• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles study of plasmons in doped graphene nanostructures?

    2021-09-28 02:20:56XiaoQinShu舒曉琴XinLuCheng程新路TongLiu劉彤andHongZhang張紅
    Chinese Physics B 2021年9期
    關(guān)鍵詞:張紅新路

    Xiao-Qin Shu(舒曉琴),Xin-Lu Cheng(程新路),Tong Liu(劉彤),and Hong Zhang(張紅),?

    1College of Mathematics and Physics,Leshan Normal College,Leshan 614000,China

    2College of Physics,Sichuan University,Chengdu 610065,China

    3School of Science,Xihua University,Chengdu 610065,China

    Keywords:doped graphene,absorption spectroscopy,time-dependent density functional theory

    1.Introduction

    As a one-atom-thick material with extreme light confinement,strong optical response,and broad electronic and optoelectronic tunability,graphene has attracted great attention in the past decade in many fields,such as biological objectives,[1–5]electrocatalysis,[6]DNA sensors,[7]high-resolution transmission electron microscopy(HRTEM),[8]spintronics,[9,10]flexible electronics,[11,12]biocultivation,[13]desalting,[14]electronics,[15–18]photonics,[19]nanoelectronics,[20]biosensors,[21]supercapacitors,[22,23]drug transport,[24,25]hydrogen reservation,[26]transistors,[27]polymer nanocomposites,[28,29]superconductors,[30–32]optical technologies,[33]nanoantenna,[34]and fuel cells.[35]In the terahertz-to-mid-infrared range,graphene plasmons are related to the collective stimulation of free charge carriers and have a higher degree of tunability and mode restriction,and a longer propagation distance than the noble metals’plasmons.[36–40]The carrier plasmon mobility of graphene is reduced to different degrees according to the type and concentration of dopants[41,42]and other defects,[43]especially in the edge structures of nanoscaled ribbons and other nano-geometries.[39]Feasible strategies for the implementation of graphene-based plasmonics in the near-IR-to-visible light range and the relative effects are reported in Ref.[39].

    The introduction of B or N atoms into the graphene lattice is the center of extensive scientific research to improve the electronic structure of graphene.[44–51]Substitution of B atoms or N atoms has been predicted to reduce the Fermi level,[48,51,52]resulting in p or n doping just as it is frequently used in current semiconductor technology.A p or n characteristic has recently been confirmed in hanging graphene containing single B dopant or N dopant.[51]Some studies reported the introduction of a band gap into graphene by doping with boron or nitrogen.[46,47]Here in this work discussed are the position and number of doped nitrogen atoms and other types of doping atoms,including boron,aluminum,silicon,phosphorus,and sulfur atoms,and their effects on plasmon excitation of the doped graphene nanostructure.These elements are adjacent to carbon in the periodic table of elements,and the electronegativity of boron,nitrogen,aluminum,silicon,phosphorus,and sulfur are 2.04,3.04,1.61,1.90,2.19,and 2.58,respectively,close to the electronegativity of carbon(2.55).Collective stimulations of N/B-doped graphene nanostructures have been addressed in various studies.However,to the best of our knowledge,the collective stimulations of aluminum/silicon/phosphorus/sulfur-doped graphene nanostructures are investigated herein for the first time.

    2.Computational studies

    Plasmons in doped graphene nanostructures are studied by time-dependent density functional theory(TDDFT).[53]Collective stimulations are investigated mainly in the orientation parallel to the plane of the doped graphene nanostructures.The danglingσ-bonds at the edges are saturated by hydrogen atoms.The effects of different positions and numbers of nitrogen dopants are investigated,and the influence of different doping atoms is discussed.Computations are carried out by employing real-space TDDFT code OCTOPUS,[54]where C,H,N,B,S,Al,and Si atoms are represented by Troullier–Martins pseudopotentials.[55]The local-density approximation(LDA)for exchange–correlation potentials is applied to both ground and excited state computations.[56]

    The linear optical absorption of the system is obtained by the program developed by Yabana and Bertsch,[57]where all frequencies of the system are stimulated by providing diminutive value momenta(κ)for the electrons.The frequencies of the system are obtained by converting the ground-state wave functions through the following equation:

    and then these resulting wave functions are spreaded.

    Then,the spectrum is acquired according to the dipole intensity function S(ω)expressed as

    where the dynamical polarizability(α(ω))is essentially the same as the Fourier transform of the dipole moment of the system d(t)expressed as

    Employing this boundary value,the Thomas–Reiche–Kuhn f-sum rule can be used to obtain the number of electrons(N)from the following equation:

    This program has been applied to a number of examples,successfully generating reliable absorption spectra.The stimulation region is delimited by allocating a sphere centered on each atom,with a radius of 6?A and the same mesh grid of 0.3?A.In real-time spreading,a Kohn–Sham wave function is developed for normally 6000 paces of a time pace of 0.003ˉh/eV or 0.00198 fs.

    For XG(doped graphene with doping atom X,named XG,X=B,N,Al,S,Si,P;G=graphene),the total densities of states(TDOSs)and partial densities of states(PDOSs)are simulated in the context of the ab initio density functional theory(DFT)by using the Dmol3 package.[58]During calculations,the plane wave in the generalized gradient approximation(GGA),expressed by the Perdew–Burke–Ernzerhof(PBE)functional,[59]is employed.

    3.Results and discussion

    Cartesian coordinates are employed to place the atoms in the xy plane.The zigzag edge is set to be parallel to the y axis,while the armchair edge is oriented perpendicularly.However,this study focuses primarily on plasmonic stimulation in the orientation parallel to the plane of the doped graphene nanostructure.The effects of different positions and numbers of nitrogen dopants in N-doped graphene are discussed,and the influence of different doping atoms is analyzed.The N-doped graphene with doping position,n,is named n#N-doped system correspondingly(n=1,2,3,4,5,6),while N-doped graphene nanostructure with the number of nitrogen atoms,n,is denoted as nN-doped system correspondingly(n=1,2,3,4,5,6).Doped graphene with doping atom,X,is named XG system correspondingly(X=B,N,Al,Si,P,S).The induced charge plane is parallel to the plane of the doped graphene nanostructure,and the perpendicular space between the plane of the doped graphene nanostructure and the plane of the induced charge density is computed to be 0.9?A.

    The influence of the distance between the two layers and the number of layers of nitrogendoped graphene were studied in our previous work.[60]

    Fig.1.Structure of a single layer of hexagonal nitrogen-doped graphene.The nanostructure is approximately 1.8 nm in size and contains 79 carbon atoms(gray spheres),22 hydrogen atoms(white spheres),and one nitrogen atom(blue sphere).The positions of the nitrogen atoms are marked in the diagram.

    In this study,nitrogen doping is realized as indicated Fig.1.The doping concentration is 1.25%.Two electrons are provided by graphitic N to form aπ-bond with the shape of vacant orbitals.The number of delocalized electrons decreases in comparison with those of undoped graphene.Compared Figs.2(a)and 2(c)with Figs.2(b)and 2(d),the intensity of the pulse stimulation polarized in zigzag-edge orientation(y axis)is slightly lower than that of the pulse stimulation polarized in armchair-edge orientation(x axis).The pulse stimulation polarized in armchair-edge orientation(x axis)reduces the intensity of the optical absorption of the 1#,3#,2#,4#,5#,and 6#N-doped system and red-shifts the spectral line of the 4#,3#,5#,1#,6#,and 2#N-doped system adjacent to energy resonance dots at 5 eV.The pulse stimulation polarized in the zigzagedge orientation(y axis)reduces the intensity of the absorption spectrum of the 3#,1#,6#,2#,5#,and 4#N-doped system and red-shifts the spectral line of the 4#,6#,3#,5#,1#,and 2#N-doped system adjacent to the energy resonance dot at 5 eV.The introduced nitrogen atom destroys the symmetry of the graphene nanostructure.A higher degree of symmetry destruction is correlated with weaker optical absorption.Even more interestingly,the optical absorption is split into two parts adjacent to energy resonance dot at 5 eV for the doping positions 3#,4#,and 5#by pulse stimulation polarized in armchair-edge orientation(x axis).

    Fig.2.Dipole response(optical absorption)of n#N-doped graphene nanostructures obtained by pulse stimulation polarized in((a),(c)x-axis and((b),(d))y-axis directions.

    To clarify the principle of the vibration behavior,we discuss the spatial dependence of the induced charge response on the vibration frequency.The low-energy resonances are located in the border zone.The induced charge density distributions at these plasmon resonance points have dipole characteristics.The pulse stimulation polarized in armchair-edge direction(x axis)results in the scattering of the induced charges of most resonance dots along the zigzag-edge(y axis)direction as shown in Fig.3(c),while the pulse stimulation polarized in zigzag-edge(y axis)direction results in the scattering of the induced charges of most resonance dots along the armchair-edge(x axis)direction as presented in Figs.3(a),3(b),and 3(d).In addition,we believe that the lower-energy plasmon is a longrange charge transfer plasmon(CTP)mode due to the electron motion along the direction where the electrons can move over a longer distance.Figure 3 presents the Fourier transform of the induced charge density for a hexagonal N-doped graphene nanostructure with different nitrogen-doping positions,i.e.,1#N-doped system(Fig.3(a)),3#N-doped system(Fig.3(b)and 5#N-doped system(Figs.3(c)and 3(d).The polarization direction is along the armchair edge at energy resonance dots of 5.18 eV(Fig.3(c)).The polarization orientation is along the zigzag edge at energy resonance dots of 5.10 eV(Fig.3(a)),5.22 eV(Fig.3(b)),and 5.08 eV(Fig.3(d)).The induced charge density profiles of these plasmon resonance points each have a dipole-like character as shown in Fig.3.All the energy resonance dots are the main peaks adjacent to energy resonance dot at 5 eV.The induced charge calculation formula of Fourier transform is

    where,ωis the resonance frequency,T is the total time of developing of Kohn–Sham wave function,and t is the time step of 9ˉh/eV or 5.94 fs.

    Fig.3.Induced charge density distributions of hexagonal N-doped graphene systems with different nitrogen-doping positions:(a)1#N-doped system,(b)3# N-doped system,((c),(d))5#N-doped system.Polarization direction along the x axis at energy resonance dots of(c)5.18 eV.Polarization orientation along the y axis at energy resonance dots of(a)5.10 eV,(b)5.22 eV,and(d)5.08 eV.

    The nitrogen doping concentration affects the energy gap and lattice constant.When the N-doped graphene nanostructure is used as an electrode material for supercapacitors,the nitrogen doping concentration also affects the specific heat capacity and the stability.To probe into the influence of the doping concentration on plasmonic stimulation,we compute the absorption spectra of nN-doped systems(Fig.4).Systems with different nitrogen doping concentrations are denoted as follows:1N(doping concentration 1.25%;one doping nitrogen atom,3#),2N(doping concentration 2.5%;two doping nitrogen atoms 3#and 7#),3N(doping concentration 3.75%;nitrogen atoms,3#,7#,and 8#),4N(doping concentration 5%;four doping nitrogen atoms,3#,7#,8#,and 9#),5N(doping concentration 6.25%;five doping nitrogen atoms 3#,7#,8#,9#,and 10#),and 6N(doping concentration 7.5%;six doping nitrogen atoms 3#,7#,8#,9#,10#,and 11#).The pulse stimulation polarized along the x axis weakens the intensities of the optical absorptions of the 2N,1N,6N,3N,4N,and 5N-doped systems and red-shifts the spectral lines of the 6N,4N,1N,2N,3N,and 5N-doped systems adjacent to energy resonance dot at 4.7 eV.The pulse stimulation polarized along the y axis weakens the intensities of the optical absorptions of 1N,3N,2N,6N,5N,and 4N-doped systems and red-shifts the spectral lines of the 2N,1N,5N,6N,3N,and 4N-doped systems adjacent to the energy resonance dot at 5 eV.It can be concluded that the increasing of doping amount is not correlated with a stronger optical absorption.In addition,the pulse stimulation polarized along the x axis results in the splitting of the optical absorption into two absorptions in all nN-doped systems adjacent to energy resonance dot at 5 eV due to the contribution of the 3#nitrogen atoms.

    Fig.4.Dipole response(optical absorption)of N-doped graphene systems with six different nitrogen-doping concentrations obtained by pulse stimulation polarized in((a),(c))x axis and((b),(d))y axis directions.The numbers adjacent to the bars represent the quantities of nitrogen doping atoms.

    To examine the influence of different types of doping atoms on the plasmonic stimulations of the graphene nanostructure,absorption spectra of doped graphene nanostructures with different types of atoms are obtained by pulse stimulation polarized in the x-axis(Figs.5(a)and 5(c))and y-axis(Figs.5(b)and 5(d))directions.For a clear comparison,the dipole response of pristine graphene is also shown in Fig.5.The doping atoms include boron,nitrogen,aluminum,silicon,phosphorus,and sulfur atoms.As the radius of boron atom and nitrogen atom are almost the same as that of carbon atom,the geometry of the graphene nanostructure remains unchanged after these atoms have been incorporated into the graphene.However,the geometry of the graphene nanostructure changes after aluminum,silicon,phosphorus,and sulfur atoms have been doped into the graphene due to their atom radii are different from that of carbon atom.The atom diameters of silicon,phosphorus,and sulfur are 1.6?A larger than the thickness of one layer of the graphene nanostructure,and the aluminum atom diameter is 2.0?A larger than the thickness of one layer of the nanostructure after geometric optimization.Furthermore,the graphene nanostructure is slightly deformed.

    Fig.5.Dipole response(optical absorption)of doped graphene systems with two different types of atoms(doping concentration 2.5%)obtained by pulse stimulation polarized in((a),(c))x-axis and((b),(d))y-axis directions.The two doping atoms are at positions 3#and 7#.Inset in panel(b)represents the side view of geometrically optimized Si-doped graphene nanostructure.

    Doping of graphene with different heteroatoms results in higher sensitivities to different molecules,and the relevant applications have been reported in Refs.[61–65].Aldoped graphene is more sensitive to the adsorption of CO than pure graphene and N-doped graphene,which was revealed by a theoretical study.[66]The adsorption of CO on the pristine graphene surface is considered as physisorption,while what occurs on aluminum-doped graphene is chemisorption.

    The introduction of nitrogen(or P,B)atoms into sp2-hybridized carbon frameworks of graphene is generally effective in modifying the electrical properties and chemical activities,which has been demonstrated both theoretically and experimentally in Ref.[67].The N-doped graphene[68,69]is a promising candidate for replacing Pt-based catalysts in fuel cells due to its superior properties,such as excellent methanol tolerance in an alkaline medium,long-term stability,high catalytic activity,low cost,and environmental friendliness.The S-doped graphenesgraphene[70]also exhibits a similar superior electrocatalytic performance to that of the N-doped graphene.Shahrokh and Leonard reported that the optical conductivity of Si-doped graphene[71]is higher than that of pristine graphene in the visible range.These predicted optical and electronic properties can conduce to the designing of photovoltaic cells or similar systems.

    As shown in Fig.5,a pulse stimulation polarized in the x-axis direction enhances the intensity of the optical absorption of the Si,Al,P,S,N,and B-doped systems adjacent to energy resonance dot at 5 eV.The pulse stimulation polarized in the y-axis direction enhances the intensity of the optical absorption of Al,Si,S,P,N,and B-doped system adjacent to energy resonance dot at 5 eV.Yet,the intensities of the optical absorption of all the doped systems are lower than that of the pristine system adjacent ext to energy resonance dot at 5 eV.

    The reduced optical absorption of doped graphene is attributed to the doping atoms that break the symmetry of these configurations.The pulse stimulation polarized in the x-axis direction blue-shifts the dipole response line of the B-doped system and red-shifts that of the N-doped system in comparison with those of the pristine system adjacent to energy resonance dots at 5 eV.However,the pulse stimulation polarized in the y-axis direction red-shifts the dipole response line of the B-doped system and blue-shifts that of the N-doped system in comparison with the pristine system adjacent to energy resonance dot at 5 eV.In both cases,their scenarios are opposite truly.Doped atom with a size similar to carbon atom,such as boron atom and nitrogen atom,results in a lower spectral attenuation.Systems with other doping atoms exhibit a significantly weaker optical absorption.Therefore,nitrogen and boron are promising candidates for the chemical doping of graphene nanostructures.

    We also investigate the resonance frequency distribution of the induced charge response.Figure 6 shows the induced charge density distributions of doped graphene nanostructures with different types of atoms.The spatial distribution of the induced charge density of the Al-doped system is different from that of the B-doped system,as the distance between hole and electron is larger due to the metallic properties of aluminum.To the best of our knowledge,the plasmonic stimulation capability of metals is stronger than that of nonmetals.

    In order to understand the contributions of different orbitals to the electronic state of doped graphene,the total density of states(TDOS)and partial density of states(PDOS)are calculated for XG(X=B,N,Al,S,Si,P).Figure 7 displays the total densities of states(TDOSs)and partial densities of states(PDOSs)calculated for monolayer XG.As seen in Fig.7,the PDOSs of XG reveal the contributions from both the s,p,and orbitals d of X(X=B,N,Al,S,Si,P)near the Fermi level.Obviously,the effects of the p orbitals of X(X=B,N,Al,S,Si,P)on the TDOS are much more pronounced than those of the s and d orbitals except SG.For SG,the effects of the d orbitals of X(X=B,N,Al,S,Si,P)on the TDOS are much more pronounced than those of the s and p orbitals.

    Fig.7.Total density of states(TDOS)and partial density of states(PDOS)of XG(X=(a)B,(b)N,(c)Al,(d)S,(e)Si,and(f)P).

    4.Conclusions

    The collective stimulations of doped graphene systems are studied in detail by TDDFT.The obtained conclusions are summarized below.

    (i)The optical absorption intensities of all the doped graphene systems adjacent to energy resonance dot at 5 eV are stronger for pulse stimulations polarized in armchair-edge orientation than for pulse stimulations polarized in zigzag-edge orientation.

    (ii)For different positions of nitrogen dopants,it is found that a higher degree of symmetry destruction is correlated with weaker optical absorption.Therefore,it is very important to choose the optimal doping location.

    (iii)For the concentration of nitrogen dopants,the number of dopants is not correlated with a stronger optical absorption.An appropriate doping concentration can effectively avoid excessively attenuating the optical absorption.

    (iv)For different doping atoms,the optical absorption of doping atom of a size similar to carbon atom,such as boron atom and nitrogen atom,is less attenuated.Systems with other doping atoms exhibit a significantly weaker optical absorption.Nitrogen and boron are candidates for the chemical doping of graphene nanostructures.The effects of the p orbitals of X(X=B,N,Al,S,Si,P)on the TDOS are much more pronounced than those of the s and d orbitals except SG.

    (v)The absorption spectra of all doped graphene nanostructures are split into the visible and ultraviolet range.Doped graphene presents a promising material for nanoscaled plasmonic devices with more effective absorption in the visible and ultraviolet range.

    猜你喜歡
    張紅新路
    Core level excitation spectra of La and Mn ions in LaMnO3
    Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
    Theoretical study of M6X2 and M6XX'structure(M =Au,Ag;X,X'=S,Se): Electronic and optical properties,ability of photocatalytic water splitting,and tunable properties under biaxial strain
    李學(xué)奇《新路》
    水土保持探新路 三十九年寫春秋
    Stability,electronic structure,and optical properties of lead-free perovskite monolayer Cs3B2X9(B=Sb,Bi;X =Cl,Br,I)and bilayer vertical heterostructure Cs3B2X9/Cs3X9(B,B′=Sb,Bi;X =Cl,Br,I)
    Linear and nonlinear optical response of g-C3N4-based quantum dots*
    我愛你,中國
    蔬果種植走新路
    城鄉(xiāng)一體化走出的新路
    天堂俺去俺来也www色官网| 成人影院久久| 国产麻豆69| 国产成人一区二区三区免费视频网站| 身体一侧抽搐| 久久久久久久久久久久大奶| 丰满饥渴人妻一区二区三| www.熟女人妻精品国产| 99在线人妻在线中文字幕| 动漫黄色视频在线观看| 大型av网站在线播放| 亚洲精品在线观看二区| 女人爽到高潮嗷嗷叫在线视频| 操美女的视频在线观看| 亚洲一区二区三区色噜噜 | 久久久久久久久久久久大奶| 男人舔女人下体高潮全视频| 91在线观看av| 国产欧美日韩综合在线一区二区| 午夜免费观看网址| 国产99白浆流出| 色婷婷av一区二区三区视频| 88av欧美| 亚洲中文字幕日韩| 国产高清国产精品国产三级| 久久精品91无色码中文字幕| 日本 av在线| 亚洲成人久久性| 精品国产乱子伦一区二区三区| 日本一区二区免费在线视频| 成人亚洲精品一区在线观看| 悠悠久久av| 男男h啪啪无遮挡| 三级毛片av免费| 久久中文字幕一级| 国产精品久久久av美女十八| 女人爽到高潮嗷嗷叫在线视频| 日本三级黄在线观看| 国产有黄有色有爽视频| 搡老岳熟女国产| 欧美精品啪啪一区二区三区| 亚洲一区高清亚洲精品| 午夜亚洲福利在线播放| 99re在线观看精品视频| 免费在线观看影片大全网站| 岛国在线观看网站| 欧美成人免费av一区二区三区| 最近最新免费中文字幕在线| 十八禁网站免费在线| 亚洲精品在线观看二区| 亚洲av成人不卡在线观看播放网| 黄网站色视频无遮挡免费观看| 国产成人免费无遮挡视频| 欧美人与性动交α欧美精品济南到| 国产精品av久久久久免费| 亚洲国产精品sss在线观看 | 久久久久国产精品人妻aⅴ院| 精品国内亚洲2022精品成人| 亚洲免费av在线视频| 99在线视频只有这里精品首页| 国产国语露脸激情在线看| 国产成人欧美在线观看| 后天国语完整版免费观看| 日本免费a在线| 人人妻,人人澡人人爽秒播| 国产高清videossex| 午夜精品在线福利| 亚洲国产毛片av蜜桃av| 亚洲 国产 在线| 黄网站色视频无遮挡免费观看| 日韩国内少妇激情av| 国产精品永久免费网站| 国产精品秋霞免费鲁丝片| 老鸭窝网址在线观看| 99国产精品免费福利视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久人人人人人| 久久精品亚洲熟妇少妇任你| 91大片在线观看| 女人精品久久久久毛片| 中文字幕人妻熟女乱码| 日韩视频一区二区在线观看| 国产精品香港三级国产av潘金莲| 欧美亚洲日本最大视频资源| 久久久久国产精品人妻aⅴ院| av天堂久久9| 国产区一区二久久| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美激情综合另类| 伦理电影免费视频| 国产熟女xx| 亚洲精品一卡2卡三卡4卡5卡| 黑人操中国人逼视频| 校园春色视频在线观看| 国产精品 国内视频| 久久久国产精品麻豆| 80岁老熟妇乱子伦牲交| 村上凉子中文字幕在线| 悠悠久久av| 亚洲专区国产一区二区| 久久久久久久久中文| 最新美女视频免费是黄的| 性欧美人与动物交配| 视频在线观看一区二区三区| 少妇裸体淫交视频免费看高清 | 久久午夜综合久久蜜桃| 亚洲精品国产一区二区精华液| 操美女的视频在线观看| 亚洲精华国产精华精| 国内毛片毛片毛片毛片毛片| 91麻豆精品激情在线观看国产 | 国产精品久久久久久人妻精品电影| 国产午夜精品久久久久久| 日本精品一区二区三区蜜桃| 丝袜美腿诱惑在线| 亚洲av美国av| 视频区欧美日本亚洲| 精品福利永久在线观看| 精品无人区乱码1区二区| 国产成人啪精品午夜网站| 精品第一国产精品| 看黄色毛片网站| 一区二区三区激情视频| 精品少妇一区二区三区视频日本电影| 97人妻天天添夜夜摸| 在线观看舔阴道视频| 久久香蕉精品热| 久久人人精品亚洲av| 人人妻人人爽人人添夜夜欢视频| 午夜福利在线免费观看网站| cao死你这个sao货| 日韩高清综合在线| 欧美日韩视频精品一区| 国产精品美女特级片免费视频播放器 | 淫秽高清视频在线观看| 黄片大片在线免费观看| 真人一进一出gif抽搐免费| 久久天躁狠狠躁夜夜2o2o| 午夜精品在线福利| 黑人猛操日本美女一级片| 成年人黄色毛片网站| 少妇裸体淫交视频免费看高清 | 国产真人三级小视频在线观看| 久久天堂一区二区三区四区| 中文字幕人妻丝袜制服| 亚洲欧美一区二区三区黑人| 在线观看日韩欧美| 99riav亚洲国产免费| 97超级碰碰碰精品色视频在线观看| 超色免费av| 男人的好看免费观看在线视频 | 日韩有码中文字幕| 性少妇av在线| 亚洲男人的天堂狠狠| 精品久久久久久久久久免费视频 | 侵犯人妻中文字幕一二三四区| 亚洲中文字幕日韩| 老司机靠b影院| 国产野战对白在线观看| 久久狼人影院| 黄色女人牲交| 亚洲熟妇中文字幕五十中出 | 高清在线国产一区| 50天的宝宝边吃奶边哭怎么回事| 啦啦啦在线免费观看视频4| 国产亚洲精品综合一区在线观看 | 免费日韩欧美在线观看| 一二三四在线观看免费中文在| 精品国产超薄肉色丝袜足j| 欧美一区二区精品小视频在线| 精品人妻1区二区| 男女做爰动态图高潮gif福利片 | 在线十欧美十亚洲十日本专区| 手机成人av网站| 日韩中文字幕欧美一区二区| 超碰97精品在线观看| 国产精品综合久久久久久久免费 | 高潮久久久久久久久久久不卡| 一边摸一边做爽爽视频免费| 精品人妻在线不人妻| 最近最新中文字幕大全免费视频| 久久久久国产一级毛片高清牌| 熟女少妇亚洲综合色aaa.| 人人澡人人妻人| 丝袜美足系列| 欧美 亚洲 国产 日韩一| 成年版毛片免费区| 日韩中文字幕欧美一区二区| 国产精品综合久久久久久久免费 | 国产精品电影一区二区三区| 在线观看舔阴道视频| 777久久人妻少妇嫩草av网站| 亚洲五月色婷婷综合| 妹子高潮喷水视频| 自线自在国产av| 久久国产精品男人的天堂亚洲| 午夜免费观看网址| 国产精品九九99| 丝袜美腿诱惑在线| 丝袜人妻中文字幕| 视频区图区小说| 人妻久久中文字幕网| 国产在线精品亚洲第一网站| 欧美日韩国产mv在线观看视频| 曰老女人黄片| 999精品在线视频| 99国产极品粉嫩在线观看| 欧美在线黄色| 老汉色av国产亚洲站长工具| 香蕉丝袜av| 日韩人妻精品一区2区三区| 欧美色视频一区免费| 成人国语在线视频| 黄色a级毛片大全视频| 成人精品一区二区免费| 91在线观看av| 九色亚洲精品在线播放| 12—13女人毛片做爰片一| 最好的美女福利视频网| 国产av一区二区精品久久| 十八禁网站免费在线| 大陆偷拍与自拍| 1024视频免费在线观看| 中文字幕人妻熟女乱码| 成人亚洲精品av一区二区 | 国产精品久久久av美女十八| 精品国产美女av久久久久小说| 久久久水蜜桃国产精品网| 香蕉丝袜av| 亚洲人成电影观看| 国产精品秋霞免费鲁丝片| 亚洲男人的天堂狠狠| 啦啦啦在线免费观看视频4| 色婷婷久久久亚洲欧美| 老司机靠b影院| 日本欧美视频一区| 免费人成视频x8x8入口观看| 制服诱惑二区| 成人三级做爰电影| 久久 成人 亚洲| 黄色成人免费大全| 精品电影一区二区在线| 日韩精品免费视频一区二区三区| 19禁男女啪啪无遮挡网站| 一边摸一边抽搐一进一小说| 老司机午夜十八禁免费视频| 国产精品一区二区在线不卡| 亚洲色图av天堂| 国产野战对白在线观看| 婷婷六月久久综合丁香| 90打野战视频偷拍视频| 18禁裸乳无遮挡免费网站照片 | 怎么达到女性高潮| 9热在线视频观看99| 久久欧美精品欧美久久欧美| 欧美老熟妇乱子伦牲交| 交换朋友夫妻互换小说| 免费在线观看亚洲国产| 50天的宝宝边吃奶边哭怎么回事| 国产免费男女视频| 日韩欧美国产一区二区入口| 老汉色av国产亚洲站长工具| 久久久久国内视频| 欧美中文日本在线观看视频| 国产成人av激情在线播放| 手机成人av网站| 涩涩av久久男人的天堂| 亚洲成av片中文字幕在线观看| 日韩欧美免费精品| 国产欧美日韩一区二区精品| 国产精品永久免费网站| 成人永久免费在线观看视频| 一进一出抽搐gif免费好疼 | 女人被狂操c到高潮| 日日摸夜夜添夜夜添小说| 夜夜看夜夜爽夜夜摸 | 黑丝袜美女国产一区| 18禁裸乳无遮挡免费网站照片 | 精品久久久精品久久久| 亚洲精品国产区一区二| 在线观看一区二区三区| 免费高清在线观看日韩| 中文欧美无线码| 亚洲第一欧美日韩一区二区三区| 黄色毛片三级朝国网站| 男人舔女人的私密视频| 午夜福利,免费看| 久久天躁狠狠躁夜夜2o2o| 可以免费在线观看a视频的电影网站| 中文字幕av电影在线播放| 伊人久久大香线蕉亚洲五| av在线天堂中文字幕 | 欧美中文综合在线视频| 老司机深夜福利视频在线观看| 99国产极品粉嫩在线观看| 91精品三级在线观看| 中亚洲国语对白在线视频| e午夜精品久久久久久久| 国产1区2区3区精品| 成人特级黄色片久久久久久久| 一a级毛片在线观看| 久久人妻熟女aⅴ| 精品一区二区三区四区五区乱码| 我的亚洲天堂| 精品少妇一区二区三区视频日本电影| 日本欧美视频一区| 黑丝袜美女国产一区| 欧美日韩福利视频一区二区| 国产aⅴ精品一区二区三区波| 一二三四在线观看免费中文在| 国产在线观看jvid| 国产av精品麻豆| 在线观看免费午夜福利视频| 国产1区2区3区精品| 12—13女人毛片做爰片一| 黄片小视频在线播放| 大型av网站在线播放| 亚洲成国产人片在线观看| 在线观看免费高清a一片| 12—13女人毛片做爰片一| 在线免费观看的www视频| 久久精品91无色码中文字幕| 多毛熟女@视频| 色老头精品视频在线观看| 在线观看一区二区三区| 在线看a的网站| 国产精品 欧美亚洲| 欧美日韩精品网址| 午夜福利一区二区在线看| 亚洲五月天丁香| 国产aⅴ精品一区二区三区波| 亚洲精品一卡2卡三卡4卡5卡| 美女午夜性视频免费| 天堂中文最新版在线下载| 午夜成年电影在线免费观看| 国产精品国产高清国产av| 丁香欧美五月| 免费人成视频x8x8入口观看| 亚洲精品国产一区二区精华液| 欧美性长视频在线观看| 亚洲国产精品sss在线观看 | 在线观看日韩欧美| 国产精品电影一区二区三区| 黄色 视频免费看| 国产成年人精品一区二区 | 水蜜桃什么品种好| 他把我摸到了高潮在线观看| 麻豆av在线久日| 久久午夜综合久久蜜桃| 精品少妇一区二区三区视频日本电影| 亚洲成人国产一区在线观看| 久久精品成人免费网站| 久久人妻av系列| 亚洲狠狠婷婷综合久久图片| e午夜精品久久久久久久| 久热爱精品视频在线9| 午夜福利,免费看| 操出白浆在线播放| 国产亚洲精品一区二区www| 丁香欧美五月| 午夜福利在线观看吧| 久久热在线av| 色哟哟哟哟哟哟| 日韩三级视频一区二区三区| 大码成人一级视频| 久热爱精品视频在线9| 美女高潮到喷水免费观看| 大码成人一级视频| 日本黄色视频三级网站网址| 久久久水蜜桃国产精品网| 首页视频小说图片口味搜索| 国产精品亚洲一级av第二区| 99国产综合亚洲精品| 日本三级黄在线观看| 超碰97精品在线观看| 99国产综合亚洲精品| 国产精品永久免费网站| 丝袜在线中文字幕| 69av精品久久久久久| 精品国内亚洲2022精品成人| 97碰自拍视频| 国产成人精品无人区| 精品第一国产精品| 午夜视频精品福利| 色综合站精品国产| 午夜老司机福利片| 亚洲欧美日韩高清在线视频| 欧美激情久久久久久爽电影 | 咕卡用的链子| 他把我摸到了高潮在线观看| 视频区图区小说| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av片天天在线观看| av在线播放免费不卡| 18禁裸乳无遮挡免费网站照片 | 一a级毛片在线观看| 99精品久久久久人妻精品| 午夜日韩欧美国产| 久久国产精品男人的天堂亚洲| 视频在线观看一区二区三区| 国产成人av激情在线播放| 免费在线观看影片大全网站| av有码第一页| 十分钟在线观看高清视频www| 亚洲欧美激情在线| 99精国产麻豆久久婷婷| 成人18禁在线播放| 亚洲伊人色综图| av超薄肉色丝袜交足视频| 久久国产精品人妻蜜桃| 日本免费一区二区三区高清不卡 | 日本精品一区二区三区蜜桃| 黄色片一级片一级黄色片| 国产精品99久久99久久久不卡| 国产欧美日韩精品亚洲av| 日韩有码中文字幕| 精品福利观看| 十八禁网站免费在线| 99久久精品国产亚洲精品| 欧美不卡视频在线免费观看 | 色综合站精品国产| 久久久国产成人精品二区 | 亚洲国产欧美一区二区综合| 麻豆一二三区av精品| 国产主播在线观看一区二区| 国产精品美女特级片免费视频播放器 | 少妇被粗大的猛进出69影院| а√天堂www在线а√下载| 亚洲精品国产色婷婷电影| 欧美+亚洲+日韩+国产| 久久99一区二区三区| 真人做人爱边吃奶动态| 日韩欧美一区二区三区在线观看| 一区二区三区激情视频| 国产99久久九九免费精品| 成人三级黄色视频| 黄片大片在线免费观看| 又黄又爽又免费观看的视频| 美女高潮喷水抽搐中文字幕| 亚洲成国产人片在线观看| 久久久久久免费高清国产稀缺| 国产亚洲欧美在线一区二区| 成熟少妇高潮喷水视频| 激情视频va一区二区三区| 免费高清在线观看日韩| 久久久久精品国产欧美久久久| 99久久人妻综合| 在线观看免费日韩欧美大片| 国产免费男女视频| 国产黄a三级三级三级人| 国内久久婷婷六月综合欲色啪| 亚洲av成人不卡在线观看播放网| 十八禁人妻一区二区| 咕卡用的链子| 免费av毛片视频| e午夜精品久久久久久久| 黄色 视频免费看| 人成视频在线观看免费观看| 国产成人免费无遮挡视频| 久久狼人影院| 成人黄色视频免费在线看| 免费日韩欧美在线观看| 国产亚洲欧美在线一区二区| 多毛熟女@视频| 国产男靠女视频免费网站| 视频在线观看一区二区三区| 国产成人精品久久二区二区免费| 男女下面进入的视频免费午夜 | 欧美乱妇无乱码| 国产熟女xx| 欧美日本中文国产一区发布| 校园春色视频在线观看| 久久欧美精品欧美久久欧美| 国产黄色免费在线视频| 国产伦一二天堂av在线观看| 国产成年人精品一区二区 | 亚洲国产精品999在线| 国产欧美日韩一区二区精品| 亚洲av五月六月丁香网| 男女下面插进去视频免费观看| 黑人操中国人逼视频| 成年人免费黄色播放视频| 男女高潮啪啪啪动态图| 亚洲第一av免费看| 精品无人区乱码1区二区| 亚洲欧美激情在线| 国产伦人伦偷精品视频| 国产1区2区3区精品| 少妇被粗大的猛进出69影院| 精品无人区乱码1区二区| 国产精品99久久99久久久不卡| 精品久久久久久久毛片微露脸| 国产人伦9x9x在线观看| 亚洲成人精品中文字幕电影 | 国产成人啪精品午夜网站| 97碰自拍视频| 黄片大片在线免费观看| 亚洲午夜精品一区,二区,三区| 久久久久久大精品| 黄色a级毛片大全视频| 美女大奶头视频| 久9热在线精品视频| 成年版毛片免费区| 一个人免费在线观看的高清视频| 久久国产精品人妻蜜桃| 波多野结衣av一区二区av| 国产熟女午夜一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩亚洲综合一区二区三区_| 高清在线国产一区| 午夜影院日韩av| 久久久国产成人免费| 97人妻天天添夜夜摸| 亚洲av电影在线进入| 黑人欧美特级aaaaaa片| 亚洲国产看品久久| 亚洲一卡2卡3卡4卡5卡精品中文| 久久国产精品影院| 欧美日韩乱码在线| 国产1区2区3区精品| 亚洲精品一二三| 欧洲精品卡2卡3卡4卡5卡区| 国产在线观看jvid| 性少妇av在线| 成人av一区二区三区在线看| 电影成人av| 国产精品久久久久成人av| 色综合站精品国产| 国产aⅴ精品一区二区三区波| 免费少妇av软件| 久久这里只有精品19| 老司机靠b影院| 在线观看免费日韩欧美大片| 欧美日韩av久久| 91av网站免费观看| 美国免费a级毛片| 日韩视频一区二区在线观看| 人妻丰满熟妇av一区二区三区| 久久精品aⅴ一区二区三区四区| 99久久综合精品五月天人人| 精品人妻1区二区| 精品熟女少妇八av免费久了| 欧美成人午夜精品| 啪啪无遮挡十八禁网站| 午夜91福利影院| 女生性感内裤真人,穿戴方法视频| 两个人看的免费小视频| av欧美777| 久久久久国产一级毛片高清牌| 亚洲av成人不卡在线观看播放网| 国产色视频综合| 黄网站色视频无遮挡免费观看| 午夜福利在线观看吧| 在线十欧美十亚洲十日本专区| 午夜福利在线免费观看网站| 精品国产乱子伦一区二区三区| 亚洲av美国av| 怎么达到女性高潮| 日韩三级视频一区二区三区| 一级毛片女人18水好多| 国产成年人精品一区二区 | 91字幕亚洲| 精品熟女少妇八av免费久了| 老汉色∧v一级毛片| 别揉我奶头~嗯~啊~动态视频| 欧美亚洲日本最大视频资源| 色精品久久人妻99蜜桃| 亚洲专区字幕在线| 亚洲精品美女久久av网站| 高清在线国产一区| 国产蜜桃级精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美日韩无卡精品| 热99re8久久精品国产| 999久久久精品免费观看国产| 久久午夜亚洲精品久久| 999精品在线视频| 亚洲人成电影观看| 一边摸一边做爽爽视频免费| av超薄肉色丝袜交足视频| 国产精品99久久99久久久不卡| 亚洲av第一区精品v没综合| av电影中文网址| 日韩欧美免费精品| 91九色精品人成在线观看| 亚洲人成77777在线视频| 91在线观看av| 国产伦人伦偷精品视频| 欧美性长视频在线观看| 交换朋友夫妻互换小说| 久久国产精品影院| 十八禁人妻一区二区| 动漫黄色视频在线观看| 久9热在线精品视频| 亚洲专区中文字幕在线| 亚洲欧美激情综合另类| 亚洲自拍偷在线| 精品欧美一区二区三区在线| avwww免费| 国产精品亚洲av一区麻豆| 久久国产精品男人的天堂亚洲| 免费久久久久久久精品成人欧美视频| 一区福利在线观看| 黑人猛操日本美女一级片| 黄片小视频在线播放| av国产精品久久久久影院| 美女高潮到喷水免费观看| 9191精品国产免费久久| 国产伦人伦偷精品视频| 欧美日韩av久久| 桃红色精品国产亚洲av| 99久久人妻综合| 欧美中文综合在线视频| 欧美激情 高清一区二区三区| 亚洲色图综合在线观看|