• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    QUASIPERIODICITY OF TRANSCENDENTAL MEROMORPHIC FUNCTIONS*

    2024-03-23 08:02:48劉新玲
    關(guān)鍵詞:劉凱

    (劉新玲 )

    Department of Mathematics, Nanchang University, Nanchang 330031, China;

    Department of Physics and Mathematics, University of Eastern Finland,P. O. Box 111, 80101, Joensuu, Finland E-mail: liuxinling@ncu.edu.cn

    Kai LIU (劉凱)

    Department of Mathematics, Nanchang University, Nanchang 330031, China E-mail: liukai@ncu.edu.cn

    Risto KORHONEN?

    Department of Physics and Mathematics, University of Eastern Finland,P. O. Box 111, 80101, Joensuu, Finland E-mail: risto.korhonen@uef.fi

    Galina FILIPUK

    Institute of Mathematics, Faculty of Mathematics, Informatics and Mechanics,University of Warsaw, Banacha 2, 02-097, Warsaw, Poland E-mail: G.filipuk@uw.edu.pl

    Abstract This paper is devoted to considering the quasiperiodicity of complex differential polynomials, complex difference polynomials and complex delay-differential polynomials of certain types, and to studying the similarities and differences of quasiperiodicity compared to the corresponding properties of periodicity.

    Key words quasiperiodicity; meromorphic functions; complex delay-differential polynomials; Nevanlinna theory

    1 Introduction

    Letfbe a transcendental meromorphic function in the complex plane.The functionf(z)is a periodic meromorphic function with periodc, iff(z+c) =f(z) for allz ∈C andcis a non-zero constant.Ozawa [15] proved the existence of periodic entire functions of any positive order and of hyper-order at least one.

    Letφ(z) andψ(z) be two polynomials such thatφ(z)/≡0,1 andψ(z)/≡0.We present two definitions of quasiperiodic functions below which describe theφ-time quasiperiodicity andψ-plus quasiperiodicity for meromorphic functions.

    Definition 1.1Iff(z) satisfiesf(z+c)=φ(z)f(z), thenf(z) is aφ-time quasiperiodic function.

    Ifφ(z) reduces to a constantqand (q/= 0,1), thenf(z) is sometimes called geometric quasiperiodic function.Actually,ifc=1 and the polynomialφ(z)has the following presentation

    whereλ/=0,αk(k=1,2,···,n)are complex numbers,then theφ-time quasiperiodic functionsf(z) can be written as

    whereg(z) is an arbitrary periodic function with period 1 and Γ(z) is the gamma function,see [5, pp115-116].We also know that any non-constant rational function cannot be aφ-time quasiperiodic function.The transcendentalφ-time quasiperiodic functionsf(z) are of orderρ(f)≥1.

    Definition 1.2Iff(z)satisfiesf(z+c)=f(z)+ψ(z),thenf(z)is aψ-plus quasiperiodic function or quasiperiodic function modψ(z).

    Ifψ(z) is a non-zero constant, thenf(z) is also sometimes called arithmetic quasiperiodic function.Theψ-plus quasiperiodic functions can be written asf(z)=π(z)+?(z),whereπ(z)is a periodic function with periodcand?(z) is a polynomial that satisfies?(z+c)-?(z)=ψ(z).Thus, any non-constant polynomials areψ-plus quasiperiodic functions.For transcendentalψ-plus quasiperiodic functionsf(z), we also see thatρ(f)≥1 for the reason thatρ(π)≥1 wheneverπ(z) is a non-constant periodic function with periodc.

    The periodicity of transcendental meromorphic functions has been considered from different aspects, such as the periodicity with uniqueness theory related to value sharing, composite functions, complex differential equations, or complex difference equations.Some results and references on these topics have been collected recently in [14], where the latest considerations of the periodicity, related to Yang’s Conjecture and its variations, are also included, see also[8, 10-13, 18].Recall Yang’s Conjecture as follows, see [7, 17].

    Yang’s ConjectureLetfbe a transcendental entire function andkbe a positive integer.Ifff(k)is a periodic function, thenfis also a periodic function.

    The motivation of the paper is to address the question posed by G.Filipuk during the first author’s PhD dissertation defence at the University of Eastern Finland, which is how to consider Yang’s Conjecture and its variations in the context of quasiperiodicity?

    The main results of the paper involve considering the above two notions of quasiperiodicity for composite functions, complex differential polynomials, complex difference polynomials and complex delay-differential polynomials of certain types.The paper is organized as follows.In Section 2, we discuss the quasiperiodicity of composite functions.In Section 3, we consider the corresponding versions for quasiperiodicity based on the generalized Yang’s Conjecture and its variations.Section 4 examines the quasiperiodicity of delay versions of Yang’s Conjecture,while Section 5 explores the quasiperiodicity of delay-differential versions of Yang’s Conjecture.

    2 Quasiperiodicity of Composite Functions

    We assume thatP(z) is a non-constant polynomial andf(z) is an entire function.Concerning the periodicity ofP(f(z)), R′enyi and R′enyi [16, Theorem 2] obtained that iff(z) is not periodic, thenP(f(z)) cannot be a periodic function.On the quasiperiodicity ofP(f(z)),we obtain the following result.

    Theorem 2.1Letf(z) be a transcendental entire function andP(z) be a non-constant polynomial.If deg(P(z))≥2, thenP(f(z)) is not aψ-plus quasiperiodic function.

    ProofIf deg(P(z))=2, we assume thatP(z)=a2z2+a1z+a0, wherea2/=0.We will prove that there are no transcendental entire solutions, except ifψ(z)≡0, for the functional equation

    Sinceψ(z) is a non-zero polynomial, thenψ(z+(m-1)c)+···+ψ(z+c)+ψ(z)/≡0.Then we have eitherF(z)2+ψ(z+(m-1)c)+···+ψ(z+c)+ψ(z) have no zeros or the zeros ofF(z)2+ψ(z+(m-1)c)+···+ψ(z+c)+ψ(z) are multiple for allm ≥1, and we obtain a contradiction with the second main theorem of Nevanlinna theory for small functions, see [19].

    If deg(P(z)) = 3, we assume thatP(z) =a3z3+a2z2+a1z+a0.In the proof of [18,Theorem 1.1], Wei, Liu and Liu obtained

    has no transcendental entire solutions except whenψ(z)≡0.If deg(P(z))≥4, we assume thatP(f(z+c)) =P(f(z))+ψ(z).By [2, Theorem 3.4], we seeψ(z) must be a constant,and then the proof of [18, Theorem 1.1] shows thatP(f(z+c)) =P(f(z))+dhas also no transcendental entire solutions except whend ≡0.Summarizing the above results, we have thatP(f(z)) cannot be aψ-plus quasiperiodic function.□

    Remark 2.2The above method for deg(P(z))=2 is also valid for transcendental meromorphic functions, however, the case deg(P(z))≥3 remains open for transcendental meromorphic functions.

    Recall the basic notation and fundamental results of Nevanlinna theory(see,e.g.,[1,4,20]),such as the proximity functionm(r,f),the counting functionN(r,f),the characteristic functionT(r,f), the orderρ(f), and the hyper-orderρ2(f).

    Theorem 2.3LetP(z)be a non-constant polynomial.If deg(P(z))≥2,then theφ-time quasiperiodicity ofP(f(z)) can be stated as follows:

    (i) If deg(P(z))=2,P(z) has two distinct zeros andf(z) is a meromorphic function, thenP(f(z)) cannot be aφ-time quasiperiodic function except whenφn=1 forn=2,3.

    Remark 2.4(1)IfP(z)=zandf(z)=ez+z,then ez+2πi+z+2πi=ez+z+2πi.Hence,ez+zis 2πi-plus quasiperiodic function, wherec=2πi.This example shows that Theorem 2.1 is not true for deg(P(z))=1.

    (2) IfP(z) has only one zero, thenP(f(z)) can be az2-time quasiperiodic function.For instance, (Γ(z+1))2=z2(Γ(z))2.This means the condition thatP(z) has two distinct zeros cannot be removed in (i) of Theorem 2.3.

    (3) Ifφ ≡-1 in (2.4), then we consider the meromorphic solutions for Fermat difference equation

    Conjecture 2.5If deg(P(z))≥2, thenf(P(z)) is notφ-time quasiperiodic, wheref(z)is a transcendental meromorphic function andP(z) is a polynomial.

    3 Generalized Yang’s Conjecture for Quasiperiodicity

    Let us recall the generalized Yang’s Conjecture in[10],where the casen=1 is called Yang’s Conjecture in [17].

    Generalized Yang’s ConjectureLetf(z) be a transcendental entire function andn,kbe positive integers.Iff(z)nf(k)(z)is a periodic function, thenf(z)is also a periodic function.

    Liu, Wei and Yu [10] obtained partial answers to the generalized Yang’s Conjecture as follows by giving additional conditions.

    Theorem ALetf(z) be a transcendental entire function andn,kbe positive integers.Assume thatf(z)nf(k)(z)is a periodic function with periodc.If one of the following conditions is satisfied

    (i)k=1;

    (ii)f(z)=eh(z), whereh(z) is a non-constant polynomial;

    (iii)f(z) has a non-zero Picard exceptional value andf(z) is of finite order;

    (iv)f(z)nf(k+1)(z) is a periodic function with periodc;thenf(z) is a periodic function.

    φ-time Quasiperiodic Version of Generalized Yang’s ConjectureLetfbe a transcendental entire function andn,kbe positive integers.Iff(z)nf(k)(z)is aφ-time quasiperiodic function, thenfis also aφ-time quasiperiodic function.

    The aboveφ-time quasiperiodic version of Yang’s conjecture can be considered by similar methods which have been used in considering Yang’s conjecture.Most results on the periodicity in Yang’s conjecture can be improved directly, and we will not give these considerations.We mainly consider theψ-plus quasiperiodicity and obtain

    Theorem 3.1Letfbe a transcendental entire function withρ2(f)<1 andn,kbe positive integers.

    (i) Ifn ≥3, thenf(z)nf(k)(z) cannot be aψ-plus quasiperiodic function with periodc.

    (ii) Ifn ≤2, thenf(z)nf′(z) cannot be aψ-plus quasiperiodic function with periodc.

    Proof(i) Iffnf(k)is aψ-plus quasiperiodic function with periodc, we can assume that

    We will affirm thatψs(z)≡0 (s=0,1,2,···,q-1), whereψ0(z)=ψ(z).Otherwise, ifψs(z)are mutually distinct,using the second main theorem of Nevanlinna theory[19],[3,Lemma 8.3]and a basic inequality

    Hence,we have(q-1)n ≤2q,however ifn ≥3,by taking a large enoughqwe get a contradiction.Hence,at least two of the functionsψs(z)are identically the same,thus,ψ(z)≡0 for the reason thatψ(z) is a polynomial.

    (ii) Assume thatfnf′is aψ-plus quasiperiodic function with periodc, then

    which is impossible forn=1 orn=2.□

    Remark 3.2(1)The question of whetherfnf(k)(n ≤2,k/=1)can be aψ-plus quasiperiodic function with periodcor not remains open.

    (2) We need the conditionρ2(f)<1 to get the relationshipT(r,f(z+sc))=T(r,f(z))+S(r,f).Here, we conjecture

    from the equation (3.1).

    The following theorem can be seen as another version of Theorem 3.1 where we allownto have negative integer values.

    Theorem 3.3Letfbe a transcendental entire function withρ2(f)<1 andn,kbe positive integers.

    Here, by a difference analogue of the logarithmic derivative lemma for transcendental entire functionfwithρ2(f)<1 (see [3, Theorem 5.1]) and Lemma 3.4, we get

    4 Delay Yang’s Conjecture for Quasiperiodicity

    Liu and Korhonen[12,Theorem 1.3]considered the delay Yang’s Conjecture for periodicity as follows.

    Theorem BLetf(z) be a transcendental entire function withρ2(f)<1 andn ≥2 be a positive integer.Iff(z)nf(z+η) is a periodic function with periodc, thenf(z) is a periodic function with period (n+1)c.

    We now state the version below on delay Yang’s Conjecture for quasiperiodicity.

    Theorem 4.1Letf(z) be a transcendental entire function withρ2(f)<1.

    (1) Ifn ≥2 andf(z)nf(z+η) is aφ-time quasiperiodic function with periodc, thenf(z+c)=G(z)f(z), whereG(z) is a rational function satisfyingG(z)nG(z+η)=φ(z).

    (2) Ifn ≥4, thenf(z)nf(z+η) is not aψ-plus quasiperiodic function with periodc.

    Proof(1) Assume thatf(z)nf(z+η) is aφ-time quasiperiodic function with periodc.Then

    which contradicts withn ≥2.Thus,G(z)should be a rational function and satisfyG(z)nG(z+η)=φ(z).

    (2) Assume thatf(z)nf(z+η) is aψ-plus quasiperiodic function with periodη.Then

    thusf(z) is not aφ-time quasiperiodic function with period 1, howeverf(z+1)nf(z+2) is aφ-time quasiperiodic function with period 1 by

    (ii) Using [9, Lemma 2.5] and similar proofs as above, Theorem 4.1 (2) is true forn ≥8 whenfis a transcendental meromorphic function withρ2(f)<1.

    5 Delay-Differential Yang’s Conjecture for Quasiperiodicity

    Liu and Korhonen[12,Theorem 1.5]also presented a version on the delay-differential Yang’s Conjecture for periodicity, which can be stated as follows.

    Theorem CLetf(z) be a transcendental entire function withρ2(f)<1 andn ≥4 be a positive integer.If[f(z)nf(z+η)](k)is a periodic function with periodc,thenf(z)is a periodic function with period (n+1)c, wherekis a positive integer.

    Finally, we also provide a result on the delay-differential Yang’s Conjecture for quasiperiodicity.

    Theorem 5.1Letf(z) be a transcendental entire function withρ2(f)<1.Ifn ≥2,then [f(z)nf(z+c)](k)cannot be aψ-plus quasiperiodic function with periodη.

    ProofIf [f(z)nf(z+c)](k)is aψ-plus quasiperiodic function with periodη, we can assume that

    Hence, we have (q- 1)(n+ 1)≤2q, however ifn ≥2, there exists a suitableqto get a contradiction.□

    Remark 5.2Iff(z)is a transcendental meromorphic function withρ2(f)<1 in Theorem 5.1, by using[9, Lemma 2.5]and the similar proofs as above, we can get(q-1)(n-1)T(r,f)≤(2q+2)T(r,f)+S(r,f).Hence, Theorem 5.1 is true whenn ≥4 andf(z) is a transcendental meromorphic function withρ2(f)<1.

    Conflict of InterestThe authors declare no conflict of interest.

    猜你喜歡
    劉凱
    航空航天模型實踐活動手冊
    多入路內(nèi)固定聯(lián)合VAC治療SchatzkerⅥ型骨折的療效觀察
    Speedup of self-propelled helical swimmers in a long cylindrical pipe
    High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4?
    婚姻失控,市場真有情感『挽回藥』?
    中外文摘(2019年24期)2019-12-26 16:53:16
    “賣官書記”的骯臟交易
    黨建(2018年4期)2018-05-04 07:03:38
    一個賣“前程”的受賄貪官
    左手“反腐”,右手貪腐
    清風(fēng)(2017年11期)2017-11-24 08:03:21
    紀(jì)委書記的斂財經(jīng)
    被你愛的感覺真好
    分憂(2017年9期)2017-09-07 06:21:48
    色尼玛亚洲综合影院| 中文字幕久久专区| 国产黄片美女视频| 亚洲成人av在线免费| 免费av观看视频| 一本精品99久久精品77| av在线老鸭窝| 国产精品一区二区免费欧美| 搡老熟女国产l中国老女人| 久久精品91蜜桃| 99久久久亚洲精品蜜臀av| 久久99热这里只有精品18| 中国国产av一级| 亚洲四区av| 校园春色视频在线观看| 淫妇啪啪啪对白视频| 国产精品一区二区三区四区免费观看 | 干丝袜人妻中文字幕| 99精品在免费线老司机午夜| 中文资源天堂在线| 蜜臀久久99精品久久宅男| 国产一区亚洲一区在线观看| 哪里可以看免费的av片| 国产精品嫩草影院av在线观看| 国产久久久一区二区三区| 欧美激情国产日韩精品一区| 婷婷精品国产亚洲av在线| 国产私拍福利视频在线观看| 一区二区三区免费毛片| 国产av一区在线观看免费| 一个人看视频在线观看www免费| 麻豆久久精品国产亚洲av| 久久精品国产亚洲av香蕉五月| 综合色丁香网| 欧美3d第一页| 日本熟妇午夜| 午夜福利18| 国产一区亚洲一区在线观看| 国产真实乱freesex| av在线老鸭窝| 12—13女人毛片做爰片一| 丰满人妻一区二区三区视频av| 亚洲国产精品成人综合色| 成年免费大片在线观看| 18+在线观看网站| 91狼人影院| 在线观看av片永久免费下载| 色哟哟·www| 久久国内精品自在自线图片| 精品久久久噜噜| 99视频精品全部免费 在线| 精品久久久久久久久亚洲| 偷拍熟女少妇极品色| 最近的中文字幕免费完整| 亚洲三级黄色毛片| 22中文网久久字幕| 久久久久久大精品| 午夜爱爱视频在线播放| 午夜免费男女啪啪视频观看 | a级毛色黄片| 看片在线看免费视频| 成年女人看的毛片在线观看| 久久人人爽人人爽人人片va| 国产片特级美女逼逼视频| 亚洲第一区二区三区不卡| 最新中文字幕久久久久| 精品免费久久久久久久清纯| 欧美极品一区二区三区四区| 国产精品国产高清国产av| av在线观看视频网站免费| 久久久久久国产a免费观看| 国产精品久久视频播放| 99久久成人亚洲精品观看| 少妇高潮的动态图| 久久精品国产清高在天天线| 春色校园在线视频观看| 欧美丝袜亚洲另类| 在线国产一区二区在线| 午夜福利18| 中国国产av一级| 麻豆精品久久久久久蜜桃| 中文字幕av在线有码专区| 欧美一区二区精品小视频在线| 99热只有精品国产| 麻豆国产av国片精品| 亚洲av成人精品一区久久| 你懂的网址亚洲精品在线观看 | 国产乱人视频| 久久久成人免费电影| 99久久无色码亚洲精品果冻| 级片在线观看| 亚洲电影在线观看av| 亚洲av免费在线观看| 18禁裸乳无遮挡免费网站照片| 欧美国产日韩亚洲一区| 伦精品一区二区三区| 国产精品一区二区三区四区免费观看 | 一a级毛片在线观看| 丰满的人妻完整版| 国产成人福利小说| 亚洲av第一区精品v没综合| 国产精品久久视频播放| 国产日本99.免费观看| 极品教师在线视频| 国产伦精品一区二区三区四那| 欧美日韩国产亚洲二区| 欧美最新免费一区二区三区| 久久久午夜欧美精品| 人人妻人人澡欧美一区二区| 国产私拍福利视频在线观看| 岛国在线免费视频观看| 简卡轻食公司| 99久久成人亚洲精品观看| 天堂av国产一区二区熟女人妻| 亚洲欧美成人精品一区二区| 成人亚洲欧美一区二区av| 亚洲精品亚洲一区二区| 国产精品国产三级国产av玫瑰| 国产精品日韩av在线免费观看| 久久人人爽人人片av| 国产精品不卡视频一区二区| 搡女人真爽免费视频火全软件 | 国产成人一区二区在线| 久久精品国产自在天天线| 久久韩国三级中文字幕| 国产精品永久免费网站| 国产亚洲精品久久久久久毛片| 日韩欧美三级三区| 免费在线观看成人毛片| av福利片在线观看| 久久久久久久午夜电影| 精品久久久久久成人av| 久久热精品热| av在线播放精品| 欧美高清性xxxxhd video| 亚洲中文字幕日韩| 我要看日韩黄色一级片| 精品99又大又爽又粗少妇毛片| 三级男女做爰猛烈吃奶摸视频| 在线免费观看的www视频| 亚洲欧美日韩高清专用| 看黄色毛片网站| 国产精品福利在线免费观看| 俺也久久电影网| 成人一区二区视频在线观看| 国产午夜精品久久久久久一区二区三区 | 久久99热6这里只有精品| 亚洲性久久影院| 一区福利在线观看| 亚洲国产精品成人久久小说 | av在线观看视频网站免费| 亚洲av熟女| 国产乱人偷精品视频| 亚洲第一区二区三区不卡| 丰满乱子伦码专区| 成熟少妇高潮喷水视频| 亚洲第一区二区三区不卡| 91久久精品国产一区二区三区| 国产精品一二三区在线看| 伊人久久精品亚洲午夜| 丰满人妻一区二区三区视频av| 国产精品美女特级片免费视频播放器| 亚洲国产精品合色在线| 久久人人爽人人爽人人片va| 老司机福利观看| av天堂中文字幕网| 国产一区二区三区在线臀色熟女| 99热这里只有精品一区| 日韩一本色道免费dvd| 国产黄色小视频在线观看| 在线播放国产精品三级| 国产三级在线视频| 久久九九热精品免费| 午夜精品一区二区三区免费看| 久久欧美精品欧美久久欧美| 日日摸夜夜添夜夜爱| 男女那种视频在线观看| 日韩人妻高清精品专区| 日本免费a在线| av黄色大香蕉| 中文字幕av成人在线电影| 69人妻影院| 乱码一卡2卡4卡精品| 国产三级中文精品| 天天躁日日操中文字幕| 97超碰精品成人国产| 少妇人妻一区二区三区视频| 国产亚洲精品久久久com| 小蜜桃在线观看免费完整版高清| 国产高清激情床上av| 麻豆成人午夜福利视频| 又黄又爽又免费观看的视频| 变态另类丝袜制服| 亚洲欧美精品综合久久99| 日本黄色视频三级网站网址| 一个人免费在线观看电影| 亚洲av二区三区四区| 日本精品一区二区三区蜜桃| 欧美中文日本在线观看视频| 国产女主播在线喷水免费视频网站 | 亚洲人成网站在线播| 不卡一级毛片| 偷拍熟女少妇极品色| 午夜久久久久精精品| 你懂的网址亚洲精品在线观看 | 在线免费观看的www视频| 在线免费观看不下载黄p国产| 不卡视频在线观看欧美| 亚洲精品色激情综合| 我要看日韩黄色一级片| 丝袜喷水一区| 搡老岳熟女国产| 日韩亚洲欧美综合| h日本视频在线播放| 国产av不卡久久| 国产单亲对白刺激| 国产精品亚洲一级av第二区| 观看美女的网站| 老女人水多毛片| 久久欧美精品欧美久久欧美| 日韩亚洲欧美综合| 成年版毛片免费区| 亚洲av一区综合| av黄色大香蕉| 欧美bdsm另类| 热99re8久久精品国产| 精品福利观看| 日韩成人av中文字幕在线观看 | 九九热线精品视视频播放| 精品日产1卡2卡| 国产一级毛片七仙女欲春2| 国产一区二区三区在线臀色熟女| 午夜久久久久精精品| 欧美日本亚洲视频在线播放| 久99久视频精品免费| 久久精品国产亚洲av涩爱 | 亚洲av一区综合| 日本一本二区三区精品| 一区福利在线观看| 麻豆av噜噜一区二区三区| 国产精品久久久久久久电影| 免费观看人在逋| 午夜精品一区二区三区免费看| 色在线成人网| 亚洲四区av| 久久精品国产亚洲av涩爱 | 午夜福利在线观看吧| 亚洲成av人片在线播放无| 国产精品,欧美在线| 麻豆av噜噜一区二区三区| 永久网站在线| 最后的刺客免费高清国语| 欧美+日韩+精品| 国产精品国产三级国产av玫瑰| 麻豆av噜噜一区二区三区| 国产极品精品免费视频能看的| 校园人妻丝袜中文字幕| 在线国产一区二区在线| 国产黄a三级三级三级人| 亚洲美女搞黄在线观看 | 欧美成人免费av一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 少妇裸体淫交视频免费看高清| av在线老鸭窝| www.色视频.com| 亚洲成a人片在线一区二区| 亚洲中文字幕日韩| 18禁在线无遮挡免费观看视频 | 日日干狠狠操夜夜爽| av在线老鸭窝| 久久久久久伊人网av| 成人鲁丝片一二三区免费| 国产高潮美女av| 亚洲国产精品成人综合色| 亚洲精华国产精华液的使用体验 | 日韩高清综合在线| 少妇高潮的动态图| 日本a在线网址| 美女被艹到高潮喷水动态| 久久精品夜夜夜夜夜久久蜜豆| 国产黄色视频一区二区在线观看 | 日日摸夜夜添夜夜添av毛片| 长腿黑丝高跟| 国产在视频线在精品| 午夜影院日韩av| 麻豆国产av国片精品| .国产精品久久| 俄罗斯特黄特色一大片| 人妻丰满熟妇av一区二区三区| 亚洲精品日韩av片在线观看| 色播亚洲综合网| 免费黄网站久久成人精品| 看十八女毛片水多多多| 亚洲熟妇中文字幕五十中出| 亚洲人与动物交配视频| 国产精品乱码一区二三区的特点| 久久精品国产亚洲av香蕉五月| 一本久久中文字幕| 精品久久久久久久人妻蜜臀av| 亚洲精品日韩在线中文字幕 | 夜夜爽天天搞| 成人一区二区视频在线观看| 日本色播在线视频| 国产亚洲av嫩草精品影院| 欧美一级a爱片免费观看看| 国产精品综合久久久久久久免费| 18禁在线播放成人免费| 国产又黄又爽又无遮挡在线| 亚洲激情五月婷婷啪啪| 欧美在线一区亚洲| 99热精品在线国产| 3wmmmm亚洲av在线观看| 国产精品嫩草影院av在线观看| 精品少妇黑人巨大在线播放 | 欧美精品国产亚洲| 老女人水多毛片| 九九久久精品国产亚洲av麻豆| 啦啦啦啦在线视频资源| 蜜臀久久99精品久久宅男| 国产精品美女特级片免费视频播放器| 久久热精品热| 51国产日韩欧美| 欧美日韩一区二区视频在线观看视频在线 | 欧美一区二区国产精品久久精品| av专区在线播放| 国产精品国产三级国产av玫瑰| 亚洲第一电影网av| 草草在线视频免费看| 晚上一个人看的免费电影| av中文乱码字幕在线| 51国产日韩欧美| 国产高清视频在线播放一区| 毛片女人毛片| 国产精品一区二区性色av| 亚洲欧美清纯卡通| 全区人妻精品视频| 午夜福利视频1000在线观看| 久久精品91蜜桃| 18禁裸乳无遮挡免费网站照片| .国产精品久久| 亚洲国产精品成人综合色| 国产成人freesex在线 | 高清午夜精品一区二区三区 | 成年女人毛片免费观看观看9| 久久精品人妻少妇| 可以在线观看的亚洲视频| 国产午夜福利久久久久久| 最后的刺客免费高清国语| 欧美最新免费一区二区三区| 99riav亚洲国产免费| 免费无遮挡裸体视频| 一区二区三区四区激情视频 | 成人三级黄色视频| 99久国产av精品| 欧美日韩在线观看h| 少妇熟女欧美另类| av天堂在线播放| 最近2019中文字幕mv第一页| 久久久久久九九精品二区国产| 亚洲国产色片| 日韩av不卡免费在线播放| 成人av在线播放网站| 三级国产精品欧美在线观看| 最近在线观看免费完整版| 亚洲电影在线观看av| 最后的刺客免费高清国语| 亚洲成人av在线免费| 97热精品久久久久久| 亚洲精品一卡2卡三卡4卡5卡| av视频在线观看入口| 欧美一区二区亚洲| 国产欧美日韩一区二区精品| 免费看光身美女| 日本a在线网址| 看免费成人av毛片| 六月丁香七月| av.在线天堂| 天美传媒精品一区二区| 国产精品不卡视频一区二区| 午夜爱爱视频在线播放| 亚洲欧美成人综合另类久久久 | 久久久久国内视频| 女同久久另类99精品国产91| 高清毛片免费观看视频网站| 看免费成人av毛片| 国产精品久久视频播放| 亚洲电影在线观看av| 毛片女人毛片| 午夜福利高清视频| 久久人人爽人人片av| 国产av在哪里看| 久久久久性生活片| av国产免费在线观看| 亚洲av电影不卡..在线观看| 久久这里只有精品中国| 国产在视频线在精品| 国产精品国产三级国产av玫瑰| 国产精品一区二区免费欧美| 国产一区二区激情短视频| 午夜免费男女啪啪视频观看 | 国产精品一区二区三区四区免费观看 | 99精品在免费线老司机午夜| 狂野欧美激情性xxxx在线观看| 久久亚洲国产成人精品v| 免费看美女性在线毛片视频| 又黄又爽又免费观看的视频| 性色avwww在线观看| 插逼视频在线观看| 国产真实乱freesex| 日韩精品青青久久久久久| 国产日本99.免费观看| 国产午夜精品久久久久久一区二区三区 | 国产午夜精品论理片| 成人漫画全彩无遮挡| 精品少妇黑人巨大在线播放 | 乱人视频在线观看| 久久久久国产网址| 国模一区二区三区四区视频| 人妻夜夜爽99麻豆av| 欧美xxxx性猛交bbbb| 亚洲av中文av极速乱| 97超级碰碰碰精品色视频在线观看| 亚洲欧美日韩无卡精品| 国产91av在线免费观看| 国产精品国产三级国产av玫瑰| 中文字幕久久专区| 黄色视频,在线免费观看| 免费看光身美女| 亚洲五月天丁香| 免费观看在线日韩| 久久精品夜色国产| 亚洲成人中文字幕在线播放| 欧美高清性xxxxhd video| 国产精品一及| 国产av麻豆久久久久久久| 97在线视频观看| 亚洲无线观看免费| 日日摸夜夜添夜夜爱| 欧美区成人在线视频| 1024手机看黄色片| 免费看a级黄色片| 午夜福利成人在线免费观看| 久久久久久久久大av| 大又大粗又爽又黄少妇毛片口| 九九热线精品视视频播放| 欧美+日韩+精品| 毛片一级片免费看久久久久| 亚洲第一区二区三区不卡| 熟女人妻精品中文字幕| 亚洲精品日韩av片在线观看| 乱码一卡2卡4卡精品| 国内精品一区二区在线观看| 少妇裸体淫交视频免费看高清| 国产白丝娇喘喷水9色精品| 成人无遮挡网站| 男人舔奶头视频| 蜜桃亚洲精品一区二区三区| 久久精品国产亚洲av香蕉五月| 久久久久久久亚洲中文字幕| 91久久精品国产一区二区三区| 搞女人的毛片| 97热精品久久久久久| 12—13女人毛片做爰片一| 97超级碰碰碰精品色视频在线观看| eeuss影院久久| 午夜久久久久精精品| 精品久久久久久久久av| 一个人看视频在线观看www免费| 亚洲精品影视一区二区三区av| 不卡一级毛片| 国产69精品久久久久777片| 午夜a级毛片| 免费黄网站久久成人精品| 亚洲自偷自拍三级| av在线亚洲专区| 国产精品久久久久久av不卡| 亚洲成人久久性| 国产69精品久久久久777片| 国产伦精品一区二区三区视频9| 十八禁国产超污无遮挡网站| 亚洲最大成人av| 亚洲欧美日韩东京热| 在线观看午夜福利视频| 亚洲激情五月婷婷啪啪| 免费黄网站久久成人精品| 国产男人的电影天堂91| 日韩成人伦理影院| 亚洲五月天丁香| 成人av一区二区三区在线看| 干丝袜人妻中文字幕| 免费av毛片视频| 美女被艹到高潮喷水动态| 一个人免费在线观看电影| 欧美区成人在线视频| 狂野欧美白嫩少妇大欣赏| 五月伊人婷婷丁香| 亚洲第一电影网av| 一级毛片电影观看 | 如何舔出高潮| 日本精品一区二区三区蜜桃| 伦精品一区二区三区| 性色avwww在线观看| 97碰自拍视频| 高清毛片免费看| 精品久久久久久久久av| 黄色一级大片看看| 亚洲国产色片| 精品久久久久久久久亚洲| 国产成人a区在线观看| 深爱激情五月婷婷| 高清午夜精品一区二区三区 | 色5月婷婷丁香| av卡一久久| 免费在线观看影片大全网站| 99久国产av精品| 亚洲国产欧洲综合997久久,| 久久久久久久久久成人| 久久九九热精品免费| 午夜福利18| 久久人妻av系列| 狂野欧美激情性xxxx在线观看| 一个人看的www免费观看视频| 亚洲精品影视一区二区三区av| 国产高清不卡午夜福利| 最近手机中文字幕大全| 人人妻人人澡欧美一区二区| 中文字幕人妻熟人妻熟丝袜美| 色吧在线观看| 亚洲三级黄色毛片| 俄罗斯特黄特色一大片| 你懂的网址亚洲精品在线观看 | 成人性生交大片免费视频hd| 日韩中字成人| 欧美最黄视频在线播放免费| 69av精品久久久久久| 一区二区三区高清视频在线| 午夜精品国产一区二区电影 | 久久综合国产亚洲精品| 在线观看免费视频日本深夜| 一级黄片播放器| 香蕉av资源在线| 中国美白少妇内射xxxbb| 亚洲va在线va天堂va国产| 免费看a级黄色片| 最近最新中文字幕大全电影3| 偷拍熟女少妇极品色| av.在线天堂| 成人二区视频| 欧美精品国产亚洲| 国产精品一区二区三区四区免费观看 | 看十八女毛片水多多多| 国产麻豆成人av免费视频| 国产蜜桃级精品一区二区三区| 18+在线观看网站| 日韩高清综合在线| 无遮挡黄片免费观看| 久久久精品大字幕| 日本爱情动作片www.在线观看 | 久久草成人影院| 国产av不卡久久| 成年版毛片免费区| 国产中年淑女户外野战色| 久久婷婷人人爽人人干人人爱| a级一级毛片免费在线观看| 国产精品久久视频播放| 最好的美女福利视频网| 成人美女网站在线观看视频| 岛国在线免费视频观看| 日韩av不卡免费在线播放| 久久久久精品国产欧美久久久| 99九九线精品视频在线观看视频| 日本-黄色视频高清免费观看| 欧美成人精品欧美一级黄| 精品久久久久久久久av| 欧美最新免费一区二区三区| 久久99热6这里只有精品| 国产精品人妻久久久影院| 日韩国内少妇激情av| 久久午夜亚洲精品久久| 午夜a级毛片| 免费av观看视频| 日本一二三区视频观看| 成人三级黄色视频| av专区在线播放| 在线观看午夜福利视频| 国产 一区精品| 青春草视频在线免费观看| 男女视频在线观看网站免费| av中文乱码字幕在线| 成人美女网站在线观看视频| 69av精品久久久久久| 神马国产精品三级电影在线观看| 日本一本二区三区精品| 69av精品久久久久久| 亚洲精品在线观看二区| 亚洲在线观看片| 国产精品久久久久久av不卡| 亚洲精品一区av在线观看| 午夜精品一区二区三区免费看| 少妇猛男粗大的猛烈进出视频 | 99九九线精品视频在线观看视频| 日本黄大片高清| 国产久久久一区二区三区| 久久综合国产亚洲精品| 日韩欧美 国产精品| 亚洲人成网站在线播| 国产精品精品国产色婷婷| 国产免费一级a男人的天堂| 国内久久婷婷六月综合欲色啪| 美女xxoo啪啪120秒动态图| 国产一级毛片七仙女欲春2| 高清毛片免费看| 综合色丁香网| 日韩一本色道免费dvd| 亚洲人成网站高清观看|