• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Logical stochastic resonance in a cross-bifurcation non-smooth system

    2024-03-25 09:33:12YuqingZhang張宇青andYoumingLei雷佑銘
    Chinese Physics B 2024年3期

    Yuqing Zhang(張宇青) and Youming Lei(雷佑銘),2,?

    1School of Mathematics and Statistics,Northwestern Polytechnical University,Xi’an 710072,China

    2Ministry of Industry and Information Technology Key Laboratory of Dynamics and Control of Complex Systems,Northwestern Polytechnical University,Xi’an 710072,China

    Keywords: logical stochastic resonance,bifurcation,mean first passage time

    1.Introduction

    In practice, many physical systems are connected to noise.Intuitively it was thought that noise always plays a destructive role.However, with the development of stochastic dynamics it has been discovered that noise can produce unexpectedly ordered behavior in nonlinear dynamical systems.An example of such a phenomenon is stochastic resonance(SR),initially suggested by Benziet al.[1]and Nicolis.[2]Under certain conditions (the combination of external periodic forces,noise and the nonlinearity of the system),an appropriate noise input maximizes the response of the nonlinear system to a weakly periodic signal, giving rise to a ‘resonance’phenomenon.SR has been applied to many fields, including weak signal detection,[3]image processing,[4]biological systems,[5,6]energy harvesting,[7,8]neural networks,[9-11]mechanical fault diagnosis,[12,13]etc.

    Logical stochastic resonance (LSR) provides a completely new method for building reliable logic gates, which was initially suggested by Muraliet al.[14]Research has revealed that when two square waves act as input signals, a bistable system can generate a logic output under optimal noise.Moreover, as the noise increases, the success probability of the system response first rises and then falls.Then the LSR phenomenon was confirmed in an electronic circuit model.[15]Inspired by this pioneering study, numerous earlier publications concentrated on the separate study of LSR in bistable or tristable systems.For instance, Gaussian colored noise[16]and non-Gaussian noise,[17]such as sine-Wiener noise,[18]L′evy noise.[19]andα-stable noise,[20]have been shown to produce logic operations in bistable systems.In addition, it has been demonstrated that correlated internal and external noises[21-23]can also produce logic operations in bistable systems.It has also been shown that other elements can produce logic operations in bistable systems,including system parameters,[24]time delay,[25-27]coupling between two subsystems,[28]and periodic and non-periodic forces.[29-31]Since three different inputs correspond to two outputs in a bistable system this may cause information to be lost, making XOR logic unattainable.Storniet al.[32]expanded upon the existing research in bistable systems and applied it to a tristable system,consequently resulting in the attainment of XOR logic.Subsequently Zhanget al.[33,34]researched the LSR phenomenon of a tristable system driven by Gaussian colored noise and non-Gaussian noise, and confirmed the LSR phenomenon in analog circuits; however, for bistable and multistable systems which is better suited to produce reliable logic operations? Luet al.[35]investigated the LSR performance of a tristable system and traditional bistable system.Liaoet al.[36]compared the LSR performance of a proposed quadstable system and tristable system as reconfigurable logic gates.Previous studies had considered two different systems: for the same system with bistable and tristable regions, which is more suitable for generating logic operations? Therefore, we can consider a cross-bifurcation nonsmooth system with a bifurcation parameter resulting in an alteration in monostability,bistability and tristability.

    Since it is common for a nonlinear system to bifurcate from a bistable state to a multistable one due to friction and collision,study of stochastic resonance in a bifurcation system is unavoidable.Kanget al.[37]studied a single-mode nonlinear optical system and demonstrated that the dependence of the relaxation rate on the noise intensity in monostable and multistable cases exhibited a large difference.It is well known that the changing of parameters in nonlinear systems can cause bifurcation cascades, in which existing branches of states are eliminated and new states emerge.Nicolis and Nicolis[38]considered a nonlinear stochastic dynamical system with a bifurcation parameter across monostable, bistable and multistable regimes.They came up with analytical equations for the response and optimal responding conditions for the bifurcation parameter, the noise amplitude and the frequency of external excitation based on response theory.Lei and colleagues[39,40]studied a non-smooth system with a controllable parameter that bifurcates as the controllable parameter changes.They discussed the SR phenomenon in bistable and multistable areas.It was demonstrated that the multistability of the system improves the optimal transition rate and the optimal response amplitude of the system.

    In this work,we consider a cross-bifurcation non-smooth system with a bifurcation parameter that transits from tristable to bistable regions as the bifurcation parameter changes.Therefore,we focus on the effect of the bifurcation parameter on the LSR in different regions.In Section 2,we describe the cross-bifurcation non-smooth system under Gaussian colored noise excitation.In Section 3,we conduct a bifurcation analysis for this system and derive expressions for the generalized potential function and the mean first passage time(MFPT)in the bistable and tristable regions, respectively.The success probability is introduced to measure the reliability of logic response,and the difference in LSR in bistable and tristable areas is discussed.The conclusions are drawn in Section 4.

    2.Cross-bifurcation non-smooth system and measurementof LSR

    In this section we consider a cross-bifurcation nonsmooth system under Gaussian colored noise excitation.The Langevin equation of the system has the following form:

    whereDis the noise strength andτis the correlation time.

    UsingNinputs to generateNsquare waves,a logical correspondence between inputs and outputs can be established.Specifically,Iis a low-amplitude input,I=I1+I2, whereI1andI2encode the two logic inputs.We drive the crossbifurcation non-smooth system with the signalI.The logic inputs can be 0 or 1,so there are four different logic input sets(I1,I2): (0,0), (1,0), (0,1) and (1,1).The signalI1,2has a value of-Kfor a logical 0, whereas it takes on a value ofKfor a logical 1.Since the input sets (0,1) and (1,0) produce the sameI,the four different input conditions(I1,I2)produce three differentIvalues:-2K, 0, 2K.As a result, the input signalIis a three-level aperiodic waveform.

    3.Logical stochastic resonance under colored noise

    The potential function corresponding to Eq.(1)takes the form

    Fig.1.Bifurcation diagram of system(1)on the bifurcation parameter r.At r=-2/9,the system has two saddle-node bifurcations making the system change from monostable to tristable.At r=0, the system has a subcritical pitchfork bifurcation making the system change from tristable to bistable.

    3.1.Bistability

    In the bistable region,the system has two symmetrical potential wells, but there are three different logical inputs.This results in a memorable output value when the logical input is 0.In other words,the output value is determined by the output value of the previous state.Specifically,if the previous output is-1,then the current output will also be-1,and if the previous output is 1,then the current output will be 1.Therefore,with reference to Table 1 we find that the logic response of the system cannot realize a reliable logic operation,for which a bias parameter is added to deflect the potential.Thus, the Langevin equation is rewritten as

    wheref(x)=x-x3+rsgn(x)+GandGis a bias parameter.

    As shown in Fig.2,the tilt of the potential function is determined by the bias parameterG.WhenG >0, the bistable potential function tilts to the right,as shown by the red dashed line in the figure.When the logic input is 0, the particle will be in the well atx+.With reference to Table 1 we find that in this case the system can implement an OR/NOR logic operation.WhenG <0, the bistable potential function tilts to the left,as shown by the green dotted line in the figure.When the logic input is 0,the particle will be in the well atx-.With reference to Table 1 this reveals that the system can implement AND/NAND logic operations.

    Fig.2.Potential well for various G values.The blue line denotes the symmetric bistable well, the green line denotes the AND/NAND logic operation and the red line denotes the OR/NOR logic operation.

    Table 1.For the four logic operations,the connection between the four input sets and the outputs.

    The logical output of the system is decided by its state.For example,if its state is in one well,the output can be considered as a logical 1,and if it is in another well,the output can be considered as a logical 0.Specifically for a bistable system with two potential wells atx+andx-,the logical output of the system is considered to be 1 when its state is in right well(x+)and it is considered to be 0 when its state is in left well(x-).The output is thus‘toggled’when the system switches wells.According to Table 1 the system can implement the required types of logic gates.

    The potential function corresponding to Eq.(6)takes the form

    In the bistable region, pointx3is unstable when the system is non-smooth so the Gaussian approximation cannot be used.Thus, the steepest-descent approximation allows us to estimate the following:

    whereNis a normalization constant and the generalized potential functionUghas the following form:

    Consider the logic input parameterKto take the value 0.4.Figure 3 displays the response of the system in Eq.(6)at different noise intensitiesDwhen the bifurcation parameterr=0.2 and the bias parameterG=0.3.The red line indicates the logical input and the blue line indicates the output of the system.It can be found that for very weak noise(D=0.01)at some moments the state of the particle depends on the previous state at times,for example[8000,8500],[10000,12000].The particle cannot produce a transition and does not move to the desired potential well.For optimal noise (D=0.2), the particle is located in the left well when the input is-0.8,and the particle is located in the right well when the input is 0 or 0.8.According to Table 1,if statex <0 is interpreted as logical output 0 and statex >0 as logical output 1, the system produces a stable OR logic behavior,whereas if statex >0 is interpreted as logical output 0 and statex <0 as logical output 1, the system produces a stable NOR logic behavior.In the same way,by setting the bias parameter atG=-0.3,we can achieve clean AND/NAND gates at an optimal noise intensity.With the enhancement of noise(D=0.5),due to frequent transitions of particles, the system gradually produces the wrong logic outputs.Thus, noise-induced logic operation becomes unreliable and the LSR phenomenon is destroyed.

    In order to measure the reliability of noise-induced logic operation, we introduce the concept of success probability.The success probabilityPis expressed as

    Fig.3.The logic output x(t)with r=0.2 corresponding to(a)D=0.01,(b)D=0.2, (c)D=0.5.The dashed red line indicates the logical input I, consisting of a combination of I1 and I2 which take the value-0.4 when the logic input is 0 and 0.4 when the logic input is 1.Clearly,when D=0.2,we get the desired OR gate.

    whereNis the overall number of runs andSis the number of correct logic outputs.WhenPapproximates to 1, the system generates a reliable logic operation.Using computer simulations to generate sets of logic inputs and continuously inputting different combinations of logic inputs to the system,the success probability can be obtained.The logic input has four possible input sets(I1,I2):(0,0),(0,1),(1,0)and(1,1).Each run is a random permutation of all the above sets,where each signal input set drives the system for a period of time with time step Δt= 0.01 s and 1000 s.Then the obtained output is compared with the desired logic output to obtain the correct probability of this set.When this correct probability is above a certain threshold,the set of logic outputs is considered correct.A run is deemed successful only when all four logic outputs are correct.can be seen that the system appears to have an optimal window of noise, and the optimal window is related tor.Whenr >0, the optimal window of noise decreases asrincreases and moves to a greater noise strength.Figure 5 depicts the image of the generalized potential function for different values ofr, from which it can be found that the height of the potential barrier is affected byr.Whenr >0,there is a subsequent increase in the potential barrier asrincreases.Therefore asrincreases, a higher noise intensity is required to enable particle transition.WhenI=0 the particle can transit to the right well with appropriate noise excitation, as shown in Fig.5(a),and whenI=-0.8 the particle can transit to the left well with appropriate noise excitation as depicted in Fig.5(b).Thus,the optimal window of noise moves to a greater noise strength asrincreases.Figure 6 shows that in the bistable region the transition rate decreases asrincreases.Thus asrincreases,a larger noise intensity is required to make the system produce the LSR phenomenon.This is consistent with the phenomenon that the optimal window of noise moves to a greater noise strength asrincreases in Fig.4(b).

    Fig.4.The variation of success probability P with different parameters in the bistable region: (a)noise intensity D for fixed r=0.2; (b)D and bifurcation parameter r.The system appears to have an optimal window of noise that displays resonance phenomenon with a single flat peak as the noise strength varies.The optimal window of noise decreases as r increases and moves to a greater noise strength.

    To further investigate the effect of different parameters on LSR, we plot the variation ofPwith different parameters in Fig.4.Figure 4(a)illustrates the variation ofPwith noise intensityDfor fixed parametersr=0.2 andG=0.3.The results show thatPincreases rapidly with increasing noise strength for weak noise, and then stabilizes to 1.The system appears to have an optimal window of noise strength(0.100<D <0.350).The logic response is nearly 100%accurate in an optimal window of the noise,so that the system reliably implements logic operations.As the noise strength continues to increase,the success probability gradually decreases until it tends to 0.The reason for this phenomenon is that the noise strength reflects the amount of energy provided to the particle by the external noise.When the noise strength is small, the energy provided by the noise is too small to support the particle crossing the potential barrier to make the leap between different wells,so that the system cannot produce reliable logic behavior.When the noise strength is too high,the energy provided by the noise is too high, which leads to frequent disorderly transitions between different wells and causes the particle to move in an irregular manner.Therefore, reliable logic behavior cannot be produced.Only when the noise is moderately strong does the energy provided by the noise allow the particle to cross the potential barrier to perform the correct transition behavior between different wells,producing reliable logic behavior.

    Further, in Fig.4(b) we can find howPvaries with bifurcation parameterrand noise strengthD.In the figure, it

    Fig.5.Generalized potential function at different bifurcation parameters r with G=0.3.(a) When I =0, the particle will be located in the right well under noise excitation.(b)When I=-0.8,the particle will be located in the left well under noise excitation.Clearly, the potential barrier increases as r increases.

    Fig.6.The variation of transition rate k15 with noise intensity D and bifurcation parameter r in the bistable region.

    3.2.Tristability

    In the tristable region,in addition to the above logic gates,we can also obtain XOR/XNOR logic.We can obtain all the logic behaviors by defining different outputs.According to Table 2, we can set the output to logical 1 if the particle is in the right well and to logical 0 if it is in the others, for which we can obtain the AND logic gate.Likewise, we can obtain the other logic operations by defining the outputs.

    Table 2.For the six logic operations, the connection between the four input sets and the outputs.

    For system (1), according to Novikov’s theorem and the unified colored noise approximation method,[41-43]the approximate Fokker-Planck equation is given by

    Similar to the calculation in the bistable region, the expressions forT31andT35can be derived as

    Since the pointx3is not involved in the approximation process forT13andT53,the expression can be obtained by the Gaussian approximation as

    For the case of system(1)in the regionwe consider the logic input parameterKto take the value 0.4.Figure 7 displays the response of the system in Eq.(1) at different noise intensitiesDwhen the bifurcation parameterr=-0.35.For very weak noise (D=0.003), at some moments the particle cannot move to the desired well,for example[4000,5500],[10000,12000],[14000,14500].Therefore,the system cannot generate a reliable logic operation.For optimal noise(D=0.015),the system response yields a reliable logic operation.As the noise continues to increase(D=0.1),the particle transits frequently in the left and right potential wells when the logic input is 0.This LSR phenomenon is destroyed.Comparing with Fig.3,it can be found that the same phenomenon occurs in the tristable region as in the bistable region, where the presence of optimal noise intensity allows the system to produce reliable logic operations.However,the value of the optimal noise strength in the tristable region is much smaller than that in the bistable region.

    Fig.7.The logic output x(t) with r = -0.35 corresponding to (a)D=0.003, (b) D=0.015, (c) D=0.1.The dashed red line indicates the logic input I,consisting of a combination of I1 and I2 which take the value-0.4 when the logic input is 0 and 0.4 when the logic input is 1.Clearly,when D=0.015,we can get the desired logic gate.

    Further,Fig.8 illustrates the variation of the success probabilityPwith different parameters.In Fig.8(a) we plot the variation ofPwith noise intensityDfor a fixed parameterr=-0.35.It is found thatPincreases rapidly with increasing noise strength for weak noise, and then stabilizes to 1.The system appears to have an optimal window of noise strength(0.008<D <0.026).In the optimal noise window, the logic response is nearly 100% accurate.The success probability gradually decreases as the noise strength increases, until it tends to 0.Compared with Fig.4(a), Fig.8(a) shows that the optimal noise value in the tristable region is much smaller than in the bistable region, and the optimal window interval for noise in the tristable region is also much smaller, indicating that the tristable region is more sensitive to noise.

    Fig.8.The variation of success probability P with different parameters in the tristable region: (a)noise intensity D for fixed r=-0.35,(b)D and bifurcation parameter r.When r <-0.33, the system produces a reliable logic response and the optimal noise interval becomes larger as r decreases.

    To further analyze the variation ofPwithrandD, we plot Fig.8(b).It is found that the system cannot generate a reliable logic response when-0.33<r <0.Whenr <-0.33,the system generates a reliable logic response and the optimal noise interval becomes larger asrdecreases.Figure 9 depicts the image of the generalized potential functionUgfor different values ofr.From the figure,it can be found that the height of the potential barrier is influenced byr.This shows that asrincreases, there is a subsequent increase in the potential barrier.Therefore, the higher the value ofr, the larger the noise intensity required to enable particle transition.However, for some high values ofr,the height of the potential barrier is too large to cause the particle to transit.Thus, it is impossible to generate a correct logic operation.Figure 10 shows that the range of moderate transition rates increases asrdecreases in the tristable region,which is consistent with the phenomenon in Fig.8(b).Comparing with Fig.4(b),we see that the range of values ofrthat can produce reliable logic operation in the tristable region is much smaller than in the bistable region,and that both the optimal noise values and the corresponding optimal noise interval range are much smaller.Comparing Figs.5 and 9,it is found that the potential barrier height in the bistable region is much higher than in the tristable region, so the bistable region needs a higher noise strength to make the particle transition.The potential barriers from the middle well to the two side wells are much smaller in the tristable region than the barriers in the bistable region, so a small noise may cause the particle to make frequent transitions when initiated in the middle well.Therefore, the optimal band of noise in the tristable region is narrower.Comparison of Figs.6 and 10 reveals that a smaller noise in the tristable region gives a moderate, optimum transition rate.Thus, the tristable region is more sensitive to noise.

    Fig.9.Generalized potential function at different bifurcation parameters r.(a) When I =0, the particle will be located in the middle well under noise excitation.(b) When I =0.8, the particle will be located in the right well under noise excitation.Clearly, the potential barrier increases as r increases.

    Fig.10.The variation of transition rate k15 with noise intensity D and bifurcation parameter r in the tristable region.

    4.Conclusions

    In this work,we investigate the logic operation of a crossbifurcation non-smooth system with bistable and tristable regions.By using Novikov’s theorem and the unified colored noise approximation method,we obtain the approximate Fokker-Planck equation and the generalized potential function to analyze the LSR phenomenon with numerical simulations.We numerically simulate the system’s logic operation in the bistable and tristable regions and perform a comparative analysis for the two regions.We show that the tristable region is more sensitive to noise than the bistable region.The optimal noise value in the tristable region is much smaller than that in the bistable region.Furthermore,the range of bifurcation parameters that can produce reliable logic output in the tristable region is much smaller,and the optimal noise strength range is smaller than in the bistable region.Similar results can be supported through the analysis of the generalized potential function and transition rate.We show in this work that tristability significantly enhances the transition rate.For example, this phenomenon is similar to the two-step nucleation mechanism in the crystallization of the protein lysozyme,where the intermediate stable state of proteins was found experimentally to accelerate the crystallization rate since tristability in two-step nucleation improves the transition rate and provides a powerful method of controlling the nucleation process.Similarly,the LSR mechanism in tristable dynamics is more sensitive than in bistable dynamics in the over-damped non-smooth system and can be utilized to implement more reliable logic gates in resonant tunneling diodes and simple circuits,and in monitoring weak targets in water degradation images and so on.Our results can be applied to relative experiments and help in selecting optimum parameters for actual implementations.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant No.12072262)and the Shaanxi Computer Society&Xiangteng Company Foundation.

    成人特级av手机在线观看| 日本黄大片高清| 日韩精品有码人妻一区| 日韩欧美免费精品| 国产精品伦人一区二区| 国产亚洲精品综合一区在线观看| 永久网站在线| 人妻夜夜爽99麻豆av| 麻豆一二三区av精品| 少妇裸体淫交视频免费看高清| 九九久久精品国产亚洲av麻豆| 亚洲一级一片aⅴ在线观看| 波多野结衣高清作品| 亚洲av免费在线观看| 久久人人爽人人爽人人片va| 精品久久国产蜜桃| 97在线视频观看| 校园人妻丝袜中文字幕| 亚洲精品影视一区二区三区av| 一进一出抽搐gif免费好疼| 三级经典国产精品| 成人特级黄色片久久久久久久| av天堂中文字幕网| 成人特级黄色片久久久久久久| 小说图片视频综合网站| ponron亚洲| 一a级毛片在线观看| 校园人妻丝袜中文字幕| 国产精品久久电影中文字幕| 欧美区成人在线视频| 男女做爰动态图高潮gif福利片| а√天堂www在线а√下载| 国产亚洲欧美98| 97超碰精品成人国产| 22中文网久久字幕| 国产黄a三级三级三级人| 久久久色成人| 亚洲av中文字字幕乱码综合| 亚洲激情五月婷婷啪啪| 我要看日韩黄色一级片| 成年女人毛片免费观看观看9| 97超碰精品成人国产| 神马国产精品三级电影在线观看| 亚洲精品国产成人久久av| 最近2019中文字幕mv第一页| 97超碰精品成人国产| 人人妻,人人澡人人爽秒播| 色综合站精品国产| 又爽又黄无遮挡网站| 国产伦在线观看视频一区| 日本五十路高清| 噜噜噜噜噜久久久久久91| 少妇人妻精品综合一区二区 | 精品久久久久久久久久免费视频| 91久久精品电影网| 国产 一区精品| 成年女人永久免费观看视频| 麻豆av噜噜一区二区三区| 日韩在线高清观看一区二区三区| 亚洲精品日韩在线中文字幕 | 国产精品美女特级片免费视频播放器| 国产精品不卡视频一区二区| 欧美bdsm另类| 日本一二三区视频观看| 青春草视频在线免费观看| av在线蜜桃| 亚洲av成人av| 秋霞在线观看毛片| 国产毛片a区久久久久| 国产不卡一卡二| 日韩av在线大香蕉| 国产大屁股一区二区在线视频| 一个人看的www免费观看视频| 亚洲美女视频黄频| 六月丁香七月| 成人美女网站在线观看视频| 两个人的视频大全免费| 嫩草影院精品99| 久久99热6这里只有精品| 国产精品99久久久久久久久| 3wmmmm亚洲av在线观看| 成人无遮挡网站| 亚洲天堂国产精品一区在线| 国产免费一级a男人的天堂| 国产国拍精品亚洲av在线观看| 1024手机看黄色片| 国产成人一区二区在线| 久久精品国产自在天天线| 免费人成视频x8x8入口观看| 丝袜喷水一区| 久久欧美精品欧美久久欧美| 99国产精品一区二区蜜桃av| 日韩大尺度精品在线看网址| 最好的美女福利视频网| 卡戴珊不雅视频在线播放| 亚洲精品乱码久久久v下载方式| av天堂中文字幕网| 女生性感内裤真人,穿戴方法视频| 最近的中文字幕免费完整| 在线播放无遮挡| 日韩欧美精品v在线| av在线播放精品| 欧美高清性xxxxhd video| av天堂中文字幕网| 久久久久久久午夜电影| 99热这里只有是精品在线观看| 久久久久久久久久成人| 丰满的人妻完整版| 国产真实乱freesex| 人人妻人人看人人澡| 亚洲乱码一区二区免费版| 搡老妇女老女人老熟妇| 丝袜喷水一区| 自拍偷自拍亚洲精品老妇| 岛国在线免费视频观看| 精品一区二区三区av网在线观看| 12—13女人毛片做爰片一| 国产高清视频在线观看网站| 麻豆av噜噜一区二区三区| 又黄又爽又免费观看的视频| 我的女老师完整版在线观看| 免费在线观看成人毛片| 少妇熟女aⅴ在线视频| 成人国产麻豆网| 国产成人影院久久av| 亚洲欧美日韩高清在线视频| 国产午夜精品久久久久久一区二区三区 | 久久久色成人| 日韩国内少妇激情av| 成人国产麻豆网| 给我免费播放毛片高清在线观看| 中文资源天堂在线| 日日撸夜夜添| 日本撒尿小便嘘嘘汇集6| 日韩国内少妇激情av| www.色视频.com| 在现免费观看毛片| 久久久久久久久久成人| 一进一出好大好爽视频| 麻豆乱淫一区二区| 变态另类成人亚洲欧美熟女| 精品久久久久久久久av| 成人亚洲精品av一区二区| 小说图片视频综合网站| 国产精品精品国产色婷婷| 色av中文字幕| 日本免费一区二区三区高清不卡| 亚洲欧美日韩卡通动漫| 青春草视频在线免费观看| 人妻夜夜爽99麻豆av| 香蕉av资源在线| 在线观看66精品国产| 亚洲成人久久性| 最好的美女福利视频网| 精品午夜福利在线看| 亚洲aⅴ乱码一区二区在线播放| 亚洲高清免费不卡视频| 极品教师在线视频| 精品熟女少妇av免费看| 观看美女的网站| 在线播放国产精品三级| 波多野结衣高清无吗| 一区二区三区四区激情视频 | 搡老熟女国产l中国老女人| 日韩精品有码人妻一区| 热99re8久久精品国产| 黄色配什么色好看| 国产一区二区亚洲精品在线观看| 日本在线视频免费播放| 大型黄色视频在线免费观看| 一边摸一边抽搐一进一小说| 欧美激情国产日韩精品一区| av免费在线看不卡| 少妇熟女欧美另类| 人人妻人人澡人人爽人人夜夜 | 老师上课跳d突然被开到最大视频| 一进一出抽搐gif免费好疼| 日韩成人av中文字幕在线观看 | 久久久精品欧美日韩精品| 内地一区二区视频在线| 日本五十路高清| 精品久久久久久久末码| 午夜日韩欧美国产| 亚洲av免费在线观看| 国产69精品久久久久777片| 国产老妇女一区| 成人特级av手机在线观看| 成人亚洲精品av一区二区| 精品一区二区三区人妻视频| 色播亚洲综合网| 欧美最黄视频在线播放免费| 亚洲欧美日韩无卡精品| 99riav亚洲国产免费| 国产精品无大码| 日韩欧美精品免费久久| 亚洲最大成人中文| 国产精品爽爽va在线观看网站| 校园春色视频在线观看| 久久久午夜欧美精品| 亚洲精品影视一区二区三区av| 日日摸夜夜添夜夜添小说| 3wmmmm亚洲av在线观看| 欧美色欧美亚洲另类二区| 三级男女做爰猛烈吃奶摸视频| 国产一区二区亚洲精品在线观看| 观看免费一级毛片| 久久精品久久久久久噜噜老黄 | 高清毛片免费观看视频网站| 国产精品乱码一区二三区的特点| 丰满乱子伦码专区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲自拍偷在线| 亚洲最大成人手机在线| 波野结衣二区三区在线| 欧美日韩乱码在线| 国产在线男女| 看非洲黑人一级黄片| 麻豆国产av国片精品| 天天一区二区日本电影三级| 淫秽高清视频在线观看| 青春草视频在线免费观看| 看非洲黑人一级黄片| 午夜爱爱视频在线播放| 亚洲av二区三区四区| 欧美一区二区国产精品久久精品| 男女那种视频在线观看| 少妇丰满av| 熟女人妻精品中文字幕| 欧美日韩综合久久久久久| 日韩强制内射视频| 人妻丰满熟妇av一区二区三区| 3wmmmm亚洲av在线观看| 色视频www国产| 午夜福利在线观看免费完整高清在 | 亚洲欧美日韩卡通动漫| av在线亚洲专区| 精品午夜福利在线看| 亚洲av电影不卡..在线观看| 99国产极品粉嫩在线观看| 亚洲精品久久国产高清桃花| 久久久久免费精品人妻一区二区| 国产男人的电影天堂91| 老司机福利观看| 中文字幕av成人在线电影| 亚洲精品影视一区二区三区av| 亚洲成av人片在线播放无| 国产私拍福利视频在线观看| 99久国产av精品| 日韩人妻高清精品专区| 在现免费观看毛片| 亚洲国产高清在线一区二区三| 偷拍熟女少妇极品色| 国产成人a区在线观看| 欧美bdsm另类| 中出人妻视频一区二区| 婷婷精品国产亚洲av在线| 国产亚洲av嫩草精品影院| 国内精品一区二区在线观看| 久久综合国产亚洲精品| 亚洲成av人片在线播放无| 国产成年人精品一区二区| 特大巨黑吊av在线直播| 又粗又爽又猛毛片免费看| 男人的好看免费观看在线视频| 欧美激情国产日韩精品一区| 俄罗斯特黄特色一大片| 午夜日韩欧美国产| 丰满乱子伦码专区| 日日摸夜夜添夜夜添小说| 久久久久久久久大av| 亚洲精品456在线播放app| 22中文网久久字幕| av女优亚洲男人天堂| 波野结衣二区三区在线| 国产成人a∨麻豆精品| 中文资源天堂在线| 久久久精品欧美日韩精品| 欧美一级a爱片免费观看看| 亚洲欧美成人综合另类久久久 | 午夜激情福利司机影院| 亚洲成人久久性| 午夜老司机福利剧场| 国产成人freesex在线 | h日本视频在线播放| 欧美一区二区亚洲| 中文字幕av在线有码专区| 国产精品,欧美在线| 精品日产1卡2卡| 欧美又色又爽又黄视频| 美女 人体艺术 gogo| 国产精品一区二区性色av| 97热精品久久久久久| 免费看光身美女| 中国国产av一级| 人妻丰满熟妇av一区二区三区| 一进一出好大好爽视频| 亚洲图色成人| 九九久久精品国产亚洲av麻豆| 男人狂女人下面高潮的视频| 两个人的视频大全免费| 中国国产av一级| 校园春色视频在线观看| 黄色日韩在线| 婷婷六月久久综合丁香| 亚洲精品影视一区二区三区av| 国产成人a区在线观看| 成人毛片a级毛片在线播放| 最近视频中文字幕2019在线8| 欧美色欧美亚洲另类二区| 又黄又爽又免费观看的视频| 国产私拍福利视频在线观看| 精品欧美国产一区二区三| 午夜免费男女啪啪视频观看 | 男人狂女人下面高潮的视频| 亚洲色图av天堂| 日韩三级伦理在线观看| 99在线视频只有这里精品首页| 中文资源天堂在线| 一进一出好大好爽视频| 少妇熟女欧美另类| 亚洲中文字幕一区二区三区有码在线看| 国产精品久久视频播放| 日本成人三级电影网站| 亚洲高清免费不卡视频| av天堂中文字幕网| 性色avwww在线观看| 免费无遮挡裸体视频| 狠狠狠狠99中文字幕| 日日摸夜夜添夜夜添av毛片| 国产精品精品国产色婷婷| 中文字幕av在线有码专区| 国产一区二区在线av高清观看| 亚洲在线观看片| av免费在线看不卡| 男女那种视频在线观看| 国产精品,欧美在线| 亚洲国产精品国产精品| 高清日韩中文字幕在线| 国产精品一区二区免费欧美| 国产亚洲91精品色在线| 美女被艹到高潮喷水动态| 长腿黑丝高跟| 国产精品电影一区二区三区| 欧美一区二区国产精品久久精品| 日韩欧美在线乱码| 成人漫画全彩无遮挡| 在线国产一区二区在线| 听说在线观看完整版免费高清| a级一级毛片免费在线观看| 床上黄色一级片| 联通29元200g的流量卡| 亚洲熟妇中文字幕五十中出| 美女被艹到高潮喷水动态| 国产国拍精品亚洲av在线观看| 精品一区二区三区av网在线观看| 99在线人妻在线中文字幕| 亚洲在线自拍视频| 久久精品影院6| 中文字幕久久专区| 成年女人永久免费观看视频| 97超碰精品成人国产| 激情 狠狠 欧美| 午夜精品在线福利| 亚洲一区二区三区色噜噜| 亚洲四区av| 精品熟女少妇av免费看| 在线免费十八禁| 99久久久亚洲精品蜜臀av| 精品欧美国产一区二区三| 小说图片视频综合网站| 国内精品宾馆在线| 国产高潮美女av| 成人av在线播放网站| 1000部很黄的大片| 成人性生交大片免费视频hd| 午夜福利在线在线| 亚洲精品456在线播放app| 亚洲精品日韩av片在线观看| 亚洲人成网站在线播| 热99在线观看视频| 丝袜喷水一区| 精品久久久久久久久av| 亚洲精华国产精华液的使用体验 | 国产视频内射| 国产 一区精品| 亚洲欧美精品综合久久99| 精华霜和精华液先用哪个| 特大巨黑吊av在线直播| 日韩欧美一区二区三区在线观看| 又黄又爽又刺激的免费视频.| 久久中文看片网| 日本一本二区三区精品| 国产一区二区激情短视频| 免费一级毛片在线播放高清视频| 91久久精品国产一区二区三区| 在线播放无遮挡| 免费大片18禁| 亚洲色图av天堂| 中国美女看黄片| 成人特级黄色片久久久久久久| 日本欧美国产在线视频| 欧美+亚洲+日韩+国产| 国产视频内射| 男人舔女人下体高潮全视频| 老师上课跳d突然被开到最大视频| 亚州av有码| 99精品在免费线老司机午夜| 淫秽高清视频在线观看| 国产精品乱码一区二三区的特点| videossex国产| 高清午夜精品一区二区三区 | 美女被艹到高潮喷水动态| 一级毛片电影观看 | 国产单亲对白刺激| 成人国产麻豆网| 一本精品99久久精品77| 天堂√8在线中文| 日日摸夜夜添夜夜添小说| or卡值多少钱| 内射极品少妇av片p| 色播亚洲综合网| 九九在线视频观看精品| 1024手机看黄色片| 亚洲真实伦在线观看| 欧美丝袜亚洲另类| 男人舔女人下体高潮全视频| 国产 一区 欧美 日韩| 国产成年人精品一区二区| 成人欧美大片| 99九九线精品视频在线观看视频| 色综合色国产| 99久久精品国产国产毛片| ponron亚洲| 成年免费大片在线观看| 精品国内亚洲2022精品成人| 亚州av有码| 国产精品野战在线观看| 综合色丁香网| 在线a可以看的网站| 久久久色成人| 国产精品福利在线免费观看| 免费黄网站久久成人精品| 桃花免费在线播放| 久热这里只有精品99| 国产精品女同一区二区软件| 国产精品一区二区在线观看99| 国产亚洲精品久久久com| 我的老师免费观看完整版| 51国产日韩欧美| 在线观看免费日韩欧美大片 | .国产精品久久| 国产精品嫩草影院av在线观看| 美女大奶头黄色视频| 国产69精品久久久久777片| 久久久久精品久久久久真实原创| 国产精品麻豆人妻色哟哟久久| 国产精品欧美亚洲77777| 人妻一区二区av| 国精品久久久久久国模美| 蜜桃在线观看..| 国产男女内射视频| 一个人看视频在线观看www免费| 在线观看美女被高潮喷水网站| 18+在线观看网站| 97在线视频观看| 亚洲在久久综合| 日韩欧美精品免费久久| 亚洲激情五月婷婷啪啪| 国产91av在线免费观看| 亚洲精品色激情综合| 免费看不卡的av| 啦啦啦视频在线资源免费观看| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美日韩另类电影网站| 国产极品粉嫩免费观看在线 | 99国产精品免费福利视频| 99久久综合免费| 纵有疾风起免费观看全集完整版| 超碰97精品在线观看| 亚洲伊人久久精品综合| 成人午夜精彩视频在线观看| 久久青草综合色| 大香蕉久久网| 一区二区三区四区激情视频| 不卡视频在线观看欧美| 国产亚洲最大av| 国产精品麻豆人妻色哟哟久久| 精品久久久久久电影网| 晚上一个人看的免费电影| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久精品电影小说| 国产精品久久久久久久电影| 啦啦啦视频在线资源免费观看| 伊人久久精品亚洲午夜| 中国国产av一级| 美女中出高潮动态图| 久久久久视频综合| 极品少妇高潮喷水抽搐| 亚洲熟女精品中文字幕| 久久久久国产精品人妻一区二区| 久久久久久久久久久久大奶| 99久国产av精品国产电影| 美女脱内裤让男人舔精品视频| 99久久综合免费| 国产黄片美女视频| 日日爽夜夜爽网站| 日韩,欧美,国产一区二区三区| 午夜免费鲁丝| 两个人免费观看高清视频 | 免费少妇av软件| 精品午夜福利在线看| 又黄又爽又刺激的免费视频.| 我的女老师完整版在线观看| av在线老鸭窝| 国产欧美另类精品又又久久亚洲欧美| av线在线观看网站| 日日撸夜夜添| 精品亚洲成国产av| 日韩三级伦理在线观看| 免费少妇av软件| 2018国产大陆天天弄谢| 成人综合一区亚洲| 啦啦啦在线观看免费高清www| 成人美女网站在线观看视频| 我的女老师完整版在线观看| 亚洲美女搞黄在线观看| av播播在线观看一区| 另类精品久久| 在线观看免费日韩欧美大片 | 18禁动态无遮挡网站| 最黄视频免费看| 亚洲国产成人一精品久久久| 3wmmmm亚洲av在线观看| 99热全是精品| 自拍偷自拍亚洲精品老妇| 色视频www国产| 国产真实伦视频高清在线观看| 日韩一区二区三区影片| 欧美亚洲 丝袜 人妻 在线| 国产黄色视频一区二区在线观看| 在线看a的网站| 日本欧美国产在线视频| 国产精品一区二区性色av| 亚洲国产精品成人久久小说| 在线观看av片永久免费下载| 亚洲精品456在线播放app| 亚洲av福利一区| 欧美日本中文国产一区发布| 简卡轻食公司| 成人国产麻豆网| 久久久欧美国产精品| 久久久久久久久久久久大奶| 丝瓜视频免费看黄片| a级毛片免费高清观看在线播放| 成人亚洲精品一区在线观看| 午夜激情福利司机影院| 一级毛片 在线播放| 麻豆成人av视频| 久久国内精品自在自线图片| 五月伊人婷婷丁香| 久热这里只有精品99| videossex国产| 国产精品福利在线免费观看| 免费少妇av软件| 国精品久久久久久国模美| 天天躁夜夜躁狠狠久久av| 亚洲av在线观看美女高潮| 成人漫画全彩无遮挡| 欧美xxⅹ黑人| 纯流量卡能插随身wifi吗| 黑人猛操日本美女一级片| 99精国产麻豆久久婷婷| 超碰97精品在线观看| 高清av免费在线| 国产精品一区二区在线观看99| 麻豆精品久久久久久蜜桃| 五月玫瑰六月丁香| 性高湖久久久久久久久免费观看| 一级黄片播放器| 亚州av有码| 大香蕉久久网| 免费在线观看成人毛片| 国产精品人妻久久久影院| 亚洲国产日韩一区二区| 久久久久国产精品人妻一区二区| 中国三级夫妇交换| 日本黄色日本黄色录像| 51国产日韩欧美| 国产精品国产三级国产av玫瑰| 亚洲在久久综合| 国产美女午夜福利| 亚洲av.av天堂| 国产在线视频一区二区| 国产片特级美女逼逼视频| av福利片在线| 亚洲欧美成人精品一区二区| 一本一本综合久久| 亚洲美女视频黄频| 亚洲,欧美,日韩| 成年人午夜在线观看视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲无线观看免费| 久久久久网色| 国产成人91sexporn| 伊人久久精品亚洲午夜| 97精品久久久久久久久久精品| 97超视频在线观看视频| 五月开心婷婷网| 天堂俺去俺来也www色官网| 国产亚洲欧美精品永久| 亚洲成人av在线免费| 亚洲av综合色区一区| 欧美少妇被猛烈插入视频| 久久人妻熟女aⅴ| 成年av动漫网址|