• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    QUASIPERIODICITY OF TRANSCENDENTAL MEROMORPHIC FUNCTIONS*

    2024-03-23 08:02:48劉新玲
    關(guān)鍵詞:劉凱

    (劉新玲 )

    Department of Mathematics, Nanchang University, Nanchang 330031, China;

    Department of Physics and Mathematics, University of Eastern Finland,P. O. Box 111, 80101, Joensuu, Finland E-mail: liuxinling@ncu.edu.cn

    Kai LIU (劉凱)

    Department of Mathematics, Nanchang University, Nanchang 330031, China E-mail: liukai@ncu.edu.cn

    Risto KORHONEN?

    Department of Physics and Mathematics, University of Eastern Finland,P. O. Box 111, 80101, Joensuu, Finland E-mail: risto.korhonen@uef.fi

    Galina FILIPUK

    Institute of Mathematics, Faculty of Mathematics, Informatics and Mechanics,University of Warsaw, Banacha 2, 02-097, Warsaw, Poland E-mail: G.filipuk@uw.edu.pl

    Abstract This paper is devoted to considering the quasiperiodicity of complex differential polynomials, complex difference polynomials and complex delay-differential polynomials of certain types, and to studying the similarities and differences of quasiperiodicity compared to the corresponding properties of periodicity.

    Key words quasiperiodicity; meromorphic functions; complex delay-differential polynomials; Nevanlinna theory

    1 Introduction

    Letfbe a transcendental meromorphic function in the complex plane.The functionf(z)is a periodic meromorphic function with periodc, iff(z+c) =f(z) for allz ∈C andcis a non-zero constant.Ozawa [15] proved the existence of periodic entire functions of any positive order and of hyper-order at least one.

    Letφ(z) andψ(z) be two polynomials such thatφ(z)/≡0,1 andψ(z)/≡0.We present two definitions of quasiperiodic functions below which describe theφ-time quasiperiodicity andψ-plus quasiperiodicity for meromorphic functions.

    Definition 1.1Iff(z) satisfiesf(z+c)=φ(z)f(z), thenf(z) is aφ-time quasiperiodic function.

    Ifφ(z) reduces to a constantqand (q/= 0,1), thenf(z) is sometimes called geometric quasiperiodic function.Actually,ifc=1 and the polynomialφ(z)has the following presentation

    whereλ/=0,αk(k=1,2,···,n)are complex numbers,then theφ-time quasiperiodic functionsf(z) can be written as

    whereg(z) is an arbitrary periodic function with period 1 and Γ(z) is the gamma function,see [5, pp115-116].We also know that any non-constant rational function cannot be aφ-time quasiperiodic function.The transcendentalφ-time quasiperiodic functionsf(z) are of orderρ(f)≥1.

    Definition 1.2Iff(z)satisfiesf(z+c)=f(z)+ψ(z),thenf(z)is aψ-plus quasiperiodic function or quasiperiodic function modψ(z).

    Ifψ(z) is a non-zero constant, thenf(z) is also sometimes called arithmetic quasiperiodic function.Theψ-plus quasiperiodic functions can be written asf(z)=π(z)+?(z),whereπ(z)is a periodic function with periodcand?(z) is a polynomial that satisfies?(z+c)-?(z)=ψ(z).Thus, any non-constant polynomials areψ-plus quasiperiodic functions.For transcendentalψ-plus quasiperiodic functionsf(z), we also see thatρ(f)≥1 for the reason thatρ(π)≥1 wheneverπ(z) is a non-constant periodic function with periodc.

    The periodicity of transcendental meromorphic functions has been considered from different aspects, such as the periodicity with uniqueness theory related to value sharing, composite functions, complex differential equations, or complex difference equations.Some results and references on these topics have been collected recently in [14], where the latest considerations of the periodicity, related to Yang’s Conjecture and its variations, are also included, see also[8, 10-13, 18].Recall Yang’s Conjecture as follows, see [7, 17].

    Yang’s ConjectureLetfbe a transcendental entire function andkbe a positive integer.Ifff(k)is a periodic function, thenfis also a periodic function.

    The motivation of the paper is to address the question posed by G.Filipuk during the first author’s PhD dissertation defence at the University of Eastern Finland, which is how to consider Yang’s Conjecture and its variations in the context of quasiperiodicity?

    The main results of the paper involve considering the above two notions of quasiperiodicity for composite functions, complex differential polynomials, complex difference polynomials and complex delay-differential polynomials of certain types.The paper is organized as follows.In Section 2, we discuss the quasiperiodicity of composite functions.In Section 3, we consider the corresponding versions for quasiperiodicity based on the generalized Yang’s Conjecture and its variations.Section 4 examines the quasiperiodicity of delay versions of Yang’s Conjecture,while Section 5 explores the quasiperiodicity of delay-differential versions of Yang’s Conjecture.

    2 Quasiperiodicity of Composite Functions

    We assume thatP(z) is a non-constant polynomial andf(z) is an entire function.Concerning the periodicity ofP(f(z)), R′enyi and R′enyi [16, Theorem 2] obtained that iff(z) is not periodic, thenP(f(z)) cannot be a periodic function.On the quasiperiodicity ofP(f(z)),we obtain the following result.

    Theorem 2.1Letf(z) be a transcendental entire function andP(z) be a non-constant polynomial.If deg(P(z))≥2, thenP(f(z)) is not aψ-plus quasiperiodic function.

    ProofIf deg(P(z))=2, we assume thatP(z)=a2z2+a1z+a0, wherea2/=0.We will prove that there are no transcendental entire solutions, except ifψ(z)≡0, for the functional equation

    Sinceψ(z) is a non-zero polynomial, thenψ(z+(m-1)c)+···+ψ(z+c)+ψ(z)/≡0.Then we have eitherF(z)2+ψ(z+(m-1)c)+···+ψ(z+c)+ψ(z) have no zeros or the zeros ofF(z)2+ψ(z+(m-1)c)+···+ψ(z+c)+ψ(z) are multiple for allm ≥1, and we obtain a contradiction with the second main theorem of Nevanlinna theory for small functions, see [19].

    If deg(P(z)) = 3, we assume thatP(z) =a3z3+a2z2+a1z+a0.In the proof of [18,Theorem 1.1], Wei, Liu and Liu obtained

    has no transcendental entire solutions except whenψ(z)≡0.If deg(P(z))≥4, we assume thatP(f(z+c)) =P(f(z))+ψ(z).By [2, Theorem 3.4], we seeψ(z) must be a constant,and then the proof of [18, Theorem 1.1] shows thatP(f(z+c)) =P(f(z))+dhas also no transcendental entire solutions except whend ≡0.Summarizing the above results, we have thatP(f(z)) cannot be aψ-plus quasiperiodic function.□

    Remark 2.2The above method for deg(P(z))=2 is also valid for transcendental meromorphic functions, however, the case deg(P(z))≥3 remains open for transcendental meromorphic functions.

    Recall the basic notation and fundamental results of Nevanlinna theory(see,e.g.,[1,4,20]),such as the proximity functionm(r,f),the counting functionN(r,f),the characteristic functionT(r,f), the orderρ(f), and the hyper-orderρ2(f).

    Theorem 2.3LetP(z)be a non-constant polynomial.If deg(P(z))≥2,then theφ-time quasiperiodicity ofP(f(z)) can be stated as follows:

    (i) If deg(P(z))=2,P(z) has two distinct zeros andf(z) is a meromorphic function, thenP(f(z)) cannot be aφ-time quasiperiodic function except whenφn=1 forn=2,3.

    Remark 2.4(1)IfP(z)=zandf(z)=ez+z,then ez+2πi+z+2πi=ez+z+2πi.Hence,ez+zis 2πi-plus quasiperiodic function, wherec=2πi.This example shows that Theorem 2.1 is not true for deg(P(z))=1.

    (2) IfP(z) has only one zero, thenP(f(z)) can be az2-time quasiperiodic function.For instance, (Γ(z+1))2=z2(Γ(z))2.This means the condition thatP(z) has two distinct zeros cannot be removed in (i) of Theorem 2.3.

    (3) Ifφ ≡-1 in (2.4), then we consider the meromorphic solutions for Fermat difference equation

    Conjecture 2.5If deg(P(z))≥2, thenf(P(z)) is notφ-time quasiperiodic, wheref(z)is a transcendental meromorphic function andP(z) is a polynomial.

    3 Generalized Yang’s Conjecture for Quasiperiodicity

    Let us recall the generalized Yang’s Conjecture in[10],where the casen=1 is called Yang’s Conjecture in [17].

    Generalized Yang’s ConjectureLetf(z) be a transcendental entire function andn,kbe positive integers.Iff(z)nf(k)(z)is a periodic function, thenf(z)is also a periodic function.

    Liu, Wei and Yu [10] obtained partial answers to the generalized Yang’s Conjecture as follows by giving additional conditions.

    Theorem ALetf(z) be a transcendental entire function andn,kbe positive integers.Assume thatf(z)nf(k)(z)is a periodic function with periodc.If one of the following conditions is satisfied

    (i)k=1;

    (ii)f(z)=eh(z), whereh(z) is a non-constant polynomial;

    (iii)f(z) has a non-zero Picard exceptional value andf(z) is of finite order;

    (iv)f(z)nf(k+1)(z) is a periodic function with periodc;thenf(z) is a periodic function.

    φ-time Quasiperiodic Version of Generalized Yang’s ConjectureLetfbe a transcendental entire function andn,kbe positive integers.Iff(z)nf(k)(z)is aφ-time quasiperiodic function, thenfis also aφ-time quasiperiodic function.

    The aboveφ-time quasiperiodic version of Yang’s conjecture can be considered by similar methods which have been used in considering Yang’s conjecture.Most results on the periodicity in Yang’s conjecture can be improved directly, and we will not give these considerations.We mainly consider theψ-plus quasiperiodicity and obtain

    Theorem 3.1Letfbe a transcendental entire function withρ2(f)<1 andn,kbe positive integers.

    (i) Ifn ≥3, thenf(z)nf(k)(z) cannot be aψ-plus quasiperiodic function with periodc.

    (ii) Ifn ≤2, thenf(z)nf′(z) cannot be aψ-plus quasiperiodic function with periodc.

    Proof(i) Iffnf(k)is aψ-plus quasiperiodic function with periodc, we can assume that

    We will affirm thatψs(z)≡0 (s=0,1,2,···,q-1), whereψ0(z)=ψ(z).Otherwise, ifψs(z)are mutually distinct,using the second main theorem of Nevanlinna theory[19],[3,Lemma 8.3]and a basic inequality

    Hence,we have(q-1)n ≤2q,however ifn ≥3,by taking a large enoughqwe get a contradiction.Hence,at least two of the functionsψs(z)are identically the same,thus,ψ(z)≡0 for the reason thatψ(z) is a polynomial.

    (ii) Assume thatfnf′is aψ-plus quasiperiodic function with periodc, then

    which is impossible forn=1 orn=2.□

    Remark 3.2(1)The question of whetherfnf(k)(n ≤2,k/=1)can be aψ-plus quasiperiodic function with periodcor not remains open.

    (2) We need the conditionρ2(f)<1 to get the relationshipT(r,f(z+sc))=T(r,f(z))+S(r,f).Here, we conjecture

    from the equation (3.1).

    The following theorem can be seen as another version of Theorem 3.1 where we allownto have negative integer values.

    Theorem 3.3Letfbe a transcendental entire function withρ2(f)<1 andn,kbe positive integers.

    Here, by a difference analogue of the logarithmic derivative lemma for transcendental entire functionfwithρ2(f)<1 (see [3, Theorem 5.1]) and Lemma 3.4, we get

    4 Delay Yang’s Conjecture for Quasiperiodicity

    Liu and Korhonen[12,Theorem 1.3]considered the delay Yang’s Conjecture for periodicity as follows.

    Theorem BLetf(z) be a transcendental entire function withρ2(f)<1 andn ≥2 be a positive integer.Iff(z)nf(z+η) is a periodic function with periodc, thenf(z) is a periodic function with period (n+1)c.

    We now state the version below on delay Yang’s Conjecture for quasiperiodicity.

    Theorem 4.1Letf(z) be a transcendental entire function withρ2(f)<1.

    (1) Ifn ≥2 andf(z)nf(z+η) is aφ-time quasiperiodic function with periodc, thenf(z+c)=G(z)f(z), whereG(z) is a rational function satisfyingG(z)nG(z+η)=φ(z).

    (2) Ifn ≥4, thenf(z)nf(z+η) is not aψ-plus quasiperiodic function with periodc.

    Proof(1) Assume thatf(z)nf(z+η) is aφ-time quasiperiodic function with periodc.Then

    which contradicts withn ≥2.Thus,G(z)should be a rational function and satisfyG(z)nG(z+η)=φ(z).

    (2) Assume thatf(z)nf(z+η) is aψ-plus quasiperiodic function with periodη.Then

    thusf(z) is not aφ-time quasiperiodic function with period 1, howeverf(z+1)nf(z+2) is aφ-time quasiperiodic function with period 1 by

    (ii) Using [9, Lemma 2.5] and similar proofs as above, Theorem 4.1 (2) is true forn ≥8 whenfis a transcendental meromorphic function withρ2(f)<1.

    5 Delay-Differential Yang’s Conjecture for Quasiperiodicity

    Liu and Korhonen[12,Theorem 1.5]also presented a version on the delay-differential Yang’s Conjecture for periodicity, which can be stated as follows.

    Theorem CLetf(z) be a transcendental entire function withρ2(f)<1 andn ≥4 be a positive integer.If[f(z)nf(z+η)](k)is a periodic function with periodc,thenf(z)is a periodic function with period (n+1)c, wherekis a positive integer.

    Finally, we also provide a result on the delay-differential Yang’s Conjecture for quasiperiodicity.

    Theorem 5.1Letf(z) be a transcendental entire function withρ2(f)<1.Ifn ≥2,then [f(z)nf(z+c)](k)cannot be aψ-plus quasiperiodic function with periodη.

    ProofIf [f(z)nf(z+c)](k)is aψ-plus quasiperiodic function with periodη, we can assume that

    Hence, we have (q- 1)(n+ 1)≤2q, however ifn ≥2, there exists a suitableqto get a contradiction.□

    Remark 5.2Iff(z)is a transcendental meromorphic function withρ2(f)<1 in Theorem 5.1, by using[9, Lemma 2.5]and the similar proofs as above, we can get(q-1)(n-1)T(r,f)≤(2q+2)T(r,f)+S(r,f).Hence, Theorem 5.1 is true whenn ≥4 andf(z) is a transcendental meromorphic function withρ2(f)<1.

    Conflict of InterestThe authors declare no conflict of interest.

    猜你喜歡
    劉凱
    航空航天模型實踐活動手冊
    多入路內(nèi)固定聯(lián)合VAC治療SchatzkerⅥ型骨折的療效觀察
    Speedup of self-propelled helical swimmers in a long cylindrical pipe
    High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4?
    婚姻失控,市場真有情感『挽回藥』?
    中外文摘(2019年24期)2019-12-26 16:53:16
    “賣官書記”的骯臟交易
    黨建(2018年4期)2018-05-04 07:03:38
    一個賣“前程”的受賄貪官
    左手“反腐”,右手貪腐
    清風(fēng)(2017年11期)2017-11-24 08:03:21
    紀(jì)委書記的斂財經(jīng)
    被你愛的感覺真好
    分憂(2017年9期)2017-09-07 06:21:48
    精品国产国语对白av| 精品久久久久久电影网| 亚洲av日韩精品久久久久久密| 精品国产一区二区三区久久久樱花| 色精品久久人妻99蜜桃| 日本一区二区免费在线视频| 黑人猛操日本美女一级片| 脱女人内裤的视频| 亚洲精品成人av观看孕妇| 亚洲国产看品久久| 精品国产乱码久久久久久男人| 欧美人与性动交α欧美精品济南到| 国产亚洲欧美精品永久| 中文字幕高清在线视频| 动漫黄色视频在线观看| 久久天堂一区二区三区四区| 啪啪无遮挡十八禁网站| 午夜激情久久久久久久| 国产在视频线精品| 国产精品久久久久久精品古装| 美女午夜性视频免费| 日本黄色日本黄色录像| 最近最新中文字幕大全免费视频| 最近最新免费中文字幕在线| 午夜激情久久久久久久| 不卡av一区二区三区| 午夜精品国产一区二区电影| 亚洲视频免费观看视频| 大型av网站在线播放| 香蕉国产在线看| 成人三级做爰电影| 久久 成人 亚洲| 中文字幕av电影在线播放| 黑人操中国人逼视频| 亚洲精品成人av观看孕妇| 亚洲三区欧美一区| 久久久精品免费免费高清| 国产成人精品在线电影| 91精品三级在线观看| 狠狠狠狠99中文字幕| 视频区图区小说| 国产高清国产精品国产三级| 王馨瑶露胸无遮挡在线观看| 视频在线观看一区二区三区| 国产一区二区 视频在线| 久久天躁狠狠躁夜夜2o2o| 女人高潮潮喷娇喘18禁视频| 色老头精品视频在线观看| 久久精品亚洲熟妇少妇任你| 天天躁日日躁夜夜躁夜夜| 免费av中文字幕在线| 欧美人与性动交α欧美精品济南到| 男女之事视频高清在线观看| 中文字幕人妻丝袜一区二区| 欧美精品亚洲一区二区| 丝袜脚勾引网站| 不卡av一区二区三区| 日日夜夜操网爽| 久久国产精品人妻蜜桃| 男女高潮啪啪啪动态图| 叶爱在线成人免费视频播放| 十八禁网站免费在线| 午夜福利乱码中文字幕| 美女午夜性视频免费| 少妇精品久久久久久久| 日韩制服丝袜自拍偷拍| 国产av一区二区精品久久| 90打野战视频偷拍视频| 一进一出抽搐动态| 一区在线观看完整版| 老司机午夜福利在线观看视频 | 欧美在线黄色| 美女中出高潮动态图| 国产在线视频一区二区| 久久精品亚洲av国产电影网| 亚洲五月婷婷丁香| 人妻久久中文字幕网| 国产激情久久老熟女| 亚洲欧美日韩高清在线视频 | 欧美 亚洲 国产 日韩一| 美女视频免费永久观看网站| 亚洲精品美女久久久久99蜜臀| 亚洲一码二码三码区别大吗| 黑人巨大精品欧美一区二区mp4| 涩涩av久久男人的天堂| 丝袜美腿诱惑在线| 性少妇av在线| 丰满少妇做爰视频| 韩国精品一区二区三区| 国产一区二区激情短视频 | 久热爱精品视频在线9| 一个人免费看片子| 亚洲欧美一区二区三区黑人| 中文字幕色久视频| 亚洲va日本ⅴa欧美va伊人久久 | 日韩电影二区| 90打野战视频偷拍视频| 91成年电影在线观看| 制服诱惑二区| 精品少妇久久久久久888优播| 五月天丁香电影| 精品人妻一区二区三区麻豆| 国产成人精品在线电影| 99久久精品国产亚洲精品| 脱女人内裤的视频| 飞空精品影院首页| 深夜精品福利| 欧美日韩一级在线毛片| 丁香六月欧美| 丝袜脚勾引网站| 欧美日韩黄片免| 热99久久久久精品小说推荐| 亚洲一区二区三区欧美精品| 多毛熟女@视频| 成年人午夜在线观看视频| 午夜精品国产一区二区电影| 亚洲中文av在线| 一区在线观看完整版| 黄片播放在线免费| 黄色 视频免费看| 亚洲av美国av| 亚洲国产精品一区二区三区在线| 首页视频小说图片口味搜索| www日本在线高清视频| videos熟女内射| 欧美激情极品国产一区二区三区| 日本一区二区免费在线视频| 搡老熟女国产l中国老女人| 亚洲 国产 在线| 久久久水蜜桃国产精品网| 欧美xxⅹ黑人| 可以免费在线观看a视频的电影网站| 丰满少妇做爰视频| 在线观看人妻少妇| 欧美精品人与动牲交sv欧美| 99久久国产精品久久久| 亚洲av片天天在线观看| 欧美精品高潮呻吟av久久| 美女脱内裤让男人舔精品视频| 三级毛片av免费| 在线观看免费高清a一片| 在线亚洲精品国产二区图片欧美| 老司机影院毛片| 热99re8久久精品国产| 99国产精品99久久久久| 欧美av亚洲av综合av国产av| 免费女性裸体啪啪无遮挡网站| 亚洲精品久久久久久婷婷小说| 亚洲精品av麻豆狂野| 99精品欧美一区二区三区四区| 建设人人有责人人尽责人人享有的| 十分钟在线观看高清视频www| 最近最新中文字幕大全免费视频| 男人舔女人的私密视频| 丝袜美足系列| 人人澡人人妻人| 日韩有码中文字幕| 免费女性裸体啪啪无遮挡网站| 香蕉丝袜av| 大陆偷拍与自拍| 人人妻人人爽人人添夜夜欢视频| 国产深夜福利视频在线观看| av电影中文网址| 中文字幕最新亚洲高清| 成年女人毛片免费观看观看9 | 国产成人一区二区三区免费视频网站| 黄色视频,在线免费观看| 日韩,欧美,国产一区二区三区| 亚洲国产欧美日韩在线播放| 亚洲午夜精品一区,二区,三区| 亚洲专区字幕在线| 亚洲国产欧美网| 国产男女内射视频| 亚洲性夜色夜夜综合| 欧美97在线视频| av在线app专区| 精品亚洲成a人片在线观看| 国产日韩欧美亚洲二区| 韩国精品一区二区三区| 欧美日韩黄片免| 韩国高清视频一区二区三区| 精品少妇久久久久久888优播| 首页视频小说图片口味搜索| 欧美人与性动交α欧美精品济南到| 男女免费视频国产| 国产精品 国内视频| videosex国产| 成年动漫av网址| 日本五十路高清| 精品少妇一区二区三区视频日本电影| 丝袜美足系列| av一本久久久久| 精品一区二区三区四区五区乱码| 99久久国产精品久久久| 欧美日韩成人在线一区二区| 国产免费现黄频在线看| 午夜福利一区二区在线看| www.自偷自拍.com| 美女国产高潮福利片在线看| 我的亚洲天堂| 777米奇影视久久| 午夜老司机福利片| 人人妻人人澡人人看| 日韩制服骚丝袜av| 精品熟女少妇八av免费久了| 天天操日日干夜夜撸| 国产欧美亚洲国产| 欧美午夜高清在线| 欧美黑人精品巨大| 亚洲国产毛片av蜜桃av| 亚洲av成人不卡在线观看播放网 | 免费黄频网站在线观看国产| 精品国产一区二区三区四区第35| 精品一品国产午夜福利视频| 无遮挡黄片免费观看| 国产精品一二三区在线看| av一本久久久久| 国产高清国产精品国产三级| 正在播放国产对白刺激| 精品一区二区三区av网在线观看 | 久久人人爽av亚洲精品天堂| 久9热在线精品视频| 亚洲五月婷婷丁香| 大香蕉久久成人网| 中文欧美无线码| 精品国产乱码久久久久久男人| 亚洲一码二码三码区别大吗| 欧美激情极品国产一区二区三区| 欧美变态另类bdsm刘玥| 在线观看人妻少妇| 18禁观看日本| 黑人巨大精品欧美一区二区蜜桃| 成年人午夜在线观看视频| 一级毛片精品| 精品国产乱子伦一区二区三区 | 免费看十八禁软件| 丝袜美腿诱惑在线| 在线看a的网站| 巨乳人妻的诱惑在线观看| 五月天丁香电影| 超碰成人久久| 日本av手机在线免费观看| 亚洲欧洲精品一区二区精品久久久| 国产高清videossex| 夜夜夜夜夜久久久久| 日韩大片免费观看网站| 99久久精品国产亚洲精品| 欧美黄色淫秽网站| 法律面前人人平等表现在哪些方面 | 成人国产一区最新在线观看| 亚洲国产成人一精品久久久| 日韩一区二区三区影片| 久久久久国产精品人妻一区二区| 国产成+人综合+亚洲专区| 99久久99久久久精品蜜桃| 大片免费播放器 马上看| 一级毛片女人18水好多| 午夜免费鲁丝| 黑人欧美特级aaaaaa片| 国产人伦9x9x在线观看| 男女高潮啪啪啪动态图| 国产精品欧美亚洲77777| 欧美日韩亚洲国产一区二区在线观看 | 国产精品久久久久成人av| 91老司机精品| 一级毛片电影观看| 熟女少妇亚洲综合色aaa.| 日韩有码中文字幕| 免费观看a级毛片全部| bbb黄色大片| 18禁裸乳无遮挡动漫免费视频| 大片电影免费在线观看免费| 国产日韩一区二区三区精品不卡| 亚洲av男天堂| 免费在线观看黄色视频的| 亚洲av男天堂| 国产精品亚洲av一区麻豆| 久久性视频一级片| 午夜精品久久久久久毛片777| 人人妻人人澡人人爽人人夜夜| 国产成人精品久久二区二区91| 一级,二级,三级黄色视频| 久久久国产成人免费| 国产男女内射视频| 男男h啪啪无遮挡| 黑人操中国人逼视频| 人妻人人澡人人爽人人| 精品国内亚洲2022精品成人 | 1024视频免费在线观看| 欧美精品一区二区大全| 日韩欧美免费精品| 天天添夜夜摸| 国产成人精品无人区| 亚洲精品久久久久久婷婷小说| 久久久久国内视频| 美女主播在线视频| 十分钟在线观看高清视频www| 久久综合国产亚洲精品| 色视频在线一区二区三区| 精品少妇内射三级| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品av久久久久免费| 国产免费现黄频在线看| 五月开心婷婷网| 69av精品久久久久久 | 九色亚洲精品在线播放| 手机成人av网站| 亚洲欧美激情在线| 每晚都被弄得嗷嗷叫到高潮| 极品少妇高潮喷水抽搐| 男女无遮挡免费网站观看| 国产91精品成人一区二区三区 | 国产欧美日韩一区二区三区在线| 亚洲精品中文字幕在线视频| 国产精品久久久久久精品古装| 老汉色∧v一级毛片| 午夜精品国产一区二区电影| 日韩欧美国产一区二区入口| 亚洲第一av免费看| 丁香六月天网| 97在线人人人人妻| 成人国产一区最新在线观看| 日韩制服丝袜自拍偷拍| 真人做人爱边吃奶动态| 搡老乐熟女国产| 亚洲欧美日韩高清在线视频 | 欧美亚洲日本最大视频资源| 亚洲av片天天在线观看| 黄色毛片三级朝国网站| 亚洲国产欧美在线一区| 99精品久久久久人妻精品| 午夜久久久在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 精品少妇黑人巨大在线播放| 亚洲av日韩在线播放| 国产97色在线日韩免费| 在线观看舔阴道视频| 久久久久久久大尺度免费视频| 啦啦啦 在线观看视频| 亚洲欧美成人综合另类久久久| 亚洲av成人一区二区三| 伊人久久大香线蕉亚洲五| 蜜桃在线观看..| 久久久久久久久久久久大奶| 久久久精品94久久精品| 又紧又爽又黄一区二区| 欧美黄色片欧美黄色片| 亚洲天堂av无毛| 男男h啪啪无遮挡| 亚洲精品国产区一区二| 人妻 亚洲 视频| 男女免费视频国产| 国产激情久久老熟女| 精品福利观看| 亚洲,欧美精品.| 别揉我奶头~嗯~啊~动态视频 | 99香蕉大伊视频| 成人三级做爰电影| 青春草亚洲视频在线观看| 国产成人a∨麻豆精品| 曰老女人黄片| 国产精品1区2区在线观看. | 一级毛片电影观看| 十分钟在线观看高清视频www| 人人妻人人添人人爽欧美一区卜| 国产精品久久久久成人av| 在线观看www视频免费| 欧美av亚洲av综合av国产av| www.999成人在线观看| 男女边摸边吃奶| 精品欧美一区二区三区在线| 9色porny在线观看| 国产精品一区二区在线不卡| 久久影院123| av国产精品久久久久影院| 亚洲国产精品成人久久小说| 国产老妇伦熟女老妇高清| 天天躁夜夜躁狠狠躁躁| 国产日韩欧美在线精品| 国产精品二区激情视频| 最近中文字幕2019免费版| 国产伦人伦偷精品视频| 免费观看a级毛片全部| 国产激情久久老熟女| 日日夜夜操网爽| 五月天丁香电影| av在线app专区| 日本黄色日本黄色录像| 国产欧美亚洲国产| 国产男女超爽视频在线观看| 人成视频在线观看免费观看| 麻豆国产av国片精品| 黑人猛操日本美女一级片| 亚洲午夜精品一区,二区,三区| 在线亚洲精品国产二区图片欧美| 精品视频人人做人人爽| 午夜福利在线免费观看网站| 一级,二级,三级黄色视频| 欧美日韩成人在线一区二区| 成人影院久久| 美女国产高潮福利片在线看| 成人国产一区最新在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 丰满饥渴人妻一区二区三| 在线十欧美十亚洲十日本专区| 午夜激情av网站| 午夜激情久久久久久久| 免费在线观看黄色视频的| 如日韩欧美国产精品一区二区三区| 母亲3免费完整高清在线观看| 又大又爽又粗| 夜夜夜夜夜久久久久| 18禁裸乳无遮挡动漫免费视频| 久久性视频一级片| 精品福利永久在线观看| 在线天堂中文资源库| 国产欧美日韩一区二区三 | 久久久精品区二区三区| avwww免费| 性色av乱码一区二区三区2| 亚洲一码二码三码区别大吗| 国产一卡二卡三卡精品| 一级,二级,三级黄色视频| 两人在一起打扑克的视频| 黄色怎么调成土黄色| 老司机影院毛片| 12—13女人毛片做爰片一| 欧美激情高清一区二区三区| 男女高潮啪啪啪动态图| 亚洲五月色婷婷综合| 亚洲国产精品999| 这个男人来自地球电影免费观看| 黄色怎么调成土黄色| 好男人电影高清在线观看| 肉色欧美久久久久久久蜜桃| 亚洲精品国产色婷婷电影| 亚洲精品国产av蜜桃| 岛国毛片在线播放| 久久久久久亚洲精品国产蜜桃av| 欧美日韩av久久| 十八禁网站网址无遮挡| 男女国产视频网站| 飞空精品影院首页| 欧美日韩亚洲综合一区二区三区_| 高清av免费在线| 一二三四在线观看免费中文在| 免费女性裸体啪啪无遮挡网站| 国产精品 欧美亚洲| 不卡一级毛片| 最近中文字幕2019免费版| 日韩,欧美,国产一区二区三区| 天天操日日干夜夜撸| 天堂8中文在线网| 老熟女久久久| 中文字幕人妻丝袜制服| 可以免费在线观看a视频的电影网站| 精品国产一区二区久久| 欧美乱码精品一区二区三区| 纯流量卡能插随身wifi吗| 亚洲av日韩在线播放| 国产亚洲午夜精品一区二区久久| 亚洲精品国产区一区二| 国产亚洲av高清不卡| 国产一区二区三区综合在线观看| 亚洲伊人久久精品综合| 下体分泌物呈黄色| 日韩,欧美,国产一区二区三区| 国产成人免费观看mmmm| 久久精品国产综合久久久| 国产欧美日韩精品亚洲av| 日韩一卡2卡3卡4卡2021年| 国产精品1区2区在线观看. | 一本大道久久a久久精品| 亚洲国产成人一精品久久久| 久久久久精品人妻al黑| 18在线观看网站| 午夜成年电影在线免费观看| 欧美精品亚洲一区二区| 成年人免费黄色播放视频| av片东京热男人的天堂| 欧美 亚洲 国产 日韩一| 久久狼人影院| 视频在线观看一区二区三区| 日本av手机在线免费观看| 亚洲精品国产av蜜桃| 免费高清在线观看日韩| √禁漫天堂资源中文www| 国产精品一二三区在线看| 女人久久www免费人成看片| 成人国产av品久久久| 午夜福利在线观看吧| 亚洲色图综合在线观看| 亚洲伊人色综图| 欧美黑人欧美精品刺激| 国产一区二区在线观看av| 两性午夜刺激爽爽歪歪视频在线观看 | 人妻一区二区av| 欧美成狂野欧美在线观看| 真人做人爱边吃奶动态| 91字幕亚洲| 日韩欧美免费精品| 欧美国产精品一级二级三级| 亚洲精品一卡2卡三卡4卡5卡 | 999久久久精品免费观看国产| avwww免费| 后天国语完整版免费观看| 国产av国产精品国产| 悠悠久久av| 黄色视频不卡| 亚洲精品乱久久久久久| 水蜜桃什么品种好| 国产欧美亚洲国产| av又黄又爽大尺度在线免费看| 精品卡一卡二卡四卡免费| 天天躁夜夜躁狠狠躁躁| 啦啦啦 在线观看视频| 国产欧美日韩一区二区精品| 中文字幕av电影在线播放| 黄片播放在线免费| 午夜精品久久久久久毛片777| 一本综合久久免费| 日韩欧美一区二区三区在线观看 | 精品一区二区三区av网在线观看 | 999久久久精品免费观看国产| 久久性视频一级片| 黑人巨大精品欧美一区二区mp4| 免费观看人在逋| netflix在线观看网站| 亚洲国产日韩一区二区| 国产精品一区二区在线不卡| 日韩电影二区| 久久久久视频综合| 久久精品国产a三级三级三级| 国产熟女午夜一区二区三区| 日韩中文字幕欧美一区二区| av超薄肉色丝袜交足视频| 在线 av 中文字幕| 国产免费福利视频在线观看| 搡老熟女国产l中国老女人| 国产精品.久久久| 午夜免费鲁丝| 精品少妇黑人巨大在线播放| av国产精品久久久久影院| 成年人免费黄色播放视频| 亚洲 欧美一区二区三区| www.av在线官网国产| 国产成人av激情在线播放| 日韩,欧美,国产一区二区三区| 热re99久久国产66热| 国产av精品麻豆| 久久精品国产综合久久久| 亚洲人成77777在线视频| 日韩免费高清中文字幕av| 中文字幕人妻丝袜制服| 在线观看舔阴道视频| 国产精品一区二区在线观看99| 日日爽夜夜爽网站| 五月开心婷婷网| 在线观看免费高清a一片| 性高湖久久久久久久久免费观看| 久久人人爽av亚洲精品天堂| 久久毛片免费看一区二区三区| 正在播放国产对白刺激| 80岁老熟妇乱子伦牲交| 亚洲国产中文字幕在线视频| 男人添女人高潮全过程视频| 精品久久蜜臀av无| tube8黄色片| 亚洲精品乱久久久久久| 久久久国产欧美日韩av| 日韩制服骚丝袜av| 国产在线一区二区三区精| 女性生殖器流出的白浆| 国产1区2区3区精品| 五月开心婷婷网| 大片免费播放器 马上看| 黑丝袜美女国产一区| 亚洲av成人一区二区三| 午夜福利免费观看在线| 一级毛片精品| 国产精品.久久久| 亚洲欧美清纯卡通| 99国产精品一区二区蜜桃av | 久久天躁狠狠躁夜夜2o2o| 亚洲精品成人av观看孕妇| 又大又爽又粗| 亚洲五月色婷婷综合| 一级,二级,三级黄色视频| 亚洲五月色婷婷综合| 亚洲色图 男人天堂 中文字幕| 亚洲国产欧美日韩在线播放| 精品国产一区二区久久| www.自偷自拍.com| 99久久国产精品久久久| 自线自在国产av| 亚洲国产av影院在线观看| 99久久人妻综合| 亚洲免费av在线视频| 一个人免费看片子| 国产精品免费大片| 欧美老熟妇乱子伦牲交| 青青草视频在线视频观看| www.999成人在线观看| 少妇猛男粗大的猛烈进出视频| 久久国产精品大桥未久av| 咕卡用的链子| 中文字幕人妻丝袜制服| 免费日韩欧美在线观看| 99国产精品一区二区蜜桃av | 大陆偷拍与自拍| 欧美性长视频在线观看| 高清黄色对白视频在线免费看| 97精品久久久久久久久久精品| 久久九九热精品免费| 欧美亚洲日本最大视频资源|