• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Core level excitation spectra of La and Mn ions in LaMnO3

    2024-03-25 09:30:16FujianLi李福建XinluCheng程新路andHongZhang張紅
    Chinese Physics B 2024年3期
    關(guān)鍵詞:張紅新路福建

    Fujian Li(李福建), Xinlu Cheng(程新路), and Hong Zhang(張紅)

    Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,China

    Keywords: lanthanum manganate, the core level excitation spectra, free-ion multiplet calculation, oxidation state

    1.Introduction

    The manganese-based perovskite LaMnO3has garnered significant attention due to its numerous applications in various fields, including solid-oxide fuel cells, electrocatalysis,supercapacitors, and colorimetric sensing.[1-6]As a type of A-type antiferromagnetic material, the N′eel temperature of LaMnO3is~141 K,[7]and various interesting phenomena have been discovered and reported, such as colossal magnetoresistance effects,[8]exchange bias in superlattices[9]and orbital ordering,[10,11]indicating its great potential for use in the field of materials science.The spectral analysis is essential for understanding the electronic structure of LaMnO3.X-ray photoelectron spectroscopy(XPS)and x-ray absorption spectroscopy (XAS) are typical spectral analysis methods.They can provide information on the reducibility,oxygen vacancies,and oxidation state of metal elements of perovskite oxides,which are important properties arising from structural features.

    Accurate spectral simulations can be used not only to identify electronic structures but also to distinguish clearly between electronic and geometric effects on the spectral shape and edge position.[12]In recent decades,many theoretical approaches have been used to simulate LaMnO3transition spectra.A study by Elfimovet al.revealed that the polarization dependence ofK-edge scattering is mainly caused by 4p orbital effects and energy band structure effects.[11]Ravindranet al.examined the ground and excited state properties of LaMnO3through full-potential calculations,successfully simulating the XANES spectra and determining the respective contribution of different elemental components to the spectral intensity within distinct energy ranges near the Fermi surface.[13]Based on the dipole approximation, Takahashiet al.calculated theK-edge absorption spectrum of Mn and observed that the spectral intensity increased with local lattice distortion and is not sensitive to the magnetic order.[14]Taguchiet al.calculated the MnL2,3-edge scattering and absorption spectra in MnO6using a cluster model that considered the Mn intra-atomic multiplet state coupling.[15]According to their findings,the intensity of theL3-edge is strongly associated with the Jahn-Teller distortion, while the intensity of theL2-edge is closely correlated with the orbital ordering.Moreover,numerous theoretical approaches have been employed to calculate the near-edge structure of transition metals.For instance,Pinjariet al.simulated the XAS of ironL-edges using the multiconfigurational wavefunction theory.[16]TheL-edge spectra of transition metals were calculated with the CTM4XAS program package by Stavitskiet al.[17]de Grootet al.reviewed a series of principles and methods for calculating the 2p x-ray absorption spectra of transition metals, considering atomic multiplet effects,charge transfer effects,crystal field effects,and x-ray magnetic circular dichroism.[18]

    The investigation of the valence state of Mn in manganese-based perovskites is significant.The Mn 3d orbitals undergo energetic degeneracy with O 2p orbitals,resulting in strong covalent interactions,which determine the formation of electronic structures and ferromagnetism.[5]Zhanget al.conducted experiments to explore the lanthanum-oxygen and manganese-oxygen interaction in LaMnO3.Their findings confirmed that lanthanum is present in a+3 valence state,while manganese exists in both+3 and+4 valence states,excluding the+2 valence state.[19-21]Valmoret al.investigated the local structure of the Mn site in the LaMnO3sample using MnK-edge x-ray absorption spectroscopy and showed that the Mn ions are at the intermediate oxidation state with an average valency of +3.4.[22]Depending on the valence state of manganese atoms, temperature and pressure, they exhibit different electrical and magnetic phases, including antiferromagnetic insulators or ferromagnetic-metallic, and also exhibit charge-orbit ordered phases.[5,23,24]LaMnO3usually has an Mn3+-O-Mn4+double exchange caused by the cation deficiency, which increases the average valence of Mn ions.[25]Under an oxygen-excess environment, the content of Mn4+increases as the oxygen vacancy decreases,resulting in an elevation of the average valence of Mn ions in LaMnO3,thereby facilitating the formation of mixed valence states.The strong tilting of the MnO6octahedra with respect to the ideal cubic perovskite structure and the remarkable distortion of the lattice by the Jahn-Teller (JT)effect leads to a change in the oxidation state of the Mn.In addition, many studies have demonstrated that proper doping of metal cations (e.g., Sr, Ba, and Ca) in LaMnO3can regulate the valence of Mn ions and enhance the electronic,magnetic,and transport properties of the material.[22,26,27]

    The spectra show different features with different valence states of La and Mn in LaMnO3.The 3d spectrum of La shows well spin-orbit splitting, and the binding energy of La2+is shifted 3.1 eV lower than that of La3+.For Mn ions, the spectrum exhibits exchange splitting on theM-edge, and the magnitude of this splitting energy shows a certain linear relationship with the valence of the Mn ion.[28]In theL2,3-edges andK-edges, the spectrum shifts toward higher energy as the valence of the Mn ion increases.[27,29]The values of the whiteline intensity ratio(L3/L2)and spin-orbit splitting on theL2,3-edges depend on the valence of the Mn ion.[30,31]This article adopts a calculation method based on configuration interaction, which successfully avoids the interference of other ions on the x-ray absorption spectrum of the central ion in the experiment spectrum.As a result, more accurate ion spectral data was obtained.The origin of spectral peaks in LaMnO3crystals was identified through x-ray spectroscopy,and the oxidation states of La and Mn in LaMnO3were analyzed in detail.This helps us understand the electronic and geometric structure information of the material, and may also provide a new perspective for explaining some phenomena caused by the structural characteristics inside LaMnO3.In addition, identifying the redox states of Mn and La ions in LaMnO3can provide valuable insights into the electrochemical properties,which can be used to design and optimize material catalytic performance.

    We organize the article as follows.A description of the computational methods is given in Section 2, which contains both atomic multiplet calculations and crystal field multiplet calculations.TheM-edge spectra of La ion,M-edge,L-edge andK-edge spectra of Mn ion in LaMnO3are discussed in Section 3 respectively.A conclusion is given in Section 4.The experimental spectra compared with this article were obtained by XAS and XPS.[27,28,32-35]

    2.Methods

    2.1.Free-ion multiplet calculation

    A series of calculations were performed using the flexible atomic code(FAC)program for the transition spectra of the LaM-edge,the MnM-edge,L2,3-edge,andK-edge.These calculations primarily involve excitations: La 3d104f0→3d94f1;Mn 3s23d4→3s13d5, 2p63d4→2p53d5, 1s23d4→1s13d5,1s24s0→1s14s1and 1s24p0→1s14p1.The calculation of the multiple structure of the ionic core level is based on the configuration interaction of independent particle ground state wavefunctions.To account for the electronic screening effect resulting from the self-consistent field of the nuclear potential, the ground state wavefunction includes both the core potential and electron-electron interactions.The standard Dirac-Coulomb Hamiltonian is employed in the FAC, which thoroughly considers significant relativistic effects such as spin-orbit interactions and mass effects.[36]The standardj j-coupling mechanism is employed to simulate the transition spectra of La and Mn ions,and the Gaussian functions are used to fit the spectra in the MATLAB program.

    The FAC program primarily investigates excitation transitions of free ions.However, in crystals, these transitions are additionally influenced by crystal field effects and interatomic interactions.In LaMnO3crystals, the Jahn-Teller effect changes the bond length of Mn-O in the MnO6octahedra,resulting in energy level shifts.[37,38]We considered the experimental spectrum of lanthanum oxide and manganese oxides to explain the deviations of experimental and calculated spectra of LaMnO3.[19,20,34,39,40]Our calculations reveal that the energy deviation in the La ion spectrum is less than 0.5 eV,while in the Mn ion spectrum it ranges from 2.5 eV to 5 eV.This can be attributed to the comparatively weaker interaction between La ions and O ions in the crystal, in contrast to the interaction between Mn ions and O ions.Consequently, the spectrum of La ion in the crystal closely resembles that of free ions.

    2.2.Crystal field multiplet calculation

    In crystal field multiplet theory,the transition metal ion is treated as an independent particle surrounded by point charges,which effectively captures the symmetry of the intermediate ion.[41]The 3d orbital energy of the transition metal(Mn)ion is influenced by the octahedral arrangement of the six oxygen atoms.The cubic crystal field plays a crucial role in splitting the five 3d orbitals by symmetry into a two-fold degenerate Eg(dx2-y2,d3z2-r2)and a three-fold degenerate T2g(dxy,dyz,and dxz).The splitting between the Egand T2gorbitals is defined by the parameter 10 Dq,where Egaccounts for 6 Dq and T2gfor 4 Dq.The Egorbital, oriented towards the oxygen ion in the octahedral environment, exhibits stronger antibonding interactions in comparison to the T2gorbital situated between the oxygen ions,thereby leading to its elevated energy state.The crystal field within the perovskite structure originates from covalent interactions with neighboring oxygen atoms, with the Egorbitals exhibiting stronger hybridization characteristics than the T2gorbitals.The existence of a large crystal field splitting indicates a high degree of hybridization,with typical splitting distances ranging from 1 eV to 2 eV.[18,42]

    3.Results and discussion

    3.1.Spectral study for M-edge of Mn in LaMnO3

    In terms of shallow-core spectroscopy, Sen Guptaet al.propose a theory about the valence excitation of shallow-core between orbitals of the same principal quantum.[43]Their theory implies that the energy of the multipole transition corresponding to the bound state is lower than that of the dipole transition.This transition can be effectively simulated by the local single-ion model.[44]The spectral line with energy between 78 eV and 94 eV corresponds to the excitation of Mn3+:3s23d4→3s13d5, which is a quadrupole transition.The calculated results are shown in Fig.1.

    Fig.1.The calculated and experimental spectra at the M-edge of Mn3+in LaMnO3.

    In the 3s core-level spectral of manganese ions,an exchange splitting is detected with a size of (2S+1)G2(3s,3d)/5, whereSis the local spin of the ground state 3d electron,andG2(3s,3d)is the Slater exchange integral between 3s and 3d electrons.[45,46]The exchange splitting of Mn3+is about 5.5 eV,but this value decreases as the Mn oxidation state increases.[28]Meanwhile, the presence of Mn2+and Mn4+during the experimental procedure has an impact on the spectra.In conclusion, free-ion multiplet calculations serve as a valuable tool in identifying Mn ion spectra, and the calculated spectrum matches the experimental spectrum closely.[47]

    3.2.Spectral study for M-edge of La in LaMnO3

    The oxidation state of La in LaMnO3was determined by analyzing theM-edge spectra of La ions.Figure 2 compares the calculated spectra of La2+and La3+ions and the experimental spectra of La in LaMnO3.The spectra with energies between 825 eV and 860 eV are produced by electron transition from La 3d to La 4f orbitals.The transition spectra show that the relative intensity of La2+is much greater than that of La3+,and the bond energy of La2+is 3.1 eV lower than that of La3+.The peaks observed at 833.92 eV and 836.70 eV in the La3+spectrum correspond to the splitting peaks of La 3d5/2,and the peaks at 850.73 eV and 853.09 eV correspond to La 3d3/2.The calculated spectrum of La2+exhibits a spin-orbit splitting energy of 17.22 eV, whereas La3+displays a spinorbit splitting energy of 16.81 eV.The experimental spectrum of La2O3exhibits comparable features to that of La3+, further confirming the reliability of the accuracy of the calculation results.[19,20,40]We compare the experimental spectra of La in LaMnO3with the calculated spectra of La2+and La3+.The analysis showed that the experiment spectra agree with the calculated spectra of La3+in terms of energy and shape.Consequently, it can be concluded that La in LaMnO3exists at a valence state of+3,which agrees with the results obtained by Flores-Lasluisaet al.[19,21,35,48]The experimental spectrum displays a discrepancy in multiple splitting values, which is 0.9 eV higher than the calculated value.This disparity can be attributed to the presence of lanthanide oxides in the experiment and the transfer of electrons from the oxygen center to the La 4f shell layer.[35,49]

    Fig.2.The calculated spectra in M-edge of La2+and La3+ and experimental spectra from XAS of LaMnO3.

    3.3.Spectral study for L2,3-edge of Mn in LaMnO3

    Figure 3 shows the calculated spectrum of Mn3+L2,3-edge alongside the experimental spectrum of LaMnO3.The spectral lines within the energy range of 635 eV to 660 eV are generated by the electron transition from Mn 2p orbitals to 3d orbitals.The Mn 2p core hole exhibits two broad multiplet states,namely,the high spin 2p1/2state(L2-edge)and low spin 2p3/2state (L3-edge), as a result of spin-orbit splitting.In addition,we incorporate crystal field corrections to account for the multiplet calculation of free ions, with a crystal field splitting energy of 10 Dq=2.0 eV for Mn.There are four possible transitions: 2p1/2→T2g, 2p1/2→Eg, 2p3/2→T2g,and 2p3/2→Eg.The interaction between the ligand and Egorbitals is significantly stronger than that of T2gorbitals in octahedral symmetry.[42]Therefore, the absorption peaks of Egare higher than T2gin theL2,3-edge spectra.This is illustrated in Fig.3,which showcases the enhanced resemblance between the ionic and crystal spectra resulting from the incorporation of the crystal field correction.

    Fig.3.The experimental spectra from XAS of LaMnO3 and the calculated spectra in L2,3-edge of Mn3+: j-j coupling and j-j coupling+CF.

    The influence of Mn2+, Mn3+, and Mn4+on theL2,3-edge spectrum varies, as depicted in Fig.4.To facilitate a more accurate comparison with the experimental spectra, all calculated spectra have been adjusted by 2.5 eV towards the lower energy direction.The obtained spectra are consistent with those experimentally derived by Moraleset al.[50,51]Two main factors are considered in this study.Firstly,the shape of theL2-edge peak indicates a stronger agreement between the theoretical and experimental spectra for Mn3+than for Mn4+,while no agreement is observed for Mn2+.Secondly, an increase in the valence state of the manganese ion leads to a shift in peak energy towards higher values.These descriptions suggest that the majority of the Mn ions in LaMnO3exist in the Mn3+state,with a minor fraction in the Mn4+state,while Mn2+is insignificant.

    Fig.4.The calculated spectrum in L2,3-edge of Mn2+,Mn3+,and Mn4+and experimental spectrum from XAS of LaMnO3.

    TheL2,3-edge spectrum of Mn is commonly employed in spectroscopy research for determining the valence state.Previous studies have documented various techniques for determining the oxidation state of Mn,with a focus on the shift of the peak toward higher energies as the Mn valence increases and the observed valence-dependent behavior of theL3/L2whiteline intensity ratio.[29-31]In our research, we calculated the spectrum of Mn3+and found that the white line intensity ratio was 1.972:1,which is near the single-particle theoretical value of 2:1.This result further supports the reliability of the computational method.Additionally, we synthesized the calculated spectra of Mn in various proportions and compared them with the experimental spectra.Figure 5 shows that a high degree of agreement between the theoretical and experimental spectra was observed when Mn3+is 90%and Mn4+is 10%.

    Fig.5.The calculated spectrum in L2,3-edge of Mn3+ and Mn4+ at different ratios and the experimental data for LaMnO3.

    3.4.Spectral study for K-edge of Mn in LaMnO3

    Figure 6 presents a comparative analysis of theK-edge spectrum of Mn2+, Mn3+, and Mn4+.The spectrum shifts toward higher energies as the valence of Mn ions increases,making theK-edge spectrum a valuable tool for determining the valence of manganese in compounds.[27,52]Notably, theK-edge spectrum of Mn3+is closest to the experimental spectrum in both shape and energy, while Mn4+displays a lesser degree of overlap.Conversely,theK-edge spectrum of Mn2+exhibits substantial deviation from the experimental spectrum,which echoes our conclusion inL2,3-edge.Our analyses indicate that Mn3+and Mn4+are the primary oxidation states of Mn ions in LaMnO3,while Mn2+is not detected.

    Fig.6.Calculated spectrum in K-edge of Mn2+, Mn3+, and Mn4+ and experimental spectrum from XAS of LaMnO3.

    The ionic multiplet model allows us to identify spectral transitions that assist in analyzing the origin of the peaks.Specifically, in theK-edge spectrum of Mn3+, the prepeak structure at 6542 eV is located about 14 eV below the mainK-edge peak of manganese.This structure corresponds to a quadrupole transition occurring from the 1s core level to the empty 3d level,which represents a dipole-forbidden transition and consequently exhibits limited intensity.Elfimovet al.has proposed the existence of a dipole contribution to the prepeak in LaMnO3, which arises from the strong hybridization between the Mn 4p orbitals and the adjacent Mn atom’s 3d orbitals facilitated by oxygen 2p orbitals.[11]The peak observed at 6556 eV corresponds to the excitation from 1s orbital to 4s orbital of Mn3+, while the peak observed at 6563 eV corresponds to a dipole transition from 1s orbital to 4p orbital.Correspondingly, the peaks observed at energies of 6546 eV,6567 eV, and 6575 eV can be attributed to the excitations of Mn4+from the 1s orbital to the 3d,4s,and 4p orbitals,respectively.

    The influence of different ratios of Mn3+and Mn4+in LaMnO3on theK-edge spectra is simulated in Fig.7.The results suggest that with an increasing proportion of Mn3+, the prepeak A shifts to lower energy.Moreover, there is a discernible trend of intensity transfer from a relatively weaker peak B (compared to peak C) to a relatively stronger peak B(compared to peak C).The synthetic spectra show a significant degree of concordance with the experimental spectra when the proportion of Mn3+falls within the range of 88%-90%.However,a discrepancy arises between the synthetic spectrum and the experimental spectrum at peak C.This discrepancy is attributed to the strong hybridization of the Egorbitals in the 3d of Mn with the 2p orbitals of the adjacent O ions,which causes a broadening of the energy band within the solid.

    Fig.7.The calculated spectrum of Mn3+ and Mn4+ at different ratios and the experimental spectrum for LaMnO3.

    There are several reasons for the appearance of mixed valence states of Mn ions in the LaMnO3: (i) The material exhibits the presence of cationic defects,such as vacancies in La or Mn ions, which lead to the valence state of some Mn ions changing from +3 to +4 in order to maintain overall electrical neutrality.(ii) An excess of oxygen ions in the material,which presents in metal ion vacancies or lattice gaps.This excess of oxygen ions causes an increase in the valence of Mn ions.(iii) The crystal structure can be affected by deviations from standard stoichiometric ratios,as well as the temperature and duration of the annealing process during its preparation,which further changes the valence state of Mn ions.

    4.Conclusion

    The core electron excitation spectrums for La and Mn are calculated,and a theoretical estimation for determining the effective oxidation states of La and Mn in LaMnO3is provided.From the point of free ions, we analyzed the contribution of La and Mn ions in various valence states to the spectrum by considering that the spectral shapes and mainline positions are mainly influenced by the oxidation state of the central atom.TheM-edge spectra of La demonstrate a concurrence between the experimental spectra and the calculated spectra of La3+in terms of the spin-orbit splitting values and peak positions,indicating that the La ion is positively trivalent in LaMnO3.However,theL2,3-edge andK-edge spectra of Mn,clearly indicate the presence of a mixed valence state in LaMnO3,predominantly composed of Mn3+with a minor fraction of Mn4+,while the absence of Mn2+is evident.The synthetic spectrum at theL2,3-edge aligns with the experimental spectrum when the Mn3+content is 90% and Mn4+is 10%, which is consistent with the Mn3+proportions ranging from 88% to 90%obtained at theK-edge.The results also indicate that a weak interaction between lanthanum and manganese in LaMnO3,while the interaction between manganese and oxygen is robust.This investigation enhances our ability to analyze crystal spectrum and deepens our understanding of the electronic structure information in perovskite materials.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant No.11974253).

    猜你喜歡
    張紅新路福建
    Theoretical study of M6X2 and M6XX'structure(M =Au,Ag;X,X'=S,Se): Electronic and optical properties,ability of photocatalytic water splitting,and tunable properties under biaxial strain
    水土保持探新路 三十九年寫春秋
    那個夢
    巴蜀史志(2021年2期)2021-09-10 13:17:04
    Linear and nonlinear optical response of g-C3N4-based quantum dots*
    福建老年大學(xué)之歌
    我愛你,中國
    蔬果種植走新路
    福建醫(yī)改新在哪?
    來吧,福建求賢若渴
    城鄉(xiāng)一體化走出的新路
    欧美潮喷喷水| 欧美日本视频| 成人毛片a级毛片在线播放| 欧美在线黄色| 日本a在线网址| 国产淫片久久久久久久久 | 夜夜看夜夜爽夜夜摸| 村上凉子中文字幕在线| 波多野结衣高清作品| 综合色av麻豆| 美女cb高潮喷水在线观看| 色综合欧美亚洲国产小说| 丰满人妻熟妇乱又伦精品不卡| 好看av亚洲va欧美ⅴa在| 老熟妇仑乱视频hdxx| 网址你懂的国产日韩在线| 免费在线观看影片大全网站| 又黄又爽又免费观看的视频| 日本黄色视频三级网站网址| 乱码一卡2卡4卡精品| 一级av片app| 欧美黑人巨大hd| 免费看日本二区| 国产成人av教育| 亚洲三级黄色毛片| 少妇的逼水好多| 人妻夜夜爽99麻豆av| 深夜a级毛片| 国产一区二区激情短视频| 国产精品女同一区二区软件 | 淫秽高清视频在线观看| 久久亚洲真实| 午夜久久久久精精品| 中文字幕高清在线视频| 亚洲经典国产精华液单 | 国产高清视频在线播放一区| 精品午夜福利在线看| 毛片一级片免费看久久久久 | 直男gayav资源| av天堂中文字幕网| 日韩欧美在线二视频| 少妇裸体淫交视频免费看高清| 人妻夜夜爽99麻豆av| 国产老妇女一区| 免费av不卡在线播放| 麻豆久久精品国产亚洲av| 身体一侧抽搐| 草草在线视频免费看| 精品一区二区免费观看| 亚洲国产精品sss在线观看| 中文资源天堂在线| 日日干狠狠操夜夜爽| 男人舔女人下体高潮全视频| 亚洲第一区二区三区不卡| 国产激情偷乱视频一区二区| 很黄的视频免费| 三级毛片av免费| 欧美xxxx性猛交bbbb| 久久久久久久精品吃奶| 国产精品久久久久久精品电影| 十八禁网站免费在线| 波多野结衣高清无吗| 1000部很黄的大片| 欧美区成人在线视频| 成年版毛片免费区| 国产精品综合久久久久久久免费| 国产亚洲av嫩草精品影院| 男人舔女人下体高潮全视频| 欧美最新免费一区二区三区 | 日韩中字成人| 99久久成人亚洲精品观看| 亚洲人成电影免费在线| 天天躁日日操中文字幕| www日本黄色视频网| a级一级毛片免费在线观看| 国产精品嫩草影院av在线观看 | 在线观看免费视频日本深夜| 国产大屁股一区二区在线视频| 国产野战对白在线观看| 亚洲人成网站高清观看| 一级毛片久久久久久久久女| 婷婷精品国产亚洲av在线| 麻豆成人av在线观看| 一本精品99久久精品77| 亚洲国产色片| 一级毛片久久久久久久久女| 少妇的逼好多水| 丰满的人妻完整版| 亚洲国产精品999在线| 亚洲第一区二区三区不卡| 亚洲色图av天堂| 赤兔流量卡办理| 直男gayav资源| 伊人久久精品亚洲午夜| 日韩精品青青久久久久久| 成人毛片a级毛片在线播放| 日韩欧美一区二区三区在线观看| 久久精品影院6| 亚洲欧美日韩无卡精品| 亚洲18禁久久av| 亚洲 欧美 日韩 在线 免费| 蜜桃久久精品国产亚洲av| 又爽又黄无遮挡网站| 成年人黄色毛片网站| 日本a在线网址| 俄罗斯特黄特色一大片| 亚洲综合色惰| 村上凉子中文字幕在线| 日本免费一区二区三区高清不卡| 久久久久久久亚洲中文字幕 | 熟女人妻精品中文字幕| 欧美另类亚洲清纯唯美| 内射极品少妇av片p| 天天一区二区日本电影三级| 国内少妇人妻偷人精品xxx网站| 色综合亚洲欧美另类图片| 欧美性感艳星| 少妇裸体淫交视频免费看高清| bbb黄色大片| 国产综合懂色| 内射极品少妇av片p| 黄色配什么色好看| 欧美xxxx黑人xx丫x性爽| 免费一级毛片在线播放高清视频| 亚洲成a人片在线一区二区| 成年女人毛片免费观看观看9| 久久久久性生活片| 一卡2卡三卡四卡精品乱码亚洲| 成年女人毛片免费观看观看9| 日本在线视频免费播放| 最新在线观看一区二区三区| 国产一区二区三区在线臀色熟女| 51国产日韩欧美| 日韩欧美一区二区三区在线观看| 亚洲av免费在线观看| 国产黄a三级三级三级人| 窝窝影院91人妻| 观看免费一级毛片| 国产精品亚洲av一区麻豆| 日本三级黄在线观看| 淫妇啪啪啪对白视频| 在线观看av片永久免费下载| 丰满人妻一区二区三区视频av| 亚洲激情在线av| 色吧在线观看| 欧美午夜高清在线| 久久精品久久久久久噜噜老黄 | 欧洲精品卡2卡3卡4卡5卡区| 人妻久久中文字幕网| 天堂av国产一区二区熟女人妻| 欧美激情久久久久久爽电影| 国产av一区在线观看免费| 国产视频内射| 18禁黄网站禁片午夜丰满| 久久久久性生活片| 在线看三级毛片| 亚洲av不卡在线观看| 简卡轻食公司| 男女视频在线观看网站免费| 久久久色成人| 精品99又大又爽又粗少妇毛片 | 久久精品国产亚洲av香蕉五月| 中文资源天堂在线| 欧美国产日韩亚洲一区| 午夜久久久久精精品| 国产综合懂色| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品久久男人天堂| 亚洲人成网站在线播| 亚洲久久久久久中文字幕| 色av中文字幕| 国产一区二区亚洲精品在线观看| 国产成人福利小说| 男女之事视频高清在线观看| 午夜影院日韩av| 每晚都被弄得嗷嗷叫到高潮| 99久久精品国产亚洲精品| 男女做爰动态图高潮gif福利片| 日本免费一区二区三区高清不卡| 97碰自拍视频| 精品人妻偷拍中文字幕| 99久久久亚洲精品蜜臀av| 免费观看精品视频网站| 老女人水多毛片| 看免费av毛片| 成人精品一区二区免费| www.熟女人妻精品国产| 日韩欧美 国产精品| 久久香蕉精品热| 毛片一级片免费看久久久久 | 国产白丝娇喘喷水9色精品| 亚洲一区二区三区不卡视频| 精品久久久久久,| 午夜a级毛片| 搡老妇女老女人老熟妇| 亚洲欧美清纯卡通| 亚洲国产精品久久男人天堂| av专区在线播放| av国产免费在线观看| 在线观看美女被高潮喷水网站 | 成人鲁丝片一二三区免费| av专区在线播放| 亚洲中文字幕日韩| 此物有八面人人有两片| 乱人视频在线观看| а√天堂www在线а√下载| 国产精品亚洲av一区麻豆| 欧美激情国产日韩精品一区| 亚洲欧美日韩无卡精品| 丝袜美腿在线中文| 熟女人妻精品中文字幕| 免费无遮挡裸体视频| 午夜a级毛片| 亚洲国产精品成人综合色| 一卡2卡三卡四卡精品乱码亚洲| 欧美丝袜亚洲另类 | 一本综合久久免费| 2021天堂中文幕一二区在线观| 高清毛片免费观看视频网站| 最近最新中文字幕大全电影3| 麻豆成人av在线观看| 嫩草影院精品99| 给我免费播放毛片高清在线观看| 99久久成人亚洲精品观看| 白带黄色成豆腐渣| 午夜两性在线视频| 国产免费av片在线观看野外av| 岛国在线免费视频观看| 校园春色视频在线观看| 亚洲国产高清在线一区二区三| 国产精品精品国产色婷婷| 天天躁日日操中文字幕| 国产成人啪精品午夜网站| 黄色丝袜av网址大全| 久久国产精品影院| 国产真实伦视频高清在线观看 | 人妻夜夜爽99麻豆av| 国产一区二区激情短视频| 两人在一起打扑克的视频| 欧美成狂野欧美在线观看| 成人精品一区二区免费| 国产真实伦视频高清在线观看 | 婷婷亚洲欧美| av欧美777| 亚洲五月天丁香| 久久精品国产自在天天线| 免费av毛片视频| 欧美一区二区国产精品久久精品| bbb黄色大片| 精品不卡国产一区二区三区| 女生性感内裤真人,穿戴方法视频| 最近最新免费中文字幕在线| 成人鲁丝片一二三区免费| 日韩精品中文字幕看吧| 18禁黄网站禁片免费观看直播| 久久久久久久精品吃奶| 日本一本二区三区精品| 色噜噜av男人的天堂激情| 亚洲精品影视一区二区三区av| 麻豆国产av国片精品| 天堂av国产一区二区熟女人妻| 成人毛片a级毛片在线播放| 超碰av人人做人人爽久久| 简卡轻食公司| 久久久久久久久久成人| 久久中文看片网| 男人和女人高潮做爰伦理| 一级黄片播放器| 成年免费大片在线观看| 白带黄色成豆腐渣| 久久久久亚洲av毛片大全| 51午夜福利影视在线观看| 精品久久久久久成人av| 亚洲专区国产一区二区| 亚洲av日韩精品久久久久久密| 色精品久久人妻99蜜桃| 精品久久久久久成人av| 久久香蕉精品热| 女生性感内裤真人,穿戴方法视频| 51国产日韩欧美| 亚洲精品乱码久久久v下载方式| 日韩精品中文字幕看吧| 99视频精品全部免费 在线| 床上黄色一级片| 欧美色欧美亚洲另类二区| 97超级碰碰碰精品色视频在线观看| 国产精品一区二区免费欧美| 亚洲 国产 在线| 黄色视频,在线免费观看| 如何舔出高潮| 成年女人看的毛片在线观看| 超碰av人人做人人爽久久| 欧美国产日韩亚洲一区| 久久精品国产亚洲av天美| 亚洲 欧美 日韩 在线 免费| 国产精品精品国产色婷婷| 一级作爱视频免费观看| 国产探花极品一区二区| 97超视频在线观看视频| 日韩av在线大香蕉| 亚洲欧美日韩高清在线视频| 亚洲成人精品中文字幕电影| 欧美成人a在线观看| 久久久国产成人精品二区| 又黄又爽又免费观看的视频| 亚洲熟妇熟女久久| 在线免费观看不下载黄p国产 | 国产精品久久电影中文字幕| 国产免费一级a男人的天堂| 最近视频中文字幕2019在线8| 99热精品在线国产| 男女下面进入的视频免费午夜| 一边摸一边抽搐一进一小说| 欧美极品一区二区三区四区| 精品国产亚洲在线| 亚洲av电影在线进入| av黄色大香蕉| 成人国产一区最新在线观看| 岛国在线免费视频观看| 欧美极品一区二区三区四区| 欧美最新免费一区二区三区 | 日韩欧美在线乱码| 国产色婷婷99| 欧美激情国产日韩精品一区| 999久久久精品免费观看国产| 国产精品,欧美在线| 久久精品国产亚洲av香蕉五月| 日本精品一区二区三区蜜桃| 乱人视频在线观看| 国产精华一区二区三区| 精品人妻一区二区三区麻豆 | 亚洲片人在线观看| 亚洲真实伦在线观看| 久久精品国产亚洲av涩爱 | 老司机午夜十八禁免费视频| 免费在线观看影片大全网站| 999久久久精品免费观看国产| 国产精品av视频在线免费观看| 99在线人妻在线中文字幕| av天堂在线播放| 草草在线视频免费看| 桃红色精品国产亚洲av| 亚洲第一欧美日韩一区二区三区| 韩国av一区二区三区四区| 国产精品一区二区免费欧美| 在线观看免费视频日本深夜| 免费av毛片视频| 综合色av麻豆| 国产精品久久久久久人妻精品电影| 极品教师在线免费播放| 美女cb高潮喷水在线观看| 欧美成狂野欧美在线观看| bbb黄色大片| 一卡2卡三卡四卡精品乱码亚洲| 99久久精品一区二区三区| 99久久99久久久精品蜜桃| 国产精品乱码一区二三区的特点| 日韩欧美国产一区二区入口| 国产免费一级a男人的天堂| 男人舔奶头视频| 长腿黑丝高跟| 国产美女午夜福利| 欧美极品一区二区三区四区| 国产亚洲精品av在线| 国产乱人伦免费视频| 久久精品91蜜桃| 日韩成人在线观看一区二区三区| 免费大片18禁| x7x7x7水蜜桃| 亚洲av不卡在线观看| 日日夜夜操网爽| 三级国产精品欧美在线观看| 国产午夜精品久久久久久一区二区三区 | av国产免费在线观看| 一区福利在线观看| 久99久视频精品免费| 人妻制服诱惑在线中文字幕| 丰满人妻一区二区三区视频av| a在线观看视频网站| 99热这里只有精品一区| 在线播放国产精品三级| 免费人成在线观看视频色| 黄色日韩在线| av在线观看视频网站免费| 亚洲精品成人久久久久久| 亚洲av日韩精品久久久久久密| 一边摸一边抽搐一进一小说| 热99re8久久精品国产| 黄色丝袜av网址大全| 日本一本二区三区精品| 久久久久国产精品人妻aⅴ院| 亚洲精品亚洲一区二区| 99国产综合亚洲精品| 99热这里只有是精品50| 日本黄大片高清| 午夜精品久久久久久毛片777| 又黄又爽又免费观看的视频| 丰满乱子伦码专区| 国产亚洲精品综合一区在线观看| 一进一出好大好爽视频| 亚洲人成伊人成综合网2020| 三级男女做爰猛烈吃奶摸视频| 亚洲av一区综合| 人妻丰满熟妇av一区二区三区| 看十八女毛片水多多多| 舔av片在线| 中文字幕久久专区| 免费av不卡在线播放| 舔av片在线| 久久久精品大字幕| 久久久久精品国产欧美久久久| 国产精品精品国产色婷婷| 波多野结衣高清无吗| 熟妇人妻久久中文字幕3abv| 国产亚洲精品久久久久久毛片| 亚洲av成人av| 日韩有码中文字幕| 国产精品久久久久久人妻精品电影| 亚洲avbb在线观看| 亚洲第一欧美日韩一区二区三区| 最新在线观看一区二区三区| 伊人久久精品亚洲午夜| 特级一级黄色大片| 国产精品久久视频播放| 亚洲avbb在线观看| 欧美日韩乱码在线| 在线免费观看不下载黄p国产 | 色在线成人网| 国产精品自产拍在线观看55亚洲| 亚洲黑人精品在线| 亚洲欧美激情综合另类| 欧美高清成人免费视频www| 国产又黄又爽又无遮挡在线| 久久久久国产精品人妻aⅴ院| 亚洲国产精品999在线| 欧美黑人欧美精品刺激| 久久精品夜夜夜夜夜久久蜜豆| 亚洲五月天丁香| 一卡2卡三卡四卡精品乱码亚洲| 亚洲人成伊人成综合网2020| 欧美日韩乱码在线| 久久久国产成人精品二区| 免费观看精品视频网站| 成人av一区二区三区在线看| 日韩欧美精品v在线| 亚州av有码| 两个人视频免费观看高清| 成人av在线播放网站| 欧美3d第一页| 日本撒尿小便嘘嘘汇集6| 99热精品在线国产| 国产免费男女视频| 热99在线观看视频| 久久天躁狠狠躁夜夜2o2o| 午夜免费激情av| 99久久成人亚洲精品观看| 老司机深夜福利视频在线观看| 三级男女做爰猛烈吃奶摸视频| av天堂在线播放| 一个人观看的视频www高清免费观看| 欧美另类亚洲清纯唯美| 久久精品人妻少妇| 精品人妻1区二区| 一边摸一边抽搐一进一小说| 成人国产综合亚洲| 一个人免费在线观看的高清视频| 啦啦啦观看免费观看视频高清| 国产伦精品一区二区三区视频9| 国产成人影院久久av| 欧美+日韩+精品| 久久人人爽人人爽人人片va | av天堂中文字幕网| 一个人免费在线观看电影| 淫妇啪啪啪对白视频| 18+在线观看网站| 男女之事视频高清在线观看| 成年免费大片在线观看| 成年女人看的毛片在线观看| 一夜夜www| 亚洲欧美日韩高清专用| 久久香蕉精品热| 制服丝袜大香蕉在线| 最近视频中文字幕2019在线8| 看免费av毛片| 国产精品亚洲美女久久久| 国产高清有码在线观看视频| 午夜精品在线福利| 日本黄色视频三级网站网址| 日韩欧美三级三区| 久久草成人影院| 免费av不卡在线播放| 色哟哟·www| 免费看日本二区| 美女高潮的动态| 亚洲专区国产一区二区| 在线免费观看的www视频| 精品欧美国产一区二区三| 欧美极品一区二区三区四区| 少妇人妻精品综合一区二区 | 欧美黄色片欧美黄色片| 男人和女人高潮做爰伦理| 美女cb高潮喷水在线观看| 久久久精品大字幕| 亚洲人成网站在线播放欧美日韩| 成人毛片a级毛片在线播放| 搡老岳熟女国产| 日本一二三区视频观看| 精品久久久久久久久久久久久| 色噜噜av男人的天堂激情| 性欧美人与动物交配| 精品人妻1区二区| 午夜激情福利司机影院| 久久久久久久久中文| 99热只有精品国产| 丝袜美腿在线中文| 亚洲色图av天堂| 国产精品爽爽va在线观看网站| 精品久久久久久成人av| 又爽又黄a免费视频| 又爽又黄a免费视频| 成年版毛片免费区| 人人妻,人人澡人人爽秒播| 成人毛片a级毛片在线播放| 此物有八面人人有两片| 床上黄色一级片| 久久久久性生活片| 精品人妻一区二区三区麻豆 | 欧美zozozo另类| 99热精品在线国产| 真实男女啪啪啪动态图| 成年女人毛片免费观看观看9| 色吧在线观看| 在线看三级毛片| 99国产极品粉嫩在线观看| 亚洲成人久久爱视频| 我的老师免费观看完整版| 俺也久久电影网| 免费无遮挡裸体视频| 亚洲欧美日韩卡通动漫| 国产伦一二天堂av在线观看| 999久久久精品免费观看国产| 一边摸一边抽搐一进一小说| 免费av观看视频| 国产午夜精品久久久久久一区二区三区 | 久久亚洲真实| 国产精品久久视频播放| 在线观看66精品国产| 国产私拍福利视频在线观看| 热99在线观看视频| 国产精品伦人一区二区| 18禁黄网站禁片免费观看直播| 国产日本99.免费观看| 麻豆久久精品国产亚洲av| 日韩欧美免费精品| 别揉我奶头 嗯啊视频| 白带黄色成豆腐渣| ponron亚洲| 美女 人体艺术 gogo| 精品久久久久久,| 欧美极品一区二区三区四区| 国产三级黄色录像| 男人狂女人下面高潮的视频| 天堂√8在线中文| 免费黄网站久久成人精品 | 我的女老师完整版在线观看| 一本久久中文字幕| 成人三级黄色视频| 高潮久久久久久久久久久不卡| av视频在线观看入口| 悠悠久久av| 欧洲精品卡2卡3卡4卡5卡区| 美女黄网站色视频| 99国产精品一区二区三区| 午夜精品久久久久久毛片777| 午夜a级毛片| 国产亚洲精品综合一区在线观看| 高清毛片免费观看视频网站| 精品人妻视频免费看| 黄色丝袜av网址大全| 偷拍熟女少妇极品色| 色哟哟哟哟哟哟| 麻豆av噜噜一区二区三区| 亚洲熟妇中文字幕五十中出| 老熟妇乱子伦视频在线观看| 国产中年淑女户外野战色| 精品乱码久久久久久99久播| 757午夜福利合集在线观看| 国产真实乱freesex| 97人妻精品一区二区三区麻豆| 欧美潮喷喷水| 一边摸一边抽搐一进一小说| 久久国产乱子伦精品免费另类| 怎么达到女性高潮| 性插视频无遮挡在线免费观看| av在线观看视频网站免费| 高潮久久久久久久久久久不卡| 夜夜爽天天搞| 国产野战对白在线观看| 免费在线观看日本一区| 日本a在线网址| 91午夜精品亚洲一区二区三区 | 亚洲乱码一区二区免费版| 久久性视频一级片| xxxwww97欧美| 一区二区三区四区激情视频 | 亚洲国产高清在线一区二区三| 日韩欧美三级三区| 制服丝袜大香蕉在线| 在线播放国产精品三级| 国产免费一级a男人的天堂| 我要搜黄色片| 一本精品99久久精品77| 老熟妇乱子伦视频在线观看| 美女黄网站色视频| 国产精品久久久久久久久免 |