• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4?

    2021-09-28 02:18:28XuChuanWu吳徐傳ShenXu徐升JianFengZhang張建豐HuanMa馬歡KaiLiu劉凱TianLongXia夏天龍andShanCaiWang王善才
    Chinese Physics B 2021年9期
    關(guān)鍵詞:劉凱

    Xu-Chuan Wu(吳徐傳),Shen Xu(徐升),Jian-Feng Zhang(張建豐),Huan Ma(馬歡),Kai Liu(劉凱),Tian-Long Xia(夏天龍),and Shan-Cai Wang(王善才)

    Department of Physics,Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-nano Devices,Renmin University of China,Beijing 100872,China

    Keywords:magnetoresistance,angle-resolved photoemission spectroscopy(ARPES),topological semimetal

    1.Introduction

    The discovery of the extremely large magnetoresistance(XMR)in semimetal WTe2[1]has attracted much attention to explore the origin of XMR.Magnetoresistance(MR)is the tendency for a material to change its electrical resistance in an externally applied magnetic field,which is widely used in spin devices,magnetic memory,and magnetic sensors.A series of materials with XMR have been found to exhibit very large unsaturated MR,meanwhile several effective mechanisms have been proposed to explain its origin.In electron–hole compensation mechanism,[2–8]the MR behavior changes quadratically with the magnetic field,written as MR=μeμhB2,whereμeandμhare the mobilities of the electrons and holes,respectively.In semimetals with comparable carrier density,such as PtBi2,[8,9]TmPn(Tm=Ta or Nb;Pn=N,P,As,Sb,Bi)[10–15]and YSb,[3]it can be explained by the carrier compensation mechanism well.The topological protection mechanism[16,17]can suppress the backscattering without magnetic field.The topological symmetry breaking can cause the XMR,in which the mobility of carries is highly dependent,such as Cd3As2,[18]TaAs family,[19]and ZrSiS family.[20–22]While other exotic mechanisms were proposed,open Fermi surfaces(FSs)have been observed in many XMR materials such as MoAs2,[23]SiP2,[24]andα-WP2.[25]A field-induced change in the FSs was also reported to play a significant role in the origin of XMR.[26]XMR has been observed among a wide scope of materials,however,the underlying mechanism of XMR is not completely understood.The near-quadratic field dependence of MR and a field-induced up-turn followed by a resistivity plateau at low temperatures become their obvious fingerprints.

    Recently,CaAl4with large unsaturated MR up to 3000%at 2.5 K and 14 T accompanied with a plateau was reported,[27]and similar magnetotransport fingerprints characterized by a near-quadratic field dependence of MR and field-induced upturn in resistivity followed with a plateau at low temperature have also been observed.In this paper,by combining ARPES with the first-principles calculations and previous quantum oscillations,[27]we elaborate the topology of FSs and discuss the origin of the large MR in CaAl4.Although structural phase transition from I4/mmm to C2/m has been recognized,the subtle impact on electronic structure is observed by our ARPES measurements.The measured and calculated FSs show multiband characters and anisotropic carrier pockets.Electrons and holes cannot compensate well in the fitting of previous transport data based on isotropic two-band model,while the calculated carrier density still supports the compensation mechanism.Moreover,the Z2invariant of CaAl4equals 1 and the band yields nontrivial Berry phase.The contribution of the topological band structure to MR needs further experimental investigation.

    2.Experimental details

    High-quality single crystals of CaAl4were grown by the flux method.ARPES measurements were performed at the beam line 13U of the National Synchrotron Radiation Laboratory(NSRL)at Hefei with a Scienta D80 analyser and the Kr discharge lamp(hυ=10.05 eV)with a Scienta R4000 analyser at Renmin University of China.The energy and angular resolutions were set as 15 meV and 0.05°,respectively.The samples were cleaved in situ along the(001)plane and measured at T=25 K in a working vacuum better than 5×10?11Torr.The first-principles electronic structure calculations on CaAl4were carried out with the projector augmented wave(PAW)method.[28,29]The generalized gradient approximation(GGA)of the Perdew–Burke–Ernzerhof(PBE)formula[30]for the exchange–correlation function was adopted.The kinetic energy cutoff of the plane-wave basis was set to be 350 eV.A 20×20×20 k-point mesh was taken for the BZ sampling and the SOC effect was not considered.The lattice parameters and internal atomic positions were fully relaxed until the force on all atoms were smaller than 0.01 eV/?A.The FSs were calculated by performing the maximally localized Wannier functions(MLWF)method.[31,32]

    3.Results

    Figure 1(a)shows the schematic of CaAl4’s crystal structure determined by the single crystal x-ray diffraction(XRD)pattern.The single crystal and powder XRD patterns can be well refined with C2/m(No.12)space group.The refined patterns yield the lattice parameters:a=6.1695?A,b=6.1842?A,c=6.3451?A,andβ=118.05°,which was reported in our previous results.[27]Another study suggests a transition at 443 K from I4/mmm to C2/m is a continuous process.[33]In addition,a second transformation might occur at T≈243 K,which is revealed by the specific heat and the elastic modulus.[34]Our temperature-dependent XRD measurement from 5 K to 300 K has been performed to rule out the possible phase transition.[27]Tetragonal I4/mmm and monoclinic C2/m own a fourfold rotation axis C4and a twofold rotation axis C2,respectively.The electronic structures will be affected by the breaking of lattice symmetry,which will be further discussed in the ARPES measurement in detail.The cleavage plane oriented along the(001)direction is shown in Fig.1(b).The 3D Brillouin zone(BZ)with high symmetry points and the top view of BZ are illustrated in Figs.1(c)and 1(d),respectively.

    Figure 2 demonstrates the high-resolution experimental contour intensity at T=25 K and the corresponding Fermi surface from first-principles calculations.As shown in Figs.2(a)and 2(b),the FS contour consists of a circular(α),four triangular(β)and a shuriken-like(γ)electron pockets centered at the Z points.Figure 2(b)plots the intensity maps at selected energies from EFto?1.0 eV,and there are more bands at high binding energies.The top of the hole-like band is located at?0.75 eV.Below?0.5 eV,βpockets disappear and there is a square pocket which connects interior of the pocketγ.To display the distribution of FSs in reciprocal space intuitively,two clusters of FSs are shown in Figs.2(c)and 2(d),respectively.The profile of the calculated FSs in Zplane is almost identical to the measured FSs through ARPES measurements.

    Fig.1.Single crystal and Brillouin zone.(a)Crystal structure of CaAl4 with space group C2/m(No.12).(b)The cleavage plane(001)of the crystal.(c)Schematic of the 3D first BZ and the(001)-projected surface BZ.(d)Top view of the 3D BZ.

    Fig.2.ARPES band mapping and calculated FSs in CaAl4.(a)Photoemission intensity map at the EF in kx–ky plane at T=25 K with hυ=21 eV,and the orange and red dashed lines indicate the 2D BZ boundary and the high-symmetry directions,respectively.(b)Photoemission intensity maps measured at energies from EF to?1.0 eV.(c),(d)The calculated hole-like and electron-like 3D FSs of CaAl4,respectively.

    We have further verified the consistency between the experimental ARPES results(Figs.3(a)and 3(b))and the calculated band structures(Figs.3(c)and 3(d))along the high symmetry lines Z–N and Z–Y.The bandsα,β,γaround Z can be clearly identified.A careful comparison between the DFT calculations and the ARPES intensity plots along high symmetry directions also reveals the high reliability of the calculations.Therefore it is reasonable to predict electronic transport properties by fitting the effective mass of the bands and calculating the volume of the FSs based on the first-principles calculations.It is noteworthy that a mini-band structure indicated by the red arrow(Fig.4(f))near the EFcannot match any band in the bulk band calculations,and it can be also distinguished around Z in Fig.4(e),which is possibly attributed to the contribution from the surface states.

    Figure 4(a)illustrates the results of the FS mapping in the k‖–kzplane along theΓ–M(Z–N)direction.The intensity modulation of the band structures along kzcan be clearly observed.The angle-dependent SdH oscillation measurement indicates an ellipsoidal FS and a quasi-2D FS.[27]Bandαis a circular pocket from the perspective of kx–kyplane.It is a narrow ellipse in k‖–kzplane and confirms that the FS of band αis an ellipsoid.The white dashed lines shown in Fig.4(a)indicate the independent characteristic of kz,which can also be verified in the calculated FS in Fig.2(d).The spectral intensity of crossing band happens to exchange with the increase of photon energy as shown in Figs.4(b)–4(d).It is consistent with the positions of two clusters of FSs(Figs.2(c)and 2(d))along the kzdirection.

    Fig.3.(a),(b)The photoemission intensity plots along the high symmetry lines N–Z–N and F–Z–F,respectively.The red overlaid dashed lines in ARPES data indicate the DFT calculations.(c),(d)The calculated orbital-projected bulk band structures along the high symmetry lines without SOC.

    4.Discussion

    Fig.4.(a)Photon energy dependent experimental FS mapping of CaAl4.(b)–(d)The photoemission intensity plots along M(N)–Z(Γ)–M(N)with photon energy hυ=16 eV,27 eV,33 eV,respectively.(e)Photoemission intensity map at the EF in kx–ky plane at T=25 K with hυ=21 eV.(f),(g)The photoemission intensity plots along two groups of high symmetry lines withπ/2 angle,and corresponding directions are indicated by the orange and green dashed lines in(e).

    It has been reported that CaAl4exhibited large unsaturated magnetoresistance~3000% at 2.5 K and 14 T.[27]The observation of XMR in semimetals has triggered intensive research on the origin of XMR.An isotropic two-band model with perfect electron–hole compensation can lead to a quadratic dependence of magnetoresistance on magnetic field.To identify the specific values of the carriers in CaAl4,a simplified two-band model has been developed to describe the Hall effectρyx(B)for the full temperature range

    where ne,handμe,hare the concentration and mobility of electrons and holes,respectively.[27]Fitting of the transport data at T=2.5 K based on an over-simplified model yields that ne=3.5×1021cm?3,nh=4.5×1020cm?3,the mobilityμe=0.12 m2/V·s,andμh=0.2 m2/V·s.The ratio of ne/nhat T=2.5 K is approximately 7.8.which can explain the deviation B1.6field dependence.Luttinger’s theorem states that the volume enclosed by the FSs is directly proportional to the particle density.[35,36]Due to the high consistency between the first-principles calculation and ARPES measurements,we can integrate the volume of the electron and hole pockets in reciprocal space,0.1349?A?3and 0.1278?A?3for electron and hole pockets,respectively.The ratio of ne/nhfrom the calculation is approximately compensated.Therefore,we need to discuss whether the carrier concentration obtained by the MR fitting based on two-band model is reasonable.Such an imbalanced charge carrier densities fitting from the isotropic two-band model results in a saturating MR curve at intermediate magnetic field,unless a large distinction between the electron and hole mobility is considered for the fitting process.[3]However,it is contradictory that unsaturated MR up to 3000%at 2.5 K was observed in CaAl4.[27]The nonlinear Hall resistivity,angle-dependent SdH quantum oscillation experiments,and the DFT calculations indicate multiband feature and strong anisotropy of FSs.[27]Different orbitals from Ca and Al atoms go through the EFto form the complex FSs,shown in Figs.3(c)–3(d).As discussed before,an isotropic two-band model typically assumes uniform mobility in all directions for each type of carriers.Apparently,this assumption on the mobility is not rational,where the anisotropic FS has been shown in ARPES measurements and calculated FSs.It is necessary to consider the anisotropic multiband nature of CaAl4in a quantitative MR analysis.

    To further explore the origin of large MR,possible topological protection in CaAl4is discussed by combing the ARPES with Z2invariant and Landau fan diagram of Landau level(LL)index yielding Berry phase(φB)in our previous work.[27]The extreme cross section of FS,angular dependence of the SdH peak,[27]and the calculated 3D FS in Fig.2(c)jointly confirm the existence of bandαshown in Fig.2(a).The LL index of bandαis approaching to a nontrivial Berry phase of 0.93π.[27]Moreover,there are both time-reversal and space-inversion symmetries in CaAl4with C2/m.The topological invariant Z2of CaAl4equals 1,which is calculated from the product of the parities of all the occupied bands at the eight time-reversal invariant momentum(TRIM)points.[27]We have not found the expected topologically nontrivial surface state and band crossing.Thus it is worth studying further to learn more about the topological protection mechanism.

    5.Conclusion

    In summary,we perform APRES measurements and carry out first-principles calculations to comprehensively describe the electronic structure of CaAl4.A subtle impact from the structural phase transition from I4/mmm to C2/m is observed.A quasi-2D FS can be confirmed by the kz-dependent ARPES and the calculated FSs.The origin of large MR in CaAl4is mostly attributed to the electron–hole compensation mechanism and topologically nontrivial electronic structures.Multiband features and the anisotropic FSs revealed by the ARPES measurements,the first-principles calculations and magnetotransport properties reveal the discrepancy of the carrier density ratio ne/nhbetween the isotropic two-band model and Luttinger’s theorem.Thus,a general multiple-band model and further ARPES measurements should be considered to explore the perfect compensation and electronic band topology.

    Acknowledgment

    The authors thank the technical assistance from the BL13U beamline in National Synchrotron Radiation Laboratory(NSRL).

    猜你喜歡
    劉凱
    QUASIPERIODICITY OF TRANSCENDENTAL MEROMORPHIC FUNCTIONS*
    航空航天模型實踐活動手冊
    多入路內(nèi)固定聯(lián)合VAC治療SchatzkerⅥ型骨折的療效觀察
    Speedup of self-propelled helical swimmers in a long cylindrical pipe
    婚姻失控,市場真有情感『挽回藥』?
    中外文摘(2019年24期)2019-12-26 16:53:16
    “賣官書記”的骯臟交易
    黨建(2018年4期)2018-05-04 07:03:38
    一個賣“前程”的受賄貪官
    左手“反腐”,右手貪腐
    清風(fēng)(2017年11期)2017-11-24 08:03:21
    紀(jì)委書記的斂財經(jīng)
    被你愛的感覺真好
    分憂(2017年9期)2017-09-07 06:21:48
    最近中文字幕2019免费版| 国产一区二区 视频在线| 十八禁人妻一区二区| videosex国产| 日本五十路高清| 亚洲精品一区蜜桃| 婷婷成人精品国产| 久久久精品区二区三区| 9191精品国产免费久久| 成人18禁高潮啪啪吃奶动态图| 十分钟在线观看高清视频www| 热99re8久久精品国产| 国产欧美日韩一区二区精品| 香蕉丝袜av| 国产在线免费精品| 欧美激情极品国产一区二区三区| 深夜精品福利| 国产淫语在线视频| 精品国产一区二区三区四区第35| 男女午夜视频在线观看| 涩涩av久久男人的天堂| 日韩制服丝袜自拍偷拍| 久久久久久人人人人人| 人人妻,人人澡人人爽秒播| 超碰97精品在线观看| www日本在线高清视频| 精品久久久精品久久久| 午夜福利影视在线免费观看| 我要看黄色一级片免费的| 国产在视频线精品| 午夜91福利影院| 国产精品熟女久久久久浪| 中文字幕高清在线视频| 99久久综合免费| 黄色毛片三级朝国网站| 91精品伊人久久大香线蕉| 大片免费播放器 马上看| 天天躁日日躁夜夜躁夜夜| 男男h啪啪无遮挡| 国产免费视频播放在线视频| 中文字幕高清在线视频| 久久精品国产综合久久久| 免费一级毛片在线播放高清视频 | 久久精品国产亚洲av香蕉五月 | 丁香六月欧美| 精品少妇内射三级| 日日摸夜夜添夜夜添小说| 99久久综合免费| 无限看片的www在线观看| 精品福利观看| 亚洲精品成人av观看孕妇| 一级黄色大片毛片| 妹子高潮喷水视频| 91字幕亚洲| 飞空精品影院首页| 精品亚洲成国产av| 免费少妇av软件| 欧美在线黄色| 久久毛片免费看一区二区三区| 国产又色又爽无遮挡免| 宅男免费午夜| 黄色视频不卡| 午夜免费成人在线视频| 水蜜桃什么品种好| 亚洲欧美日韩另类电影网站| 国产精品国产三级国产专区5o| 亚洲精品在线美女| 亚洲精品中文字幕在线视频| 久久久久久久大尺度免费视频| 国产日韩欧美亚洲二区| 日本欧美视频一区| 久久久欧美国产精品| 黄片小视频在线播放| 国产一区二区激情短视频 | 亚洲色图综合在线观看| tube8黄色片| 国产免费现黄频在线看| 在线精品无人区一区二区三| 亚洲中文av在线| 国产伦人伦偷精品视频| 男女下面插进去视频免费观看| 久久免费观看电影| 国产精品成人在线| 国产欧美日韩综合在线一区二区| 成人国语在线视频| √禁漫天堂资源中文www| 国产成人av激情在线播放| 日日夜夜操网爽| 久久精品国产综合久久久| 欧美日韩精品网址| 飞空精品影院首页| 国产在线观看jvid| 少妇被粗大的猛进出69影院| 欧美变态另类bdsm刘玥| 久久久欧美国产精品| 欧美日韩中文字幕国产精品一区二区三区 | 我要看黄色一级片免费的| 日韩一区二区三区影片| 国产深夜福利视频在线观看| 欧美黑人精品巨大| 亚洲精品美女久久久久99蜜臀| 成在线人永久免费视频| 免费观看av网站的网址| 亚洲激情五月婷婷啪啪| 成年人黄色毛片网站| 两人在一起打扑克的视频| 亚洲免费av在线视频| 国产成人啪精品午夜网站| 丰满迷人的少妇在线观看| 啦啦啦在线免费观看视频4| 窝窝影院91人妻| a级毛片黄视频| 人人澡人人妻人| 丰满人妻熟妇乱又伦精品不卡| 久久精品成人免费网站| 美国免费a级毛片| 一二三四在线观看免费中文在| 欧美日韩精品网址| 久久久久国产一级毛片高清牌| 一本—道久久a久久精品蜜桃钙片| 91麻豆av在线| 欧美久久黑人一区二区| 一区二区三区乱码不卡18| 男男h啪啪无遮挡| 国产日韩欧美视频二区| 女人被躁到高潮嗷嗷叫费观| 人人妻,人人澡人人爽秒播| 日韩精品免费视频一区二区三区| 国产精品二区激情视频| 国内毛片毛片毛片毛片毛片| av网站免费在线观看视频| 香蕉国产在线看| 久久久精品国产亚洲av高清涩受| 国产成人免费观看mmmm| 一级片'在线观看视频| 黄片播放在线免费| 99久久99久久久精品蜜桃| 九色亚洲精品在线播放| 丝袜在线中文字幕| av在线老鸭窝| 99国产精品免费福利视频| 免费女性裸体啪啪无遮挡网站| 久久性视频一级片| 亚洲伊人久久精品综合| 午夜久久久在线观看| 黑人猛操日本美女一级片| 脱女人内裤的视频| 国产老妇伦熟女老妇高清| 久久精品国产综合久久久| 欧美日韩国产mv在线观看视频| 王馨瑶露胸无遮挡在线观看| 国产日韩欧美视频二区| 搡老岳熟女国产| 99re6热这里在线精品视频| 啦啦啦视频在线资源免费观看| 我的亚洲天堂| 无限看片的www在线观看| 欧美亚洲日本最大视频资源| 精品亚洲成国产av| 久久亚洲国产成人精品v| 人人妻人人澡人人爽人人夜夜| 电影成人av| 在线av久久热| 十分钟在线观看高清视频www| 看免费av毛片| 777久久人妻少妇嫩草av网站| 丝瓜视频免费看黄片| 久久久欧美国产精品| 中文字幕另类日韩欧美亚洲嫩草| 男人操女人黄网站| 亚洲第一欧美日韩一区二区三区 | 成在线人永久免费视频| 色精品久久人妻99蜜桃| 一进一出抽搐动态| 久久久久精品国产欧美久久久 | 在线观看一区二区三区激情| 亚洲男人天堂网一区| 肉色欧美久久久久久久蜜桃| 99热国产这里只有精品6| av一本久久久久| 亚洲中文日韩欧美视频| 性色av一级| 欧美在线黄色| 亚洲性夜色夜夜综合| 麻豆国产av国片精品| 婷婷丁香在线五月| 91精品伊人久久大香线蕉| 少妇 在线观看| 国产野战对白在线观看| 99国产精品免费福利视频| 亚洲一码二码三码区别大吗| 久久久精品国产亚洲av高清涩受| 国产精品一区二区免费欧美 | www.999成人在线观看| av网站免费在线观看视频| e午夜精品久久久久久久| 人人澡人人妻人| 日韩中文字幕欧美一区二区| 波多野结衣av一区二区av| 国产欧美亚洲国产| 这个男人来自地球电影免费观看| 大码成人一级视频| 国产成人a∨麻豆精品| 久久国产精品影院| 一区福利在线观看| 日韩视频一区二区在线观看| 日韩有码中文字幕| 丰满迷人的少妇在线观看| 又黄又粗又硬又大视频| 十八禁高潮呻吟视频| 国产在线视频一区二区| 亚洲七黄色美女视频| 久9热在线精品视频| 国产成人啪精品午夜网站| 又黄又粗又硬又大视频| 自线自在国产av| 一本一本久久a久久精品综合妖精| 亚洲欧美精品自产自拍| 日韩有码中文字幕| 青青草视频在线视频观看| 久久久精品区二区三区| 蜜桃在线观看..| 少妇裸体淫交视频免费看高清 | 亚洲专区中文字幕在线| 啦啦啦免费观看视频1| 大陆偷拍与自拍| 中文字幕人妻熟女乱码| 久久热在线av| 少妇 在线观看| av视频免费观看在线观看| 亚洲av日韩在线播放| 色婷婷av一区二区三区视频| av国产精品久久久久影院| 麻豆乱淫一区二区| 涩涩av久久男人的天堂| 国产在线视频一区二区| 亚洲五月婷婷丁香| 久久ye,这里只有精品| 成年人午夜在线观看视频| 人人妻,人人澡人人爽秒播| 啦啦啦 在线观看视频| 如日韩欧美国产精品一区二区三区| 成人三级做爰电影| 天天躁日日躁夜夜躁夜夜| 久久久久久久大尺度免费视频| 高清视频免费观看一区二区| 天天操日日干夜夜撸| 日本vs欧美在线观看视频| 久久 成人 亚洲| 午夜视频精品福利| 美女高潮喷水抽搐中文字幕| 国产成人影院久久av| 99热国产这里只有精品6| 黄片播放在线免费| 久久久久久免费高清国产稀缺| 国产不卡av网站在线观看| 最近中文字幕2019免费版| 日本vs欧美在线观看视频| 精品高清国产在线一区| 黄色 视频免费看| 久久亚洲国产成人精品v| 亚洲精品久久久久久婷婷小说| 欧美精品av麻豆av| 在线十欧美十亚洲十日本专区| 黑人巨大精品欧美一区二区蜜桃| 国产亚洲欧美在线一区二区| 成人手机av| 国产高清国产精品国产三级| 亚洲中文字幕日韩| 欧美+亚洲+日韩+国产| 国产日韩欧美亚洲二区| 久久女婷五月综合色啪小说| 久久久精品国产亚洲av高清涩受| 日日爽夜夜爽网站| 久久久久久人人人人人| 中文字幕人妻丝袜一区二区| 亚洲精品日韩在线中文字幕| 亚洲欧洲日产国产| 丝袜脚勾引网站| 精品亚洲成a人片在线观看| 丝袜美腿诱惑在线| 亚洲欧美成人综合另类久久久| 美女福利国产在线| 日韩欧美国产一区二区入口| 国产成人精品在线电影| 黄色片一级片一级黄色片| 看免费av毛片| 丝袜在线中文字幕| 亚洲国产日韩一区二区| 嫁个100分男人电影在线观看| 欧美精品av麻豆av| 久久人人爽人人片av| avwww免费| 啪啪无遮挡十八禁网站| 亚洲精品乱久久久久久| 在线 av 中文字幕| avwww免费| 在线观看免费日韩欧美大片| 国产精品一区二区免费欧美 | 男女之事视频高清在线观看| 狂野欧美激情性xxxx| 老熟妇乱子伦视频在线观看 | 亚洲精品久久久久久婷婷小说| av一本久久久久| 亚洲成人免费电影在线观看| 亚洲av美国av| a在线观看视频网站| av天堂久久9| 一边摸一边做爽爽视频免费| 18禁国产床啪视频网站| 免费人妻精品一区二区三区视频| 久久热在线av| 另类精品久久| www.av在线官网国产| 99热网站在线观看| 免费在线观看视频国产中文字幕亚洲 | 久久精品aⅴ一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 制服人妻中文乱码| 亚洲熟女毛片儿| 19禁男女啪啪无遮挡网站| 三级毛片av免费| 午夜福利影视在线免费观看| 欧美精品高潮呻吟av久久| 国产精品久久久久久人妻精品电影 | 亚洲av日韩精品久久久久久密| 日韩制服骚丝袜av| 免费在线观看视频国产中文字幕亚洲 | 亚洲av日韩精品久久久久久密| 性少妇av在线| 欧美人与性动交α欧美软件| 美女中出高潮动态图| 欧美精品人与动牲交sv欧美| 国产精品一区二区免费欧美 | 丝袜美腿诱惑在线| 午夜激情久久久久久久| 久久人人爽人人片av| 亚洲成av片中文字幕在线观看| 午夜精品久久久久久毛片777| 真人做人爱边吃奶动态| 国产在线一区二区三区精| 成年美女黄网站色视频大全免费| e午夜精品久久久久久久| 99九九在线精品视频| h视频一区二区三区| 亚洲国产欧美一区二区综合| 青青草视频在线视频观看| 午夜精品国产一区二区电影| 黄色视频,在线免费观看| 亚洲国产中文字幕在线视频| 一边摸一边做爽爽视频免费| 亚洲中文av在线| 午夜激情久久久久久久| 在线观看www视频免费| 国产欧美亚洲国产| 夜夜夜夜夜久久久久| 精品福利观看| 亚洲,欧美精品.| 国产精品秋霞免费鲁丝片| 色老头精品视频在线观看| 亚洲,欧美精品.| e午夜精品久久久久久久| 少妇 在线观看| 性高湖久久久久久久久免费观看| 日本wwww免费看| 国产精品99久久99久久久不卡| 捣出白浆h1v1| 成人国产av品久久久| netflix在线观看网站| 国产精品麻豆人妻色哟哟久久| 丝袜人妻中文字幕| 啦啦啦视频在线资源免费观看| 国产xxxxx性猛交| 美女主播在线视频| a级毛片黄视频| 大香蕉久久网| 2018国产大陆天天弄谢| 老汉色∧v一级毛片| 亚洲欧美精品自产自拍| 久久热在线av| tube8黄色片| 亚洲色图 男人天堂 中文字幕| 成人影院久久| 日韩中文字幕欧美一区二区| 女人久久www免费人成看片| www.精华液| 亚洲全国av大片| 日本黄色日本黄色录像| 亚洲熟女精品中文字幕| 国产成+人综合+亚洲专区| 自线自在国产av| 日韩欧美免费精品| 伦理电影免费视频| av天堂在线播放| 一区二区三区精品91| 亚洲自偷自拍图片 自拍| 亚洲男人天堂网一区| 亚洲成国产人片在线观看| 婷婷色av中文字幕| 国产伦人伦偷精品视频| 黄色a级毛片大全视频| 国产亚洲av片在线观看秒播厂| 亚洲精品久久久久久婷婷小说| 在线看a的网站| 亚洲精品国产色婷婷电影| av天堂在线播放| 国产黄色免费在线视频| 丝袜美足系列| 午夜免费观看性视频| 99久久国产精品久久久| 97人妻天天添夜夜摸| 亚洲精品粉嫩美女一区| 成年女人毛片免费观看观看9 | 一个人免费在线观看的高清视频 | 国产精品久久久久久精品电影小说| 男女床上黄色一级片免费看| 可以免费在线观看a视频的电影网站| 免费在线观看影片大全网站| 99国产精品一区二区蜜桃av | 国产精品自产拍在线观看55亚洲 | 亚洲国产日韩一区二区| 亚洲综合色网址| 12—13女人毛片做爰片一| 老鸭窝网址在线观看| 亚洲成人手机| 黄片小视频在线播放| 成人国语在线视频| 999久久久精品免费观看国产| 欧美xxⅹ黑人| 久久国产亚洲av麻豆专区| 国产不卡av网站在线观看| 国产成人欧美在线观看 | 99久久国产精品久久久| 国产精品一区二区精品视频观看| 一个人免费在线观看的高清视频 | 亚洲三区欧美一区| 亚洲欧美一区二区三区黑人| 一级毛片女人18水好多| 美女午夜性视频免费| 亚洲人成电影免费在线| 777久久人妻少妇嫩草av网站| 久久精品人人爽人人爽视色| 91大片在线观看| 亚洲国产毛片av蜜桃av| 午夜精品久久久久久毛片777| 水蜜桃什么品种好| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久精品精品| 亚洲成人手机| 国产亚洲一区二区精品| 欧美激情高清一区二区三区| 一级毛片女人18水好多| 人妻 亚洲 视频| av片东京热男人的天堂| 免费在线观看影片大全网站| 老鸭窝网址在线观看| 老司机深夜福利视频在线观看 | 正在播放国产对白刺激| 欧美av亚洲av综合av国产av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品一卡2卡三卡4卡5卡 | 最新在线观看一区二区三区| 欧美 日韩 精品 国产| 男女免费视频国产| 啦啦啦在线免费观看视频4| 午夜福利一区二区在线看| 亚洲伊人久久精品综合| 美女视频免费永久观看网站| 免费看十八禁软件| 国产老妇伦熟女老妇高清| 欧美日韩中文字幕国产精品一区二区三区 | 精品国内亚洲2022精品成人 | 青草久久国产| 超碰成人久久| 捣出白浆h1v1| 亚洲综合色网址| 乱人伦中国视频| 青草久久国产| 狂野欧美激情性bbbbbb| 黄频高清免费视频| 亚洲国产欧美网| 亚洲精品粉嫩美女一区| 国产精品一区二区免费欧美 | 多毛熟女@视频| 巨乳人妻的诱惑在线观看| 色婷婷av一区二区三区视频| 老汉色∧v一级毛片| 日韩大码丰满熟妇| 老司机在亚洲福利影院| 欧美xxⅹ黑人| 中文字幕精品免费在线观看视频| 90打野战视频偷拍视频| 久久99热这里只频精品6学生| 亚洲视频免费观看视频| 国产成人欧美在线观看 | 亚洲国产av影院在线观看| 国产无遮挡羞羞视频在线观看| 亚洲欧美精品自产自拍| 在线观看舔阴道视频| 国产在线视频一区二区| 久久久精品94久久精品| 青春草视频在线免费观看| 亚洲av男天堂| 乱人伦中国视频| 99热国产这里只有精品6| 妹子高潮喷水视频| 十八禁人妻一区二区| 美女国产高潮福利片在线看| 久久人妻福利社区极品人妻图片| 国产免费视频播放在线视频| 人人妻人人爽人人添夜夜欢视频| 免费av中文字幕在线| 在线观看免费视频网站a站| 爱豆传媒免费全集在线观看| 国产精品影院久久| 欧美日韩福利视频一区二区| 老司机靠b影院| 青草久久国产| 午夜两性在线视频| 免费高清在线观看视频在线观看| 777久久人妻少妇嫩草av网站| 狠狠狠狠99中文字幕| 欧美国产精品va在线观看不卡| 91av网站免费观看| 咕卡用的链子| 精品国产乱码久久久久久男人| 国产精品av久久久久免费| 高潮久久久久久久久久久不卡| kizo精华| av天堂久久9| 国产精品久久久人人做人人爽| 国产亚洲午夜精品一区二区久久| 一个人免费看片子| 首页视频小说图片口味搜索| 国产日韩欧美亚洲二区| 日本vs欧美在线观看视频| 亚洲全国av大片| 精品国产乱码久久久久久小说| 老熟妇仑乱视频hdxx| 精品国产乱码久久久久久小说| 三上悠亚av全集在线观看| av福利片在线| 飞空精品影院首页| 国产av又大| 蜜桃国产av成人99| 国产黄频视频在线观看| 国产精品一二三区在线看| 久久天躁狠狠躁夜夜2o2o| 久久久久国产精品人妻一区二区| 交换朋友夫妻互换小说| 国产老妇伦熟女老妇高清| 欧美精品人与动牲交sv欧美| 午夜激情av网站| 最近最新免费中文字幕在线| 狂野欧美激情性bbbbbb| 亚洲精品日韩在线中文字幕| 九色亚洲精品在线播放| 亚洲激情五月婷婷啪啪| 秋霞在线观看毛片| 大香蕉久久成人网| 亚洲三区欧美一区| 如日韩欧美国产精品一区二区三区| 国产精品久久久久久精品古装| 国产熟女午夜一区二区三区| 一级,二级,三级黄色视频| 少妇 在线观看| 国产精品偷伦视频观看了| 韩国高清视频一区二区三区| 久久性视频一级片| 悠悠久久av| 精品一区二区三区四区五区乱码| 亚洲伊人色综图| 99热网站在线观看| 天天影视国产精品| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看完整版高清| 色视频在线一区二区三区| 捣出白浆h1v1| netflix在线观看网站| 大陆偷拍与自拍| 丰满少妇做爰视频| 久久99一区二区三区| 国产精品一区二区精品视频观看| 麻豆av在线久日| 老司机在亚洲福利影院| 亚洲精品久久久久久婷婷小说| 国产无遮挡羞羞视频在线观看| 99精品久久久久人妻精品| 国产精品影院久久| 老司机午夜福利在线观看视频 | 又紧又爽又黄一区二区| 两性夫妻黄色片| 男人舔女人的私密视频| 女人精品久久久久毛片| 日本欧美视频一区| 欧美国产精品一级二级三级| 久久av网站| 亚洲色图综合在线观看| 国产精品一区二区在线观看99| 不卡av一区二区三区| 中国美女看黄片| 秋霞在线观看毛片| 国产熟女午夜一区二区三区| 国产精品影院久久| 成年女人毛片免费观看观看9 | 欧美日韩一级在线毛片| 丁香六月天网| 亚洲国产中文字幕在线视频| a级片在线免费高清观看视频| 两个人看的免费小视频| 黄色视频不卡| 美国免费a级毛片| 老鸭窝网址在线观看| 999久久久精品免费观看国产| 一区二区av电影网|