• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First principles study of behavior of helium at Fe(110)–graphene interface?

    2021-05-06 08:56:26YanMeiJing荊艷梅andShaoSongHuang黃紹松
    Chinese Physics B 2021年4期

    Yan-Mei Jing(荊艷梅) and Shao-Song Huang(黃紹松)

    Key Laboratory of Material Modification by Laser,Ion and Electron Beams(Dalian University of Technology),Ministry of Education,Dalian 116024,China

    Keywords: Fe(110)–graphene,helium,interface,first principles calculations

    1. Introduction

    With the rapid development of advanced nuclear energy systems, the need for the development and application of structural materials with higher radiation tolerance has increased.[1]Point defects (vacancies and interstitials) generated by high-energy neutrons can evolve into extended defects such as voids and interstitial clusters within the structural materials at elevated temperatures. In addition,a certain number of helium (He) are produced by the (n, α) transmutation reaction.[2]Owing to the low solubility of He atoms,their diffusion and aggregation results in the precipitation and nucleation of He bubbles.[3]The synergistic interaction of these defects leads the mechanical properties of the structural material to degrade.[4–10]Increasing the fraction of interface/boundaries in materials is an important strategy to enhance the irradiation effect tolerance by providing more defect recommendation sites.[11–14]In particular,multilayer metallic systems such as W/Cu,[15]Cu/Nb,[16]and Cu/V[17]systems have been studied extensively as structural materials for mitigating radiation damage.

    Further, graphene has attracted much attention due to its highly dense interface,[18–20]with a two-dimensional structure packed by a single layer of C atoms. Several studies reported their results on the radiation damage resistance of copper–graphene, nickel–graphene, and vanadium–graphene nanocomposites through molecular dynamics and experiments,[21–23]it was found that the metal–graphene nanocomposite had less defects remaining in the bulk region after collision cascades, illustrating the self-healing performance. However, the atomic mechanism was still unknown,especially for the interaction between the graphene and metal substrates. Furthermore, as is well known, stainless steels, in which Fe is the basic element in the matrix (with more than 80 wt%),are the most commonly constructive and prospective materials in nuclear systems. As stated, He is an important product of neutron transmutation,affecting many of the properties of structural materials with point defects.[24–29]Thus,previous studies promoted us to figure out whether the Fe–graphene interface can affect the behaviors of intrinsic defects and act as a good He permeation barrier. In this study, we aim to investigate the potential usage of steel–graphene with multiply interface structures for tolerating the radiation damage. Therefore, using ab initio calculations, we investigate the energetical stability of the Fe–graphene system, the formation of the intrinsic defects, and the behaviors of an interstitial He atom. The rest of this paper is organized as follows.The method of first-principles calculations, and calculational equations are presented in Section 2. In Section 3,the results of the behaviors of the intrinsic defects, and He atoms in the Fe(110)–graphene system are discussed. The major findings are summarized in Section 4.

    2. Computational method

    where Etotal,Esub,and Egare the energy of the composite system, standalone substrate, and graphene, respectively, and Ncis the number of C atoms in the graphene sheet.

    The binding energy of two defects, A and B, in the Fe(110)–graphene system is given by[45]

    Here, E(A) or E(B) is the total energy of a single defect in the structure, E(AB) is the total energy of a supercell with two defects, and E(perfect) is the total energy of the prefect structure without any defects. Following this convention, the positive binding energy corresponds to exothermic defect formation reaction,implying an attractive interaction between A and B.

    The formation energy of a single vacancy or an interstitial atom(Ef)in the Fe(110)–graphene structure is defined as

    where E(defect) and E(perfect) are the total energy of the Fe(110)–graphene system with and without a point defect,respectively; E(Fe)represents the cohesive energy per Fe atom in bcc Fe, E(C) denotes the energy per C atom in graphene;E(He) is the energy of an isolated He atom; m=1, n=0 ,and p=0 for an Fe vacancy in the Fe layer;m=0,n=1,and p=0 for a C vacancy in the graphene layer;m=?1,n=0,and p=0 for an Fe interstitial atom;m=0,n=?1,and p=0 for a C interstitial atom;m=0,n=0,and p=?1 for an He interstitial atom.

    3. Results and discussion

    3.1. Structure and bonding properties

    Figure 1 shows the structure of the Fe(110)–graphene interface; a Moir′e pattern forms in the Fe(110)–graphene, with a large corrugation of the graphene layer. Owing to the lattice mismatch between the Fe substrate and graphene,C atoms occupy various adsorption sites on the Fe substrate.[46]The results indicate that the interaction between the Fe substrate and graphene is strong. In this case, it is vital to investigate the equilibrium binding distance and binding energy of the Fe(110)–graphene system.According to the equilibrium binding distance, the interaction between graphene and the substrate can be divided into two classes:[41]one is represented by an equilibrium binding distance,d of ≤2.3 ?A which indicates strong interaction or chemisorption, and the other belongs in weak interaction or physisorption. According to Eq. (1), the binding energy of the Fe(110)–graphene structure is 0.05 eV/C and the binding distance is ~2.13 ?A while the previously reported experimental and theoretical value are ~2.09 ?A and 2.10 ?A respectively.[39,47]From the energy and distance viewpoint, the binding between the Fe substrate and graphene is strong. The graphene layer on the Fe(110)substrate exhibits a similar binding behavior to that observed on other metal substrates such as Ni,Co,and Pd.[48–50]

    The total density of states (TDOS) of the Fe(110)–graphene system and local density of states(LDOS)between graphene and the topmost Fe layer are shown in Fig.2.The Fed orbital significantly affects the TDOS near the Fermi level.Thus, the metal substrate determines the Fermi level of the composite material. The strong hybridization of the Fe-d state and C-p state in the LDOS indicates that a strong covalent bond forms between the Fe atom and C atom, similar to the previously reported cases of graphene on Rh(111)[51]and Ni(111).[52]The small interfacial distance can result in the overlap of the wave functions of the d electrons of the metal and p electrons of graphene,leading to orbital hybridization.

    Fig.1. Structure of Fe(110)–graphene system,showing(a)top view and(b)side view of structure,with purple and gray balls representing Fe atom and C atom,respectively.

    Fig.2. (a)Total density of states(TDOS)of Fe(110)–graphene system and(b) local density of states (LDOS) between graphene and the topmost Fe layer,with colored solid lines showing projected DOS from s,p,d orbitals,respectively.

    Weser et al.[53]and Dedkov et al.[54]reported a magnetic moment of approximately 0.05μB–0.1μBper carbon atom for the C atoms of a graphene layer contacting a ferromagnetic Ni(111) substrate. In this work, the magnetic moment of C1was found to be ?0.036μB,which forms an antiferromagnetic couple with the nearest Fe atom. On the other hand,the magnetic moment of the C2atom was approximately+0.022 μB.This result is consistent with that reported by Liu et al.[47]The magnetic moments of C atoms in Fe(110)–graphene are attributed to the Fe3d–C2p orbital hybridization.

    Fig.3. Differential charge density of Fe(110)–graphene interface region(isovalue: 0.005 e/?A3),showing(a)side view and(b)top view of interface,where big and small balls represent Fe and C atoms,respectively,blue contour denotes electron depletion region,and yellow contour refers to electron accumulation region.

    Fig.4. Interlayer charge difference in Fe(110)–graphene interface region(?ρ = ρinterface ?ρFe ?ρC). Area between red line and 0 line displays the value of electron depletion or accumulation. Value at interface around 10.43 ?A

    3.2. Formation and stability of intrinsic defects

    The formation energy values of single vacancies of the C and Fe atoms in different layers in Fe(110)–graphene are calculated, and the results are listed in Table 1. The formation energy of the C vacancy in a single graphene layer is also calculated. The single graphene layer is obtained by removing all the Fe atoms in the Fe(110)–graphene system. That is,the single graphene layer is the same as the graphene layer in the Fe(110)–graphene in terms of the initial size and shape. The C vacancy formation energy in the single graphene layer is 8.09 eV,in agreement with previously calculated results.[55,56]However, it is slightly larger than the experiment value of 7.0±0.5 eV.[15]The C vacancy formation energy values of the two types of C atoms(i.e.,C1atom and C2atom)in Fe(110)–graphene are 1.94 eV and 1.97 eV, respectively, which are lower than those for the single graphene layer. This indicates that the C vacancy prefers to form in Fe(110)–graphene. The result is consistent with that reported for Cu/graphene/Cu.[56]The hybridization of C atoms in graphene changes from sp2to sp3due to its interaction with the metal. Consequently,the strength of the in-plane C–C bond is weakened.[57]The formation energy of the Fe vacancy increases with the number of Fe layers increasing. The formation energy of the Fe vacancy in the third layer is close to that in bulk Fe(~2.17 eV).Hence,it is reasonable for us to fix the three bottom Fe layers. The Fe vacancy formation energy for the topmost layer is lower than those for the other layers and bulk Fe, indicating that Fe vacancies prefer to form at the interface rather than stay in bulk Fe. This phenomenon can be attributed to the fact that the interaction between Fe and graphene is weaker than the binding of Fe–Fe in bulk Fe.

    Table 1. Formation energy values of C vacancies and Fe vacancies in Fe(110)–graphene system. The abbreviations: 1L,2L,and 3L express 1 layer,2 layers,and 3 layers,respectively.

    Apart from vacancies, interstitial atoms are also formed under the neutron irradiation condition. Figure 5 illustrates three different interstitial sites at the interface. The symbols,H,T,and B represent the hollow,top,and bridge position,respectively. The relative stabilities of the single interstitial C atom and Fe atom at the three sites are investigated. The interstitial Fe atom prefers to stay at the hollow site,and its formation energy is ~1.83 eV,which is lower than the formation energy for the tetrahedral site in bulk Fe.In addition,the interstitial atoms have a notable effect on the atomic configurations of the neighboring atoms. The interstitial Fe atom pushes the graphene layer up and affects the configuration of the Fe layers(see Fig.6(a)). The interstitial C atom prefers to stay in the Fe layer(Fig.6(b)),and its formation energy is 1.41 eV.These results suggest that the interstitial atoms can be easily trapped at the interface. Therefore, the interface is regarded as a sink that can trap intrinsic defects.

    Fig.5. Three candidate sites at Fe(110)–graphene interface (only part of atoms in an interface are displayed here for clarity), showing(a)side view and (b) top view of structure, where red, green, and blue balls represent hollow,bridge,and top sites,respectively.

    Fig.6. (a)Structure of interstitial Fe atom and(b)structure of the interstitial C atom at Fe(110)–graphene interface,with purple and gray balls representing Fe and C atoms,respectively.

    3.3. Stability and diffusion of He atoms at interface

    Under long-term neutron irradiation, a certain number of He atoms can be produced by the (n, α) transmutation reaction.[58–60]Then,He bubbles can form at the interface and grain boundaries,thereby resulting in the He embrittlement of the structural material.[56,61,62]Therefore,it is critical to investigate the effects of He atoms at the interface. After optimization, it is found that the interstitial He atoms at the T and B sites are unstable and spontaneously move to the H site. Thus,an interstitial He atom prefers to stay stably at the H site and the bottom of the C2site, the formation energy values for an interstitial He atom at these sites are 2.09 eV and 3.07 eV,respectively. Considering the energetics, the H site is the most stable, whereas the bottom of C2site is a metastable for He atoms. According to Fig.3, the H site and bottom of C2site have low electron density, and previous studies have shown that He atoms tend to be stable in areas with a low electron density.[62–64]

    Fig.7. Diffusion barrier profile of intersitital He atom at Fe(110)–graphene interface, indicating that He atom migrates from stable hollow site to the nearest neighboring hollow site, and diffusion path passes through another stable site of C2 bottom.

    Further, the diffusion of He atoms at the interface is vital for the formation of He bubbles. Therefore, He migration in Fe(110)–graphene is studied by the CI-NEB method. The energy for He migration between the two nearest neighbor H sites is calculated, and the result is presented in Fig.7. The value for this process is ~0.18 eV. In addition, the binding energy of two He atoms at the interface is ~1.36 eV.The interaction between He atoms is attractive,which is the driving force for its aggregation. As the migration barrier is small and the binding energy of He atoms is relatively large,the He atoms tend to aggregate at the interface.

    Graphene is impermeable to standard gases, including the He gas.[65]The He atom has a 1s closed shell electronic structure, and it does not interact chemically with graphene.Leenaerts et al.[66]preformed first principles calculations to investigate the penetration of He atoms through a graphene monolayer with a C vacancy.The diffusion barrier of graphene with a C vacancy is found to be ~18.8 eV with local density approximation (LDA) and 11.7 eV with GGA. Owing to the large migration energy, graphene can act as a barrier to impede the penetration of thermal equilibrium He at a temperature when the graphene layer remains stable. In this work,the penetration of He atoms is studied with a C vacancy in the Fe(110)–graphene system. First, a He atom is placed in vacuum far from the graphene surface to determine its stable site.After this optimization, the vertical distance between the He atom and interface is found to be ~2.896 ?A. Then, the migration of He atoms between the comfortable site and H site is investigated, and the result is presented in Fig.8. The migration energy is ~11.79 eV in this case. The high energy barrier restricts the diffusion of He across the graphene layer to reach the interface. The result illustrates that the impermeability of graphene is not reduced by the presence of Fe layers.Once some He atoms penetrate the graphene structure to reach the interface,they are trapped there and aggregated into larger species.

    Fig.8. Migration energy of He atom in Fe(110)–graphene system with a C vacancy: He atom migrates from vacuum to hollow site at interface though a C vacancy in graphene layer.

    At the same time,the He formation energy at the tetrahedral interstitial site in the Fe substrate is 5.00 eV, larger than that at the interface. This phenomenon strongly indicates that the Fe(110)–graphene interface acts as a sink that traps He atoms. In order to study the role of graphene, we calculate the diffusion barrier of a single He atom in a structure with seven Fe layers. The migration path is shown in Fig.9. The diffusion barrier is 7.24 eV,which is obviously lower than that for the Fe(110)–graphene system. Hence,it is concluded that the graphene acts as a buffer layer. Thus, the low formation energy and high diffusion barrier of He atoms at the interface delay the detrimental effects of He and allow the structural material to remain in service for longer.

    Fig.9. Diffusion barrier of a single He atom in structure with seven Fe layers,showing that barrier between vacuum and the first Fe layer is ~7.24 eV.

    4. Conclusions

    The behaviors of point defects and He atoms are investigated via ab initio calculations based on DFT, and the results are compared with those of bcc Fe (bulk) and a single graphene layer. The conclusions drawn from the present study are as follows.

    (i)A strong interaction and an intense Fe-3d–C-2p orbital hybridization are responsible for the stable graphene structure on the Fe(110)substrate.

    (ii) Vacancies and interstitial atoms are easily formed at the interface, and the interface can act as a sink for point defects.

    (iii)The He atoms require a large energy barrier to penetrate the graphene layer with a C vacancy and the binding energy of the He atoms is larger at the interface. This means that the interface impedes the diffusion of He atoms,and serves as a sink that traps the He atoms.

    Acknowledgement

    The authors are grateful to the Supercomputing Center of Dalian University of Technology and the Project of Nuclear Power Technology Innovation Center of Science Technology and Industry for National Defense for the computational support(Contract No.HDLCXZX-2019-ZH-28).

    午夜精品一区二区三区免费看| 国产真实伦视频高清在线观看 | 精品久久国产蜜桃| 欧美最新免费一区二区三区| 波野结衣二区三区在线| 国产精品久久久久久久电影| 国内少妇人妻偷人精品xxx网站| 无遮挡黄片免费观看| 亚洲乱码一区二区免费版| 美女免费视频网站| 国产不卡一卡二| 嫩草影视91久久| 日本免费一区二区三区高清不卡| 日韩欧美国产一区二区入口| 亚洲自拍偷在线| 热99在线观看视频| 美女黄网站色视频| 精品久久国产蜜桃| 国产精品精品国产色婷婷| 91在线精品国自产拍蜜月| 成人无遮挡网站| 亚洲人与动物交配视频| 最新在线观看一区二区三区| 国产av一区在线观看免费| 天堂影院成人在线观看| netflix在线观看网站| av福利片在线观看| 日本黄色视频三级网站网址| 精品一区二区三区人妻视频| 日韩欧美 国产精品| 91午夜精品亚洲一区二区三区 | 欧美在线一区亚洲| 日本一二三区视频观看| 18禁黄网站禁片午夜丰满| 美女高潮的动态| 欧洲精品卡2卡3卡4卡5卡区| 黄色欧美视频在线观看| 搡老熟女国产l中国老女人| 国产黄片美女视频| 亚洲专区中文字幕在线| 国产高清激情床上av| 长腿黑丝高跟| 国产黄a三级三级三级人| 亚洲精品在线观看二区| 久久久成人免费电影| 狂野欧美激情性xxxx在线观看| 免费搜索国产男女视频| 国产淫片久久久久久久久| 婷婷丁香在线五月| 亚洲在线自拍视频| 成年版毛片免费区| 欧美日韩综合久久久久久 | 村上凉子中文字幕在线| 淫秽高清视频在线观看| 熟女人妻精品中文字幕| 一级黄片播放器| 男女那种视频在线观看| 欧美日韩瑟瑟在线播放| 亚洲av中文av极速乱 | 国产大屁股一区二区在线视频| 伊人久久精品亚洲午夜| 午夜影院日韩av| 色哟哟·www| 国产亚洲精品久久久com| 精品久久久久久成人av| 欧美另类亚洲清纯唯美| 国产精品亚洲美女久久久| 亚洲专区中文字幕在线| 国产精品一区二区三区四区久久| 国产精品久久久久久av不卡| 麻豆av噜噜一区二区三区| 中文在线观看免费www的网站| 伦精品一区二区三区| 日日啪夜夜撸| 女生性感内裤真人,穿戴方法视频| 国模一区二区三区四区视频| 欧美极品一区二区三区四区| 熟妇人妻久久中文字幕3abv| 久久精品人妻少妇| 美女高潮喷水抽搐中文字幕| 国产成人影院久久av| 欧美色欧美亚洲另类二区| 国产又黄又爽又无遮挡在线| 成年版毛片免费区| 在线观看一区二区三区| 国产黄色小视频在线观看| 欧美xxxx性猛交bbbb| 免费观看精品视频网站| 又紧又爽又黄一区二区| 18禁黄网站禁片免费观看直播| 亚洲国产欧洲综合997久久,| 一个人免费在线观看电影| 精品久久久久久久末码| 午夜老司机福利剧场| 亚洲精品久久国产高清桃花| 男插女下体视频免费在线播放| 欧美3d第一页| 国产综合懂色| 日本熟妇午夜| 一进一出抽搐gif免费好疼| 国产一区二区三区av在线 | 国产探花极品一区二区| 不卡一级毛片| 久久精品国产自在天天线| 久久精品综合一区二区三区| 最近最新免费中文字幕在线| 女人被狂操c到高潮| 成人一区二区视频在线观看| 亚洲成人久久性| 露出奶头的视频| 日本黄色片子视频| 欧美激情国产日韩精品一区| 国产精品一及| 亚洲欧美日韩高清专用| a级一级毛片免费在线观看| 日日啪夜夜撸| 日日干狠狠操夜夜爽| 久久精品国产亚洲av天美| av.在线天堂| АⅤ资源中文在线天堂| 亚洲人与动物交配视频| 国产精品亚洲美女久久久| 男女下面进入的视频免费午夜| 欧美成人一区二区免费高清观看| 日本一本二区三区精品| 精品人妻偷拍中文字幕| 俄罗斯特黄特色一大片| 女的被弄到高潮叫床怎么办 | 简卡轻食公司| 久久久久国产精品人妻aⅴ院| 精品一区二区免费观看| 69av精品久久久久久| 亚洲精品久久国产高清桃花| 国产不卡一卡二| 99热只有精品国产| 校园人妻丝袜中文字幕| 国产视频内射| 中文字幕av在线有码专区| 日本成人三级电影网站| 3wmmmm亚洲av在线观看| 久久6这里有精品| 欧美另类亚洲清纯唯美| 亚洲无线观看免费| 嫩草影视91久久| 久久婷婷人人爽人人干人人爱| 九色成人免费人妻av| 天天躁日日操中文字幕| 99热这里只有是精品在线观看| 国产探花在线观看一区二区| 欧美区成人在线视频| 美女免费视频网站| 最近中文字幕高清免费大全6 | 男人舔奶头视频| 国产精品福利在线免费观看| 久久久久久久久久黄片| 国产成人影院久久av| 久久精品国产鲁丝片午夜精品 | 国产精品久久久久久av不卡| 看黄色毛片网站| 精华霜和精华液先用哪个| 18禁裸乳无遮挡免费网站照片| 免费人成在线观看视频色| 亚洲美女黄片视频| 特级一级黄色大片| 精华霜和精华液先用哪个| 日本 欧美在线| 制服丝袜大香蕉在线| 我要看日韩黄色一级片| 成年女人看的毛片在线观看| 熟女电影av网| 特级一级黄色大片| 国产视频一区二区在线看| 国产伦一二天堂av在线观看| 免费一级毛片在线播放高清视频| 22中文网久久字幕| 亚洲精品粉嫩美女一区| 午夜激情福利司机影院| 国产精品亚洲美女久久久| 亚洲av中文av极速乱 | 色尼玛亚洲综合影院| 成人高潮视频无遮挡免费网站| 久久精品国产自在天天线| 女人十人毛片免费观看3o分钟| 亚洲久久久久久中文字幕| 国产探花极品一区二区| 国产蜜桃级精品一区二区三区| 美女cb高潮喷水在线观看| 国产综合懂色| 午夜影院日韩av| 午夜福利在线观看吧| 大又大粗又爽又黄少妇毛片口| 大型黄色视频在线免费观看| 色播亚洲综合网| 久久精品国产鲁丝片午夜精品 | 日韩亚洲欧美综合| 美女被艹到高潮喷水动态| 中文字幕av成人在线电影| 少妇裸体淫交视频免费看高清| 久久精品国产鲁丝片午夜精品 | 特大巨黑吊av在线直播| 精品不卡国产一区二区三区| 露出奶头的视频| 女的被弄到高潮叫床怎么办 | 国内精品久久久久久久电影| 精品不卡国产一区二区三区| 观看美女的网站| 99久久成人亚洲精品观看| 国产高清视频在线播放一区| 午夜福利在线观看吧| 免费一级毛片在线播放高清视频| 久久99热这里只有精品18| 欧美色视频一区免费| 搡老熟女国产l中国老女人| 日本 av在线| 日韩亚洲欧美综合| 日韩国内少妇激情av| 色吧在线观看| 91精品国产九色| 久久香蕉精品热| 男女边吃奶边做爰视频| 99久国产av精品| 日本黄色视频三级网站网址| 日本爱情动作片www.在线观看 | 久久精品91蜜桃| 亚洲国产欧美人成| 成人亚洲精品av一区二区| 永久网站在线| 嫩草影院入口| 国产午夜精品论理片| www.色视频.com| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区三区四区免费观看 | 欧美日韩国产亚洲二区| 色综合亚洲欧美另类图片| 日韩 亚洲 欧美在线| 看免费成人av毛片| 国产亚洲91精品色在线| 亚洲av电影不卡..在线观看| 国产三级中文精品| 国产精品久久久久久av不卡| 特级一级黄色大片| 国产男人的电影天堂91| 啦啦啦啦在线视频资源| 国产视频一区二区在线看| 99九九线精品视频在线观看视频| 欧美一级a爱片免费观看看| 国产三级在线视频| 最后的刺客免费高清国语| 精品久久久久久久人妻蜜臀av| 少妇丰满av| 国产精品一区www在线观看 | 在现免费观看毛片| 搞女人的毛片| 欧美性猛交黑人性爽| 免费黄网站久久成人精品| 成人av一区二区三区在线看| 午夜免费激情av| av在线亚洲专区| 我的女老师完整版在线观看| 婷婷丁香在线五月| 大型黄色视频在线免费观看| 精品欧美国产一区二区三| 一个人看视频在线观看www免费| 国产成年人精品一区二区| 亚洲精品456在线播放app | 亚洲成a人片在线一区二区| 三级男女做爰猛烈吃奶摸视频| 国产精品爽爽va在线观看网站| 国产av一区在线观看免费| 人人妻,人人澡人人爽秒播| a在线观看视频网站| 久久久久免费精品人妻一区二区| 亚洲熟妇熟女久久| 欧美另类亚洲清纯唯美| 男女啪啪激烈高潮av片| 午夜福利视频1000在线观看| 变态另类成人亚洲欧美熟女| а√天堂www在线а√下载| 国内精品久久久久精免费| 久久精品国产自在天天线| 非洲黑人性xxxx精品又粗又长| 日本成人三级电影网站| 免费大片18禁| 看黄色毛片网站| 色吧在线观看| 精品久久久久久久久久久久久| 人人妻人人澡欧美一区二区| 一级a爱片免费观看的视频| 亚洲国产精品成人综合色| 成人精品一区二区免费| 草草在线视频免费看| 中文字幕精品亚洲无线码一区| 欧美区成人在线视频| 亚洲av第一区精品v没综合| 可以在线观看毛片的网站| 九九久久精品国产亚洲av麻豆| 亚洲欧美激情综合另类| 国产一级毛片七仙女欲春2| 亚洲欧美日韩卡通动漫| 赤兔流量卡办理| 久久精品国产清高在天天线| 亚洲男人的天堂狠狠| 人人妻,人人澡人人爽秒播| 欧美色视频一区免费| 欧美日韩综合久久久久久 | 看黄色毛片网站| 五月玫瑰六月丁香| 蜜桃久久精品国产亚洲av| 精品人妻1区二区| 禁无遮挡网站| 欧美区成人在线视频| 亚洲国产精品成人综合色| 国产伦一二天堂av在线观看| 18禁在线播放成人免费| 亚洲欧美日韩高清在线视频| 国产私拍福利视频在线观看| 天堂影院成人在线观看| eeuss影院久久| 中文字幕精品亚洲无线码一区| 日日夜夜操网爽| 免费一级毛片在线播放高清视频| 看免费成人av毛片| 国产不卡一卡二| 日韩强制内射视频| 少妇裸体淫交视频免费看高清| 禁无遮挡网站| 国产成人a区在线观看| av.在线天堂| 高清日韩中文字幕在线| 99久久无色码亚洲精品果冻| 欧美成人免费av一区二区三区| 国产精品不卡视频一区二区| 国产精品98久久久久久宅男小说| 日韩欧美国产在线观看| 网址你懂的国产日韩在线| 亚洲美女视频黄频| 成人无遮挡网站| 亚洲美女搞黄在线观看 | 亚洲av成人精品一区久久| 国内精品一区二区在线观看| 精品人妻视频免费看| 免费人成视频x8x8入口观看| 国产 一区 欧美 日韩| 亚洲电影在线观看av| 久久久成人免费电影| 给我免费播放毛片高清在线观看| 亚洲人成网站高清观看| 91午夜精品亚洲一区二区三区 | 在线播放无遮挡| 久久国产乱子免费精品| 久久6这里有精品| 黄色丝袜av网址大全| 国产熟女欧美一区二区| 国产精品久久久久久精品电影| 亚洲欧美清纯卡通| 午夜精品一区二区三区免费看| 欧美日韩黄片免| 久久精品国产清高在天天线| 成人无遮挡网站| 精品久久久久久久久久免费视频| 22中文网久久字幕| 国产精品女同一区二区软件 | 我的老师免费观看完整版| 99久久精品热视频| 亚洲七黄色美女视频| 国产亚洲欧美98| 亚洲无线观看免费| av天堂在线播放| 女生性感内裤真人,穿戴方法视频| 日本欧美国产在线视频| 真实男女啪啪啪动态图| .国产精品久久| 男女做爰动态图高潮gif福利片| 舔av片在线| 日韩欧美精品免费久久| 天堂av国产一区二区熟女人妻| 国产国拍精品亚洲av在线观看| 国产色爽女视频免费观看| 日韩欧美一区二区三区在线观看| 老师上课跳d突然被开到最大视频| 91麻豆精品激情在线观看国产| 久久精品国产亚洲av天美| 久久这里只有精品中国| 亚洲第一电影网av| 热99在线观看视频| 亚洲久久久久久中文字幕| 男女下面进入的视频免费午夜| 老司机午夜福利在线观看视频| 色在线成人网| 老司机午夜福利在线观看视频| 18禁黄网站禁片免费观看直播| 婷婷丁香在线五月| 日韩精品有码人妻一区| 中文字幕免费在线视频6| 一区福利在线观看| 精品久久久久久成人av| 欧美bdsm另类| 国产久久久一区二区三区| 一区福利在线观看| 亚洲第一电影网av| 国产精品免费一区二区三区在线| 国产色爽女视频免费观看| 美女高潮喷水抽搐中文字幕| 大又大粗又爽又黄少妇毛片口| 国产高清激情床上av| 日本爱情动作片www.在线观看 | 日韩欧美免费精品| 人妻久久中文字幕网| 国产精品国产高清国产av| 在线观看一区二区三区| 18禁裸乳无遮挡免费网站照片| 十八禁国产超污无遮挡网站| 身体一侧抽搐| 久久久久久大精品| 精品午夜福利视频在线观看一区| 免费av不卡在线播放| 欧美黑人欧美精品刺激| 一进一出抽搐动态| 久久精品国产亚洲av涩爱 | 日韩欧美精品v在线| 一级黄片播放器| av中文乱码字幕在线| 男人狂女人下面高潮的视频| 热99在线观看视频| 真实男女啪啪啪动态图| 九色成人免费人妻av| 日韩一区二区视频免费看| 日韩强制内射视频| 欧美绝顶高潮抽搐喷水| 久久亚洲真实| 亚洲第一区二区三区不卡| 美女cb高潮喷水在线观看| 国产又黄又爽又无遮挡在线| 日韩一本色道免费dvd| bbb黄色大片| 男人舔奶头视频| 啦啦啦啦在线视频资源| 日本 av在线| 亚洲欧美精品综合久久99| 热99在线观看视频| 精品久久久久久久久久免费视频| a级毛片免费高清观看在线播放| 色5月婷婷丁香| 一夜夜www| 黄色一级大片看看| 午夜免费激情av| 99久久久亚洲精品蜜臀av| x7x7x7水蜜桃| av福利片在线观看| 男女边吃奶边做爰视频| 国产精品伦人一区二区| 小说图片视频综合网站| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩瑟瑟在线播放| 在线观看午夜福利视频| 国产爱豆传媒在线观看| 一级av片app| 一a级毛片在线观看| 别揉我奶头 嗯啊视频| 国产成年人精品一区二区| 亚洲av中文字字幕乱码综合| 一夜夜www| 国产高清不卡午夜福利| 国产精品一区www在线观看 | 九九爱精品视频在线观看| 99热网站在线观看| a级一级毛片免费在线观看| 免费大片18禁| 欧美日韩综合久久久久久 | 在线观看免费视频日本深夜| 国产人妻一区二区三区在| 久久欧美精品欧美久久欧美| 极品教师在线视频| 在线免费观看的www视频| 可以在线观看毛片的网站| 欧美一区二区亚洲| h日本视频在线播放| 春色校园在线视频观看| 久久精品人妻少妇| 中出人妻视频一区二区| 亚洲一级一片aⅴ在线观看| 亚洲在线观看片| 欧美日韩中文字幕国产精品一区二区三区| 欧美+日韩+精品| 久久亚洲真实| ponron亚洲| 夜夜夜夜夜久久久久| 亚洲美女视频黄频| 日日夜夜操网爽| 日本免费a在线| 国产乱人伦免费视频| 美女cb高潮喷水在线观看| 日韩精品青青久久久久久| 免费看日本二区| 免费电影在线观看免费观看| 看片在线看免费视频| 亚洲七黄色美女视频| 亚洲国产高清在线一区二区三| 中文字幕精品亚洲无线码一区| 欧美bdsm另类| 免费在线观看日本一区| 深爱激情五月婷婷| 欧美最新免费一区二区三区| bbb黄色大片| 色噜噜av男人的天堂激情| 最近最新中文字幕大全电影3| 色哟哟·www| 搞女人的毛片| 午夜精品在线福利| 亚洲乱码一区二区免费版| 亚洲图色成人| 女生性感内裤真人,穿戴方法视频| 日韩,欧美,国产一区二区三区 | 精品人妻1区二区| 日本在线视频免费播放| 欧美性猛交黑人性爽| 看十八女毛片水多多多| bbb黄色大片| 久久亚洲精品不卡| 真人做人爱边吃奶动态| 99国产精品一区二区蜜桃av| 一进一出抽搐gif免费好疼| 特大巨黑吊av在线直播| 哪里可以看免费的av片| 不卡视频在线观看欧美| 亚洲欧美日韩高清专用| 欧美日韩精品成人综合77777| 亚洲欧美日韩高清在线视频| 69人妻影院| 人妻夜夜爽99麻豆av| 中出人妻视频一区二区| АⅤ资源中文在线天堂| 国产精品一区二区三区四区免费观看 | 国产精品嫩草影院av在线观看 | 国产精品美女特级片免费视频播放器| 五月伊人婷婷丁香| 免费人成在线观看视频色| 日本a在线网址| 1000部很黄的大片| 欧美极品一区二区三区四区| 久久精品影院6| 天天一区二区日本电影三级| 别揉我奶头~嗯~啊~动态视频| 日本色播在线视频| 精品久久久久久久久久免费视频| 亚洲av第一区精品v没综合| 人妻夜夜爽99麻豆av| 人妻久久中文字幕网| 国产精品三级大全| 免费av不卡在线播放| 免费在线观看成人毛片| 免费av毛片视频| 日韩欧美在线乱码| videossex国产| 亚洲av中文av极速乱 | 九九热线精品视视频播放| 三级男女做爰猛烈吃奶摸视频| 久久久久性生活片| 亚洲av美国av| 欧美激情国产日韩精品一区| 1024手机看黄色片| 久久国产乱子免费精品| 国产精品电影一区二区三区| 嫩草影院入口| 最好的美女福利视频网| 亚洲在线观看片| 欧美激情在线99| 国产高清视频在线播放一区| 国产久久久一区二区三区| 亚洲狠狠婷婷综合久久图片| 亚洲人成网站在线播放欧美日韩| 欧美中文日本在线观看视频| 国产高清视频在线观看网站| 少妇高潮的动态图| 国产淫片久久久久久久久| 少妇被粗大猛烈的视频| 国产av麻豆久久久久久久| 久久午夜福利片| 人人妻,人人澡人人爽秒播| 久久人妻av系列| 制服丝袜大香蕉在线| 国产高潮美女av| 黄色丝袜av网址大全| 超碰av人人做人人爽久久| av在线蜜桃| 校园春色视频在线观看| 色综合站精品国产| 在线a可以看的网站| 97超级碰碰碰精品色视频在线观看| 亚洲av免费在线观看| 日本熟妇午夜| 成人性生交大片免费视频hd| 日本 av在线| 久久久久免费精品人妻一区二区| 真人一进一出gif抽搐免费| 国产不卡一卡二| 亚洲成av人片在线播放无| 国内精品宾馆在线| 日韩中字成人| 天堂av国产一区二区熟女人妻| 日韩高清综合在线| 五月伊人婷婷丁香| 色综合婷婷激情| 桃红色精品国产亚洲av| 日本色播在线视频| 赤兔流量卡办理| 给我免费播放毛片高清在线观看| 午夜a级毛片| 国产午夜精品论理片| 在线免费十八禁| 婷婷六月久久综合丁香| 久久久久久久久久成人| 一进一出抽搐动态| 97超视频在线观看视频| 少妇熟女aⅴ在线视频|