• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantization of the band at the surface of charge density wave material 2H-TaSe2?

    2021-05-06 08:56:04ManLi李滿NanXu徐楠JianfengZhang張建豐RuiLou婁睿MingShi史明LijunLi黎麗君HechangLei雷和暢CedomirPetrovicZhonghaoLiu劉中灝KaiLiu劉凱YaoboHuang黃耀波andShancaiWang王善才
    Chinese Physics B 2021年4期
    關鍵詞:劉凱

    Man Li(李滿), Nan Xu(徐楠), Jianfeng Zhang(張建豐), Rui Lou(婁睿),Ming Shi(史明), Lijun Li(黎麗君), Hechang Lei(雷和暢), Cedomir Petrovic,Zhonghao Liu(劉中灝), Kai Liu(劉凱), Yaobo Huang(黃耀波), and Shancai Wang(王善才),§

    1Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices,Renmin University of China,Beijing 100872,China

    2Shanghai Synchrotron Radiation Facility,Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201204,China

    3Institute of Advanced Studies,Wuhan University,Wuhan 430072,China

    4Swiss Light Source,Paul Scherrer Institute,CH-5232 Villigen,Switzerland

    5Chongqing Technology and Busineee University,Chongqing 400067,China

    6Condensed Matter Physics and Materials Science Department,Brookhaven National Laboratory,Upton,NY 11973,USA

    7State Key Laboratory of Functional Materials for Informatics and Center for Excellence in Superconducting Electronics,SIMIT,Chinese Academy of Sciences,Shanghai 200050,China

    Keywords: angle-resolved photoemission spectroscopy,transition metal dichalcogenide,TaSe2

    1. Introduction

    Manipulation of two-dimensional electron gas (2DEGS)has recently drawn considerable interest.[1–4]As a mechanism for tailoring the many-body interactions, 2DEGS is embodied in the interface of semiconductors[5–7]and metalfilms.[8–10]This has attracted a lot of interests due to observation of high electron mobility,[11,12]quantum Hall effect,[13,14]superconductivity,[15]large magnetoresistance,[16]etc. The 2DEGS is generally caused by the confinement of electrons along one dimension,for example,by the depletion of charge carriers close to the surface and then inducing a band-bending to confine the electrons into 2DEGS.[17]Due to the shielding effect of good conductors, it is difficult to achieve 2DEG in metals. Monolayer transition metal dichalcogenides (TMDs)MX2(M = Mo, W; X = S, Se) represent a natural host for 2DEGS.[18]

    The mechanism of CDW in quasi-two-dimensional TMDs is a controversial topic for a few decades. Both weak-coupling approaches and strong coupling mean-field models have been proposed, e.g., the Fermi surface (FS)nesting,[19–21]saddle point,[22–24]local chemical bonds,[25,26]excitonic insulator,[27–29]and lattice-driven models,[30–32]however, no consensus has been reached in the driving mechanism of the CDW in TMDs. On the other hand,there is coexistence/competition between the CDW and superconductivity[33,34]in many TMDs. Thus the understanding of the CDW mechanism remains a challenge.

    The 2H-TaSe2consists of three-atom-thick chalcogentransition metal-chalcogen sandwiches and its unit cell can be considered as two layers of Ta-Se with a 60?rotation with van der Waals’force in adjoining layers.[33]2H-TaSe2undergoes a second-order transition from normal phase to an incommensurate ordered phase at T=122 K,followed by a first-order lockin transition to a 3×3 commensurate CDW (CCDW) phase at TCDW= 90 K.[33,35]The CDW mechanism in 2H-TaSe2has been investigated experimentally by ARPES,STM,transport measurement, neutron scattering,[20,21,35–44]and band structure calculations.[45–47]Recently, the k-dependence of susceptibility and k-integrated function calculations disagree with the CDW wave vectors in 2H-TaSe2and the FS nesting scenario is excluded as a driven force.[32,45,48]The strong electron–phonon coupling with wave-vector-dependent electron–phonon matrix elements[30,32]and a new type of collective excitation[37]as the condensation of preformed excitons[49]are proposed,but further evidence is needed.

    In this paper, we report an ARPES study of the electronic structure of 2H-TaSe2with various photon energies in the compensate CDW state and normal state. In addition to the 2D-like band structure reported before, we report a quantized state induced by the intrinsic band structure at Brillouin zone center (Γ) below EFin 2H-TaSe2single crystal for the first time. It is formed by a band with strong kzdispersion and approaches EFnear 3D BZ center predicted in the bulk band calculation, but not reported in the ARPES measurement before. The combination of near-surface band-bending potential created by the rearrangement of surface electrons and the light effective mass along kzdirection causes the quantization along c-axis and the formation of the manifold sub-bands at the surface, similar to that in semiconductors.[17]With the decrease of temperature below TCDW,the sub-bands shift upward while most of the bulk bands show no noticeable change. This abnormal band shift may be related to the CDW but could not be explained yet. When neither the model of Fermi surface nesting nor the electron–phonon coupling could successfully explain the origin of CDW in 2H-TaSe2,our discovery and extensive analysis of those results may unlock new perspectives and avenues for understanding the CDW mechanism.

    2. Materials and methods

    Single crystals of 2H-TaSe2were grown by the iodine vapor transport method. The element analysis and transport measurement of the samples indicate the high quality of crystals in this paper.[33]ARPES measurement was performed at the Dreamline beamline of the Shanghai Synchrotron Radiation Facility with a Scienta D80 analyzer and at the SISHRPES beamline of the Swiss Light Source with a Scienta R4000 analyzer. The energy and angular resolutions were better than 15 meV and 0.2?, respectively. The sample for the ARPES measurements was cleaved in situ along (001)direction in a vacuum better than 5×10?11Torr. Normal and CDW phases measurements were taken at T = 150 K and T =20 K, respectively. The electronic structure of 2HTaSe2was studied by using first-principles calculations with the projector augmented wave (PAW) method[50,51]as implemented in the VASP package.[52–54]For the exchange–correlation functional,the generalized gradient approximation(GGA) of the Perdew–Burke–Ernzerhof (PBE) formula[55]was adopted.The kinetic energy cutoff of the plane-wave basis was set to be 300 eV.A 16×16×4 k-point mesh was utilized for the Brillouin zone (BZ) sampling and the Fermi surface was broadened by the Gaussian smearing method with a width of 0.05 eV. The vdW interactions between the TaSe2layers were considered by adopting the optB86b-vdW functional.[56]The lattice parameters and internal atomic positions were fully relaxed until the forces on all atoms were smaller than 0.01 V/?A.After the equilibrium structures were obtained,the electronic structures were calculated by including the spin–orbit-coupling (SOC) effect. In the slab calculation, a twodimensional supercell with a 21-layer TaSe2slab and a 20-?A vacuum was employed.

    3. Results and discussion

    Fig.1. Brillouin zone and Fermi surface of 2H-TaSe2. (a)3D bulk BZ with marked high-symmetry points and a colored high symmetry plane.(b)Calculated bulk band structure along high-symmetry lines including SOC.Three near-EF bands are denoted as α, β, and γ, respectively.(c),(d)Integrated intensity plots within EF±10 meV at T =20 K and 150 K to show the FS topology,obtained with hν =50 eV showing the colored plane indicated in(a),corresponding to CDW and normal phase,respectively. (e)The extracted ARPES mapping in the normal state.Marked cuts#1 and#2 indicate the momentum locations of the measured bands in Fig.3.

    Fig.2. Temperature dependence of band gap. (a) The band dispersion along the direction of at T =10 K, ?is the CDW gap. (b)Same as(a),but displayed at T =160 K.(c),(d)The temperature dependence of symmetrized EDCs along the momentum marked by#a and#b,respectively. (e)The extracted band gap(?)as a function of temperature. (f)The gap varies with momentum position(θ)atpocket.

    In order to study the band structure under the influence of surface band bending,we performed the band structure calculations with a 21-layer slab,and plot the results along with high symmetry lines in Figs.3(c)and 3(h). The slab calculation reproduces the sub-bands qualitatively in agreement with our experimental results. The separations of γ subbands are more pronounced than the other bands,in agreement with the observations. This larger separation is due to the lower effective mass along the quantization dimension(c-axis),which can be seen from the dispersion along Γ–A in the bulk band calculation.

    To quantitatively study the relationship between the band structure close to the Fermi level and the CDW transition,we have traced the three bands,α,β,and γ as noted in bulk band calculation in Fig.(b),to view their changes with temperature.The measured CDW/normal state band dispersions are illustrated in Figs. 3(a)/3(d) and 3(f)/3(i), along ˉΓ– ˉM and ˉΓ–ˉK,respectively. At the low temperature, in spite of the shadow bands caused by the 3×3 reconstruction and the opening of CDW gaps close to EF, the bands show no noticeable energy shift compared with the normal state. In contrast, the quantized γ sub-bands shift upward while the bulk band of Γ-certer shifts downward with the temperature decrease. The binding energy of the topmost sub-band shifts upward by about 30 meV,from EB~485 meV at T=150 K to EB~455 meV at T =20 K which is beyond the experimental resolution,and so are the following sub-bands. The bulk band of Γ-center shifts downward by about 20 meV,from EB~0.92 eV at T =150 K to EB~0.94 eV at T =20 K. In order to compare the energy shift of the bands, we overlay the EDCs at below and above TCDWat points marked as‘1’and‘2’in Figs.3(a)and 3(d),and show them in Figs.3(k)and 3(l),respectively. From Fig.3(k),no band shift is observed across the TCDWfor α and β bands within the energy resolution,while the quantized subbands of γ and bulk band at Γ-center show a clear shift with temperature changes.

    We further perform the kz-dependent measurements in Γ M–AL plane by varying the photon energy, covering more than one BZ along kz. Figure 4(a)shows the integrated spectra intensity plot around EFas a function of kxand kz,defined as cut#1 in Fig.1(e). The α,β bands are nearly degenerate and show little dispersion along kz, confirming the 2D like characters of the bands. We also show the band dispersion along M–L and Γ–A,labeled as cut#3 and cut#4,in Figs.4(b)and 4(c),respectively. The kzvalue is converted with the inner potential V0=17 eV empirically to best fit the dispersion. Figure 4(b)shows the ARPES intensity plot along the M–L line,a clear dispersion along kzat BZ boundary confirms the periodic variation of electronic states. The insets show EDCs at high symmetry points (i.e., M and L), where α and β bands split at M and nearly degenerate at L, in agreement with the bulk band calculation shown in Fig.1(b).

    Fig.4. Photon-energy-dependent band dispersion of 2H-TaSe2. (a)Integrated ARPES intensity map within EF±10 meV in the hν–khplane,where khis oriented along the Γ–M(A–L)direction,recorded with various photon energies. (b)ARPES intensity plot along the M–L direction,from cut#3 in Fig.4(a),the markers are guided to the eyes. Insets show multiple Gaussian peaks fit the EDCs at high symmetry points M and L, respectively. (c)ARPES intensity plot along the Γ–A direction, cut #4, taken with photon energies covering a kz range over 2 BZs. Inset shows a zoom-in second derivative plot at Γ point.

    It has been a long-standing puzzle that the γ band is absent and only two hole-like bands in the BZ center are observed.For a band with fast dispersion and light effective mass along the c-axis, the band bending effect, which is caused by the breaking of translation symmetry at the surface,will make the quantization more observable and hinder the observation of the bulk band.From the bulk band calculation(Fig.1(b)),the γ band disperses rapidly along Γ–A,with relatively flat in-plane dispersion. As aforementioned slab calculation,the quantized states are located at higher binding energies than the bulk band calculation. In contrast,the quantization of α,β bands is not as clear as that of γ band due to slower dispersion and higher effective mass along the c-axis. This can be seen from the less separation of the states in the slab calculations. From the comparison between the bulk band and the slab calculations,in addition to the consistency between ARPES measurement and slab calculation,we safely“recover”a missing bulk band in 2H-TaSe2in the vicinity of EFcentered at 3D BZ center,with fast dispersion along kz.

    Based on the observation of the quantized states, and the DFT and slab calculations, we “recover” the bulk γ band with band top near EFand a relatively flat in-plane dispersion around the 3D BZ center. Since the quantized states respond with the CDW transition,they could participate in or influence by the formation of CDW. As a surface-sensitive measurement, ARPES observation of the bulk Γ band is hindered by the quantization,and we can only observe the quantized states at the top few layers. In order to confirm if the shift is a CDW related bulk band character or a chemical-shift of the quantized surface state, bulk sensitive measurement such as x-ray ARPES is needed. The band shift of γ band with temperature is inconsistent with the FS nesting,electron–phonon coupling,or preformed exciton liquid scenario.[29,57,59]The understanding of the shift with temperature remains a challenge at the moment, it may cast new perspectives in understanding the CDW mechanism. We expect further bulk sensitive measurement and a better theoretical explanation for this phenomenon in the future.

    4. Summary

    In conclusion, we measured the band structure of 2HTaSe2and measured the temperature and angular dependence of the CDW gap variation. We have observed quantized states in single crystal 2H-TaSe2for the first time. We studied the in-plane and kzdependence of the band dispersion and found out the quantization from a previous “missing” band, which is close to Fermi energy in Γ–M–K plane and highly dispersive along kz. That quantization at the surface results from the band bending due to the surface electron rearrangement and the light carriers’effective mass of the band along Γ–A direction. The band shifts upward with the decrease of temperature into the CCDW state, and the unusual shift is mostly related to the CDW transition. Further bulk sensitive measurement of γ band is needed and it may pave an avenue to understand the CDW in 2H-TMD materials.

    Acknowledgements

    The authors thank Qiang Han for valuable discussions.Y. H. was supported by the CAS Pioneer Hundred Talents Program (type C). Work at Brookhaven National Laboratory was supported by US DOE, Office of Science, Office of Basic Energy Sciences (DOEBES), under Contract No. DESC0012704(materials synthesis).

    猜你喜歡
    劉凱
    QUASIPERIODICITY OF TRANSCENDENTAL MEROMORPHIC FUNCTIONS*
    航空航天模型實踐活動手冊
    多入路內固定聯(lián)合VAC治療SchatzkerⅥ型骨折的療效觀察
    Speedup of self-propelled helical swimmers in a long cylindrical pipe
    High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4?
    “賣官書記”的骯臟交易
    黨建(2018年4期)2018-05-04 07:03:38
    一個賣“前程”的受賄貪官
    左手“反腐”,右手貪腐
    清風(2017年11期)2017-11-24 08:03:21
    紀委書記的斂財經
    檢察風云(2017年16期)2017-09-07 06:32:29
    被你愛的感覺真好
    分憂(2017年9期)2017-09-07 06:21:48
    丁香欧美五月| 特级一级黄色大片| 毛片女人毛片| 一个人免费在线观看的高清视频| 亚洲自偷自拍三级| 99热只有精品国产| 亚洲av美国av| 一个人看视频在线观看www免费| 精品国内亚洲2022精品成人| 亚洲人成网站高清观看| 色综合欧美亚洲国产小说| 日韩 亚洲 欧美在线| 国产麻豆成人av免费视频| 精品人妻熟女av久视频| 精品一区二区三区视频在线| 亚洲精品久久国产高清桃花| 99国产综合亚洲精品| 国产一区二区亚洲精品在线观看| 舔av片在线| 哪里可以看免费的av片| 亚洲熟妇熟女久久| www.www免费av| 别揉我奶头 嗯啊视频| 少妇熟女aⅴ在线视频| 自拍偷自拍亚洲精品老妇| 亚洲av日韩精品久久久久久密| 青草久久国产| 亚洲在线自拍视频| 日韩免费av在线播放| www.999成人在线观看| 久久久久国内视频| 成人美女网站在线观看视频| 日韩中文字幕欧美一区二区| 国产精品一区二区三区四区久久| 男人的好看免费观看在线视频| 亚洲第一电影网av| 国产一区二区三区视频了| 精品乱码久久久久久99久播| 麻豆国产av国片精品| 国产高清三级在线| 国产极品精品免费视频能看的| 他把我摸到了高潮在线观看| 久久性视频一级片| 国产欧美日韩精品一区二区| 亚洲精品在线观看二区| 一个人免费在线观看电影| 亚洲成a人片在线一区二区| 国产在线男女| 欧美日本亚洲视频在线播放| 欧美性猛交╳xxx乱大交人| 国产淫片久久久久久久久 | 亚洲无线观看免费| 国产一区二区在线观看日韩| 精品久久久久久久末码| 最近最新中文字幕大全电影3| av天堂中文字幕网| 日本精品一区二区三区蜜桃| 欧美xxxx性猛交bbbb| 精品久久久久久久人妻蜜臀av| 999久久久精品免费观看国产| 亚洲精品色激情综合| 日本一二三区视频观看| 亚洲av成人精品一区久久| 999久久久精品免费观看国产| 老熟妇仑乱视频hdxx| 亚洲真实伦在线观看| a级毛片a级免费在线| 无人区码免费观看不卡| 亚洲av中文字字幕乱码综合| 日韩人妻高清精品专区| 最近视频中文字幕2019在线8| 欧美色视频一区免费| 国产成人a区在线观看| 色哟哟哟哟哟哟| 国产高清视频在线观看网站| 亚洲成人久久爱视频| 可以在线观看毛片的网站| 国产精品综合久久久久久久免费| 十八禁网站免费在线| 中亚洲国语对白在线视频| 亚洲不卡免费看| 波野结衣二区三区在线| 久久人人爽人人爽人人片va | 一本综合久久免费| 此物有八面人人有两片| 美女xxoo啪啪120秒动态图 | eeuss影院久久| 欧美一区二区亚洲| 99热这里只有精品一区| 亚洲国产高清在线一区二区三| 亚洲av美国av| 在线免费观看不下载黄p国产 | 大型黄色视频在线免费观看| 嫩草影院精品99| 国产视频内射| 黄色日韩在线| 精品乱码久久久久久99久播| 真人一进一出gif抽搐免费| 中文字幕久久专区| 日韩免费av在线播放| a级毛片a级免费在线| 亚洲成a人片在线一区二区| 亚洲,欧美,日韩| eeuss影院久久| 亚洲精品影视一区二区三区av| 亚洲国产精品久久男人天堂| 身体一侧抽搐| 我要搜黄色片| 亚洲天堂国产精品一区在线| 中文字幕av成人在线电影| 久久久精品欧美日韩精品| 日本黄色片子视频| 在线观看免费视频日本深夜| 欧美黑人欧美精品刺激| 欧美黄色淫秽网站| 精品不卡国产一区二区三区| 99在线人妻在线中文字幕| 国产人妻一区二区三区在| 久久久久久久久中文| 人人妻人人澡欧美一区二区| 亚洲欧美日韩卡通动漫| 亚洲在线自拍视频| 男人舔奶头视频| 哪里可以看免费的av片| 精品午夜福利视频在线观看一区| 国产黄片美女视频| 精品久久国产蜜桃| 麻豆av噜噜一区二区三区| 在线十欧美十亚洲十日本专区| 亚洲美女视频黄频| 狂野欧美白嫩少妇大欣赏| 国产精品亚洲美女久久久| 欧美bdsm另类| 国产人妻一区二区三区在| 色5月婷婷丁香| av欧美777| 久久久久九九精品影院| 国产亚洲精品av在线| 久久国产乱子免费精品| 亚洲国产精品成人综合色| 欧洲精品卡2卡3卡4卡5卡区| 日本免费一区二区三区高清不卡| 女人十人毛片免费观看3o分钟| 亚洲男人的天堂狠狠| 国产老妇女一区| 99在线人妻在线中文字幕| 两人在一起打扑克的视频| 欧美精品啪啪一区二区三区| 欧美精品国产亚洲| 亚洲精品456在线播放app | 国产精品一及| 麻豆成人午夜福利视频| 激情在线观看视频在线高清| 精品久久国产蜜桃| 国内久久婷婷六月综合欲色啪| 免费无遮挡裸体视频| 亚州av有码| 中文字幕精品亚洲无线码一区| 国产免费男女视频| 精品乱码久久久久久99久播| 国产精品久久久久久久久免 | 91久久精品国产一区二区成人| 中文字幕人妻熟人妻熟丝袜美| 日韩免费av在线播放| 搡老妇女老女人老熟妇| 啦啦啦观看免费观看视频高清| 亚洲精品在线观看二区| 国产亚洲av嫩草精品影院| 窝窝影院91人妻| 国产真实伦视频高清在线观看 | 亚洲天堂国产精品一区在线| 精品久久久久久,| 最近最新免费中文字幕在线| 天堂av国产一区二区熟女人妻| 美女免费视频网站| 简卡轻食公司| 女同久久另类99精品国产91| 欧美性感艳星| 亚洲精品456在线播放app | 亚洲 欧美 日韩 在线 免费| 琪琪午夜伦伦电影理论片6080| 久久性视频一级片| 两性午夜刺激爽爽歪歪视频在线观看| www.999成人在线观看| 欧美3d第一页| av福利片在线观看| 有码 亚洲区| av女优亚洲男人天堂| 午夜日韩欧美国产| 丰满的人妻完整版| 女人被狂操c到高潮| 天天一区二区日本电影三级| 国产三级在线视频| 国产私拍福利视频在线观看| 99riav亚洲国产免费| 如何舔出高潮| 欧美国产日韩亚洲一区| 欧美日本视频| 国产精品99久久久久久久久| 久久国产乱子伦精品免费另类| eeuss影院久久| 欧美最黄视频在线播放免费| 国产亚洲精品av在线| 成年女人看的毛片在线观看| av在线观看视频网站免费| 欧美黄色片欧美黄色片| 一个人观看的视频www高清免费观看| 在线免费观看不下载黄p国产 | 校园春色视频在线观看| 99久久99久久久精品蜜桃| 国产乱人伦免费视频| 搡老岳熟女国产| 床上黄色一级片| 麻豆国产av国片精品| 搡老熟女国产l中国老女人| 宅男免费午夜| 夜夜夜夜夜久久久久| 小说图片视频综合网站| 一个人免费在线观看电影| 亚洲人成网站高清观看| 草草在线视频免费看| 热99re8久久精品国产| 久久久久国产精品人妻aⅴ院| 亚洲av成人av| 精品日产1卡2卡| 动漫黄色视频在线观看| 99久久无色码亚洲精品果冻| 国产亚洲精品av在线| 国产高清激情床上av| 久久久色成人| 九九在线视频观看精品| 久久6这里有精品| av专区在线播放| 日本 av在线| 狂野欧美白嫩少妇大欣赏| 在线观看66精品国产| 国产精品精品国产色婷婷| 中文字幕人妻熟人妻熟丝袜美| 日本与韩国留学比较| a在线观看视频网站| 亚洲,欧美,日韩| 国产欧美日韩精品亚洲av| 一级av片app| 国产精品综合久久久久久久免费| 免费观看的影片在线观看| 在线十欧美十亚洲十日本专区| 麻豆国产97在线/欧美| 中文字幕免费在线视频6| 久久热精品热| 午夜免费激情av| 韩国av一区二区三区四区| 亚洲精品色激情综合| 人妻久久中文字幕网| 久久精品人妻少妇| 俺也久久电影网| 老司机深夜福利视频在线观看| 国产精品一区二区三区四区久久| 精品人妻一区二区三区麻豆 | 亚洲最大成人中文| 色综合站精品国产| 亚洲第一电影网av| 91av网一区二区| bbb黄色大片| 欧美区成人在线视频| 一夜夜www| 成人精品一区二区免费| 五月玫瑰六月丁香| 别揉我奶头 嗯啊视频| 村上凉子中文字幕在线| 午夜福利视频1000在线观看| 小说图片视频综合网站| 最近中文字幕高清免费大全6 | 老熟妇乱子伦视频在线观看| 国内毛片毛片毛片毛片毛片| 美女被艹到高潮喷水动态| 高清日韩中文字幕在线| 国产精品久久电影中文字幕| 少妇人妻一区二区三区视频| 国产成人av教育| 成人特级黄色片久久久久久久| 51午夜福利影视在线观看| 国产欧美日韩精品一区二区| 哪里可以看免费的av片| 亚洲欧美日韩高清在线视频| 丰满人妻一区二区三区视频av| 老司机午夜福利在线观看视频| 亚洲 国产 在线| 久久九九热精品免费| 亚洲av二区三区四区| 一级毛片久久久久久久久女| netflix在线观看网站| 十八禁网站免费在线| 99久久成人亚洲精品观看| 丁香欧美五月| 老司机午夜福利在线观看视频| 男人舔奶头视频| 欧美色视频一区免费| 欧美区成人在线视频| 一区二区三区四区激情视频 | 一边摸一边抽搐一进一小说| 亚洲av五月六月丁香网| 两个人视频免费观看高清| 91在线观看av| 中文字幕熟女人妻在线| 9191精品国产免费久久| 成人特级av手机在线观看| 亚洲欧美日韩高清在线视频| 男女床上黄色一级片免费看| 尤物成人国产欧美一区二区三区| 九九久久精品国产亚洲av麻豆| 成人鲁丝片一二三区免费| 嫩草影视91久久| 亚洲国产色片| 亚洲 欧美 日韩 在线 免费| 久久性视频一级片| 国产极品精品免费视频能看的| 18美女黄网站色大片免费观看| 国产毛片a区久久久久| 国产精品自产拍在线观看55亚洲| 少妇的逼水好多| www.999成人在线观看| 国产大屁股一区二区在线视频| 欧美bdsm另类| 亚洲美女搞黄在线观看 | 国产三级中文精品| 久99久视频精品免费| 成年女人看的毛片在线观看| 国产亚洲精品久久久com| 网址你懂的国产日韩在线| 我要搜黄色片| 伊人久久精品亚洲午夜| 国产伦人伦偷精品视频| 少妇熟女aⅴ在线视频| 超碰av人人做人人爽久久| 日韩欧美在线乱码| 欧美性猛交╳xxx乱大交人| 中文字幕av在线有码专区| 国产国拍精品亚洲av在线观看| 中文在线观看免费www的网站| 国产高清激情床上av| 欧美极品一区二区三区四区| 3wmmmm亚洲av在线观看| 成熟少妇高潮喷水视频| 国产主播在线观看一区二区| 国产av一区在线观看免费| 午夜a级毛片| 成人亚洲精品av一区二区| 色在线成人网| 国产成人欧美在线观看| 亚洲成人中文字幕在线播放| 成人亚洲精品av一区二区| av国产免费在线观看| 一级av片app| 亚洲欧美日韩无卡精品| 免费看日本二区| 深夜a级毛片| 日本黄色片子视频| av国产免费在线观看| 中出人妻视频一区二区| 久久精品夜夜夜夜夜久久蜜豆| 久久草成人影院| 深夜a级毛片| 首页视频小说图片口味搜索| 亚洲国产精品999在线| 夜夜夜夜夜久久久久| 免费在线观看影片大全网站| 国产精品一区二区三区四区免费观看 | 日本 av在线| 国产人妻一区二区三区在| 成年版毛片免费区| 久久人人爽人人爽人人片va | 欧美日韩综合久久久久久 | 久久热精品热| 成年女人永久免费观看视频| 亚洲人成网站在线播| 亚洲中文字幕日韩| 淫秽高清视频在线观看| 亚洲男人的天堂狠狠| 国产高清视频在线播放一区| 51午夜福利影视在线观看| 日韩欧美国产在线观看| 12—13女人毛片做爰片一| 性色av乱码一区二区三区2| 中文在线观看免费www的网站| 婷婷精品国产亚洲av在线| 老鸭窝网址在线观看| 久久久久久久亚洲中文字幕 | 亚洲精品456在线播放app | 国产野战对白在线观看| 青草久久国产| 天天一区二区日本电影三级| 亚洲无线在线观看| 国产 一区 欧美 日韩| 久久精品久久久久久噜噜老黄 | 亚洲专区国产一区二区| 日本一二三区视频观看| 欧美一区二区精品小视频在线| 日韩 亚洲 欧美在线| 欧美又色又爽又黄视频| 性欧美人与动物交配| 搡老岳熟女国产| 精品久久久久久成人av| 色吧在线观看| 免费人成在线观看视频色| 国产亚洲欧美在线一区二区| 在线国产一区二区在线| 18禁在线播放成人免费| 伦理电影大哥的女人| 一区二区三区免费毛片| 人妻夜夜爽99麻豆av| 熟女人妻精品中文字幕| 午夜影院日韩av| 特大巨黑吊av在线直播| 黄色女人牲交| 亚洲三级黄色毛片| or卡值多少钱| 少妇熟女aⅴ在线视频| 毛片一级片免费看久久久久 | 国产乱人视频| 一级av片app| 亚洲片人在线观看| 亚洲在线自拍视频| 一个人免费在线观看的高清视频| 亚洲欧美日韩东京热| 亚洲精品影视一区二区三区av| 全区人妻精品视频| 18禁黄网站禁片午夜丰满| 身体一侧抽搐| 一区二区三区免费毛片| 99久久99久久久精品蜜桃| 国产国拍精品亚洲av在线观看| 国产精品永久免费网站| 一a级毛片在线观看| 别揉我奶头 嗯啊视频| 精品乱码久久久久久99久播| 午夜视频国产福利| 国产高清有码在线观看视频| 亚洲成人免费电影在线观看| 在现免费观看毛片| 最好的美女福利视频网| 欧美高清性xxxxhd video| 精品乱码久久久久久99久播| 中文字幕av在线有码专区| 性色av乱码一区二区三区2| 国产乱人伦免费视频| 久久性视频一级片| 人人妻,人人澡人人爽秒播| 如何舔出高潮| 99热只有精品国产| 国产亚洲精品综合一区在线观看| 亚洲aⅴ乱码一区二区在线播放| 精品不卡国产一区二区三区| 久99久视频精品免费| 午夜福利18| 亚洲av电影不卡..在线观看| 免费电影在线观看免费观看| 天堂av国产一区二区熟女人妻| 少妇裸体淫交视频免费看高清| 一个人看视频在线观看www免费| 国产爱豆传媒在线观看| 国产在线精品亚洲第一网站| 久久婷婷人人爽人人干人人爱| 别揉我奶头~嗯~啊~动态视频| 精品一区二区三区人妻视频| 亚洲av免费高清在线观看| 日本黄色视频三级网站网址| 亚洲国产精品成人综合色| 国产伦一二天堂av在线观看| 国产黄色小视频在线观看| 一个人看视频在线观看www免费| 最新中文字幕久久久久| 成熟少妇高潮喷水视频| 亚洲国产精品sss在线观看| 成年免费大片在线观看| 欧美一区二区精品小视频在线| 久99久视频精品免费| 99国产极品粉嫩在线观看| 久久久国产成人精品二区| 少妇人妻一区二区三区视频| 性欧美人与动物交配| 色在线成人网| 欧美成人免费av一区二区三区| 亚洲成人中文字幕在线播放| 桃色一区二区三区在线观看| 亚洲自拍偷在线| 色视频www国产| 日本与韩国留学比较| 免费观看的影片在线观看| 欧美激情国产日韩精品一区| 国产亚洲欧美在线一区二区| 国产成人a区在线观看| 国产国拍精品亚洲av在线观看| 天堂av国产一区二区熟女人妻| 亚洲av电影在线进入| 国产精品不卡视频一区二区 | 丰满人妻熟妇乱又伦精品不卡| 丰满的人妻完整版| 亚洲人成网站在线播| 久久热精品热| 国产精品久久久久久人妻精品电影| 特级一级黄色大片| a级毛片免费高清观看在线播放| 日韩欧美国产在线观看| 香蕉av资源在线| 天堂影院成人在线观看| 精品乱码久久久久久99久播| 亚洲三级黄色毛片| 国产亚洲欧美在线一区二区| 91在线观看av| 亚洲av一区综合| 婷婷亚洲欧美| 18禁裸乳无遮挡免费网站照片| 人妻夜夜爽99麻豆av| 免费在线观看亚洲国产| 成人三级黄色视频| 欧美国产日韩亚洲一区| 午夜a级毛片| 国产精品久久久久久久久免 | 一本久久中文字幕| 网址你懂的国产日韩在线| 国产成人影院久久av| 成年女人看的毛片在线观看| 国产精品嫩草影院av在线观看 | 又黄又爽又免费观看的视频| 亚洲aⅴ乱码一区二区在线播放| 国产老妇女一区| 久久久国产成人免费| 两个人的视频大全免费| 一个人看的www免费观看视频| 免费看美女性在线毛片视频| 丁香六月欧美| 久久久久久国产a免费观看| 亚洲无线观看免费| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品一卡2卡三卡4卡5卡| 欧美乱妇无乱码| 国内精品美女久久久久久| 俺也久久电影网| 亚洲电影在线观看av| 欧美成狂野欧美在线观看| 好男人电影高清在线观看| 成人av在线播放网站| 99国产极品粉嫩在线观看| 少妇人妻精品综合一区二区 | 久久久久久九九精品二区国产| 午夜精品久久久久久毛片777| 亚洲 欧美 日韩 在线 免费| 一区二区三区免费毛片| 一区二区三区激情视频| 精品一区二区三区视频在线| 在线观看av片永久免费下载| 99久久精品国产亚洲精品| 深夜a级毛片| 国内久久婷婷六月综合欲色啪| 天堂动漫精品| 日韩欧美在线乱码| 国产黄色小视频在线观看| 国产精品亚洲一级av第二区| 精品一区二区三区视频在线| 国产精品久久久久久亚洲av鲁大| 国产成人欧美在线观看| 在线观看一区二区三区| 夜夜躁狠狠躁天天躁| 黄色视频,在线免费观看| 亚洲av二区三区四区| av女优亚洲男人天堂| 少妇人妻一区二区三区视频| 亚洲国产精品久久男人天堂| 哪里可以看免费的av片| 欧美激情国产日韩精品一区| 日韩欧美精品免费久久 | 麻豆成人午夜福利视频| 深夜a级毛片| 最近最新中文字幕大全电影3| a级毛片a级免费在线| 激情在线观看视频在线高清| 在现免费观看毛片| 国产真实伦视频高清在线观看 | 内射极品少妇av片p| 精品久久久久久久末码| 国内少妇人妻偷人精品xxx网站| 99久国产av精品| 久久久久久久久久黄片| 中文资源天堂在线| 亚洲精品久久国产高清桃花| 国产三级中文精品| 日本三级黄在线观看| 国产三级黄色录像| 国产精品一区二区三区四区免费观看 | 黄色日韩在线| 精品人妻熟女av久视频| 午夜福利欧美成人| 欧美最黄视频在线播放免费| 最近中文字幕高清免费大全6 | 国产精品乱码一区二三区的特点| 嫁个100分男人电影在线观看| 男人舔奶头视频| 直男gayav资源| 露出奶头的视频| av天堂中文字幕网| 国产精品美女特级片免费视频播放器| 五月伊人婷婷丁香| 国产探花在线观看一区二区| 国产高清有码在线观看视频| 国产精品一区二区性色av| 91麻豆av在线| 国产欧美日韩精品亚洲av| 日本熟妇午夜| 欧美乱妇无乱码| 亚洲美女黄片视频| 久久国产精品人妻蜜桃| 一级毛片久久久久久久久女| 国产午夜福利久久久久久| 国产单亲对白刺激| 五月玫瑰六月丁香|