• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Glassy dynamics of model colloidal polymers:Effect of controlled chain stiffness?

    2021-03-19 03:21:04JianLi李健BokaiZhang張博凱andYuShanLi李玉山
    Chinese Physics B 2021年3期
    關(guān)鍵詞:玉山李健

    Jian Li(李健), Bo-kai Zhang(張博凱), and Yu-Shan Li(李玉山),?

    1Department of Physics and Electronic Engineering,Heze University,Heze 274015,China

    2Department of Physics,Zhejiang Sci-Tech University,Hangzhou 310018,China

    Keywords: glassy dynamics,colloidal polymers,molecular dynamics,mean square displacement

    1. Introduction

    Polymers are among the most studied materials for slow dynamics and glass transitions since they are difficult to crystallize due to their chain structure.[1-5]Lots of theoretical and numerical works have been devoted to fundamentally understanding their nonequilibrium slow dynamics and topological properties.[6-11]Chain structure and intramolecular barrier are two important polymer-specific features which cause the distinct dynamical behaviors of polymer melt from those of molecular liquids. For example, chain connectivity causes Rouse-like sub-diffusive motion of monomers at intermediate time.[7,12-14]Additionally,the intramolecular barrier plays an important role in glass transitions of polymers. Simulations and mode coupling theory(MCT)calculations on beadspring chains found that the increase of the intramolecular barrier strength increases the MCT exponent and MCT critical temperature.[15-20]

    In recent years, attempts have been made to assemble“colloidal monomers,”e.g.,inorganic nanoparticles,into chain structures,termed“colloidal polymers”or“nanopolymers”or“nanochains.”[21]Colloidal polymers combine the features of both colloids (e.g., the large size of elements) and molecular polymers (e.g., the chain connectivity). Importantly, colloidal polymers provide a tool to observe glass transition in the real space with confocal microscope. In experiments,colloidal monomers form colloidal chains through attractive, directional, interparticle interactions, which are similar to covalent or supramolecular interactions in molecular chains.[21]In contrast to the high degree of structural control available in the synthesis of molecular polymers, methods to control fundamental structural features of colloidal polymers are still being developed.[22-26]However,colloidal polymers with tunable chain stiffness have been successfully assembled in experiments.[27-29]Similar to molecular polymers,chain stiffness can play an important role in glass transitions and slow dynamics of colloidal polymers. This stimulates us to study the effect of chain stiffness on glassy dynamics of colloidal polymers.

    In our previous work,[30]we proposed a model to address the large monomer size of flexible colloidal polymers and study their glassy dynamics. We focused on the quantitative differences in the static structure and slow dynamics as the polymers vary from molecular chains to colloidal chains.Here, we build a model of colloidal polymer with controlled chain stiffness. By the new model, we employ molecular dynamic (MD) simulations to investigate the slow dynamics of the dense systems composed of colloidal polymers with controlled chain stiffness.The Newtonian dynamics is adopted instead of Brownian dynamics,because(1)the microscopic law of motion does not essentially influence the long-time glassy behavior;[31-34](2)we can thus use velocity-Verlet algorithm and large time step,i.e.,it is computationally more efficient.

    The paper is organized as follows. We describe our colloidal polymer model with controlled chain stiffness and simulation method in Section 2. The results and discussion are given in Section 3. In Subsection 3.1, we report the results of static structure, including intrachain pair correlation and radial distribution function. The dynamic properties are reported in Subsections 3.2 and 3.3, such as the mean squared displacement,localization length,and Characteristic time. Finally, static and dynamic equivalences are discussed in Subsection 3.4. We summarize the paper in Section 4.

    2. Model and simulation details

    We use the purely repulsive Weeks-Chandler-Anderson potential, which is shifted to the surface (WCAS), to model the monomer-monomer excluded-volume interaction[35]

    where r is the center-to-center distance between monomers,σ is the Lennard-Jones (LJ) diameter, and ε is the characteristic energy. The potential is cut off at rc=21/6σ. Δ is the diameter of the hard core of the colloidal monomers. Similar potential has already been used to study the self-assembling of polymer-tethered nanospheres and nanorods.[35]We change Δ to modify the monomer size.The potential reduces to the common WCA potential for molecular monomers when Δ =0.We define the nominal diameter of monomers as σp=Δ+rc,which is adjustable by the value of Δ. We adopt the LJ units,i.e., ε =1, σ =1, the Boltzmann’s constant kB=1, and the monomer mass m=1.

    In addition to UWCAS,the bond connection between successive monomers along the chain is modeled by the finitely extensible nonlinear elastic springs (FENESs),[36]which is also shifted to the surface,

    The parameters K =30 and R0=1.5. The composition of the WCAS potential and the FENES potential yields the effective bond potential with a sharp minimum at rb= Δ +0.9606. The bonded and non-bonded potentials prevent the chains from crossing. The incompatible length scales(σpand rb) and the flexibility of the chains make the system avoid crystallization.[6]Therefore, contrary to the colloidal system,polydispersity of monomer sizes is not required to generate the amorphous state at high volume fractions.

    From the view of coarse-grained model,the major feature of colloidal polymers that is different from molecular polymers is the large monomer size (large repulsive core). In experiments, the colloidal polymers can be assembled through nanoparticles linked by coated polymer shell and the monomer size of the colloidal polymers typically varies from 5 nm to 60 nm.[21,23]Our model corresponds to this case of nanoparticles linked by coated polymer shell. Δ+rcis varied to represent the different sizes of the repulsive core.

    The chain stiffness is controlled by a cosine harmonic bending potential,which acts on three consecutive monomers along the chain,

    where θ is the bending angle between consecutive monomers i?1, i, and i+1 (2 ≤i ≤N ?1). The angle between adjacent pairs of bonds is maintained close to the equilibrium value θ0=180?,which can effectively represent the monomer directionality of the colloidal polymers. Additionally, the bending constant kθis varied to obtain different chain stiffnesses. The intuitive diagram of the chain of three monomers is shown in Fig.1,and the parameters σp,rb,and θ are marked.

    Fig.1. The intuitive diagram of the chain of three monomers.

    3. Results and discussion

    3.1. The static structural properties

    The static structural properties of five chain stiffnesses for σp=4.0 and φ =0.575 are shown in Fig.2. The main peak of the radial distribution function (RDF) g(r) splits into two as a consequence of two incompatible local length scales, i.e., monomer size and bond length (Fig.2(a)). The strongest peak is located near rb/σp, contributed mostly by the jointed monomers, while the shoulder peak appears at r/σpcloser to 1, reflecting the characteristic distance of the excluded volume interaction between monomers. For stiff chains, i.e., kθ/= 0, a sharp maximum appears in the second peak of g(r). The reduced position and height of the sharp maximum shift differently to smaller and larger values for larger bending constant. The average intrachain pair correlation function ω(r) and histogram of bending angle n(θ) (inset) are shown in Fig.2(b). The position of the first peak of ω(r) corresponds to the distance between the jointed monomers too. ω(r)decays rapidly with r for flexible chains, reflecting that the intrachain correlation is very shortranged.However,ω(r)exhibits long-ranged periodic decayed peaks with r for stiff chains, and the position and height of the same-order peak shift to larger values for larger bending constant. The characteristic length between the (i ?1)th and (i+1)th monomers in a chain can be reflected by the peak’s position of the histogram of bending angle (Fig.2(b)inset). For flexible chains, i.e., kθ=0, two peaks emerge in the histograms of bending angles,which means there are two characteristic lengths. The positron of the first strong peak represents the characteristic length near σp, and the position of the second weak peak is close to that of the only peak of stiff chains. For stiff chains,the position of the only peak represents the characteristic length shifted to 2rb, and the position and height of the peak also shift to larger values for larger bending constant.

    Fig.2. The static structural properties of five chain stiffnesses for monomersize and volume-fraction combination σp =4.0, φ =0.575. (a) The radial distribution function g(r). (b)The intrachain pair correlation function ω(r)and the inset shows the histogram of bending angle n(θ).

    3.2. The mean square displacement

    The mean square displacement (MSD) of monomers is defined as

    where rijis the position of the monomer j in the ith chain.The MSD of five chain stiffnesses for two monomer-size and volume-fraction combinations is shown in Fig.3. For flexible chains, three regimes are observed: ballistic regime, Rouselike subdiffusive regime,and normal diffusive regime.For stiff chains,a caging regime with significant smaller exponent or a horizontal plateau emerges after the ballistic motion, indicating the phenomenon of localization. At long time, MSD restores the sub-diffusive motion. The Rouse-like sub-diffusion of flexible chains happens in the displacement range between bond length rband end-to-end distance Re. These two lengths(squared) are marked out in Fig.3 as dashed lines. Revaries largely with chain stiffness, e.g., for combination σp=21/6,φ =0.78,Re=3.5 when kθ=0 and Re=6.7 when kθ=30;for combination σp=4.0,φ =0.575,Re=13.6 when kθ=0 and Re=26.2 when kθ=30. The sub-diffusion of monomers and diffusion of chains in polymer melts depend on many factors such as chain architecture, chain stiffness, chain length,and intrachain excluded volume interaction.[37-41]Different sub-diffusive regimes of monomers have been observed.[37-39]For our model of colloidal polymers, we find that the subdiffusive exponent α depends on the chain stiffness, which increases from 0.63 to 0.78 with the bending constant kθ(see Fig.3(c)).

    Fig.3. Mean square displacement〈r2(t)/σ2〉of monomers for fvie chain stiffnesses. (a) The monomer-size and volume-fraction combinations σp =21/6, φ =0.78. (b) σp =4.0, φ =0.575. The end points between ballistic and caging regimes are marked with open circles and those between caging and sub-diffusive regimes are marked with open squares. The square bond length and end-to-end distance of chains are marked out as dashed lines. (c)The sub-diffusive exponent α as a function of bending constant kθ for two monomer-size and volume-fraction combinations.

    Fig.4. Mean square displacement〈r2(t)/σ2〉of monomers for stiff chains with bending constant kθ =25. (a)The monomer size σp=21/6 and the volume fractions are(from top to bottom)0.60,0.72,0.75,0.78,0.79,0.80. (b)The monomer size σp=4.0 and the volume fractions are(from top to bottom)0.45, 0.525, 0.55, 0.565, 0.575, 0.58. The end points between ballistic and caging regimes are marked with open circles and those between caging and sub-diffusive regimes are marked with open squares. The square bond length and end-to-end distance of chains are marked out as dashed lines.(c)The sub-diffusive exponent α as a function of volume fraction φ for two monomer-size and bending-constant combinations.

    Fig.5. Log-linear plot of/σp (solid symbols) ?and R/σp (open symbols) as functions of scaled volume fraction φ/φfor stiff chains with bending constant kθ = 25. Two lines represent exponential relations rloc/σp ≈15.61exp(?3.33φ/φ?) (solid line) and R/σp ≈10.96exp(?2.75φ/φ?)(dashed line).

    3.3. Characteristic time

    Slow dynamics of glass forming liquids is often analyzed by the intermediate(self-)scattering function

    Fig.6.The incoherent intermediate scattering function Fs(q,t)for monomers.(a)The curves of σp=21/6,φ =0.78(solid symbols)and those of σp=4.0,φ = 0.575 (open symbols) for five chain stiffnesses. (b) The curves of σp = 21/6, kθ = 25 (solid line) for volume fractions (from left to right)φ =0.80, 0.79, 0.78, 0.75 and those of σp =4.0, kθ =25 (dashed line) for volume fractions(from left to right)φ=0.575,0.565,0.55,0.525.q is chosen to be the value corresponding the first peak of the static structure factor. The relaxation time τα is defined as Fs(q,t=tα)=0.1.

    Such correlation function accounts for the loss in time of the memory of the initial structural configuration. Usually, the q is chosen to be the position of the first peak of the static structure factor. The Fs(q,t) for two monomer-size and volumefraction combinations at five bending constants is shown in Fig.6(a).For the two combinations,the Fs(q,t)decays slower as the increase of bending constants. We define the α relaxation time ταas when Fs(q,t=tα)=0.1. At long time,i.e., Fs(q,t)<0.2, the decay of Fs(q,t) displays good time-(volume fraction) and time-(monomer size) superposition for stiff chains(see Fig.6(b)),which is in agreement with that of flexibale chains.[30]At short time, a two-step decay (caging)is observed.

    Figure 7 shows the variation of τα/τLJas a function of bending constant kθfor three monomer-size and volumefraction combinations. τα/τLJexponentially increases with kθ,which can be well fitted by the formula

    where E is the activation energy of the system. In our simulations,the reduced temperature is fixed at T?=1.0.Comparing the fitted formula and the Arrhenius behavior,we find that the increase of bending constant kθlinearly increases the activation energy E of the colloidal-polymer system.

    Fig.7. Log-linear plot of τα/τLJ as a function of bending constant kθ for three monomer-size and volume-fraction combinations,which is fitted by Eq.(6).

    Fig.8. The relations between the α relaxation time and volume fraction for four monomer-size and bending-constant combinations are fitted by Eq.(8).

    Fig.9. The MCT critical volume fraction φc as a function of bending constant kθ for three monomer sizes.

    MCT theory predicts a power-law divergence of the α relaxation time as the MCT critical point is approached. For hard-sphere colloids, it is volume-fraction controlled and the power-law relation is written as

    where γ ≈2.6 and φc≈0.52.[48]In Fig.8,we fit ταby Eq.(8)for four monomer-size and bending-constant combinations.We obtain φc= 0.89 and γ = 2.52 for σp= 21/6, kθ= 0;φc=0.82 and γ =3.44 for σp=21/6, kθ=25; φc=0.63 and γ =1.89 for σp=4.0, kθ=0; φc=0.59 and γ =2.44 for σp= 4.0, kθ= 25. We also fit ταby Eq. (8) for the other monomer-size and bending-constant combinations, and the critical volume fraction φcdecreases with bending constant kθfor three monomer sizes(see Fig.9).

    3.4. Static and dynamic equivalences

    In flexible colloidal-polymer systems, we find that the three colloidal-polymer systems(σp=21/6,φ =0.82),(σp=2,φ = 0.665), and (σp= 4,φ = 0.59) have the same hardshpere equivalent volume fraction φHS=0.503 and the hardshpere equivalent diameters are σHS=0.93, 1.766, and 3.72,respectively.[30]At this equivalent volume fraction (φHS=0.503), the RDFs (static quantities) coincide well at distance beyond the first peak, and the date of dynamic quantities(MSDs)collapse well onto the master curves.

    In Fig.10,we check the static and dynamic equivalences of these three combinations in stiff-chain systems. For chains with bending constants kθ=5 and kθ=15, we find that the static RDFs do not coincide well because of the sharp maximums of the second peaks (see Figs. 10(a) and 10(b)), but the date of MSDs collapse well onto the master curves (see Figs.10(c)and 10(d)).

    Fig.10. Static and dynamic equivalences for combinations (σp =21/6,φ =0.82), (σp =2, φ =0.665), and (σp =4, φ =0.59) in the stiffchain systems. (a)and(b)The radial distribution functions for chains with bending constants kθ =5 and kθ =15. (c)and(d)The mean square displacements for chains with bending constants kθ =5 and kθ =15.

    4. Summary

    In this paper,we model colloidal polymer with chain stiffness. We focus on the quantitative differences in the static structure and glassy dynamics of the colloidal polymers between flexible chains and stiff chains. The two incompatible local lengths, i.e., monomer size and bond length, are manifested in the split of the first peak of RDF. For stiff chains, a sharp maximum appears in the second peak of RDF. In contrast to the very short-ranged intrachain correlation of flexible chains,the average intrachain pair correlation function of stiff chains exhibits long-ranged periodic decayed peaks. The subdiffusive exponent of the MSD of monomers increases with chain stiffness.For stiff chains with bending constant kθ=25,when the volume fraction is above a threshold value φ?, a caging regime emerges in the MSD. As anticipated, φ?decreases with the increase of the monomer size: φ?≈0.65 for σp=21/6, φ?≈0.55 for σp=2, and φ?≈0.49 for σp=4.If φ?is used as the scaling unit for the volume fraction, the data of localization length versus volume fractions for different monomer sizes gather close to an exponential curve. The values of localization length of stiff chains are all larger and decay slower than those of flexible chains. Comparing the exponential fitted equation of the α relaxation time as a function of bending constant with the Arrhenius formula, it is found that the active energy of colloidal-polymer systems is linearly increased with the increase of chain stiffness.The α relaxation time of colloidal polymers can be well fit by the MCT powerlaw relation. The fitted values of φcare decreased with the increase of chain stiffness. Static and dynamic equivalences between stiff colloidal polymers of different monomer sizes have also been checked. We find that the curves of MSD can coincide well but the static RDF does not coincide well because of the sharp maximum of the second peaks. Finally, the model can be generalized to investigate more colloidal-polymer materials including the impacts of bond length, attractive force,and various topological structures.

    猜你喜歡
    玉山李健
    月季盆景欣賞(二)
    花卉(2023年15期)2023-08-09 08:05:04
    月季盆景欣賞(一)
    花卉(2023年13期)2023-07-07 10:26:24
    Gauss quadrature based finite temperature Lanczos method
    新年獻辭
    附式石盆景欣賞
    花卉(2021年9期)2021-05-15 09:57:28
    李健 藏石欣賞
    寶藏(2018年12期)2019-01-29 01:51:10
    李健 用平淡演繹傳奇
    海峽姐妹(2018年10期)2018-12-26 01:21:06
    李健作品
    李健美術(shù)作品六幅
    戲劇之家(2018年12期)2018-06-13 10:08:20
    《補玉山居》:破解時代的寓言
    小說月刊(2015年3期)2015-04-19 07:05:52
    日韩国内少妇激情av| 偷拍熟女少妇极品色| 亚洲av中文字字幕乱码综合| www.www免费av| av在线观看视频网站免费| 天堂影院成人在线观看| 99久久精品国产国产毛片| 最新中文字幕久久久久| 伊人久久精品亚洲午夜| 日韩欧美精品免费久久| 五月伊人婷婷丁香| 精品一区二区三区av网在线观看| 欧美在线一区亚洲| 精品久久久久久久久亚洲 | 天堂网av新在线| 亚洲av免费高清在线观看| 久久久成人免费电影| 熟妇人妻久久中文字幕3abv| 麻豆成人午夜福利视频| av专区在线播放| 长腿黑丝高跟| 精品福利观看| 别揉我奶头~嗯~啊~动态视频| 日韩欧美一区二区三区在线观看| 婷婷亚洲欧美| 国产69精品久久久久777片| 美女xxoo啪啪120秒动态图| 国产 一区精品| 内射极品少妇av片p| 极品教师在线视频| 欧美成人性av电影在线观看| avwww免费| 日韩精品中文字幕看吧| 精品久久久久久成人av| а√天堂www在线а√下载| 精品久久久久久久久亚洲 | 国产精品人妻久久久影院| 在线观看免费视频日本深夜| 97超级碰碰碰精品色视频在线观看| 国产亚洲91精品色在线| 少妇高潮的动态图| 成年女人毛片免费观看观看9| 九九热线精品视视频播放| 五月玫瑰六月丁香| 国产精品98久久久久久宅男小说| 久久草成人影院| 免费搜索国产男女视频| 日韩欧美三级三区| 97碰自拍视频| 天天一区二区日本电影三级| 又爽又黄a免费视频| 一边摸一边抽搐一进一小说| 变态另类丝袜制服| 深夜a级毛片| .国产精品久久| 国产伦精品一区二区三区四那| 老司机午夜福利在线观看视频| 69人妻影院| avwww免费| 九九在线视频观看精品| 成人综合一区亚洲| 国产欧美日韩一区二区精品| 淫秽高清视频在线观看| 色噜噜av男人的天堂激情| 亚洲色图av天堂| 最近最新中文字幕大全电影3| 国产美女午夜福利| 啪啪无遮挡十八禁网站| 99久久中文字幕三级久久日本| 中亚洲国语对白在线视频| 国产av不卡久久| 日韩在线高清观看一区二区三区 | 久久久久精品国产欧美久久久| x7x7x7水蜜桃| 俺也久久电影网| 色哟哟·www| 亚洲精品一区av在线观看| 在线观看66精品国产| 久久久精品大字幕| 极品教师在线视频| 成年人黄色毛片网站| 国产精品三级大全| 亚洲国产精品sss在线观看| 欧美区成人在线视频| 在线播放国产精品三级| 少妇人妻精品综合一区二区 | 久久6这里有精品| 99久久中文字幕三级久久日本| 中国美白少妇内射xxxbb| 老师上课跳d突然被开到最大视频| 国产v大片淫在线免费观看| 午夜福利视频1000在线观看| 国产精品三级大全| 精品一区二区三区人妻视频| 国产精品一区二区免费欧美| 男人狂女人下面高潮的视频| 亚洲精品久久国产高清桃花| 亚洲国产欧美人成| 在线观看一区二区三区| 国内精品美女久久久久久| 欧美绝顶高潮抽搐喷水| 十八禁国产超污无遮挡网站| 亚洲成a人片在线一区二区| 99riav亚洲国产免费| 露出奶头的视频| 国产精品,欧美在线| 亚洲欧美日韩高清专用| 亚洲性夜色夜夜综合| 精品一区二区免费观看| 深夜a级毛片| 精品一区二区三区人妻视频| 国产熟女欧美一区二区| 搞女人的毛片| 欧美一级a爱片免费观看看| 又爽又黄无遮挡网站| 一本一本综合久久| а√天堂www在线а√下载| 久久久成人免费电影| 午夜影院日韩av| 91久久精品电影网| 伦理电影大哥的女人| 在线国产一区二区在线| 又爽又黄无遮挡网站| 一区二区三区免费毛片| a级毛片a级免费在线| 99热只有精品国产| 国产乱人视频| 女同久久另类99精品国产91| 伦精品一区二区三区| 中文字幕高清在线视频| 级片在线观看| 最新在线观看一区二区三区| 国产精品嫩草影院av在线观看 | 狂野欧美激情性xxxx在线观看| 最新中文字幕久久久久| 久久精品久久久久久噜噜老黄 | 人人妻,人人澡人人爽秒播| 免费在线观看影片大全网站| 欧美区成人在线视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲专区国产一区二区| 亚洲精品一卡2卡三卡4卡5卡| 黄色日韩在线| 网址你懂的国产日韩在线| 亚洲经典国产精华液单| 网址你懂的国产日韩在线| 网址你懂的国产日韩在线| 又紧又爽又黄一区二区| 国语自产精品视频在线第100页| 久久精品国产亚洲av涩爱 | 九色成人免费人妻av| 亚洲av美国av| 欧美日本亚洲视频在线播放| 国产亚洲精品av在线| 亚洲天堂国产精品一区在线| 特大巨黑吊av在线直播| av女优亚洲男人天堂| 日韩高清综合在线| 一区二区三区四区激情视频 | 九九爱精品视频在线观看| 欧美色欧美亚洲另类二区| 在线免费观看不下载黄p国产 | 老司机深夜福利视频在线观看| 国产伦精品一区二区三区四那| 99热精品在线国产| 日韩欧美国产在线观看| 美女cb高潮喷水在线观看| 国产精品自产拍在线观看55亚洲| 亚洲内射少妇av| 国产一区二区在线av高清观看| 欧美黑人欧美精品刺激| 他把我摸到了高潮在线观看| 在线观看一区二区三区| 亚洲乱码一区二区免费版| 免费看a级黄色片| 亚洲精品在线观看二区| 国产精品综合久久久久久久免费| 午夜福利在线观看免费完整高清在 | 久久草成人影院| bbb黄色大片| 狂野欧美白嫩少妇大欣赏| 久久午夜亚洲精品久久| 午夜免费激情av| 日本爱情动作片www.在线观看 | 国产精品av视频在线免费观看| 久久热精品热| 夜夜看夜夜爽夜夜摸| 免费av不卡在线播放| 特级一级黄色大片| 国产精品不卡视频一区二区| 乱码一卡2卡4卡精品| 日本黄色片子视频| 1024手机看黄色片| 国产黄色小视频在线观看| 美女高潮喷水抽搐中文字幕| 高清日韩中文字幕在线| 日韩欧美一区二区三区在线观看| 男女下面进入的视频免费午夜| 亚洲欧美日韩无卡精品| 亚洲成人久久性| 国产女主播在线喷水免费视频网站 | 欧美三级亚洲精品| av福利片在线观看| 日韩精品中文字幕看吧| 黄色配什么色好看| 欧美不卡视频在线免费观看| 老熟妇乱子伦视频在线观看| 婷婷亚洲欧美| 国产精品1区2区在线观看.| 国产白丝娇喘喷水9色精品| 少妇高潮的动态图| 欧美精品啪啪一区二区三区| 亚洲色图av天堂| 亚洲av第一区精品v没综合| 99久久成人亚洲精品观看| 国产探花在线观看一区二区| 成人av在线播放网站| 精品一区二区三区视频在线| 观看美女的网站| 男女之事视频高清在线观看| 桃红色精品国产亚洲av| 欧美色欧美亚洲另类二区| 亚洲国产精品久久男人天堂| 免费人成在线观看视频色| 搞女人的毛片| 动漫黄色视频在线观看| 97碰自拍视频| 亚洲成人中文字幕在线播放| 88av欧美| 国产伦人伦偷精品视频| 少妇猛男粗大的猛烈进出视频 | 日本免费一区二区三区高清不卡| 国产免费一级a男人的天堂| 久久国产乱子免费精品| avwww免费| 精品久久久久久,| 欧美不卡视频在线免费观看| 99热这里只有精品一区| 男人和女人高潮做爰伦理| 18禁黄网站禁片午夜丰满| 老司机福利观看| 国产色爽女视频免费观看| 在线观看舔阴道视频| 日韩中文字幕欧美一区二区| av天堂在线播放| 国产精品av视频在线免费观看| 亚洲av日韩精品久久久久久密| 一区二区三区四区激情视频 | 内射极品少妇av片p| 国产探花极品一区二区| 亚洲第一区二区三区不卡| 一a级毛片在线观看| 亚洲av成人av| 亚洲精品影视一区二区三区av| 热99re8久久精品国产| 欧美丝袜亚洲另类 | 永久网站在线| 精品国产三级普通话版| 乱人视频在线观看| 99riav亚洲国产免费| 国内精品久久久久久久电影| 直男gayav资源| 老司机深夜福利视频在线观看| 悠悠久久av| 久久久成人免费电影| 一级毛片久久久久久久久女| 亚洲欧美日韩高清专用| 欧美日韩亚洲国产一区二区在线观看| 免费一级毛片在线播放高清视频| 日本-黄色视频高清免费观看| 久久久午夜欧美精品| 五月伊人婷婷丁香| 亚洲一级一片aⅴ在线观看| 狂野欧美激情性xxxx在线观看| 精品久久久久久久末码| 97热精品久久久久久| 非洲黑人性xxxx精品又粗又长| 校园春色视频在线观看| 亚洲在线观看片| 中文资源天堂在线| 亚洲电影在线观看av| 精品久久久久久,| 国产欧美日韩精品亚洲av| 国产成人福利小说| 欧美成人性av电影在线观看| 日本一二三区视频观看| 国产亚洲欧美98| 天堂网av新在线| 人妻制服诱惑在线中文字幕| 不卡一级毛片| 3wmmmm亚洲av在线观看| 嫩草影院精品99| 1024手机看黄色片| 欧美国产日韩亚洲一区| 天天一区二区日本电影三级| 日韩欧美国产一区二区入口| 国产成年人精品一区二区| 岛国在线免费视频观看| 一进一出抽搐动态| 真实男女啪啪啪动态图| 国产白丝娇喘喷水9色精品| 亚洲美女黄片视频| 国产男人的电影天堂91| 欧美激情在线99| 能在线免费观看的黄片| 直男gayav资源| 少妇的逼水好多| 国产精品98久久久久久宅男小说| 国产三级中文精品| 亚洲av免费在线观看| 69av精品久久久久久| 久久精品国产亚洲网站| 大又大粗又爽又黄少妇毛片口| 成年版毛片免费区| av中文乱码字幕在线| 97超视频在线观看视频| 99九九线精品视频在线观看视频| 麻豆成人午夜福利视频| 亚洲天堂国产精品一区在线| 国产精品国产高清国产av| 人人妻人人澡欧美一区二区| 亚洲熟妇中文字幕五十中出| 久久午夜福利片| 97超级碰碰碰精品色视频在线观看| 老师上课跳d突然被开到最大视频| 色综合色国产| 2021天堂中文幕一二区在线观| 久久精品影院6| 97热精品久久久久久| 一级av片app| 久久久精品大字幕| 网址你懂的国产日韩在线| 日韩欧美精品v在线| 男女边吃奶边做爰视频| 成人无遮挡网站| 欧美3d第一页| 午夜视频国产福利| 三级国产精品欧美在线观看| 久久久久久久久大av| 最近视频中文字幕2019在线8| 嫁个100分男人电影在线观看| 日本三级黄在线观看| 亚洲狠狠婷婷综合久久图片| 国产精品一区www在线观看 | 亚洲电影在线观看av| 国产一区二区三区av在线 | 久久国产精品人妻蜜桃| 亚洲国产精品合色在线| 日本五十路高清| 女生性感内裤真人,穿戴方法视频| 久久国内精品自在自线图片| 色尼玛亚洲综合影院| 亚洲性久久影院| 神马国产精品三级电影在线观看| 欧美性猛交黑人性爽| 国产淫片久久久久久久久| av在线老鸭窝| 色综合色国产| 国产男靠女视频免费网站| 国产一区二区激情短视频| 精品久久久久久久末码| 欧美高清性xxxxhd video| 国产精品乱码一区二三区的特点| 成人av一区二区三区在线看| 香蕉av资源在线| 99国产精品一区二区蜜桃av| 亚洲欧美激情综合另类| 啦啦啦观看免费观看视频高清| 国产精品久久久久久久电影| 丰满的人妻完整版| 久久6这里有精品| 老女人水多毛片| 免费观看在线日韩| 香蕉av资源在线| 女人十人毛片免费观看3o分钟| aaaaa片日本免费| 午夜视频国产福利| 久久热精品热| 麻豆国产97在线/欧美| 久久久国产成人免费| 国产欧美日韩精品一区二区| 欧美区成人在线视频| 精品乱码久久久久久99久播| 春色校园在线视频观看| 国产综合懂色| 亚洲av五月六月丁香网| 久久婷婷人人爽人人干人人爱| 亚洲aⅴ乱码一区二区在线播放| 一级av片app| 在线国产一区二区在线| 亚洲成人久久性| 亚洲av免费在线观看| av女优亚洲男人天堂| 一本精品99久久精品77| 欧美最新免费一区二区三区| 欧美bdsm另类| 女人十人毛片免费观看3o分钟| 精品午夜福利视频在线观看一区| 熟妇人妻久久中文字幕3abv| 国产一区二区三区av在线 | 啦啦啦观看免费观看视频高清| 亚洲经典国产精华液单| 国产精品一及| 午夜精品久久久久久毛片777| 窝窝影院91人妻| 22中文网久久字幕| 琪琪午夜伦伦电影理论片6080| 国产中年淑女户外野战色| 日韩在线高清观看一区二区三区 | 丰满的人妻完整版| 一边摸一边抽搐一进一小说| 真实男女啪啪啪动态图| 久久香蕉精品热| 88av欧美| 久久久国产成人免费| 小蜜桃在线观看免费完整版高清| 精品人妻1区二区| 久久6这里有精品| 观看免费一级毛片| 老熟妇仑乱视频hdxx| or卡值多少钱| 国产单亲对白刺激| 亚洲经典国产精华液单| 久久久久久久久大av| 亚洲成人久久爱视频| 特级一级黄色大片| 久久久成人免费电影| 美女cb高潮喷水在线观看| 日韩一区二区视频免费看| 最好的美女福利视频网| 91在线精品国自产拍蜜月| 欧美国产日韩亚洲一区| 国产精品亚洲一级av第二区| 色吧在线观看| 男插女下体视频免费在线播放| 午夜精品一区二区三区免费看| 日韩一本色道免费dvd| 最近视频中文字幕2019在线8| 91精品国产九色| av天堂中文字幕网| 亚洲精品色激情综合| 国产麻豆成人av免费视频| 国产精品不卡视频一区二区| 男人舔奶头视频| 国产高清有码在线观看视频| 啦啦啦观看免费观看视频高清| 亚洲专区中文字幕在线| 听说在线观看完整版免费高清| 国内久久婷婷六月综合欲色啪| 久久精品人妻少妇| 制服丝袜大香蕉在线| 日韩欧美国产在线观看| 欧美+亚洲+日韩+国产| 欧美zozozo另类| 久久久精品大字幕| 国产三级在线视频| 一边摸一边抽搐一进一小说| 国产精品人妻久久久久久| 我的老师免费观看完整版| 国产欧美日韩精品亚洲av| 日韩大尺度精品在线看网址| 亚洲国产高清在线一区二区三| 丰满乱子伦码专区| 干丝袜人妻中文字幕| 亚洲中文字幕日韩| 国产精品女同一区二区软件 | 亚洲精品一区av在线观看| 国模一区二区三区四区视频| 麻豆一二三区av精品| www.色视频.com| 非洲黑人性xxxx精品又粗又长| 成年版毛片免费区| a级毛片a级免费在线| 中文字幕免费在线视频6| 日韩人妻高清精品专区| 99久久精品国产国产毛片| 老司机深夜福利视频在线观看| 国产91精品成人一区二区三区| 99热这里只有是精品在线观看| 女同久久另类99精品国产91| a级毛片a级免费在线| 一本精品99久久精品77| 亚洲精品日韩av片在线观看| 国产亚洲精品久久久com| 天天一区二区日本电影三级| 国产男人的电影天堂91| 老司机福利观看| 国产高清视频在线播放一区| 欧美zozozo另类| 可以在线观看毛片的网站| 在线观看一区二区三区| 日本欧美国产在线视频| 熟妇人妻久久中文字幕3abv| 亚洲av美国av| 性欧美人与动物交配| 悠悠久久av| 欧美黑人巨大hd| 91在线观看av| 亚洲精品色激情综合| 成年女人毛片免费观看观看9| 一进一出抽搐gif免费好疼| 免费搜索国产男女视频| 亚洲成av人片在线播放无| 精品一区二区免费观看| 欧美xxxx性猛交bbbb| 变态另类成人亚洲欧美熟女| 国产精品自产拍在线观看55亚洲| 中文在线观看免费www的网站| 久久人人精品亚洲av| 午夜精品在线福利| 网址你懂的国产日韩在线| 俄罗斯特黄特色一大片| 联通29元200g的流量卡| 在线观看一区二区三区| 国产视频内射| 女同久久另类99精品国产91| 日韩欧美免费精品| 国产精品野战在线观看| 日日撸夜夜添| 中出人妻视频一区二区| 日韩人妻高清精品专区| 欧美成人一区二区免费高清观看| 国内精品久久久久精免费| 亚洲国产精品合色在线| 久久精品国产亚洲av香蕉五月| 一夜夜www| 夜夜夜夜夜久久久久| 国产激情偷乱视频一区二区| 亚洲精品一区av在线观看| 欧美性猛交╳xxx乱大交人| 蜜桃亚洲精品一区二区三区| 精品一区二区三区视频在线观看免费| 欧美zozozo另类| 在线观看舔阴道视频| 美女高潮喷水抽搐中文字幕| 欧美国产日韩亚洲一区| www日本黄色视频网| 精品无人区乱码1区二区| 麻豆久久精品国产亚洲av| www.www免费av| 成人国产综合亚洲| 亚洲av一区综合| 小蜜桃在线观看免费完整版高清| 亚洲18禁久久av| 日韩欧美国产在线观看| 成人国产麻豆网| 欧美色欧美亚洲另类二区| 国产精品久久久久久久电影| 一个人观看的视频www高清免费观看| 在线观看舔阴道视频| 欧美日韩中文字幕国产精品一区二区三区| 最近最新中文字幕大全电影3| eeuss影院久久| 国产精品久久久久久久久免| 日韩欧美国产一区二区入口| 在线免费十八禁| 亚洲中文字幕一区二区三区有码在线看| 一区二区三区免费毛片| 老熟妇乱子伦视频在线观看| 免费看美女性在线毛片视频| 日日摸夜夜添夜夜添小说| 亚洲18禁久久av| 亚洲av成人精品一区久久| 精品一区二区免费观看| 欧洲精品卡2卡3卡4卡5卡区| 久久精品久久久久久噜噜老黄 | 亚洲四区av| 国产熟女欧美一区二区| 日本免费a在线| 尾随美女入室| 最近视频中文字幕2019在线8| 成人精品一区二区免费| 九色成人免费人妻av| 亚洲av成人精品一区久久| 亚洲av.av天堂| 亚洲第一电影网av| 婷婷六月久久综合丁香| 亚洲人成网站在线播| 亚洲国产精品sss在线观看| 免费在线观看成人毛片| 一区二区三区高清视频在线| 给我免费播放毛片高清在线观看| 亚洲专区国产一区二区| 久久天躁狠狠躁夜夜2o2o| 老熟妇乱子伦视频在线观看| 嫩草影院新地址| 久久久久久久久久成人| 久久久精品欧美日韩精品| 天堂av国产一区二区熟女人妻| 国产av不卡久久| 中文字幕久久专区| 国产高清视频在线观看网站| 国产精品一区二区免费欧美| 欧美黑人欧美精品刺激| 一本精品99久久精品77| 亚洲av.av天堂| 久久精品国产鲁丝片午夜精品 | 国产69精品久久久久777片| 亚洲精品一区av在线观看| 国产视频内射| 亚洲美女黄片视频| 一级av片app| 国产精品综合久久久久久久免费| 欧美zozozo另类| 欧美高清成人免费视频www| 女生性感内裤真人,穿戴方法视频| 久久久精品大字幕| 国产精品一区二区三区四区久久| 一本精品99久久精品77| 欧美日本亚洲视频在线播放| 嫁个100分男人电影在线观看| 亚洲电影在线观看av| 国产黄色小视频在线观看| 国内精品久久久久精免费| 我的女老师完整版在线观看|