• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    AGGREGATE SPECIAL FUNCTIONS TO APPROXIMATE PERMUTING TRI-HOMOMORPHISMS AND PERMUTING TRI-DERIVATIONS ASSOCIATED WITH A TRI-ADDITIVE ψ-FUNCTIONAL INEQUALITY IN BANACH ALGEBRAS*

    2024-03-23 08:05:56SafouraRezaeiADERYANIAzamAHADIRezaSAADATI

    Safoura Rezaei ADERYANI Azam AHADI Reza SAADATI

    School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran E-mail: safora.rezaei.2000@gmail.com; azamahadi9710@gmail.com; rsaadati@eml.cc

    Hari M. SRIVASTAVA

    Department of Mathematics and Statistics, Universtity of Victoria, Canada;

    Department of Medical Research, China Medical University Hospital, China Medical University,

    Taichung 40402, China;

    Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street,

    AZ1007 Baku, Azerbaijan;

    Section of Mathematics, International Telematic, University Uninettuno, I-00186 Rome, Italy E-mail: harimsri@math.uvic.ca

    Abstract In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additive ψ-functional inequality to get a better estimation for permuting tri-homomorphisms and permuting tri-derivations in unital C*-algebras and Banach algebras by the vector-valued alternative fixed point theorem.

    Key words permuting tri-homomorphism in Banach algebra; permuting tri-derivation on C*-algebra; fixed point theorem; Ulam-Hyers-Rassias stability; aggregate special functions; tri-additive ψ-functional inequality

    1 Introduction and Preliminaries

    Aggregation functions play a significant role in many of the technological tasks scientists are faced with nowadays.They are specifically significant in many problems related to the fusion of information.More generally, aggregation functions are widely used in applied mathematics(e.g., statistics, probability, decision mathematics), pure mathematics (e.g., theory of means and averages, functional equations, measure and integration theory), economics and finance(e.g., voting theory, game theory, decision making), computer and engineering sciences (e.g.,artificial intelligence, information theory, pattern recognition and image analysis, data fusion,operations research, engineering design, automated reasoning), social sciences(e.g., mathematical psychology, representational measurement) as well as many other applied fields of physics and natural sciences.Thus, a main characteristic of the aggregation functions is that they are used in a large number of areas and disciplines.The essence of aggregation is that the output value computed by the aggregation function should represent or synthesize in some sense all individual inputs, where quotes are put to emphasize the fact that the precise meaning of this expression is highly dependent on the context.In any case, defining or choosing the right class of aggregation functions for a specific problem is a difficult task, considering the huge variety of potential aggregation functions [1-4].

    The central problem we are investigating in this paper is that of aggregation, which refers to the process of combining and merging several(most often numerical)values into a single one.Perhaps the oldest example in this respect is the notion of arithmetic mean or average, which has been used during all the history of physics and all experimental sciences.Any function like the arithmetic mean computing a single output value from an (arbitrarily long) vector of input values is called an aggregation function.

    Here,we define a new class of control functions through aggregate special functions to investigate the Ulam-Hyers-Rassias stability [5] of the following tri-additiveψ-functional inequality

    which was given by Park [6, 7] in complex Banach spaces by a method derived from vectorvalued alternative fixed point theorem.In addition, we study permuting tri-homomorphisms and permuting tri-derivations in unitalC*-algebras and Banach algebras associated with the tri-additiveψ-functional inequality (1.1).

    Definition 1.1([8]) Suppose M is a ring.Permuting tri-derivation is a tri-additive mapping Z:M3→M satisfying

    for all Ψ1,Ψ2,Ψ3,Ψ4,Φ1,Φ2,Φ3∈M and for any permutation (δ(1),δ(2),δ(3)) of (1,2,3).

    Definition 1.2([8]) Consider complex Banach algebras M and N.Permuting tri-homomorphism is a C-trilinear mappingE:M3→N satisfying

    for all Ψ1,Ψ2,Ψ3,Ψ4,Φ1,Φ2,Φ3∈M and for any permutation (δ(1),δ(2),δ(3)) of (1,2,3).

    Now, we consider a vector-valued generalized metric space (VVGM-space).

    Definition 1.3([9]) Letmbe a positive integer number.We define the partial order set

    whereι=(ι1,···,ιm) andγ=(γ1,···,γm) in Xmsatisfy,i=1,···,m, andι →0??ιi →0,i=1,···,m.

    We are ready to present a vector-valued version of the alternative fixed point theorem of Diaz-Margolis [11] in VVGM-space.

    This paper will study the complex normed spaceGand the complex Banach spaceQforψ ∈C being fixed with 0/=|ψ|<1.

    2 New Control Function by Special Function

    In this section, we introduce a series of special functions that we are going to use as a control function.

    ?Exponential function

    Here, we define the complex exponential function as follows:

    ?Mittag-Leffler function (generalized exponential function)

    The special function

    is said to be a one-parameter Mittag-Leffler function.

    ?Hypergeometric function (the Gauss Hypergeometric series)

    Now,we define the Hypergeometric function(the Gauss Hypergeometric series).The special function

    is called Wright function, in whichm1>-1,p1,Υ∈C.

    ?Fox-Wright function (the generalized Wright function)

    Consider positive vectorsM= (M1,···,Ms),N= (N1,···,Nr), and complex vectorsm= (m1,···,ms), andP= (p1,···,pr).The Fox-Wright function or the generalized Wright function is defined by the series

    Note that, (2.1) converges absolutely for|Υ|=Sif?(T)>0.

    The functionsHris a extension of the generalized hypergeometric function (which we will present it later).Also,1H1and0H1are the Wright(the Bessel-Maitland)function and Mittag-Leffler function withM1=m1=1, respectively.

    ?Fox’s H-function (generalized Fox-Wright function)

    Now, we present the Fox’s H-function as

    an empty product is interpreted as 1,and the integersv,w,s,rsatisfy the inequalities 0≤w ≤sand 1≤v ≤r.Assume the coefficientsMj >0 (j= 1,···,s) andNj >0 (j= 1,···,r) and the complex parametersmj(j=1,···,s)andpj(j=1,···,r)are so constrained that no poles of integrand in (2.6) coincide, andZis a suitable contour of the Mellin-Barnes type (in the complex?-plane) which separates the poles of one product from those of the other.Further, if we assume

    Here, Υ-?= exp(-?[log|Υ|+i arg(Υ)]), Υ/= 0 and i2=-1, and also log|Υ| represents the natural logarithm of|Υ| and arg(Υ) is not necessarily the principle value.

    Notice that, an empty product in (2.8), if it occurs, is taken to be one and the poles

    Note that contourZis one of the contours defined before which separates all polespj?in(2.9)to the left and all polesmi?in (2.10) to the right ofZ.

    ?G-function (generalized Hypergeometric function)

    The generalized hypergeometric function is defined by the following generalized hypergeometric series

    where Υ∈C,s,r ∈N0, andmi,pj ∈C,i=1,···,sandj=1,···,r.Forz ∈C, we have

    Ifmj/=-?,j=1,···,rand?∈N0, then the generalized hypergeometric series (2.12) can be represented in terms of the Mellin-Barnes integral of the form

    ?Five-parameter Mittag-Leffler function

    Letα1,α2,β1,β2,γ ∈Cbe five parameters satisfying Re(α1+α2)>0.The five-parameter Mittag-Leffler function applied to a single variablezis defined by the following power series:

    Let a mapping Θ from vector spaceUto normed linear spaceVhas Hyers-Ulam-Rassias stability.If we replace the control function of Hyers-Ulam-Rassias stability with Ξ[Υ], we say Θ has multi-stability property.

    3 Aggregation Function

    In this section we introduce the aggregation function to use it as a control function.

    Definition 3.1([1]) For fixedn ∈N andI ?R, an aggregation function is a functionA(n):In →Ithat is nondecreasing (in each variable), i.e., for alli ∈[1,···,n]

    is an aggregation function.

    4 Tri-additive ψ-Functional Inequality (1.1)

    In this section, we begin studying the tri-additiveψ-functional inequality (1.1) in complex normed spaces.Some recent developments and related references can be found in [12-15].

    Lemma 4.1([6]) Let the mappingL:G3→QsatisfyL(0,Ψ3,Ψ5) =L(Ψ1,0,Ψ5) =L(Ψ1,Ψ3,0)=0 and

    which implies that

    Hence, we get

    where we denote inf?=(inf?,inf?,inf?)=(+∞,+∞,+∞).

    We need to show that (ι,λ) is a complete VVGM-space.For the metric part, we prove the triangle inequality:λ(ι,?)(ι,?)+λ(?,?).

    Next, we deduce that (ι,λ) is complete.Assume{ωn}is a Cauchy sequence in (ι,λ).Then, for all∈1,∈2,∈3>0 there is an?∈1,∈2,∈3∈N such thatλ(ωm,ωn)(∈1,∈2,∈3) for allm,n ≥?∈1,∈2,∈3.From (4.9), we get

    for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈G.According to Lemma 4.1, we conclude that the mappingL′:G3→Qis tri-additive.□

    Corollary 4.3Suppose Θ≥0 andr >3 are in R and supposeL:G3→Qis a mapping satisfyingL(Ψ1,0,Ψ5)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 and

    for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈G.Then there is a unique tri-additive mappingL′:G3→Qsatisfying

    for all Ψ1,Ψ3,Ψ5∈G.

    ProofWe define the control functionφby the coefficient

    φ(Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6)=Θ(‖Ψ1‖r+‖Ψ2‖r+‖Ψ3‖r+‖Ψ4‖r+‖Ψ5‖r+‖Ψ6‖r), (4.19)for all Ψ1,···,Ψ6∈Gand put P = 21-r.Then the result follows immediately from Theorem 4.2.□

    Theorem 4.4Supposeφ:G6→[0,∞) is a function such that

    5 Permuting Tri-derivations on Banach Algebras

    In this section, we pay attention on permuting tri-derivations on unitalC*-algebras and complex Banach algebras related to the tri-additiveψ-functional inequality (1.1).

    Lemma 5.1([16, Lemma 2.1]) SupposeL:G2→Qis a bi-additive mapping such thatL(Λ1Ψ1,Λ2Ψ3) = Λ1Λ2L(Ψ1,Ψ3) for all Ψ1,Ψ3∈Gand Λ1,Λ2∈Δ1:={? ∈C :|?| = 1}.ThenLis C-bilinear.

    Lemma 5.2SupposeL:G3→Qis a tri-additive mapping satisfyingL(Λ1Ψ1,Λ2Ψ3,Λ3Ψ5) = Λ1Λ2Λ3L(Ψ1,Ψ3,Ψ5) for all Ψ1,Ψ3,Ψ5∈Ψ5and Λ1,Λ2,Λ3∈Δ1.ThenLis Ctrilinear.

    ProofThe proof follows from a similar method to the proof of Theorem [16, Lemma 2.1].□

    for all Ψ1,Ψ3,Ψ5∈M, whereφis given in Theorem 4.2.

    In addition, if the mappingL:M3→M satisfiesL(Ψ1,Ψ3,Ψ5)=2L(Ψ1,Ψ3,Ψ5) and

    for all Ψ1,Ψ2,Ψ3,Φ1,Φ2,Φ3,Ψ5∈M and for every permutation (δ(1),δ(2),δ(3)) of (1,2,3),then the C-trilinear mapping Z:M3→M is a permuting tri-derivation.

    ProofSuppose Λ1=Λ2=Λ3=1 in(5.2).Then the result follows diectly from Theorem 4.2 and [7, Theorem 3.3].□

    Corollary 5.4Suppose Θ≥0 andr >4 are in R, and supposeL: M3→M is a mapping satisfyingL(Ψ1,0,Ψ5)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 and

    for all Λ1,Λ2,Λ3∈Δ1and all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M.Then there exists a unique Ctrilinear mapping Z:M3→M satisfying

    for all Ψ1,Ψ2,Ψ3,Φ1,Φ2,Φ3,Ψ5∈M and for every permutation (δ(1),δ(2),δ(3)) of (1,2,3),then the C-trilinear mapping Z:M3→M is a permuting tri-derivation.

    ProofPut P = 21-r.It is the coefficient that defines the control functionφby (7.3).Then we apply Theorem 5.3 to complete the proof.□

    Theorem 5.5Supposeφ:M6→[0,∞) is a function such that there is 0<P<4 with

    for all Ψ1,Ψ3,Ψ5∈M.Also, if the mappingL:M3→M satisfies (5.4), (5.5) andL(2Ψ1,Ψ3,Ψ5) = 2L(Ψ1,Ψ3,Ψ5) for all Ψ1,Ψ3,Ψ5∈M, then the C-trilinear mapping Z : M3→M is a permuting tri-derivation.

    ProofThe proof follows from a similar method to the proof of Theorem 5.3.□

    Corollary 5.6Suppose Θ≥0 andr <3 are in R,and supposeL:M3→M is a mapping satisfying (7.4) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ3,Ψ5∈M.Then we can find a unique C-trilinear mapping Z:M3→M satisfying

    for all Ψ1,Ψ3,Ψ5∈M.Also, if the mappingL:M3→M satisfies (7.6), (7.7) andL(2Ψ1,Ψ3,Ψ5) = 2L(Ψ1,Ψ3,Ψ5) for all Ψ1,Ψ3,Ψ5∈M, then the C-trilinear mapping Z : M3→M is a permuting tri-derivation.

    ProofPut P = 2r-1.It is the coefficient that defines the control functionφby (7.3).Then we apply Theorem 5.5 to complete the proof.□

    Now, let M andU(M) be a unitalC*-algebra with uniteand unitary group, respectively.We have the following theorem:

    Theorem 5.7Supposeφ:M6→R is a function satisfying (5.1) and supposeL:M3→M is a mapping satisfying (5.2) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ3,Ψ5∈M.Then there exists a unique C-trilinear mapping Z:M3→M satisfying (5.3).

    Also, if the mappingL:M3→M satisfies (5.5),L(2β,Ψ3,Ψ5)=2L(β,Ψ3,Ψ5) and

    for all Ψ2,Ψ3,Ψ5∈M and allβ ∈U(M), then the C-trilinear mapping Z : M3→M is a permuting tri-derivation.

    ProofIt follows directly from Theorem 5.3 and [7, Theorem 3.7].□

    Remark 5.8By a similar method to the proof last theorem, we can conclude that if(5.13) in Theorem 5.7 is replaced by

    for allβ,α,α1,α2∈U(M), then the C-trilinear mapping Z : M3→M is a permuting triderivation.

    Corollary 5.9Suppose Θ≥0 andr >3 are in R,and supposeL:M3→M is a mapping satisfying(7.4)andL(Ψ1,0,a)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 for all Ψ1,Ψ3,Ψ5∈M.Then there exists a unique C-trilinear mapping Z : M3→M satisfying (7.5).Furthermore, if the mappingL:M3→M satisfies (7.7),L(2β,Ψ3,Ψ5)=2L(β,Ψ3,Ψ5) and

    ‖L(βΨ2,Ψ3,Ψ5)-L(β,Ψ3,Ψ5)Ψ2-βL(Ψ2,Ψ3,Ψ5)‖≤Θ(1+‖Ψ2‖r+2‖Ψ3‖r+2‖Ψ5‖r) (5.14)for allβ ∈U(M) and all Ψ2,Ψ3,Ψ5∈M, then the C-trilinear mapping Z : M3→M is a permuting tri-derivation.

    ProofIt is the coefficient that defines the control functionφby(7.3).Then we complete the proof using Theorem 5.7.□

    Theorem 5.10Supposeφ: M6→R is a function satisfying (5.10) and supposeL:M3→M is a mapping satisfying (5.2) andL(Ψ1,0,Ψ5)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 for all Ψ1,Ψ3,Ψ5∈M.Then we can find a unique C-trilinear mapping Z : M3→M satisfying(5.11).In addition, if the mappingL: M3→M satisfies (5.5), (5.13) andL(2β,Ψ3,Ψ5) =2L(β,Ψ3,Ψ5)for all Ψ3,Ψ5∈M and allβ ∈U(M), then the C-trilinear mapping Z:M3→M is a permuting tri-derivation.

    ProofBy a similar method to the proof of Theorem 5.7, we can get the result.□

    Corollary 5.11Suppose Θ≥0 andr <3 are in R, and supposeL:M3→M is a mapping satisfying(7.4)andL(Ψ1,0,Ψ5)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 for all Ψ1,Ψ3,Ψ5∈M.Then there is a unique C-trilinear mapping Z:M3→M satisfying (7.8).

    Also, if the mappingL: M3→M satisfies (7.7), (7.9) andL(2β,Ψ3,Ψ5) = 2L(β,Ψ3,Ψ5)for allβ ∈U(M)and all Ψ3,Ψ5∈M,then the C-trilinear mapping Z:M3→M is a permuting tri-derivation.

    ProofIt is the coefficient that defines the control functionφby(7.3).Then we complete the proof by Theorem 5.10.□

    6 Permuting Tri-homomorphisms in Banach Algebras

    In this section,we examine several aggregation functions and find the function that has the least error.Then we introduce it as a control function and express the results of the previous section.

    Example 6.1We consider the following aggregation function.Let

    Table 1 below shows the different values of the aggregations functions for Υ

    Table 1 The values of the aggregation functions

    Figure 1 below shows the different values of the aggregation functions.

    Figure 1

    By comparing the values obtained in Table 1 and Figure 1, we conclude that Min is the best control function because it minimizes the error, therefore in the following results, we use the Min as a control function.

    for all Ψ1,Ψ3,Ψ5∈M, whereφis given in Theorem 4.2.

    Moreover, if the mappingL:M3→N satisfies (5.5) and

    ‖L(Ψ1Ψ2,Ψ3Ψ4,Ψ5Ψ6)-L(Ψ1,Ψ3,Ψ5)L(Ψ2,Ψ4,Ψ6)‖≤φ(Ψ1,Ψ2,Ψ3,Ψ3,Ψ5,Ψ5), (6.3)for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M, then the C-trilinear mappingE: M3→N is a permuting tri-homomorphism.

    ProofIt follows directly from Theorem 5.3 and [7, Theorem 4.1].□

    Corollary 6.3Suppose Θ≥0 andr >3 are in R,and supposeL:M3→N is a mapping satisfying (7.4) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M.Then there is a unique C-trilinear mappingE:M3→N satisfying

    for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M, then the C-trilinear mappingE: M3→N is a permuting tri-homomorphism.

    ProofIt is the coefficient that defines the control functionφby(7.3).Then we complete the proof by Theorem 6.2.□

    Theorem 6.4Supposeφ: M6→[0,∞) is a function satisfying (5.10) for 0<P<4,and supposeL: M3→N is a mapping satisfying (5.2) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0)=0 for all Ψ1,Ψ3,Ψ4∈M.Then there is a unique C-trilinear mappingE:M3→N satisfying

    for all Ψ1,Ψ3,Ψ5∈M.

    As well, if the mappingL:M3→N satisfies (5.5) and (6.3), then the C-trilinear mappingE:M3→N is a permuting tri-homomorphism.

    ProofBy a similar method to the proof of Theorem 6.2, we can obtain the result.□

    Corollary 6.5Suppose Θ≥0 andr <3 are in R,and supposeL:M3→N is a mapping satisfying (7.4) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M.Then there is a unique C-trilinear mappingE:M3→N satisfying

    for all Ψ1,Ψ3,Ψ5∈M.

    Also, if the mappingL: M3→N satisfies (7.7) and (7.11), then the C-trilinear mappingE:M3→N is a permuting tri-homomorphism.

    ProofIt is the coefficient tat defines the control functionφby (7.3).Then we complete the proof by Theorem 6.4.□

    Assuming M andU(M)are a unitalC*-algebra with uniteand unitary group respectively,we come to the following theorem:

    Theorem 6.6Supposeφ:M6→R is a function satisfying (6.1) and supposeL:M3→N is a mapping satisfying (5.2) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ3,Ψ5∈M.Then there is a unique C-trilinear mappingE:M3→N satisfying (6.2).

    Also, if the mappingL:M3→N satisfies (5.5) and

    for allβi,αi ∈U(M),i= 1,2,3, then the C-trilinear mappingE: M3→N is a permuting tri-homomorphism.

    ProofUsing Theorem 5.3 and [7, Theorem 4.5], we prove the theorem.□

    Corollary 6.7Suppose Θ≥0 andr >6 are in R,and supposeL:M3→N is a mapping satisfying (7.4) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M.Then there exists a unique C-trilinear mappingE:M3→N satisfying (7.10).

    Also, if the mappingL:M3→N satisfies (7.7) and

    for allβi,αi ∈U(M),i= 1,2,3, then the C-trilinear mappingE: M3→N is a permuting tri-homomorphism.

    ProofIt is the coefficient that defines the control functionφby(7.3).Then we complete the proof by Theorem 6.6.□

    Theorem 6.8Supposeφ: M6→R is a function satisfying (5.10) and supposeL:M3→N is a mapping satisfying (5.2) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ3,Ψ5∈M.Then there is a unique C-trilinear mappingE:M3→N satisfying (6.6).

    As well, if the mappingL:M3→N satisfies (5.5) and (6.8), then the C-trilinear mappingE:M3→N is a permuting tri-homomorphism.

    ProofUsing a similar method to the proof of Theorem 6.6, we can get the result.□

    Corollary 6.9Suppose Θ≥0 andr <3 are in R,and supposeL:M3→N is a mapping satisfying (7.4) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M.Then we can find a unique C-trilinear mappingE:M3→N satisfying (7.12).

    Also, if the mappingL: M3→N satisfies (7.7) and (6.9), then the C-trilinear mappingE:M3→N is a permuting tri-homomorphism.

    Proof It is the coefficient that defines the control functionφby (7.3).The we complete the proof by Theorem 6.8.□

    7 Applications

    Consider the following aggregation function by valued multi control function

    for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈G.Then there is a unique tri-additive mappingL′:G3→Qsatisfying

    for all Ψ1,Ψ3,Ψ5∈G.

    ProofWe define the control functionφby the coefficient

    for all Ψ1,···,Ψ6∈Gand put P = 21-r.Then the result follows immediately from Theorem 4.2.□

    Corollary 7.2Assume that Θ≥0 andr <3 are in R, and supposeL:G3→Qis a mapping satisfyingL(Ψ1,0,Ψ5)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 and(7.1).Then we can find a unique tri-additive mappingL′:G3→Qsatisfying

    for all Ψ1,Ψ3,Ψ5∈G.

    for all Λ1,Λ2,Λ3∈Δ1and all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M.Then there exists a unique Ctrilinear mapping Z:M3→M satisfying

    for all Ψ1,Ψ3,Ψ5∈M.Also, if the mappingL: M3→M satisfiesL(2Ψ1,Ψ3,Ψ5) =2L(Ψ1,Ψ3,Ψ5) and

    for all Ψ1,Ψ2,Ψ3,Φ1,Φ2,Φ3,Ψ5∈M and for every permutation (δ(1),δ(2),δ(3)) of (1,2,3),then the C-trilinear mapping Z:M3→M is a permuting tri-derivation.

    ProofPut P = 21-r.It is the coefficient that defines the control functionφby (7.3).Then we apply Theorem 5.3 to complete the proof.□

    Corollary 7.4Suppose Θ≥0 andr <3 are in R,and supposeL:M3→M is a mapping satisfying (7.4) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ3,Ψ5∈M.Then we can find a unique C-trilinear mapping Z:M3→M satisfying

    for all Ψ1,Ψ3,Ψ5∈M.Also, if the mappingL:M3→M satisfies (7.6), (7.7) andL(2Ψ1,Ψ3,Ψ5) = 2L(Ψ1,Ψ3,Ψ5) for all Ψ1,Ψ3,Ψ5∈M, then the C-trilinear mapping Z : M3→M is a permuting tri-derivation.

    ProofPut P = 2r-1.It is the coefficient that defines the control functionφby (7.3).Then we apply Theorem 5.5 to complete the proof.□

    Corollary 7.5Suppose Θ≥0 andr >3 are in R,and supposeL:M3→M is a mapping satisfying(7.4)andL(Ψ1,0,a)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 for all Ψ1,Ψ3,Ψ5∈M.Then there exists a unique C-trilinear mapping Z : M3→M satisfying (7.5).Furthermore, if the mappingL:M3→M satisfies (7.7),L(2β,Ψ3,Ψ5)=2L(β,Ψ3,Ψ5) and

    for allβ ∈U(M) and all Ψ2,Ψ3,Ψ5∈M, then the C-trilinear mapping Z : M3→M is a permuting tri-derivation.

    ProofIt is the coefficient that defines the control functionφby(7.3).Then we complete the proof using Theorem 5.7.□

    Corollary 7.6Suppose Θ≥0 andr <3 are in R,and supposeL:M3→M is a mapping satisfying (7.4) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ3,Ψ5∈M.Then there is a unique C-trilinear mapping Z:M3→M satisfying (7.8).

    Also, if the mappingL: M3→M satisfies (7.7), (7.9) andL(2β,Ψ3,Ψ5) = 2L(β,Ψ3,Ψ5)for allβ ∈U(M)and all Ψ3,Ψ5∈M,then the C-trilinear mapping Z:M3→M is a permuting tri-derivation.

    ProofIt is the coefficient that defines the control functionφby(7.3).Then we complete the proof by Theorem 5.10.□

    Corollary 7.7Suppose Θ≥0 andr >3 are in R,and supposeL:M3→N is a mapping satisfying(7.4)andL(Ψ1,0,Ψ5)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M.Then there is a unique C-trilinear mappingE:M3→N satisfying

    for all Ψ1,Ψ3,Ψ5∈M.

    Besides, if the mappingL:M3→N satisfies (7.7) and

    for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M, then the C-trilinear mappingE: M3→N is a permuting tri-homomorphism.

    ProofIt is the coefficient that defines the control functionφby(7.3).Then we complete the proof by Theorem 6.2.□

    Corollary 7.8Suppose Θ≥0 andr <3 are in R,and supposeL:M3→N is a mapping satisfying(7.4)andL(Ψ1,0,Ψ5)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M.Then there is a unique C-trilinear mappingE:M3→N satisfying

    for all Ψ1,Ψ3,Ψ5∈M.

    Also, if the mappingL: M3→N satisfies (7.7) and (7.11), then the C-trilinear mappingE:M3→N is a permuting tri-homomorphism.

    ProofIt is the coefficient tat defines the control functionφby (7.3).Then we complete the proof by Theorem 6.4.□

    8 Conclusion

    Applying the CRM derived from an alternative fixed point theorem, we stabilized a triadditiveψ-functional inequality forψbeing a fixed complex number with 0/=|ψ|<1.In addition, we studied permuting tri-homomorphisms and permuting tri-derivations in unitalC*-algebras and Banach algebras associated with the above inequality.

    Conflict of InterestThe authors declare no conflict of interest.

    Authors’ contributionsThe authors equally conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

    在线 av 中文字幕| 色5月婷婷丁香| 午夜免费激情av| 国产精品女同一区二区软件| 91av网一区二区| 亚洲在线观看片| 久久午夜福利片| 国产午夜精品久久久久久一区二区三区| av在线播放精品| 亚洲av福利一区| 国产极品天堂在线| 精品酒店卫生间| 在线观看人妻少妇| 少妇熟女欧美另类| 久久精品久久精品一区二区三区| 国产成人福利小说| 免费观看a级毛片全部| 熟女电影av网| 日韩成人伦理影院| 亚洲国产成人一精品久久久| 亚洲综合精品二区| 色综合站精品国产| 久久久久久伊人网av| 天天躁夜夜躁狠狠久久av| 久久精品国产亚洲av涩爱| 精品人妻一区二区三区麻豆| 国模一区二区三区四区视频| 有码 亚洲区| 欧美日韩精品成人综合77777| 中文天堂在线官网| 久久鲁丝午夜福利片| 精品久久久噜噜| 一级av片app| 毛片女人毛片| 校园人妻丝袜中文字幕| 日韩欧美三级三区| 亚洲熟女精品中文字幕| 免费观看av网站的网址| 日韩国内少妇激情av| 一级爰片在线观看| 国产精品久久久久久久久免| 毛片女人毛片| 69人妻影院| 国产亚洲91精品色在线| 国产不卡一卡二| 男女边摸边吃奶| 国产精品久久久久久久电影| 在线播放无遮挡| 国产 一区 欧美 日韩| 女人被狂操c到高潮| 成人av在线播放网站| 精品久久久精品久久久| 视频中文字幕在线观看| 亚洲内射少妇av| 免费大片18禁| 国产不卡一卡二| 在线观看av片永久免费下载| 免费无遮挡裸体视频| 波多野结衣巨乳人妻| 久久久a久久爽久久v久久| 欧美高清性xxxxhd video| 99热全是精品| 能在线免费看毛片的网站| 一级毛片久久久久久久久女| 久久久久久久久久黄片| 国产 一区精品| 天天躁夜夜躁狠狠久久av| 精品国产露脸久久av麻豆 | .国产精品久久| 亚洲精华国产精华液的使用体验| 中文字幕人妻熟人妻熟丝袜美| 国产乱来视频区| 乱系列少妇在线播放| 亚洲婷婷狠狠爱综合网| 超碰av人人做人人爽久久| 九色成人免费人妻av| 高清日韩中文字幕在线| 黄片无遮挡物在线观看| 成人毛片a级毛片在线播放| 黄色日韩在线| 国产精品.久久久| 国产亚洲精品av在线| 午夜精品一区二区三区免费看| 国产精品久久久久久久久免| 亚洲精品第二区| 亚洲成人久久爱视频| 国模一区二区三区四区视频| 国产黄片视频在线免费观看| 久久精品综合一区二区三区| 国产精品精品国产色婷婷| 国产成人福利小说| 在线免费观看的www视频| 亚洲美女视频黄频| 亚洲国产精品sss在线观看| 边亲边吃奶的免费视频| 一区二区三区免费毛片| 欧美bdsm另类| 国产三级在线视频| ponron亚洲| 午夜福利在线观看免费完整高清在| 少妇熟女aⅴ在线视频| 亚洲精华国产精华液的使用体验| 欧美97在线视频| 国产综合懂色| 精品人妻一区二区三区麻豆| 欧美成人午夜免费资源| 99久国产av精品| 国产乱来视频区| 狂野欧美白嫩少妇大欣赏| 亚洲精品日本国产第一区| 一级毛片我不卡| 男女视频在线观看网站免费| 丝袜美腿在线中文| 国产黄色小视频在线观看| 国国产精品蜜臀av免费| 五月玫瑰六月丁香| 精品久久久久久久久亚洲| av播播在线观看一区| 日产精品乱码卡一卡2卡三| 免费看a级黄色片| 日韩av不卡免费在线播放| 边亲边吃奶的免费视频| 日本-黄色视频高清免费观看| 老司机影院毛片| 女人久久www免费人成看片| 天天一区二区日本电影三级| 欧美变态另类bdsm刘玥| 日日摸夜夜添夜夜添av毛片| 国产在线男女| 免费人成在线观看视频色| 又爽又黄a免费视频| 99久久人妻综合| 久久久久久久国产电影| 午夜福利成人在线免费观看| 蜜桃亚洲精品一区二区三区| 亚洲精品国产av蜜桃| 国产一级毛片在线| 美女高潮的动态| 人妻系列 视频| 麻豆乱淫一区二区| 亚洲精品第二区| 99热全是精品| 免费看日本二区| 欧美丝袜亚洲另类| 久久精品国产亚洲网站| 久久久久性生活片| 一级黄片播放器| 免费黄色在线免费观看| 日日啪夜夜爽| 99热全是精品| 少妇熟女欧美另类| 女的被弄到高潮叫床怎么办| 国产精品蜜桃在线观看| 99久国产av精品| 欧美极品一区二区三区四区| 久久久久久久大尺度免费视频| 99久国产av精品| 久久久久久久国产电影| 亚洲不卡免费看| 在线观看人妻少妇| 国产高清三级在线| 国产成人精品一,二区| 国产 一区 欧美 日韩| av在线老鸭窝| 99热这里只有是精品50| av在线老鸭窝| 亚洲三级黄色毛片| 久久久久久久久中文| 日日摸夜夜添夜夜添av毛片| 日韩国内少妇激情av| 久久久久国产网址| 久久久久国产网址| 三级经典国产精品| 黄色一级大片看看| 人人妻人人澡人人爽人人夜夜 | 日韩av在线免费看完整版不卡| 日产精品乱码卡一卡2卡三| 亚洲自拍偷在线| 搡女人真爽免费视频火全软件| 亚洲美女视频黄频| av免费在线看不卡| 又粗又硬又长又爽又黄的视频| 色综合站精品国产| 青青草视频在线视频观看| 成人午夜高清在线视频| 卡戴珊不雅视频在线播放| 日本av手机在线免费观看| 亚洲国产精品专区欧美| 中文欧美无线码| 国产女主播在线喷水免费视频网站 | 亚洲av中文字字幕乱码综合| 欧美日本视频| 网址你懂的国产日韩在线| 丝袜喷水一区| 久久久精品免费免费高清| 国产精品一区二区三区四区免费观看| 国产精品.久久久| 免费观看av网站的网址| 国产爱豆传媒在线观看| 亚洲乱码一区二区免费版| 看非洲黑人一级黄片| 日日撸夜夜添| 777米奇影视久久| 成人漫画全彩无遮挡| 啦啦啦中文免费视频观看日本| 美女cb高潮喷水在线观看| 精品欧美国产一区二区三| 免费黄色在线免费观看| 嘟嘟电影网在线观看| 国产在线一区二区三区精| 欧美一级a爱片免费观看看| a级一级毛片免费在线观看| 中国美白少妇内射xxxbb| 国产老妇女一区| 欧美精品一区二区大全| 亚洲精品视频女| 人人妻人人澡欧美一区二区| 婷婷色综合大香蕉| 久久精品久久久久久噜噜老黄| 日韩欧美三级三区| 淫秽高清视频在线观看| 最后的刺客免费高清国语| 亚洲欧美一区二区三区国产| 91精品国产九色| 日韩欧美国产在线观看| 久久这里有精品视频免费| 搞女人的毛片| 九九在线视频观看精品| 国产精品综合久久久久久久免费| 国产精品无大码| 777米奇影视久久| or卡值多少钱| 18禁在线无遮挡免费观看视频| 水蜜桃什么品种好| 亚洲精品中文字幕在线视频 | 国产免费视频播放在线视频 | 免费观看在线日韩| 汤姆久久久久久久影院中文字幕 | 偷拍熟女少妇极品色| 97热精品久久久久久| 最近的中文字幕免费完整| 午夜精品国产一区二区电影 | 久久韩国三级中文字幕| 成人性生交大片免费视频hd| 国产一级毛片在线| 国产综合懂色| 你懂的网址亚洲精品在线观看| 国产老妇女一区| 欧美三级亚洲精品| 少妇人妻一区二区三区视频| 日韩三级伦理在线观看| 舔av片在线| 精品久久久精品久久久| 免费看av在线观看网站| 亚洲人成网站高清观看| 亚洲,欧美,日韩| 亚洲欧美一区二区三区黑人 | 天堂俺去俺来也www色官网 | 看十八女毛片水多多多| 久久热精品热| 久久久久久久久大av| av一本久久久久| 成人无遮挡网站| 一级黄片播放器| 国产在视频线在精品| 久久亚洲国产成人精品v| 国产精品久久久久久久电影| 精品一区二区免费观看| 国产精品精品国产色婷婷| 国产在视频线精品| 亚洲av电影不卡..在线观看| 午夜免费男女啪啪视频观看| 欧美日韩综合久久久久久| 免费高清在线观看视频在线观看| 美女国产视频在线观看| 国产精品精品国产色婷婷| 亚洲国产最新在线播放| 国产在线一区二区三区精| 中文资源天堂在线| 欧美最新免费一区二区三区| 日日啪夜夜撸| 国产成年人精品一区二区| 91在线精品国自产拍蜜月| 在线免费十八禁| 国产在线一区二区三区精| 国产精品不卡视频一区二区| 国产午夜福利久久久久久| 日韩伦理黄色片| 搡老乐熟女国产| 熟女人妻精品中文字幕| 日日啪夜夜爽| 99re6热这里在线精品视频| 国产成人精品久久久久久| 久久久久精品久久久久真实原创| 久久久久久国产a免费观看| 麻豆成人午夜福利视频| 丝瓜视频免费看黄片| 亚洲精华国产精华液的使用体验| 精品不卡国产一区二区三区| 久久99蜜桃精品久久| 久久久国产一区二区| 亚洲高清免费不卡视频| 又爽又黄无遮挡网站| 久久精品熟女亚洲av麻豆精品 | 亚洲精品,欧美精品| 天堂√8在线中文| 国模一区二区三区四区视频| 亚洲精品中文字幕在线视频 | 日韩一区二区三区影片| 免费少妇av软件| 国产精品一区二区在线观看99 | 男女边吃奶边做爰视频| 国产老妇伦熟女老妇高清| 亚洲图色成人| 日本熟妇午夜| 国产av在哪里看| 国产成人精品婷婷| 午夜老司机福利剧场| 晚上一个人看的免费电影| 人人妻人人看人人澡| 大话2 男鬼变身卡| 菩萨蛮人人尽说江南好唐韦庄| 两个人视频免费观看高清| 久久精品夜色国产| 国产高清三级在线| 一级毛片黄色毛片免费观看视频| 日韩精品有码人妻一区| 91在线精品国自产拍蜜月| 国产精品国产三级国产专区5o| 免费人成在线观看视频色| 高清午夜精品一区二区三区| 在线观看一区二区三区| 搡老妇女老女人老熟妇| 日韩一区二区三区影片| av专区在线播放| 纵有疾风起免费观看全集完整版 | 女人十人毛片免费观看3o分钟| 国产亚洲一区二区精品| 亚洲性久久影院| 免费观看a级毛片全部| 日韩成人av中文字幕在线观看| 99热全是精品| 精品久久久久久久人妻蜜臀av| 日产精品乱码卡一卡2卡三| 久久久久久久午夜电影| 欧美xxxx性猛交bbbb| 啦啦啦韩国在线观看视频| 精品熟女少妇av免费看| 高清日韩中文字幕在线| av卡一久久| 亚洲久久久久久中文字幕| 人妻制服诱惑在线中文字幕| 91aial.com中文字幕在线观看| 淫秽高清视频在线观看| 99热6这里只有精品| 午夜视频国产福利| 久久久久久九九精品二区国产| 777米奇影视久久| 超碰97精品在线观看| 国产午夜精品论理片| 亚洲国产精品sss在线观看| 狂野欧美激情性xxxx在线观看| 97精品久久久久久久久久精品| 欧美97在线视频| 我的老师免费观看完整版| 国产国拍精品亚洲av在线观看| 99久国产av精品国产电影| 联通29元200g的流量卡| 免费观看在线日韩| 亚洲av免费在线观看| 国内精品宾馆在线| 天堂网av新在线| 亚洲精品日韩在线中文字幕| av一本久久久久| 日韩一区二区三区影片| 中国美白少妇内射xxxbb| 91aial.com中文字幕在线观看| 最近中文字幕高清免费大全6| 免费看日本二区| 人体艺术视频欧美日本| av又黄又爽大尺度在线免费看| 日韩亚洲欧美综合| 联通29元200g的流量卡| 精品人妻偷拍中文字幕| a级毛片免费高清观看在线播放| 能在线免费观看的黄片| 天堂av国产一区二区熟女人妻| 午夜福利在线在线| 一夜夜www| 欧美高清性xxxxhd video| 成人亚洲欧美一区二区av| 中文精品一卡2卡3卡4更新| 久久久久精品性色| 欧美变态另类bdsm刘玥| 人人妻人人澡欧美一区二区| 国产黄片视频在线免费观看| 特大巨黑吊av在线直播| 国产高清不卡午夜福利| 免费不卡的大黄色大毛片视频在线观看 | 国产黄色视频一区二区在线观看| 国产午夜精品一二区理论片| 亚洲精品久久久久久婷婷小说| 久久99热这里只频精品6学生| 中文字幕免费在线视频6| 日本免费在线观看一区| 高清av免费在线| 国产精品国产三级国产专区5o| 一个人看视频在线观看www免费| 男女下面进入的视频免费午夜| 一个人观看的视频www高清免费观看| 国产 一区 欧美 日韩| 午夜福利网站1000一区二区三区| 少妇的逼好多水| 日韩一区二区三区影片| 亚洲经典国产精华液单| 国产精品国产三级国产av玫瑰| 亚洲精品日本国产第一区| 少妇的逼水好多| 国产午夜精品久久久久久一区二区三区| 日日干狠狠操夜夜爽| 极品少妇高潮喷水抽搐| 国产成人91sexporn| 国产老妇伦熟女老妇高清| 赤兔流量卡办理| 日本午夜av视频| 能在线免费看毛片的网站| 精品国内亚洲2022精品成人| 亚洲精品日韩av片在线观看| 久久午夜福利片| 一级毛片aaaaaa免费看小| 亚洲真实伦在线观看| 一区二区三区免费毛片| 国产淫语在线视频| 亚洲精品,欧美精品| 久久韩国三级中文字幕| 国产 一区 欧美 日韩| 22中文网久久字幕| 免费观看无遮挡的男女| 久久久a久久爽久久v久久| 国内少妇人妻偷人精品xxx网站| 少妇裸体淫交视频免费看高清| 国产乱人偷精品视频| 成人毛片a级毛片在线播放| 免费看美女性在线毛片视频| 如何舔出高潮| 你懂的网址亚洲精品在线观看| 久久久久久久午夜电影| 99久国产av精品| 日本免费在线观看一区| 久久精品综合一区二区三区| 亚洲精品456在线播放app| 久久鲁丝午夜福利片| 午夜激情久久久久久久| 亚洲成人一二三区av| 美女脱内裤让男人舔精品视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲成人中文字幕在线播放| 2021少妇久久久久久久久久久| 中文资源天堂在线| 国产精品av视频在线免费观看| 99久国产av精品国产电影| 中国美白少妇内射xxxbb| 亚洲伊人久久精品综合| 人妻少妇偷人精品九色| 国产一区二区三区综合在线观看 | 日韩av免费高清视频| 国产精品久久久久久久久免| 欧美三级亚洲精品| 超碰av人人做人人爽久久| 中文在线观看免费www的网站| 久久久亚洲精品成人影院| 国精品久久久久久国模美| 精品久久久噜噜| 深夜a级毛片| 精品欧美国产一区二区三| 99re6热这里在线精品视频| 美女黄网站色视频| 欧美极品一区二区三区四区| 国产精品无大码| 一区二区三区四区激情视频| 观看免费一级毛片| av在线观看视频网站免费| 一区二区三区乱码不卡18| 国产伦理片在线播放av一区| 丰满人妻一区二区三区视频av| 久久精品久久久久久久性| 高清午夜精品一区二区三区| 偷拍熟女少妇极品色| 99热这里只有是精品50| 亚洲国产精品sss在线观看| 国产精品嫩草影院av在线观看| 国产精品一区二区三区四区免费观看| 亚洲欧洲日产国产| 久久精品国产鲁丝片午夜精品| 神马国产精品三级电影在线观看| av国产久精品久网站免费入址| 免费av观看视频| 草草在线视频免费看| 日韩一区二区三区影片| 在线天堂最新版资源| 国产精品女同一区二区软件| 亚洲在线观看片| 热99在线观看视频| 麻豆乱淫一区二区| 免费观看在线日韩| av在线播放精品| 国产成人午夜福利电影在线观看| 美女黄网站色视频| 蜜桃亚洲精品一区二区三区| 国产精品综合久久久久久久免费| 毛片一级片免费看久久久久| 国产精品不卡视频一区二区| 亚洲一级一片aⅴ在线观看| 男人狂女人下面高潮的视频| 日韩欧美 国产精品| 欧美成人一区二区免费高清观看| 色5月婷婷丁香| 一级片'在线观看视频| 亚洲美女搞黄在线观看| 只有这里有精品99| 国产老妇伦熟女老妇高清| 亚洲经典国产精华液单| 美女xxoo啪啪120秒动态图| 午夜精品一区二区三区免费看| 久久久久精品久久久久真实原创| 秋霞在线观看毛片| 国产免费福利视频在线观看| 在线观看免费高清a一片| 欧美日本视频| 777米奇影视久久| 别揉我奶头 嗯啊视频| 精品人妻视频免费看| 亚洲人与动物交配视频| 日本免费在线观看一区| 亚洲aⅴ乱码一区二区在线播放| 人妻一区二区av| 国产一区二区亚洲精品在线观看| 老师上课跳d突然被开到最大视频| 日韩精品有码人妻一区| 婷婷色av中文字幕| 久久精品人妻少妇| 亚洲av免费高清在线观看| 亚洲成人av在线免费| 欧美zozozo另类| 伦精品一区二区三区| 狂野欧美激情性xxxx在线观看| 夜夜爽夜夜爽视频| 99热网站在线观看| 国产91av在线免费观看| 亚洲自拍偷在线| 国产中年淑女户外野战色| 亚洲精品aⅴ在线观看| 一本久久精品| .国产精品久久| 丝袜美腿在线中文| 亚洲,欧美,日韩| 亚洲精品自拍成人| 美女大奶头视频| 街头女战士在线观看网站| 麻豆成人午夜福利视频| 熟女电影av网| 国产精品久久视频播放| 国产探花极品一区二区| 色综合站精品国产| 免费人成在线观看视频色| 亚洲av成人av| 又黄又爽又刺激的免费视频.| 亚洲国产av新网站| 干丝袜人妻中文字幕| 亚洲精品久久久久久婷婷小说| 精品欧美国产一区二区三| 肉色欧美久久久久久久蜜桃 | 麻豆国产97在线/欧美| 免费少妇av软件| 国产精品国产三级国产av玫瑰| 精品亚洲乱码少妇综合久久| 男女下面进入的视频免费午夜| 免费看日本二区| 亚洲自拍偷在线| 美女高潮的动态| 自拍偷自拍亚洲精品老妇| 久久精品夜色国产| 亚洲激情五月婷婷啪啪| 亚洲成人久久爱视频| 男的添女的下面高潮视频| 中文乱码字字幕精品一区二区三区 | 久久久久久九九精品二区国产| 男人和女人高潮做爰伦理| 国产一级毛片七仙女欲春2| 国内精品宾馆在线| 寂寞人妻少妇视频99o| 99久国产av精品国产电影| 亚洲第一区二区三区不卡| 国产亚洲av嫩草精品影院| 欧美日韩一区二区视频在线观看视频在线 | 精品久久久久久久人妻蜜臀av| 床上黄色一级片| 国产伦精品一区二区三区四那| 男女边吃奶边做爰视频| 日韩欧美一区视频在线观看 | 国产成人福利小说| 欧美潮喷喷水| 成人特级av手机在线观看| 午夜视频国产福利| 国产高清国产精品国产三级 | 偷拍熟女少妇极品色| 成人亚洲精品一区在线观看 | 女的被弄到高潮叫床怎么办| 亚洲精品日韩av片在线观看| 特大巨黑吊av在线直播| 国产精品国产三级专区第一集| 久久精品国产亚洲网站| 自拍偷自拍亚洲精品老妇| 又爽又黄无遮挡网站| 亚洲精品成人久久久久久|