• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation of omnidirectional multiphysics bilayer invisibility cloak with anisotropic geometry

    2024-03-25 09:33:10HuoleiFeng豐火雷XingweiZhang張興偉LiminZhou周利敏YuekaiZhang張悅凱andYushanNi倪玉山
    Chinese Physics B 2024年3期
    關(guān)鍵詞:玉山

    Huolei Feng(豐火雷), Xingwei Zhang(張興偉), Limin Zhou(周利敏),Yuekai Zhang(張悅凱), and Yushan Ni(倪玉山),?

    1Department of Aeronautics and Astronautics,Fudan University,Shanghai 200433,China

    2Key Laboratory of Advanced Ship Materials and Mechanics,College of Aerospace and Civil Engineering,Harbin Engineering University,Harbin 150001,China

    Keywords: omni-directionality,multiphysics,bilayer confocal ellipse,invisibility cloak

    1.Introduction

    Inspired by the pioneering theoretical works of transformation optics[1]and neutral inclusion,[2-4]the devices, especially invisibility cloaks, have attracted extensive attention,and have been widely explored in many different single physical systems.[5-23]Stengeret al.fabricated a cloaking structure for elastic waves and observed good cloaking behavior for carrier frequencies.[6]Yanget al.presented the first experimental demonstration of a dc electric cloak for steady current fields.[8]Hanet al.designed an electromagnetic invisibility anti-cloak based on nonlinear coordinate transformation.[9]Liet al.discussed temperature-dependent switchable thermal cloaks using the temperature-dependent coordinate transformation thermotics.[20]These invisibility devices can prevent the external field from invading the inner core in the single physical field, thus achieving the cloaking effect without distorting the external physical field.With the further development of metamaterials,the multifunctional structures[24]have become a promising field of research, such as the mechanical multifunctional structure,[25]the intelligent multifunctional structure,[26,27]and the multiphysics structure.[28-30]Here, we mainly discuss the multiphysics structure to reveal the manipulation effects of the invisibility cloaks.The multiphysics invisibility cloaks constructed with neutral inclusion method have the capability to respond to multiphysics fields,simultaneously.Maet al.implemented a monolayer circular thermal-electric cloak to guide both electric current and heat flux around the core region.[31]Zhanget al.designed a bilayer circular thermal-electric cloak to improve the accuracy of cloaking effect.[32]Fenget al.analyzed the thermal-electric invisibility sensors and cloaks with anisotropic geometry under a specific direction of heat flux and electric current.[33]

    The above researches reveal the multiphysics cloaking effect from different perspectives.But for a device with anisotropic geometry, the presented cloak is only suitable for unidirectional heat flux and electric current.Recently, some researchers discussed omnidirectional metadevices in different physical fields.Hanet al.constructed an omnidirectional thermal metadevice with anisotropic geometry to achieve excellent performance along arbitrary directions of heat flux.[34]Fenget al.presented the omnidirectional confocal elliptical monolayer thermal-electric camouflage device, which could eliminate the disturbances of isotherms and equipotential lines in the external environment.[35]However,the studies[34,35]still have limitations.The former[34]mainly discussed the omnidirectional effect in a single thermal field,lacking the responses to multiphysics profiles.The latter[35]only eliminated the disturbances of isotherms and equipotential lines in the matrix,and the temperature and electric potential gradients in the core still existed due to the limitation of the single layer of the device.Different from the research related to omnidirectional metadevices with anisotropic geometry mentioned above, we further extended from the confocal elliptical monolayer coreshell structure to the bilayer core-shell structure to investigate the omnidirectional thermal-electric cloaking function,which could improve the utilization efficiency of the invisibility cloak with anisotropic geometry and achieve the omnidirectional multiphysics cloaking effect.Due to the anisotropy of confocal ellipse, the depolarization factors of bilayer core-shell structure will be changed under different directions of heat flux and electric current,thus resulting in the anisotropic effective parameters of the bilayer core-shell structure.Here,the inner shell of the structure is selected as thermal-electric insulating material to prevent heat flux and electric current from invading the core region, and the matrix material parameters coincide with the derived anisotropic effective parameters to eliminate the disturbances of external multiphysics fields in the matrix.Then,finite element simulations are employed to demonstrate the performance of omnidirectional thermal-electric cloaking effect applying the anisotropic matrix material and insulated inner shell material.Meanwhile,we design a composite structure to realize the anisotropy of matrix, and experimentally validate full manipulation of heat flux and electric current in the invisibility cloak.When the external heat flux and electric current are in a specific direction, we further achieve the cloaking effect using the existing natural materials instead of the composite structure or the arbitrary isotropic parameters to enrich the range of materials selection.

    2.Methodology

    The realization of omnidirectional thermal-electric invisibility cloak with anisotropic geometry needs to consider the material parameters in temperature and electric potential fields simultaneously.The schematic diagram of confocal elliptical bilayer core-shell structure is shown in Fig.1.Regions I,II,III and IV represent the core,inner shell,outer shell,and matrix,respectively.In order to study the characteristics of temperature field and electric potential field in different regions, we useTiandφi(i=1,2,3,m)to represent the temperature and electric potential of the core, inner shell, outer shell and matrix, respectively, and the corresponding thermal and electric conductivities are denoted asκiandσi.The semi-axes of the core,inner shell,and outer shell are denoted aslci,lsi,andlei(i=1,2),respectively.

    As for the derivation of effective parameters (effective thermal conductivity and effective electric conductivity) of confocal elliptical bilayer core-shell structure,we first present the effective parameters derivation of the core and inner shell based on the theory of neutral inclusion.[35]Then, we regard the core and inner shell as a new core,and calculate the effective parameters of the new core and outer shell.

    In order to solve the effective parameters more conveniently, we discuss the case in elliptical coordinates.The elliptical coordinates can be expressed as

    Whenρ=0, Eq.(1)denotes the confocal elliptical core surface with semi-axislci.Whenρ >0, we definelias the semi-axis of the ellipse, andl2i=lc2i+ρ.Accordingly, the Cartesian coordinates can be expressed as

    Considering the confocal elliptical monolayer core-shell structure presented in a uniform thermal(or electric potential)gradient field along thexdirection without heat (or electric)source, the heat conduction equation (or electric conduction equation)satisfies the Laplace equation.In order to unify the derivation process,we useKi(i=1,2,m)to represent the temperatureTior electric potentialφiin different regions, which can be expressed as[36]

    Fig.1.The schematic diagram of confocal elliptical bilayer core-shell structure.

    Meanwhile,different regions possess different conductivitiesMi(M=κrepresents the thermal conductivity andM=σrepresents the electric conductivity).Based on the above discussions,the associated boundary conditions are as follows.

    Taking Eq.(10) into the fourth boundary condition of Eq.(8),we can get the effective parametersM*1of the monolayer core-shell structure

    So far, we have deduced the effective parameters of the confocal elliptical monolayer core-shell structure.By regarding the monolayer core-shell structure as a new core which possesses the effective parametersM*1, the new effective parametersM*2of the confocal elliptical bilayer core-shell structure can be calculated as follows:

    To sum up, the effective parameters of the confocal elliptical bilayer core-shell structure along different axes can be obtained by solving Eqs.(11)-(14)simultaneously.In Subsection 3.1, we will discuss the omnidirectional thermal-electric cloaking effect by applying the derived effective parameters.

    3.Results and discussion

    3.1.The omnidirectional thermal-electric cloaking effect with anisotropic matrix

    Due to the geometric anisotropy of the confocal elliptical bilayer core-shell structure,the effective parameters(thermal and electric conductivities) will be changed as the heat flux and electric current flow along different axes, which leads to the anisotropy of the matrix material.As for the realization of omnidirectional thermal-electric invisibility cloak, the materials of the inner shell and outer shell are selected as polydimethylsiloxane (PDMS) and 6061 aluminum, respectively.The material of the core (cloaking region) is arbitrary, such as 316/436 stainless steel, copper, tungsten and so on.Here,we select copper as the core material.The relevant material parameters are shown in Table 1.When the geometric parameters of the core,inner shell and outer shell are given,the anisotropic material parameters of the matrix can be calculated based on Eqs.(11)-(14) to achieve the omnidirectional thermal-electric cloaking effect.

    Table 1.The parameters of these selected materials.

    We use the finite element method to simulate the omnidirectional thermal-electric cloaking effect of the confocal elliptical bilayer core-shell structure under different directions(α=0°, 45°, and 90°) of heat flux and electric current.The simulation results are shown in Figs.2 and 3,in which the field distributions are normalized by the maximum values.

    From Fig.2,we firstly focus on the first row corresponding to horizontal direction of heat flux.The normalized temperature field of the matrix is illustrated in Fig.2(a1),and the isothermal lines in the matrix are uniformly distributed without any disturbances.When the core is embedded in the matrix, the isothermal lines appear disturbances, especially near the core,and the heat flux also passes through the core region,as shown in Fig.2(a2).Then,we coat the core with the bilayer thermal-electric cloak illustrated in Fig.2(a3),and the isothermal lines tend to be straight again, just as the core doesn’t exist.The cloak also prevents the heat flux from invading the core region successfully.It is clearly seen that the core with elliptical cloak performs as perfectly as the matrix without any distortions,showing much better performance compared to the bare core.Meanwhile, the perfect thermal cloaking effect is realized to make the temperature of core tend to be a constant.In order to realize the omnidirectional thermal cloaking effect,we change the directions of heat flux to the oblique and vertical directions,and the simulation results are shown in Figs.2(b1)-2(b3) and 2(c1)-2(c3).The disturbances of isothermal lines in the matrix and the temperature gradients in the core illustrated in Figs.2(b2)and 2(c2)have been eliminated under the work of the thermal-electric cloak, as shown in Figs.2(b3)and 2(c3).It means that the omnidirectional thermal cloaking effect has been demonstrated without any disturbances of isothermal lines.

    Fig.3.Normalized electric potential distributions with different directions of electric current.The first, second, and third rows correspond to the horizontal (α =0°), oblique (α =45°), and vertical (α =90°)electric current launching, respectively.The first, second, and third columns represent the normalized electric potential fields of models with anisotropic matrix material, bare core without confocal elliptical invisibility cloak, and bare core with confocal elliptical cloak, respectively.The black solid lines represent the equipotential lines, and the white streamlines represent the electric current.

    The thermal-electric cloak can realize not only the omnidirectional thermal cloaking effect but also the omnidirectional electric cloaking effect.No matter how the direction of external electric current changes, the disturbances of equipotential lines in the matrix caused by the core [Figs.3(a2),3(b2), and 3(c2)] have been eliminated when the core is protected by the thermal-electric cloak [Figs.3(a3), 3(b3), and 3(c3)].In addition,due to the thermal-electric insulation properties of the inner shell, the electric current will bypass the core region,thus making the electric potential gradient of the core approach 0.Here, considering that the material of the core is arbitrary,we further select 316 stainless steel and tungsten as the core material to demonstrate the omnidirectional thermal-electric cloaking effect.The material parameters of the 316 stainless steel and tungsten are presented in Table 1,and the boundary conditions remain unchanged.Similar to the cloaking effects in Figs.2 and 3, the perfect omnidirectional thermal-electric cloaking effects are also achieved whether the core is constructed with 316 stainless steel or tungsten, thus demonstrating the arbitrariness in core material selection.The corresponding temperature and electric potential profiles with the core made of 316 stainless steel or tungsten are presented in the supplementary material (Figs.S1-S4).As mentioned above, we have demonstrated the omnidirectional accurate thermal-electric cloaking effect of the confocal elliptical bilayer core-shell structure, which indicates the rationality of the theoretical derivation presented in the methodology section.

    Fig.4.The normalized temperature or electric potential along the dashed lines.The first,second,and third rows correspond to the horizontal(α =0°),oblique(α =45°),and vertical(α =90°)directions of heat flux and electric current,respectively.The first column and the second column represent the normalized temperature fields and electric potential fields of three different models, respectively.Model-1, model-2 and model-3 represent the temperature and electric potential fields of anisotropic matrix material,the bare core without thermal-electric cloak device,and the core with thermal-electric cloak device,respectively.

    Table 2.The normalized temperature and electric potential gradients of the core and matrix under different heat and electric launching.

    In order to further quantitatively analyze the omnidirectional thermal-electric cloaking effect, we export the normalized temperature and electric potential on the dashed lines in Figs.2 and 3.The results corresponding to different directions of heat flux and electric current are presented in Fig.4.Meanwhile,the normalized temperature gradients(TG)and electric potential gradients(EPG)of the core and matrix under different heat and electric launching are shown in Table 2.

    From Fig.4,the normalized temperature and electric potential of model-1 and model-3 are consistent in the matrix,which are different from those of model-2, whether the directions of heat flux and electric current are 0°, 45°, or 90°.The temperature and electric potential gradients of model-1 and model-3 in the matrix are 5.56 (1/m), which is different from the value of model-2 [see Table 2].It means that the existence of thermal-electric cloak could eliminate disturbances of model-2 in the matrix, thus achieving omnidirectional thermal-electric cloaking effect of the core.Simultaneously,compared with the normalized temperature and electric potential of model-1 and model-2 in the core, the corresponding values of model-3 tend to be the constant 0.5 and 0, respectively.The temperature and electric potential gradients of model-3 in the core tend to be 0 with different directions of heat flux and electric current [see Table 2], indicating that the core is omnidirectionally protected from the invasion of external heat flux and electric current without disturbing the isothermal and equipotential lines in the matrix.We have quantitatively revealed the omnidirectional thermalelectric cloaking effect with derived anisotropic material parameters, thus demonstrating the feasibility of the proposed theoretical method to construct the device.

    3.2.The bilayer thermal-electric invisibility cloak suitable for a wide range of natural materials

    Subsection 3.1 mainly focuses on how to eliminate the disturbances of thermal and electric potential fields caused by geometric anisotropy when the directions of heat flux and electric current are unknown, thus achieving omnidirectional thermal-electric cloaking effect.The proposed method is to design anisotropic matrix.In this part, we further discuss the condition that the heat flux and electric current are in a specific direction, and design a bilayer thermal-electric invisibility cloak.Different from the omnidirectional thermal-electric cloak with anisotropic matrix or the thermal-electric cloak with arbitrary isotropic parameters,we use the existing natural bulk materials to design the directional cloak.Here,we choosex-axis as the specific direction of heat flux and electric current.The materials selection of the core, inner shell, outer shell,and matrix are copper,PDMS,6061 aluminum,and 316 stainless steel, respectively.The relevant material parameters are shown in Table 1.When the geometric parameters of the core are given(lc1=3 cm,lc2=2 cm),the geometric parameters of the inner shell and outer shell can be calculated based on the Eqs.(11)and(12)accurately.Compared with the omnidirectional thermal-electric cloak achieved with anisotropic matrix, we could use the isotropic natural materials to construct the bilayer thermal-electric cloak to realize accurate cloaking effect under the specific direction of heat flux and electric current.The normalized simulation results of the temperature and electric potential profiles are shown in Fig.5.

    Fig.5.Normalized temperature and electric potential profiles under the specific direction of heat flux and electric current.The first row represents the normalized temperature profiles.The second row represents the normalized electric potential profiles.Panels (a1) and (b1) correspond to the matrix structure.Panels (a2) and (b2) correspond to the bare core structure.Panels(a3)and(b3)correspond to the bilayer cloak structure.The white solid lines represent the isothermal lines, and the black solid lines represent the equipotential lines.The black streamlines represent the heat flux, and the white streamlines represent the electric current.

    It can be seen in Fig.5 that compared with the bare core structure illustrated in Figs.5(a2) and 5(b2), the heat flux and electric current in Figs.5(a3)and 5(b3)travel around the core without disturbing the isothermal lines and equipotential lines in the matrix, which coincide with the temperature and electric potential profiles of the matrix structure illustrated in Figs.5(a1) and 5(b1), thus realizing the perfect thermal and electric cloaking effect using the isotropic natural materials.These natural materials satisfying the concept of neutral inclusion are arbitrary,which can also broaden the selection range of materials.Similar to Fig.4, we further export the normalized temperature and electric potential on the dashed lines in Fig.5.The results corresponding to horizontal direction of heat flux and electric current are presented in Fig.6.

    Fig.6.The normalized temperature(a)or normalized electric potential(b)along the dashed lines.Model-1,model-2 and model-3 represent the three different models illustrated in the first,second,and third columns of Fig.5,respectively.

    The normalized temperature and electric potential of model-3 and model-1 match perfectly in the matrix, while the values of model-2 are completely different from those of model-1.It reveals that the thermal-electric cloak in model-3 could eliminate disturbances caused by the elliptical core in the matrix,thus making the normalized temperature and electric potential distributions in the matrix consistent with those in model-1,just as there is no object in the matrix.In addition to not disturbing the temperature and electric potential fields in the matrix,the thermal-electric cloak in model-3 could also prevent the heat flux and electric current from invading the core region,which makes the temperature and electric potential gradients in the core tend to be 0.Due to the high thermal and electric conductivities of the core material (copper)compared with the other materials placed in the shell and matrix regions,the isotherms and equipotential lines will bypass the core region,which makes the normalized temperature and electric potential of model-2 in the core tend to be constants.If the thermal and electric conductivities of the core are smaller than those of other regions, this phenomenon will disappear.Through the above analyses, the data in Fig.6 echoes the simulation result in Fig.5 perfectly, thus demonstrating thex-directional thermal-electric cloaking effect of the confocal elliptical cloak implemented with existing natural bulk materials.The existing natural materials greatly widen the material selection range and practical application field of the directional cloak.The directional cloak may have potential applications to provide protection for some electronic components,especially in the thermal-electric fields.

    3.3.Experimental investigation of omnidirectional multiphysics bilayer invisibility cloak

    After the above simulation analyses,we next experimentally realize the omnidirectional thermal-electric invisibility cloaks.We construct a new kind of composite structure to replace the anisotropic matrix material, and the specific construction process is illustrated in Fig.7.

    Fig.7.Processing approach of constructing anisotropic matrix.

    The matrix (L×L) with anisotropic thermal and electric conductivities [Fig.7(a)] is first transformed into alternating multilayered structure based on the effective medium theory.The alternating multilayered structure possesses isotropic but arbitrary material parameters for each layer[Fig.7(b)].Then,as for each layer of the arbitrary material parameters, we design the cellular structure composed of substrate and inclusion with natural materials [Fig.7(c)] to satisfy the arbitrary thermal and electric conductivities, simultaneously.Inclusions in odd and even layers have different geometric parameters.The thermal and electric conductivities of the cellular structures in different layers can be obtained as follows:

    whereVith(i=1,3,5,...) andVjth(j=2,4,6,...) are the arbitrary thermal or electric conductivities of odd layer and even layer,respectively.Vα,Vβ,Vε,andVηare the thermal or electric conductivities of different natural materials, respectively.f1=πr21/a2andf2=πr22/a2are the area fractions of the circular inclusions in different cellular structures.r1andr2are the radii of the circular inclusions of odd and even layers,respectively.ais the thickness of each layer.

    When the thickness of each layer and the different natural material parameters satisfying the concept of neutral inclusion are given, the radii of the circular inclusions in odd and even layers could be calculated based on Eqs.(15) and (16).Through the array of the cellular structures, we could obtain a composite structure [Fig.7(d)], which possesses the same anisotropic material parameters as the matrix[Fig.7(a)].

    Then, we start preparing the experimental samples.The first step is to determine the geometric and material parameters of the invisibility cloak (functional sample).The major(or minor) semi-axes of the core, inner shell, and outer shell arelc1= 3 cm (lc2= 2 cm),ls1= 3.2 cm (ls2= 2.3 cm),andle1=4.85 cm (le2=4.3 cm), respectively.The materials of the core,inner shell and outer shell are 6061 aluminum,PDMS, and 6061 aluminum, respectively.Here, it should be noted that the material of core is selected as 6061 aluminum to eliminate the resistance at the connection interface of different materials and carry out the experiments smoothly.For the required matrix material calculated by Eqs.(11)-(14),we implement the anisotropic matrix material with composite alternating multilayered structure mentioned above.Each of the layers is designed by the periodic structure of an air circular inclusion embedded in the middle of the 6061 aluminum substrate.The thickness of each layer is 0.5 cm, and the radii of the air circular inclusions in different cellular structures are 0.1 cm and 0.21 cm for the alternating layers, respectively.The second step is to draw the sketches of the invisibility cloak according to the geometric parameters in the first step.The last step is to purchase the required experimental materials and construct the experimental samples by laser cutting and material splicing technologies.Based on the three steps mentioned above, the invisibility cloak could be constructed, as shown in Fig.8(a).For comparison, we have also fabricated the reference structure,in which the bare core with 6061 aluminum is embedded in the middle of the matrix without the thermal-electric cloak,as shown in Fig.8(b).

    Fig.8.The experimental samples and setups.Experimental samples whose sizes are 18×18 cm with a thickness of 2 mm of the invisibility cloak (a) and reference structure (b).(c) The diagram of thermal experimental setup.(d)The diagram of electric experimental setup.

    Fig.9.Measured normalized temperature profiles for invisibility cloak and reference structure.Panels(a1)and(a2)correspond to the horizontal heat flux launching.Panels(b1)and(b2)correspond to the vertical heat flux launching.

    Considering the operability of the experiments, we mainly focus on the 0°and 90°directions of heat flux and electric current.The diagrams of thermal and electric experimental setups are shown in Figs.8(c) and 8(d).In the thermal experimental setup,we first put the insulated plastic films(PDMS)on the surface of the invisibility cloak and reference structure to eliminate the high reflection by 6061 aluminum and thermal convection by air.Then,a tank filled with hot water is employed to provide heat source,while the cold source is achieved with the mixture of ice and water.After the temperature stabilizes,we use the Flir E5 infrared camera to obtain the temperature profiles of these samples, and the obtained data will be imported into FLIR Tools for post processing analyses.As for the electric experimental setup,we first need to draw a regular grid on the invisibility cloak and reference structure for the measurement of electric potential later.Then, a powerful DC current source device is connected to all experimental samples by introducing wire clips at the two ends of these samples to make the current pass through the cloak and reference structure, thus generating electric potential.After the electric potential stabilizes, we use the high-precision digital multimeter 34401A to measure the electric potential profiles at the painted grid nodes of these samples,and record the data at each node.Here,both the temperature data and electric potential data are normalized within 0 and 1 to better compare and present the differences of omnidirectional multiphysics cloaking effect between the functional cloak and reference structure.

    The measured temperature and electric potential profiles normalized by the maximum values are shown in Figs.9 and 10.

    Fig.10.Measured normalized electric potential profiles for invisibility cloak and reference structure.Panels (a1) and (a2) correspond to the horizontal electric current launching.Panels (b1) and (b2) correspond to the vertical electric current launching.

    Figures 9(a1),9(b1)and 10(a1),10(b1)represent the temperature and electric potential experimental measurements of the core with thermal-electric invisibility cloak, respectively.Figures 9(a2),9(b2)and 10(a2),10(b2)represent the temperature and electric potential experimental measurements of the reference structure(bare core without thermal-electric cloak),respectively.We can see that the cloak [Figs.9(a1), 9(b1),10(a1), 10(b1)] successfully fulfills its task in that the temperature and electric potential gradients of the core tend to be 0, and the disturbances of isothermal and equipotential lines are eliminated in the matrix under the horizontal and vertical directions of heat flux and electric current.In contrast, the bare core in the reference structure[Figs.9(a2),9(b2),10(a2),10(b2)] alters the temperature and electric potential profiles in the matrix, especially near the core region, and the omnidirectional cloaking effect of the core also disappears.The corresponding simulation results of temperature and electric potential profiles are presented in the supplementary material(Figs.S5 and S6), which are in good agreement with the experimental results (Figs.9 and 10).Based on the above experimental analyses, the proposed thermal-electric invisibility cloak is capable of shielding the external heat flux and electric current omnidirectionally without distorting the temperature and electric potential fields in the matrix, thus successfully achieving the construction of the omnidirectional thermal-electric bilayer invisibility cloak with anisotropic geometry.The omnidirectional thermal-electric cloaking effect makes the proposed invisibility cloak suitable for more complex and changeable environments,which may have potential applications in the aerospace field to protect some important devices,such as the radars,aircraft,and military installations.

    4.Conclusions

    The omnidirectional thermal-electric cloaking effect of the structure with anisotropic geometry is discussed in this paper.We first derive the anisotropic effective thermal and electric conductivities of confocal elliptical bilayer core-shell structure based on the different depolarization factors along different axes.Then,the matrix material should be anisotropic as the effective parameters, and the inner shell should be selected as thermal-electric insulating material to satisfy omnidirectional thermal-electric cloaking effect, which is demonstrated by the numerical simulations.The experiments using the composite structure to replace the anisotropic matrix have been also carried out to realize the omnidirectional cloaking effect,which are in good agreement with the simulation results combining the derived anisotropic material parameters.When the directions of heat flux and electric current are known, we achieve thex-directional thermal-electric cloaking effect using the isotropic natural materials, which could widen the range of materials selection for constructing the invisibility cloak.Whether it is omnidirectional orx-directional thermalelectric cloak, the proposed schemes are implemented with existing composite or natural materials, thus indicating that our schemes may have potential applications in multiphysics fields.The omnidirectional cloak is suitable for both temperature and electric potential fields,which contributes to realizing the efficient utilization of the cloaking device and may have positive impacts on carbon neutrality and carbon peaking.

    Acknowledgements

    This work was financially supported by the National Natural Science Foundation of China (Grant No.11572090) and the Fundamental Research Funds for the Central Universities(Grant No.3072022GIP0202).

    猜你喜歡
    玉山
    水仙盆景欣賞
    花卉(2024年5期)2024-03-23 08:08:24
    水仙盆景欣賞
    花卉(2024年3期)2024-02-26 05:11:52
    Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
    月季盆景欣賞(二)
    花卉(2023年15期)2023-08-09 08:05:04
    月季盆景欣賞(一)
    花卉(2023年13期)2023-07-07 10:26:24
    黃楊盆景欣賞(一)
    花卉(2023年11期)2023-06-09 08:13:30
    新年獻辭
    附式石盆景欣賞
    花卉(2021年9期)2021-05-15 09:57:28
    Glassy dynamics of model colloidal polymers:Effect of controlled chain stiffness?
    懸崖式盆景欣賞(一)
    花卉(2020年5期)2020-03-16 08:13:48
    22中文网久久字幕| netflix在线观看网站| 午夜激情欧美在线| 国产精品三级大全| 18禁黄网站禁片免费观看直播| 91久久精品电影网| 亚洲性久久影院| 成熟少妇高潮喷水视频| 人妻少妇偷人精品九色| 性插视频无遮挡在线免费观看| 国产精品女同一区二区软件 | 2021天堂中文幕一二区在线观| 日本黄色片子视频| 久久久午夜欧美精品| 一区二区三区高清视频在线| 波野结衣二区三区在线| 国产精品电影一区二区三区| 亚洲美女黄片视频| 国产老妇女一区| 国产精品亚洲美女久久久| 精品久久久久久久人妻蜜臀av| 免费黄网站久久成人精品| 午夜福利成人在线免费观看| 精品久久久久久久久久久久久| 大又大粗又爽又黄少妇毛片口| 在线国产一区二区在线| 久久精品91蜜桃| 自拍偷自拍亚洲精品老妇| 国产免费av片在线观看野外av| 国内揄拍国产精品人妻在线| 少妇的逼好多水| 91久久精品国产一区二区三区| 午夜福利在线观看免费完整高清在 | 黄片wwwwww| 色尼玛亚洲综合影院| 亚洲内射少妇av| 2021天堂中文幕一二区在线观| 麻豆久久精品国产亚洲av| 小蜜桃在线观看免费完整版高清| 日韩欧美国产在线观看| 嫩草影院入口| 欧美性猛交╳xxx乱大交人| 久久午夜福利片| 一进一出抽搐动态| 日韩欧美在线二视频| 啦啦啦韩国在线观看视频| 欧美精品啪啪一区二区三区| 欧美日本亚洲视频在线播放| 国产私拍福利视频在线观看| 免费人成视频x8x8入口观看| 少妇人妻精品综合一区二区 | 动漫黄色视频在线观看| 欧美日韩综合久久久久久 | 亚洲熟妇中文字幕五十中出| 日韩一区二区视频免费看| 狠狠狠狠99中文字幕| 国产乱人伦免费视频| 一进一出抽搐动态| 亚洲av第一区精品v没综合| 国产精品久久久久久精品电影| 黄片wwwwww| 婷婷六月久久综合丁香| 精品国产三级普通话版| 亚洲国产欧洲综合997久久,| 中国美女看黄片| 国产单亲对白刺激| 国产成人一区二区在线| 日韩精品青青久久久久久| 免费av毛片视频| 我要搜黄色片| 色视频www国产| 精品国内亚洲2022精品成人| 啦啦啦观看免费观看视频高清| 精品99又大又爽又粗少妇毛片 | 日本黄色片子视频| 男女做爰动态图高潮gif福利片| 亚洲欧美日韩东京热| 男人和女人高潮做爰伦理| 亚洲精品粉嫩美女一区| 日本成人三级电影网站| 亚洲真实伦在线观看| 国产精品一区二区三区四区久久| 一区二区三区免费毛片| 欧美极品一区二区三区四区| 国产精品亚洲美女久久久| 亚洲专区国产一区二区| 精品久久久久久久人妻蜜臀av| 久久婷婷人人爽人人干人人爱| 久久香蕉精品热| 在线国产一区二区在线| 亚洲国产色片| 亚洲最大成人手机在线| 亚洲狠狠婷婷综合久久图片| 亚洲内射少妇av| 噜噜噜噜噜久久久久久91| 日本爱情动作片www.在线观看 | 69人妻影院| 久久久色成人| 亚洲国产精品久久男人天堂| 91狼人影院| 久久热精品热| 国产精品三级大全| 国产麻豆成人av免费视频| 小蜜桃在线观看免费完整版高清| 欧美又色又爽又黄视频| 欧美在线一区亚洲| 亚洲一区高清亚洲精品| 又黄又爽又免费观看的视频| 国产蜜桃级精品一区二区三区| 波多野结衣高清作品| 亚洲精品影视一区二区三区av| 日本黄色片子视频| 亚洲,欧美,日韩| 在线观看66精品国产| 国产一区二区三区av在线 | 亚洲欧美日韩东京热| 亚洲第一区二区三区不卡| 色噜噜av男人的天堂激情| 国产精品自产拍在线观看55亚洲| 国产精品嫩草影院av在线观看 | 欧美激情久久久久久爽电影| 91久久精品电影网| 国产精品日韩av在线免费观看| 性色avwww在线观看| 亚洲av电影不卡..在线观看| 国产免费男女视频| 一级a爱片免费观看的视频| 露出奶头的视频| 精品一区二区三区视频在线| 中文字幕人妻熟人妻熟丝袜美| 又黄又爽又免费观看的视频| 国产精品福利在线免费观看| 观看美女的网站| 精品无人区乱码1区二区| 免费在线观看日本一区| 日韩欧美 国产精品| 美女黄网站色视频| 国产精品嫩草影院av在线观看 | 色5月婷婷丁香| 国产午夜福利久久久久久| 91麻豆精品激情在线观看国产| 久久久久久久精品吃奶| 久久草成人影院| 国产伦在线观看视频一区| 日韩精品青青久久久久久| 国产高清有码在线观看视频| 中文在线观看免费www的网站| 1000部很黄的大片| 国产高清有码在线观看视频| 天堂网av新在线| 免费看a级黄色片| 69av精品久久久久久| 久久人妻av系列| 在线观看av片永久免费下载| 亚洲黑人精品在线| 日韩一区二区视频免费看| 国产真实伦视频高清在线观看 | 国产精品亚洲一级av第二区| 听说在线观看完整版免费高清| 国产成人aa在线观看| 啦啦啦韩国在线观看视频| 成人高潮视频无遮挡免费网站| 国产精品福利在线免费观看| 一个人观看的视频www高清免费观看| 亚洲成a人片在线一区二区| 窝窝影院91人妻| av福利片在线观看| 国产精品综合久久久久久久免费| 国产一级毛片七仙女欲春2| 欧美+亚洲+日韩+国产| 亚洲真实伦在线观看| 国产男靠女视频免费网站| 亚洲精品日韩av片在线观看| 男女下面进入的视频免费午夜| avwww免费| 久久婷婷人人爽人人干人人爱| 丰满的人妻完整版| 亚洲自偷自拍三级| 国产精品一区二区三区四区久久| 免费不卡的大黄色大毛片视频在线观看 | 美女高潮的动态| 国产淫片久久久久久久久| 日韩欧美精品免费久久| 成人无遮挡网站| 18禁裸乳无遮挡免费网站照片| 亚洲五月天丁香| 亚洲av免费高清在线观看| 岛国在线免费视频观看| а√天堂www在线а√下载| 成人特级av手机在线观看| 精品久久久久久久久av| 一a级毛片在线观看| 国产老妇女一区| 国产精品1区2区在线观看.| 可以在线观看毛片的网站| 亚洲中文日韩欧美视频| 国产在线男女| 国产精品99久久久久久久久| 三级男女做爰猛烈吃奶摸视频| 亚洲国产高清在线一区二区三| 精品人妻偷拍中文字幕| 91av网一区二区| 十八禁网站免费在线| 久久久久久久精品吃奶| 国产淫片久久久久久久久| 午夜精品一区二区三区免费看| 亚洲中文字幕一区二区三区有码在线看| 国产精品人妻久久久影院| 啪啪无遮挡十八禁网站| 观看免费一级毛片| 国产免费一级a男人的天堂| 亚洲精品粉嫩美女一区| 在线看三级毛片| 老司机深夜福利视频在线观看| 国产av在哪里看| 日韩欧美免费精品| 久久草成人影院| 看免费成人av毛片| 久久中文看片网| www.www免费av| 九色国产91popny在线| 九九在线视频观看精品| 精品久久国产蜜桃| 午夜激情福利司机影院| 在线播放无遮挡| 久久人人精品亚洲av| 日本免费a在线| 亚洲欧美精品综合久久99| 白带黄色成豆腐渣| 97超视频在线观看视频| 久9热在线精品视频| 日日夜夜操网爽| ponron亚洲| 俄罗斯特黄特色一大片| 国产淫片久久久久久久久| 赤兔流量卡办理| 亚洲乱码一区二区免费版| 日本免费a在线| 亚洲美女搞黄在线观看 | 淫妇啪啪啪对白视频| 桃色一区二区三区在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产综合懂色| 午夜日韩欧美国产| 成人特级黄色片久久久久久久| 午夜a级毛片| a在线观看视频网站| 国产色婷婷99| 男人舔奶头视频| 日韩欧美免费精品| 精品久久久久久久久久免费视频| 亚洲精品一区av在线观看| 欧美激情在线99| 乱码一卡2卡4卡精品| 成人av一区二区三区在线看| 日韩欧美免费精品| 99久国产av精品| 变态另类成人亚洲欧美熟女| 99热只有精品国产| 日本欧美国产在线视频| a级一级毛片免费在线观看| 日本免费一区二区三区高清不卡| 日本爱情动作片www.在线观看 | 日本五十路高清| www.www免费av| 亚洲av一区综合| 日韩高清综合在线| 欧美成人免费av一区二区三区| 国产激情偷乱视频一区二区| 一区二区三区激情视频| 日韩精品有码人妻一区| 亚洲av一区综合| 如何舔出高潮| 国产探花极品一区二区| 一a级毛片在线观看| 男人的好看免费观看在线视频| 免费观看精品视频网站| 国产三级中文精品| 搡老妇女老女人老熟妇| 国产av麻豆久久久久久久| 国产精品一及| av黄色大香蕉| 黄片wwwwww| 夜夜夜夜夜久久久久| 悠悠久久av| 国产成人影院久久av| 成人国产综合亚洲| 亚洲av熟女| 国产午夜精品论理片| 国产精品日韩av在线免费观看| 国产高清三级在线| 免费电影在线观看免费观看| 九九爱精品视频在线观看| 亚洲精品一区av在线观看| 国产人妻一区二区三区在| 欧美区成人在线视频| av视频在线观看入口| 日韩在线高清观看一区二区三区 | 午夜激情欧美在线| 成人国产一区最新在线观看| 日韩 亚洲 欧美在线| 成年女人看的毛片在线观看| 最后的刺客免费高清国语| 色综合色国产| 我要搜黄色片| 熟妇人妻久久中文字幕3abv| 欧美性感艳星| 日韩欧美在线乱码| 成人特级av手机在线观看| 国产色婷婷99| АⅤ资源中文在线天堂| 日韩大尺度精品在线看网址| 国产成年人精品一区二区| 在线播放国产精品三级| 草草在线视频免费看| 男人狂女人下面高潮的视频| 精品久久久久久,| 中文字幕精品亚洲无线码一区| 日本黄大片高清| 高清毛片免费观看视频网站| 全区人妻精品视频| 国产亚洲av嫩草精品影院| 麻豆成人av在线观看| 欧美成人性av电影在线观看| 十八禁国产超污无遮挡网站| 亚洲第一区二区三区不卡| 女生性感内裤真人,穿戴方法视频| 人妻少妇偷人精品九色| 91在线观看av| 国产一区二区三区av在线 | 神马国产精品三级电影在线观看| 嫩草影院新地址| 99热这里只有是精品50| 日本爱情动作片www.在线观看 | 成人毛片a级毛片在线播放| 久久久久国内视频| 全区人妻精品视频| 日本欧美国产在线视频| 悠悠久久av| 一本一本综合久久| 国产高潮美女av| 精品欧美国产一区二区三| 99视频精品全部免费 在线| 国产精品久久视频播放| 亚洲最大成人中文| 免费人成视频x8x8入口观看| 黄色日韩在线| 在线观看午夜福利视频| 在线天堂最新版资源| 欧美xxxx黑人xx丫x性爽| 亚洲av五月六月丁香网| 亚洲国产精品成人综合色| 欧美日韩瑟瑟在线播放| 日本a在线网址| 日韩国内少妇激情av| 国产黄色小视频在线观看| 中国美白少妇内射xxxbb| 亚洲性夜色夜夜综合| 中文字幕高清在线视频| 亚洲最大成人av| 色综合婷婷激情| a级毛片a级免费在线| 久久久久久久久中文| 久久久久久大精品| 韩国av一区二区三区四区| 噜噜噜噜噜久久久久久91| 18+在线观看网站| 亚洲狠狠婷婷综合久久图片| av在线亚洲专区| 国产精品女同一区二区软件 | 久久久久国内视频| 永久网站在线| 国产美女午夜福利| av天堂在线播放| 麻豆精品久久久久久蜜桃| 国内少妇人妻偷人精品xxx网站| 天天躁日日操中文字幕| 人人妻人人看人人澡| 国产免费av片在线观看野外av| 51国产日韩欧美| 欧美日韩国产亚洲二区| 国产高清激情床上av| 日韩亚洲欧美综合| 一个人看视频在线观看www免费| 99热只有精品国产| 男人狂女人下面高潮的视频| 午夜福利在线观看免费完整高清在 | 在线播放无遮挡| 18禁在线播放成人免费| 日韩精品中文字幕看吧| videossex国产| 在线观看66精品国产| 国产成人影院久久av| 精品一区二区三区视频在线观看免费| 能在线免费观看的黄片| 久久久久久九九精品二区国产| 18禁黄网站禁片午夜丰满| 欧美又色又爽又黄视频| 欧美3d第一页| 草草在线视频免费看| 亚洲美女搞黄在线观看 | 一本久久中文字幕| 亚洲成人久久性| 国内精品宾馆在线| 国产免费一级a男人的天堂| 国产人妻一区二区三区在| 久久精品人妻少妇| aaaaa片日本免费| 亚洲自拍偷在线| 老司机福利观看| 男女下面进入的视频免费午夜| 别揉我奶头 嗯啊视频| 我的女老师完整版在线观看| 免费观看精品视频网站| 国产精品日韩av在线免费观看| 天堂av国产一区二区熟女人妻| 女生性感内裤真人,穿戴方法视频| 久久久久久久久中文| 亚洲国产欧美人成| 色5月婷婷丁香| 亚洲av熟女| 麻豆成人av在线观看| 亚洲av免费高清在线观看| 日本免费一区二区三区高清不卡| 欧美3d第一页| 日韩欧美一区二区三区在线观看| 99热这里只有是精品50| 国产精品三级大全| 在线观看舔阴道视频| а√天堂www在线а√下载| 国产乱人伦免费视频| 嫁个100分男人电影在线观看| 欧美日韩黄片免| 日韩亚洲欧美综合| 夜夜看夜夜爽夜夜摸| 午夜老司机福利剧场| 黄色配什么色好看| 国产黄a三级三级三级人| 中文字幕人妻熟人妻熟丝袜美| 精华霜和精华液先用哪个| 三级毛片av免费| 又紧又爽又黄一区二区| 免费大片18禁| 美女被艹到高潮喷水动态| 久久久久久久久大av| 婷婷丁香在线五月| 亚洲精品一区av在线观看| 成人av在线播放网站| 国产精品久久久久久久电影| 久久久久久久精品吃奶| 国产老妇女一区| 别揉我奶头~嗯~啊~动态视频| 国产乱人视频| 国产精品伦人一区二区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品亚洲一区二区| 很黄的视频免费| 日本色播在线视频| 老女人水多毛片| 长腿黑丝高跟| 尾随美女入室| 97热精品久久久久久| 麻豆久久精品国产亚洲av| 韩国av在线不卡| 国产不卡一卡二| 国产又黄又爽又无遮挡在线| 露出奶头的视频| 国产精品一区二区三区四区免费观看 | 成人午夜高清在线视频| 国产老妇女一区| 久99久视频精品免费| 亚洲欧美日韩无卡精品| 国产大屁股一区二区在线视频| 女生性感内裤真人,穿戴方法视频| 国产精品人妻久久久久久| 国产精品精品国产色婷婷| 国产白丝娇喘喷水9色精品| 99riav亚洲国产免费| 99久久久亚洲精品蜜臀av| 欧美色视频一区免费| 一区二区三区高清视频在线| av女优亚洲男人天堂| 国产一级毛片七仙女欲春2| 18禁裸乳无遮挡免费网站照片| 伦理电影大哥的女人| 深爱激情五月婷婷| 联通29元200g的流量卡| 亚洲精品粉嫩美女一区| 18+在线观看网站| 国产一区二区亚洲精品在线观看| 日韩一区二区视频免费看| 国国产精品蜜臀av免费| 啦啦啦韩国在线观看视频| 久久精品综合一区二区三区| 看黄色毛片网站| 俄罗斯特黄特色一大片| 国产免费男女视频| 夜夜爽天天搞| 国产三级中文精品| 在线免费十八禁| 亚洲中文字幕一区二区三区有码在线看| 国产亚洲精品久久久com| 999久久久精品免费观看国产| 亚洲最大成人手机在线| 日本成人三级电影网站| 亚洲五月天丁香| 亚洲精品一卡2卡三卡4卡5卡| 一个人免费在线观看电影| netflix在线观看网站| 成人特级av手机在线观看| 国产又黄又爽又无遮挡在线| 久久中文看片网| 观看免费一级毛片| 一进一出好大好爽视频| 乱码一卡2卡4卡精品| 国产成年人精品一区二区| 亚洲在线自拍视频| 免费高清视频大片| 黄色欧美视频在线观看| 变态另类丝袜制服| 看片在线看免费视频| 色综合站精品国产| 亚洲午夜理论影院| 亚洲精品国产成人久久av| 久久久久久久亚洲中文字幕| 国产精品国产三级国产av玫瑰| 天堂影院成人在线观看| 久久精品国产自在天天线| 午夜久久久久精精品| 免费高清视频大片| 久久久久久久久中文| 男女之事视频高清在线观看| 少妇熟女aⅴ在线视频| 中国美女看黄片| 国产午夜福利久久久久久| 别揉我奶头~嗯~啊~动态视频| 此物有八面人人有两片| 夜夜夜夜夜久久久久| 少妇人妻一区二区三区视频| 性欧美人与动物交配| 久久精品国产自在天天线| 欧美国产日韩亚洲一区| 一进一出好大好爽视频| 尤物成人国产欧美一区二区三区| 国产精品,欧美在线| 国产综合懂色| 长腿黑丝高跟| 赤兔流量卡办理| 一级毛片久久久久久久久女| 中文资源天堂在线| 亚洲七黄色美女视频| 欧美日韩瑟瑟在线播放| 美女cb高潮喷水在线观看| 麻豆久久精品国产亚洲av| 成人性生交大片免费视频hd| 国产精品综合久久久久久久免费| 在线免费十八禁| 国产一区二区三区视频了| 亚洲人成伊人成综合网2020| 97人妻精品一区二区三区麻豆| 性欧美人与动物交配| 久久99热这里只有精品18| 午夜久久久久精精品| 国产欧美日韩精品亚洲av| 99热这里只有是精品50| 波多野结衣高清作品| 中文字幕高清在线视频| 哪里可以看免费的av片| 啦啦啦韩国在线观看视频| 亚洲狠狠婷婷综合久久图片| 国产亚洲精品av在线| 日本a在线网址| 国产探花极品一区二区| 欧美成人a在线观看| 久久久久久九九精品二区国产| 热99re8久久精品国产| 午夜影院日韩av| 成人二区视频| 亚洲成人精品中文字幕电影| 一本精品99久久精品77| 国内揄拍国产精品人妻在线| 一本精品99久久精品77| 久久久成人免费电影| 99精品在免费线老司机午夜| 久久人人爽人人爽人人片va| 91狼人影院| 亚洲精品影视一区二区三区av| 国产熟女欧美一区二区| 99久久精品国产国产毛片| 中文字幕av成人在线电影| 午夜福利成人在线免费观看| 久久中文看片网| 国产综合懂色| 极品教师在线免费播放| 网址你懂的国产日韩在线| 久久久久九九精品影院| 人妻夜夜爽99麻豆av| 亚洲人与动物交配视频| 国产精品无大码| 成人美女网站在线观看视频| 在线观看美女被高潮喷水网站| 国产午夜精品论理片| 中亚洲国语对白在线视频| 欧美三级亚洲精品| 别揉我奶头~嗯~啊~动态视频| 一级a爱片免费观看的视频| 精品一区二区三区av网在线观看| 精品久久国产蜜桃| 搞女人的毛片| 日韩av在线大香蕉| 欧美日韩黄片免| 少妇人妻精品综合一区二区 | 在现免费观看毛片| 久久久久久九九精品二区国产| 97超级碰碰碰精品色视频在线观看|