二区三区av网在线观看 | 国产欧美日韩精品亚洲av| 精品一区在线观看国产| 午夜视频精品福利| 亚洲精品自拍成人| av在线播放精品| h视频一区二区三区| 麻豆av在线久日| 久久人人爽av亚洲精品天堂| 久久久国产欧美日韩av| 又大又黄又爽视频免费| 日韩 亚洲 欧美在线| 精品福利永久在线观看| 99九九在线精品视频| 亚洲成人国产一区在线观看 | 精品一区二区三区av网在线观看 | 美女高潮到喷水免费观看| 91麻豆av在线| 精品人妻1区二区| 后天国语完整版免费观看| 在线观看www视频免费| 人人妻人人澡人人爽人人夜夜| 777米奇影视久久| 美女视频免费永久观看网站| 亚洲av欧美aⅴ国产| 亚洲精品久久午夜乱码| 国产野战对白在线观看| 亚洲国产精品一区二区三区在线| 欧美精品av麻豆av| 午夜免费成人在线视频| 亚洲av日韩在线播放| 丰满人妻熟妇乱又伦精品不卡| 成年av动漫网址| 亚洲av国产av综合av卡| 亚洲欧美激情在线| 精品人妻1区二区| 又大又爽又粗| 亚洲中文日韩欧美视频| 久久亚洲国产成人精品v| 久久这里只有精品19| 日本欧美国产在线视频| 久久天堂一区二区三区四区| 一本色道久久久久久精品综合| 国产精品熟女久久久久浪| 亚洲男人天堂网一区| 一级片'在线观看视频| 好男人电影高清在线观看| 黄频高清免费视频| 丰满迷人的少妇在线观看| 97在线人人人人妻| 久久免费观看电影| 亚洲国产最新在线播放| 91麻豆精品激情在线观看国产 | 国产片内射在线| 黑人巨大精品欧美一区二区蜜桃| 最新的欧美精品一区二区| 亚洲国产欧美网| 黄片小视频在线播放| 一本—道久久a久久精品蜜桃钙片| 国产成人欧美| 久久青草综合色| 日韩,欧美,国产一区二区三区| 黑人欧美特级aaaaaa片| 欧美变态另类bdsm刘玥| 欧美日韩一级在线毛片| 亚洲精品一卡2卡三卡4卡5卡 | 精品少妇久久久久久888优播| 在线观看免费视频网站a站| 亚洲伊人久久精品综合| 国产在线一区二区三区精| 天堂中文最新版在线下载| 一本综合久久免费| 日韩熟女老妇一区二区性免费视频| 精品少妇内射三级| 五月开心婷婷网| 日本猛色少妇xxxxx猛交久久| 日韩 欧美 亚洲 中文字幕| 一区二区av电影网| 久久国产精品影院| 又大又爽又粗| 国产片特级美女逼逼视频| 香蕉丝袜av| 国产成人精品久久二区二区免费| 一二三四社区在线视频社区8| 午夜免费鲁丝| 国产一卡二卡三卡精品| 精品欧美一区二区三区在线| 一个人免费看片子| 精品久久久久久电影网| 好男人电影高清在线观看| 精品国产一区二区久久| 韩国高清视频一区二区三区| 久久人妻福利社区极品人妻图片 | 久久人人爽人人片av| 欧美精品人与动牲交sv欧美| 老司机在亚洲福利影院| 久久久久久久久久久久大奶| 美女国产高潮福利片在线看| 精品国产乱码久久久久久男人| 人人澡人人妻人| 19禁男女啪啪无遮挡网站| 人人妻人人添人人爽欧美一区卜| 国产伦理片在线播放av一区| 校园人妻丝袜中文字幕| 欧美日本中文国产一区发布| 久久国产亚洲av麻豆专区| 国产亚洲欧美在线一区二区| 久久久精品94久久精品| 久久久精品免费免费高清| 久久久久视频综合| 久久久久久免费高清国产稀缺| 国产熟女欧美一区二区| 午夜福利视频精品| 一本一本久久a久久精品综合妖精| 国产成人av激情在线播放| 国产91精品成人一区二区三区 | 国产深夜福利视频在线观看| 只有这里有精品99| 啦啦啦啦在线视频资源| 在线观看免费日韩欧美大片| 国产视频一区二区在线看| cao死你这个sao货| 在现免费观看毛片| 亚洲黑人精品在线| 久久精品亚洲熟妇少妇任你| 黄色视频不卡| 99久久综合免费| 久久精品国产亚洲av涩爱|