• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DFT study of solvation of Li+/Na+in fluoroethylene carbonate/vinylene carbonate/ethylene sulfite solvents for lithium/sodium-based battery?

    2021-03-19 03:21:58QiLiu劉琦GuoqiangTan譚國強(qiáng)FengWu吳鋒DaobinMu穆道斌andBorongWu吳伯榮
    Chinese Physics B 2021年3期
    關(guān)鍵詞:劉琦

    Qi Liu(劉琦), Guoqiang Tan(譚國強(qiáng)), Feng Wu(吳鋒), Daobin Mu(穆道斌), and Borong Wu(吳伯榮)

    Beijing Key Laboratory of Environment Science and Engineering,School of Material Science and Engineering,Beijing Institute of Technology,Beijing 100081,China

    Keywords: elelctrolyte,solvation,lithium ion battery,sodium ion battery

    1. Introduction

    Lithium ion battery has been applied in kinds of electric devices,[1-4]and sodium ion battery is very promising for large-scale grid energy storage system.[5-7]The electrochemical performance is closely related to the electrolyte property of lithium/sodium ion battery.[8-12]The functional solvents are necessary to optimize lithium/sodium battery electrochemical performance.[13-16]

    Vinylene carbonate(VC),fluorinated ethylene carbonate(FEC), and ethylene sulfite (ES), etc. solvents were usually used as electrolyte additives to improve the lithium/sodium ion battery interface stability.[17-26]The research on their potential application as electrolyte solvents is also important.Wang et al. have investigated FEC organic solvent containing LiTFSI(0.75 mol·kg?1)salt as electrolyte to improve the safety of graphite||NMC based lithium ion battery by reducing flammability.[27]The 1.2 M FEC based electrolyte with LiPF6salt has been used in Li/Li and Cu/LiFePO4cells,forming nanostructured LiF particles SEI film and improving the electrochemical performance.[28]Lee et al.have demonstrated that FEC-based electrolyte with 1 M NaFSI salt stabilizes Na metal deposition during electrochemical cycling, the FECNaFSI constructs the NaF, Na2CO3, and sodium alkylcarbonates mechanically strong and ion-permeable interlayer.[29]FEC based co-solvent of FEC+DMC has been proposed for Mg2Si anode of lithium ion battery to improve cycling stability by forming LiF-rich SEI.[30]The FEC based FEC/TTE/DEC(2:2:1 vol.) mixed electrolyte has been used in anode-free battery of LiNi0.5Mn0.3Co0.2O2/Cu, forming LiF-richer SEI on the anode surface, improving the cycling performance of the battery.[31]FEC solvent in the Li4Ti5O12/LiNi0.5Mn1.5O4battery for the anti-oxidation electrolyte system has improved the electrochemical performance, FEC solvent is responsible the formation of stable,uniform SEI films on individual Li4Ti5O12particles.[32]FEC based electrolyte with FEC/dimethyl carbonate/HFE mixed solvents has been used to improve the performance of both lithium metal anode and high voltage LiCoO2cathode material.[33]Zeng et al. have proposed a fluorinated intermixture of FEC and di-(2,2,2 trifluoroethyl) carbonate (TFEC) based non-flammable electrolyte for lithium/sodium ion battery, improving the compatibility with Prussian blue sodium ion battery cathode and the cycling stability of the silicon nanoparticle anode of lithium ion battery.[34,35]In-situ Na deposition image has indicated that the use of ethylene carbonate(EC),DEC,and PC based electrolyte produces a large number of dendrites and gas releasing, and FEC co-solvent dramatically reduces the dendrite growth and gas releasing, meanwhile improves the cycling stability.[36]Kuratani et al. have studied the density, viscosity,and conductivity of 1.5-2.0 mol·dm?3XClO4(X=Li and Na)based electrolyte in PC and γ-butyrolactone,the NaCIO4based electrolyte enjoys higher ionic conductivity and lower viscosity compared with LiClO4, and the ionic conductivity of NaClO4based electrolyte is 10%-20% higher than that of LiClO4.[37]The density, viscosity, and ionic conductivity of Li- and Na-TFSI in γ-butyrolactone and PC based electrolytes at the condition of 0.1 mol/L ≤C ≤2.0 mol/L and 278 K ≤T ≤328 K have been investigated to understand the electrolyte solution chemistry, it is indicated that sodium ion electrolyte occupies more volume compared with lithium ion electrolyte, and sodium ion electrolyte enjoys higher mobility and conductivity.[38]Zhang et al. have reported vinylethylene carbonate (VEC) single solvent based electrolyte with 1 M lithium hexafluorophosphates salt, enabling high safety and long cycle life for Li-metal batteries, which is attributed to unique interphase property and easy Li+desolvation in VEC.[39]Jin et al. have found that the aliphatic chain and cross-linking poly(ethylene oxide) (PEO) with carboxylate and carbonate species SEIs are formed in pure VC or FEC electrolytes.[40]Sulfur-containing sulfolane based solvent has been developed,which enhances the Li+conductivity of NCA cathode SEI film and the interfacial stability.[41]Wu et al.have reported a novel ES based electrolyte for Li-O2batteries which shows excellent round-trip efficiency and high specific capacity.[42]Wang et al.’s study has indicated that the Li plating potential dropping is ascribed to the carbonate-containing unstable SEI layer,[43]and LiFSI improved lithium deposition in carbonate electrolyte.[44]Cosolvation of Li+and solvent reductive decomposition have been studied by density functional theory(DFT)method,indicating that the different interactions with Li+affect the formation of SEI film.[45]Quantum chemistry (QC) calculations have been used for the prediction of oxidation and reduction stability of electrolyte components such as EC, FEC, and VC.[13]Liu et al.’s study has indicated that the different solvation ionic numbers lead to the different HOMO levels.[9]DFT calculation also has been used to study the reduction mechanism of VC, ES, and FEC for lithium/sodium battery.[15,46]The oxidation/reduction potentials and decomposition of VC have been studied by quantum chemistry calculation.[47-49]The concerns of the researchers are mainly focused on the influence of electrolyte solvents to the SEI formation mechanism and the improvement of the electrochemical performance of the battery, the research on the solvation mechanism of Li+/Na+in FEC, VC, ES, etc.organic solvents is absent. We have studied the Li+/Na+solvation in commonly used carbonate esters and ethers based on previous studies.[50,51]It is important for understanding the performance improvement mechanism of lithium/sodium ion battery by comparing the Li+/Na+solvation property in these organic solvents.

    The Li+/Na+solvation property in organic electrolyte solvents of VC, ES, and FEC is mainly investigated in this work. The energy,solvation structures,infrared spectrum,Raman spectrum, Gibbs free energy, and enthalpy of Li+/Na+-solvation complexes are compared. It is demonstrated that the solvation complexes of Li+with VC, ES, and FEC solvents are more stable compared with Na+solvation complexes. The discussion of detail method and result will be shown in the next part.

    2. Computation method

    B3LYP nonlocal correlation functional was used for the DFT calculations. The optimizations of structure and calculation of frequency were completed at B3LYP/6-311++G(d,p) level, the theoretical spectra analysis was obtained from frequency calculation. For more accurate calculation, B3LYP/6-311++G(3df,3dp) was used for all of the single point energy computation, and the energy was revised by zero-point energy calculation. ΔG = ΔThermal correction to Gibbs free energy (B3LYP/6-311+G(d,p)) +ΔE (B3LYP/6-311++G(3df,3dp)). ΔH = ΔThermal correction to enthalpy (B3LYP/6-311+G(d,p)) + ΔE (B3LYP/6-311++G(3df,3dp)). Enthalpies and Gibbs free energies were calculated at 298.15 K. Gaussian 09 program package was used for all DFT calculations.[52]

    3. Results and discussion

    3.1. Li+/Na+solvation in VC solvent

    The Gibbs free energy curves of stepwise Li+and Na+solvation reactions to VC solvent in different ions concentration are shown in Fig.1(a). It is clearly exhibited that with VC molecule increasing, the ΔG for the stepwise reaction gradually increases, and when forming 4VC-Li+and 4VC-Na+solvation complexes, thermodynamic equilibrium for the reactions is reached. The ΔE, ΔH, and ΔG of the VC stepwise solvation reactions with Li+and Na+are exhibited in Table 1.

    Table 1. The ΔE,ΔH,and ΔG of VC stepwise solvation reactions with Li+ and Na+,the unit is kcal·mol?1.

    Fig.1. (a) The Gibbs free energy curves of stepwise Li+ and Na+ solvation reactions to VC solvent in different ions concentration. (b)nVC-Li+and nVC-Na+(1 ≤n ≤5)solvation complexes models. IR spectra of(c)nVC-Li+and(d)nVC-Na+complexes by DFT calculation.

    It can be seen that the ΔG of stepwise solvation reactions VC+4VC-Na+=5VC-Na+and VC+4VC-Li+=5VC-Li+are 2.73 kcal·mol?1and 6.23 kcal·mol?1, respectively, indicating that stepwise reactions to form 5VC-Li+and 5VC-Na+solvation complexes are non-spontaneous processes.

    Table 2. Lengths of all Li-O and Na-O bonds and the average length after optimization for nVC-Li+ and nVC-Na+ complexes,the units are.

    Table 2. Lengths of all Li-O and Na-O bonds and the average length after optimization for nVC-Li+ and nVC-Na+ complexes,the units are.

    VC-Li+ 1.75 1.75(average)2VC-Li+ 1.80 1.80 1.80(average)3VC-Li+ 1.86 1.86 1.86 1.86(average)4VC-Li+ 1.94 1.94 1.94 1.94 1.94(average)5VC-Li+ 2.15 2.00 2.00 2.12 2.02 2.06(average)VC-Na+ 2.13 2.13(average)2VC-Na+ 2.17 2.17 2.17(average)3VC-Na+ 2.22 2.22 2.21 2.22(average)4VC-Na+ 2.27 2.27 2.27 2.26 2.27(average)5VC-Na+ 2.36 2.31 2.36 2.31 2.32 2.33(average)

    Figure 1(c) exhibits the theoretical IR spectra of nVCLi+. The vibration peak in 1815.01-1873.59 cm?1frequency range represents the stretching vibration of O=C in nVC-Li+solvation complexes,and with the Li+concentration reducing in nVC-Li+,the O=C peak evidently shifts to high frequency and the C=O bond is shortened(Table S1),it is in accord with the experimental FTIR spectrum results that O=C stretching vibration of VC is attributed to the peak at 1836 cm?1.[54]Besides,the three peaks in 1362.82-1385.38 cm?1,1181.17-1185.41 cm?1, and 1111.97-1168.08 cm?1frequency ranges represent different O-C stretching and H-C twist vibrations,when the Li+concentration decreases, all the above three vibration peaks shift to low frequency,and the peak in 1111.97-1168.08 cm?1exhibits the maximum frequency shift. The peak in 762.18-822.216 cm?1frequency range represents Li-O stretching accompanying with carbonate stretching in nVCLi+solvation complexes, when the concentration of lithium ion decreases from 2VC-Li+to 5VC-Li+, the vibration peak moves to low frequency, while the peak shifts to high frequency from VC-Li+to 2VC-Li+. The peak in 731.559-748.953 cm?1represents C-H twisting vibration in different nVC-Li+solvation complexes,the vibration shifts to low frequency with the decrease of Li+concentration. The Li-O stretching vibration in nVC-Li+solvation complexes is assigned to 376.039-619.7 cm?1frequency range which moves to low frequency when the complex changes from 2VC-Li+to 5VC-Li+. Figure 1(d) exhibits the theoretical IR spectra for nVC-Na+. From the figure, the peak in 1828.89-1878.62 cm?1represents the stretching vibration of O=C in nVC-Na+solvation complexes, with the sodium ion concentration decreasing, the vibration peak moves to high frequency and the C=O bond is shortened(Table S2). The frequency movement rule of nVC-Na+solvation complexes is in agreement with that of nVC-Li+. The results show that the different interactions of Li+and Na+with VC lead to the different C=O bond vibration peaks for the two kinds of solvation complexes, and the C=O vibration peak frequency in the nVC-Na+solvation complexes is higher than that of nVC-Li+, the difference becomes smaller when the solvent number increases in the complexes. Besides,the three peaks in 1360.26-1373.95 cm?1,1180.81-1182.38 cm?1,and 1109.49-1148.71 cm?1represent different stretching of OC and H-C twisting in nVC-Na+solvation complexes, the vibration peak shifts to low frequency with the decrease of Na+concentration. The vibration frequencies of the above three peaks in nVC-Na+solvation complexes are lower than those in nVC-Li+complexes. The vibration peak in 759.056-782.01 cm?1represents stretching of Na-O accompanying with carbonate stretching vibration, which moves to low frequency with the Na+concentration decreasing in the complexes. The vibration peak in 729.712-744.412 cm?1represents the twisting of H-C in the solvation complexes of nVCNa+, the peak shifts to low frequency with the decrease of Na+concentration. The twisting vibration frequency of H-C in nVC-Na+complexes is slightly lower than that in nVC-Li+.The stretching vibration of Na-O in nVC-Na+solvation complexes is assigned to 208.76-310.102 cm?1frequency range,the vibration peak shifts to low frequency when the sodium ion concentration changes from 2VC-Na+to 5VC-Na+.

    On the other hand, the theoretical Raman spectra analysis of nVC-Li+complexes is exhibited in Fig.2(a), the vibration peaks in 3294.66-3321.08 cm?1represent stretching vibration of H-C in nVC-Li+solvation complexes. The C=C bond stretching vibration peak in nVC-Li+complexes is assigned to the frequency range of 1654.26-1661.37 cm?1,which slightly moves to high frequency when the Li+concentration decreases in the solvation complexes. The two Raman vibration peaks in 1183.43-1185.41 cm?1and 1089.18-1102.01 cm?1represent stretching of O-C accompanying with twisting vibration of C-H. The three vibration peaks in 1046.16-1050.88 cm?1,941.29-986.518 cm?1,and 911.503-918.111 cm?1represent different stretching of O-C in nVCLi+solvation complexes. The C-H twisting vibration peak in nVC-Li+solvation complexes is assigned to 847.531-857.607 cm?1, which moves to low frequency when the Li+concentration decreases. Besides, the Raman vibration peak in 768.177-817.172 cm?1represents Li-O stretching accompanying with carbonate stretching in nVC-Li+complexes,it is fundamentally in accord with the peak frequency of IR spectra. Figure 2(b)shows the theoretical Raman spectra of nVCNa+, the two peaks in 3293.52-3320.97 cm?1and 1658.01-1662.73 cm?1represent the stretching vibrations of C-H and C=C bonds respectively in the nVC-Na+solvation complexes. There is small difference for C-H and C=C vibration peak frequencies in nVC-Na+and nVC-Li+complexes,indicating that the interaction to C-H and C=C bonds is negligible between Li+/Na+and VC.In addition,the C-O stretching vibration in nVC-Na+complexes is assigned to the two peaks of 1039.52-1049.47 cm?1and 929.064-964.543 cm?1,which move to low frequency with the sodium ion concentration decreasing. The Raman vibration peak in 843.097-854.053 cm?1frequency range represents twisting of H-C in nVC-Na+complexes. The Raman vibration peak in 759.056-782.01 cm?1represents stretching of Na-O accompanying with carbonate stretching in nVC-Na+.

    Fig.2. Raman spectra of(a)nVC-Li+ and(b)nVC-Na+ by DFT calculation.

    3.2. Li+/Na+solvation in ES solvent

    Except for VC solvent, the solvation of Li+/Na+in ES solvent is also studied. The Gibbs free energy curves of stepwise Li+and Na+solvation reactions to ES solvent in different ions concentration are exhibited in Fig.3(a). The thermodynamic equilibrium is reached after forming 4ES-Li+and 4ES-Na+for the stepwise solvation reactions.Table 3 exhibits ΔE, ΔH, and ΔG of the ES stepwise solvation reactions with Li+and Na+. The ΔG for reactions ES + 4ES-Li+= 5ESLi+and ES+4ES-Na+=5ES-Na+are 12.96 kcal·mol?1and 3.49 kcal·mol?1,respectively,suggesting non-spontaneous reaction processes to form 5ES-Li+and 5ES-Na+complexes.

    Table 3. The ΔE,ΔH,and ΔG of ES stepwise solvation reactions with Li+and Na+,the unit is kcal·mol?1.

    Fig.3.(a)The Gibbs free energy curves of stepwise Li+and Na+solvation reactions to ES solvent in different ions concentration. (b)nES-Li+and nES-Na+ (1 ≤n ≤5)solvation complexes models. IR spectra of(c)nES-Li+ and(d)nES-Na+ complexes by DFT calculation.

    In addition, IR spectra of nES-Li+complexes by DFT calculation are shown in Fig.3(c),the S=O stretching vibration in nES-Li+solvation complexes is assigned to 1118.3-1189.37 cm?1frequency range, which moves to high frequency with the decrease of Li+concentration,and the S=O bond is also shortened(Table S3). The two peaks in 1008.79-1020.66 cm?1and 907.372-922.035 cm?1represent different stretching vibrations of O-C-C-O bonds,which move to high frequency with Li+concentration decreasing. Besides, the O-S-O symmetrical stretching vibration in nES-Li+solvation complexes is assigned to 692.627-742.714 cm?1, which moves to low frequency from 2ES-Li+to 5ES-Li+. The peak in the frequency range of 640.685-658.844 cm?1represents the asymmetric vibration of O-S-O in nES-Li+solvation complexes, the peak moves to low frequency with Li+concentration decreasing in the complexes. The peak in 565.743-598.221 cm?1represents the asymmetric vibration of O-S-O;and it shifts to low frequency from 2ES-Li+to 5ES-Li+. The peak in the frequency range of 303.443-421.853 cm?1represents O-Li stretching driving sulfite stretching,and the vibration peak shifts to low frequency from 2ES-Li+to 5ES-Li+.

    Table 4. Length of all Li-O and Na-O bonds and the average length after optimization for nES-Li+ and nES-Na+ complexes,the units are ?A.

    On the other hand,the IR spectra of nES-Na+complexes by DFT calculation are exhibited in Fig.3(d), the peak in the frequency range of 1126.8-1165.37 cm?1represents the stretching vibration of S=O in the nES-Na+. The two peaks in 1012.19-1016.07 cm?1and 912.811-917.813 cm?1are on behalf of different stretching vibrations of O-C-C-O. Besides, the symmetric stretching vibration of O-S-O group in nES-Na+complexes is assigned to the frequency of 681.309-719.991 cm?1,which moves to low frequency with Na+concentration decreasing; because of the different interaction of ES molecules to Li+/Na+,the symmetric stretching vibration peak frequency in the nES-Na+complexes is evidently lower than that in nES-Li+complexes. The two peaks in 638.527-647.396 cm?1and 558.312-593.845 cm?1represent asymmetrical O-S-O stretching vibration in the nES-Na+complexes. Furthermore, the stretching vibration of Na-O in the nES-Na+complexes is assigned to the frequency of 200.708-302.905 cm?1.

    Figure 4(a) shows the Raman spectra of nES-Li+by DFT calculation. The C-H stretching vibration in nES-Li+complexes is assigned to the peak in the frequency range of 3070.12-3167.78 cm?1. Besides, the three peaks at about 1500 cm?1, 1242 cm?1, and 1218 cm?1represent different C-H twisting vibrations in nES-Li+complexes. The S=O Raman stretching vibration frequency in the nES-Li+complexes is assigned to 1118.3-1178.31 cm?1. The two Raman peaks in 1008.79-1012.39 cm?1and 907.372-919.306 cm?1represent different stretching vibrations of O-C-C-O in the nES-Li+complexes. The Raman vibration peak in 708.235-737.643 cm?1represents symmetrical O-S-O stretching vibration in the nES-Li+complexes.

    On the other hand, the Raman spectra of nES-Na+by DFT calculation are shown in Fig.4(b), the Raman stretching vibration of C-H in the nES-Na+solvation complexes is assigned to the peak of 3063.18-3162.13 cm?1. The three Raman peaks in 1500.38-1503.32 cm?1, 1242.33-1243.68 cm?1, and 1218.87-1221.83 cm?1represent the different twisting vibrations of C-H in the nES-Na+solvation complexes, the vibration peak frequency of C-H twisting in nES-Na+complexes is slightly higher than that in nES-Li+.The S=O Raman stretching vibration in nES-Na+is assigned to the frequency of 1126.8-1186.42 cm?1, and the S=O vibration frequency in nES-Na+complexes is higher than that in nES-Li+. In addition, the two Raman peaks in 1012.19-1016.07 cm?1and 912.811-919.593 cm?1represent different stretching vibrations of O-C-C-O in nES-Na+complexes.The symmetric O-S-O Raman stretching vibration in nESNa+is assigned to the peak of 689.831-719.991 cm?1.

    Fig.4. Raman spectra of(a)nES-Li+ and(b)nES-Na+by DFT calculation.

    3.3. Li+/Na+solvation in FEC solvent

    Table 5.The ΔE,ΔH,and ΔG of FEC stepwise solvation reactions with Li+ and Na+,the unit is kcal·mol?1.

    Fig.5. (a)The Gibbs free energy curves of stepwise Li+ and Na+ solvation reactions to FEC solvent in different ions concentration. (b)nFEC-Li+and nFEC-Na+ (1 ≤n ≤5)solvation complexes models. IR spectra of(c)nFEC-Li+ and(d)nFEC-Na+ complexes by DFT calculation.

    On the other hand, the IR spectra of nFEC-Na+complexes by DFT calculation are exhibited in Fig.5(d),the C=O stretching vibration peak in the nFEC-Na+complexes is assigned to the frequency of 1825.67-1889.31 cm?1, with the concentration of Na+decreasing the peak shifts to high frequency and the C=O bond is shortened (Table S6). The frequency of C=O stretching vibration peak for nFEC-Na+complexes is higher than that of nFEC-Li+. The two peaks in 1238.07-1243.58 cm?1and 1168.54-1206.39 cm?1represent stretching of O-C accompanying with twisting of C-H vibration in nFEC-Na+, and the vibration frequency moves to low frequency with the sodium ion concentration decreasing. Besides, the two peaks in 1119.07-1138.99 cm?1and 1088.06-1097.41 cm?1represent stretching of C-O accompanying with stretching of C-F,and the peaks also shift to low frequency with the sodium ion concentration decreasing in the nFEC-Na+complexes. The CH2-O stretching driving C-F stretching vibration in the nFEC-Na+is assigned to the peak in the frequency range of 1007.36-1011.62 cm?1. Furthermore,the peak in 741.512-755.315 cm?1represents O-Na stretching accompanying with carbonate stretching vibration in the nFEC-Na+complexes,which moves to low frequency with the sodium ion concentration decreasing in the complexes. The O-Na stretching vibration peak in the nFEC-Na+is assigned to the frequency of 211.156-306.307 cm?1.

    Table 6. Lengths of all Li-O and Na-O bonds and the average length after optimization for nFEC-Li+ and nFEC-Na+ complexes, the units are .

    Table 6. Lengths of all Li-O and Na-O bonds and the average length after optimization for nFEC-Li+ and nFEC-Na+ complexes, the units are .

    FEC-Li+ 1.75 1.75(average)2FEC-Li+ 1.80 1.80 1.80(average)3FEC-Li+ 1.86 1.86 1.86 1.86(average)4FEC-Li+ 1.94 1.94 1.94 1.94 1.94(average)5FEC-Li+ 1.98 2.32 1.99 1.98 2.06 2.07(average)FEC-Na+ 2.13 2.13(average)2FEC-Na+ 2.17 2.17 2.17(average)3FEC-Na+ 2.22 2.22 2.22 2.22(average)4FEC-Na+ 2.27 2.27 2.26 2.26 2.27(average)5FEC-Na+ 2.31 2.37 2.32 2.35 2.36 2.34(average)

    Figure 6(a) shows the Raman spectra of nFEC-Li+by DFT calculation. The C-H stretching vibration in the nFECLi+solvation complexes is assigned to the frequency of 3099.54-3319.78 cm?1. The peak at about 1501 cm?1represents twisting vibration of C-H in the nFEC-Li+complexes.The FEC ring enlargement vibration in the nFEC-Li+complexes is assigned to the frequency of 926.229-941.81 cm?1which moves to low frequency with the lithium ion concentration decreasing. The Raman peak in 867.656-873.965 cm?1represents stretching vibration of C-C in nFEC-Li+complexes, and the peak shifts to low frequency with the decrease of the Li+concentration. Besides, the Raman peak in 748.187-779.833 cm?1represents O-Li stretching accompanying with carbonate stretching vibration in the nFEC-Li+complexes.

    On the other hand, figure 6(b) exhibits the Raman spectra of nFEC-Na+by DFT calculation. The C-H stretching vibration peak in the nFEC-Na+complexes is assigned to the frequency of 3085.76-3170.68 cm?1,which moves to low frequency with sodium ion concentration decreasing.The Raman peak at about 1503 cm?1represents twisting vibration of CH in the nFEC-Na+complexes. The FEC ring enlargement stretching vibration peak in the nFEC-Na+complexes is assigned to the frequency of 916.897-937.212 cm?1. The peak in 860.869-872.501 cm?1is ascribed to stretching vibration of C-C in the nFEC-Na+complexes,and the peak moves to low frequency with the sodium ion concentration decreasing. Besides,the peak in 742.024-755.315 cm?1represents stretching of Na-O accompanying with stretching vibration of carbonate,the vibration peak moves to low frequency with the sodium ion concentration decreasing.

    Fig.6. Raman spectra of (a) nFEC-Li+ and (b) nFEC-Na+ by DFT calculation.

    At last, the stepwise solvation reactions and total solvation reactions Gibbs free energy change ΔG for Li+/Na+in the potential electrolyte solvents of VC, ES, and FEC are analyzed. Figure 7(a) shows the Gibbs free energy curve for Li+/Na+stepwise solvation reactions in VC, ES, and FEC, respectively, with solvent numbers changed. The maximum thermodynamics stability solvation complexes are consisted of 4VC-Li+, 4VC-Na+, 4ES-Li+, 4ES-Na+, 4FECLi+, and 4FEC-Na+by spontaneous solvation reactions between Li+/Na+and VC,ES,FEC solvents. Figure 7(b)shows the Gibbs free energy curve for the overall Li+/Na+solvation reactions with the change of solvation numbers. It is clearly seen that the absolute value of Gibbs free energy releasing(ΔG)reaches the maximum by overall Li+/Na+solvation reactions forming 4sol-Li+/Na+complexes, which is in agreement with the above stepwise solvation reaction results. In addition,it is clearly exhibited that the absolute values of free energy releasing(ΔG)for forming lithium-ion solvation complexes of nVC-Li+, nES-Li+, nFEC-Li+are evidently larger than those for formation of nVC-Na+, nES-Na+, nFEC-Na+complexes, indicating that lithium ion is easier to combine with VC,ES,and FEC compared to sodium ion,and lithiumion solvation complexes of nVC-Li+, nES-Li+, and nFECLi+are more stable compared with nVC-Na+,nES-Na+,and nFEC-Na+sodium ion solvation complexes.

    Fig.7. (a) Gibbs free energy curves for Li+/Na+ stepwise solvation reactions in VC,ES,and FEC,respectively,with solvent numbers changed. (b)Gibbs free energy curve for the overall Li+/Na+ solvation reactions with the change of solvation numbers.

    4. Conclusion

    Electrolyte solvents are very important to the electrochemical performance of lithium/sodium batteries. The solvation property of lithium/sodium ion in organic electrolyte solvents of VC, ES, and FEC is studied by DFT method.The results demonstrate that the maximum thermodynamics stability solvation complexes are consisted of 4VC-Li+,4VC-Na+, 4ES-Li+, 4ES-Na+, 4FEC-Li+, and 4FEC-Na+.The innermost solvation shells of 5VC-Li+, 5VC-Na+, 5ESLi+,5ES-Na+,5FEC-Li+,and 5FEC-Na+can be formed between Li+/Na+and solvent molecules. In addition, the results demonstrate that lithium ion is easier to combine with VC, ES, and FEC compared to sodium ion, and lithiumion solvation complexes of nVC-Li+, nES-Li+, and nFECLi+are more stable than nVC-Na+, nES-Na+, and nFECNa+sodium ion solvation complexes. Besides, the theoretical IR and Raman spectra analysis for the solvation complexes between Li+/Na+and VC, ES, FEC solvents demonstrates that the stretching vibration of O=C peak evidently shifts to high frequency when Li+/Na+concentration reducing in nVC-Li+,nVC-Na+,nFEC-Li+,and nFEC-Na+solvation complexes,and the O=C vibration in the Na+solvation complexes is higher than that of Li+complexes.The S=O vibration frequency in nES-Na+complexes is higher than that of nES-Li+,and the S=O stretching vibration in nES-Li+/Na+solvation complexes moves to high frequency with the decrease of Li+/Na+concentration. Besides, the stretching vibration of O-S-O group in nES-Na+/Li+complexes moves to low frequency with ion concentration decreasing, and the peak in nES-Na+complexes is lower than that of nES-Li+.The vibration peaks frequency occurs regular shift when the Li+/Na+concentration changes,and the different interactions for Li+and Na+with these solvents lead to the diverse characteristic peak frequencies for Li+/Na+solvation complexes.The results are important to guide the design of electrolyte and understand the performance improvement mechanism of lithium/sodium battery. In addition, different solvation complexes concentration may affect the reduction/oxidation potential, and solvation ionic is important for the initial stages of SEI formation. More studies on oxidation/reduction potentials of different solvation ionics are needed to deeply analyze the formation mechanism of the SEI film.

    猜你喜歡
    劉琦
    Electron sheaths near a positively biased plate subjected to a weak electron beam
    咕咕叫的肚皮
    復(fù)雜神經(jīng)網(wǎng)絡(luò)下的多行為識(shí)別技術(shù)研究
    客聯(lián)(2022年3期)2022-05-31 03:58:03
    初心引航,構(gòu)建“雙減”新樣態(tài)
    大戰(zhàn)章魚博士
    Plasma characteristics and broadband electromagnetic wave absorption in argon and helium capacitively coupled plasma?
    Resistive switching memory for high density storage and computing*
    Modeling and Simulation of the impact of mobile phone usage on energy consumption
    新生代(2019年17期)2019-10-16 08:36:30
    GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO THE HYPERBOLIC GEOMETRY FLOW WITH TIME-DEPENDENT DISSIPATION?
    3-D Lagrangian-based investigations of the time-dependent cloud cavitating flows around a Clark-Y hydrofoil with special emphasis on shedding process analysis *
    国产精品女同一区二区软件| 全区人妻精品视频| 国产淫片久久久久久久久| 国产国拍精品亚洲av在线观看| 神马国产精品三级电影在线观看| 亚洲成av人片在线播放无| 国产精品伦人一区二区| 69av精品久久久久久| 一区福利在线观看| 人体艺术视频欧美日本| 中文字幕久久专区| 国产69精品久久久久777片| 欧美在线一区亚洲| 国产成年人精品一区二区| 国产av在哪里看| 亚洲经典国产精华液单| 国内精品久久久久精免费| 国产视频内射| 99riav亚洲国产免费| 一级毛片电影观看 | 久久午夜福利片| 亚洲熟妇中文字幕五十中出| av.在线天堂| 在线天堂最新版资源| 欧美最新免费一区二区三区| 精品久久久噜噜| 久久精品国产99精品国产亚洲性色| 亚洲欧美中文字幕日韩二区| 最后的刺客免费高清国语| 免费观看人在逋| 国产三级在线视频| 亚洲成人av在线免费| 色5月婷婷丁香| 亚洲天堂国产精品一区在线| 能在线免费看毛片的网站| 亚洲熟妇中文字幕五十中出| 久久久久久久久大av| 亚洲美女视频黄频| 夜夜看夜夜爽夜夜摸| 亚洲在线观看片| 午夜福利成人在线免费观看| 少妇人妻精品综合一区二区 | 在线免费十八禁| 久久久久九九精品影院| 久久久精品94久久精品| 亚洲一级一片aⅴ在线观看| 男人舔奶头视频| av福利片在线观看| 亚洲av二区三区四区| 成人毛片a级毛片在线播放| 日本撒尿小便嘘嘘汇集6| 在线观看美女被高潮喷水网站| 久久人人爽人人爽人人片va| 黑人高潮一二区| 男女啪啪激烈高潮av片| 天天一区二区日本电影三级| 国产成人a区在线观看| 日韩欧美国产在线观看| 久久人妻av系列| 国产色爽女视频免费观看| 久久精品国产99精品国产亚洲性色| 免费在线观看成人毛片| 性欧美人与动物交配| 成人鲁丝片一二三区免费| 亚洲国产色片| 69人妻影院| 亚洲成人中文字幕在线播放| 欧美三级亚洲精品| 人妻制服诱惑在线中文字幕| 免费看光身美女| 国产av麻豆久久久久久久| 国产精品久久久久久久久免| 成人av在线播放网站| 国产片特级美女逼逼视频| 一级毛片我不卡| 亚洲无线在线观看| 草草在线视频免费看| 日本五十路高清| 国产高潮美女av| 国产高清不卡午夜福利| 久久精品国产亚洲av涩爱 | 中文欧美无线码| 99久久久亚洲精品蜜臀av| 夫妻性生交免费视频一级片| 尾随美女入室| 精品国内亚洲2022精品成人| 尤物成人国产欧美一区二区三区| 免费看av在线观看网站| 亚洲欧美中文字幕日韩二区| 一级毛片我不卡| 免费人成视频x8x8入口观看| 超碰av人人做人人爽久久| 精品一区二区免费观看| 亚洲一级一片aⅴ在线观看| 国产精品一区二区三区四区久久| 少妇的逼好多水| 深夜a级毛片| 男人舔奶头视频| 国产女主播在线喷水免费视频网站 | 男的添女的下面高潮视频| 天天一区二区日本电影三级| 色综合色国产| 久久久久久久久久久免费av| 九草在线视频观看| 久久久a久久爽久久v久久| 麻豆精品久久久久久蜜桃| 最近2019中文字幕mv第一页| 51国产日韩欧美| 色播亚洲综合网| 淫秽高清视频在线观看| 久久久精品欧美日韩精品| 观看美女的网站| 好男人视频免费观看在线| 91久久精品国产一区二区成人| 久久久精品94久久精品| 久久久精品欧美日韩精品| 亚洲18禁久久av| 色哟哟·www| 国产成人福利小说| 日日撸夜夜添| 国产国拍精品亚洲av在线观看| 日日撸夜夜添| 日韩制服骚丝袜av| 国产精品av视频在线免费观看| av天堂在线播放| 成人三级黄色视频| 草草在线视频免费看| 亚洲av成人av| 97人妻精品一区二区三区麻豆| 国产女主播在线喷水免费视频网站 | 日韩在线高清观看一区二区三区| 老司机福利观看| 麻豆成人午夜福利视频| 国产精品嫩草影院av在线观看| 在线观看午夜福利视频| 一夜夜www| 精品久久久久久久久av| 国产成年人精品一区二区| 黑人高潮一二区| 亚洲精品色激情综合| 熟女人妻精品中文字幕| 舔av片在线| 免费看美女性在线毛片视频| 女人十人毛片免费观看3o分钟| or卡值多少钱| 国产精品国产三级国产av玫瑰| 亚洲成人中文字幕在线播放| 亚洲欧洲国产日韩| 亚洲精品自拍成人| 欧美激情久久久久久爽电影| 97超碰精品成人国产| 国产精品电影一区二区三区| 国产精品久久电影中文字幕| 国产日本99.免费观看| 国产成人aa在线观看| 男人和女人高潮做爰伦理| 一本久久中文字幕| 免费看美女性在线毛片视频| 九色成人免费人妻av| 亚洲18禁久久av| 九色成人免费人妻av| 97在线视频观看| 有码 亚洲区| 亚洲无线在线观看| 久久久精品欧美日韩精品| av在线天堂中文字幕| 我要搜黄色片| 91在线精品国自产拍蜜月| 成人午夜高清在线视频| 日日摸夜夜添夜夜爱| 亚洲精品影视一区二区三区av| 一本久久中文字幕| 毛片女人毛片| 在线免费观看不下载黄p国产| 精品日产1卡2卡| 一级毛片aaaaaa免费看小| 亚洲成av人片在线播放无| 亚洲人成网站在线观看播放| 欧美激情国产日韩精品一区| 岛国毛片在线播放| 人妻夜夜爽99麻豆av| 18禁黄网站禁片免费观看直播| 色吧在线观看| 亚洲精品粉嫩美女一区| 91在线精品国自产拍蜜月| 简卡轻食公司| 中出人妻视频一区二区| 日本一本二区三区精品| av专区在线播放| 免费av观看视频| 91精品一卡2卡3卡4卡| 日韩国内少妇激情av| 三级男女做爰猛烈吃奶摸视频| 天天一区二区日本电影三级| 白带黄色成豆腐渣| 国产一级毛片七仙女欲春2| 深夜a级毛片| 国产国拍精品亚洲av在线观看| 国产黄片视频在线免费观看| 搡老妇女老女人老熟妇| 18禁裸乳无遮挡免费网站照片| 美女cb高潮喷水在线观看| 韩国av在线不卡| 别揉我奶头 嗯啊视频| 级片在线观看| 97超碰精品成人国产| 美女脱内裤让男人舔精品视频 | 国产一级毛片七仙女欲春2| av天堂在线播放| 草草在线视频免费看| 乱人视频在线观看| 日韩亚洲欧美综合| 尤物成人国产欧美一区二区三区| 精品久久久噜噜| 人人妻人人看人人澡| 欧美激情久久久久久爽电影| 在线观看免费视频日本深夜| 久久99精品国语久久久| 22中文网久久字幕| 亚洲精品日韩av片在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 三级男女做爰猛烈吃奶摸视频| 日本与韩国留学比较| 久久99热这里只有精品18| 久久久久久大精品| 久久韩国三级中文字幕| 日韩一区二区三区影片| 一级毛片aaaaaa免费看小| 国产精品国产高清国产av| 岛国毛片在线播放| 不卡一级毛片| 男的添女的下面高潮视频| 久久久久久伊人网av| 99国产精品一区二区蜜桃av| 欧美成人a在线观看| 男人的好看免费观看在线视频| 欧美成人一区二区免费高清观看| 99热这里只有是精品在线观看| 99久国产av精品| 午夜久久久久精精品| 日韩视频在线欧美| 久久精品国产亚洲av涩爱 | 男人的好看免费观看在线视频| 国产高清有码在线观看视频| 禁无遮挡网站| 性欧美人与动物交配| 国产综合懂色| 不卡视频在线观看欧美| 大香蕉久久网| 2022亚洲国产成人精品| 亚洲国产欧美在线一区| 欧美xxxx黑人xx丫x性爽| 国产69精品久久久久777片| 国内久久婷婷六月综合欲色啪| 欧美高清成人免费视频www| 国产精品一区二区在线观看99 | 欧美性猛交黑人性爽| 亚洲精品影视一区二区三区av| 国产黄色视频一区二区在线观看 | 91精品国产九色| 免费黄网站久久成人精品| 国产午夜精品论理片| 亚洲精品亚洲一区二区| 国产蜜桃级精品一区二区三区| 欧美性猛交黑人性爽| 好男人视频免费观看在线| 国产精品伦人一区二区| 免费人成在线观看视频色| 国产极品精品免费视频能看的| 中文欧美无线码| 精品国产三级普通话版| 噜噜噜噜噜久久久久久91| 日韩亚洲欧美综合| 啦啦啦韩国在线观看视频| 日本黄色视频三级网站网址| 丰满人妻一区二区三区视频av| 久久韩国三级中文字幕| 久久精品国产亚洲网站| 黄色欧美视频在线观看| 在线观看66精品国产| 深夜a级毛片| 黄色视频,在线免费观看| 久久99热6这里只有精品| 国产色爽女视频免费观看| 黄色配什么色好看| 2021天堂中文幕一二区在线观| 97超视频在线观看视频| 国产精品精品国产色婷婷| av女优亚洲男人天堂| 中文字幕制服av| av在线亚洲专区| 自拍偷自拍亚洲精品老妇| 男女边吃奶边做爰视频| 成人av在线播放网站| 亚洲人成网站在线观看播放| 熟女电影av网| 日韩精品青青久久久久久| 一边亲一边摸免费视频| 毛片一级片免费看久久久久| 人妻久久中文字幕网| 婷婷亚洲欧美| 日本免费一区二区三区高清不卡| 18禁黄网站禁片免费观看直播| 久久久久久大精品| 精品人妻熟女av久视频| 免费人成在线观看视频色| 国产一级毛片七仙女欲春2| 亚洲av免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 免费看日本二区| 搞女人的毛片| 色噜噜av男人的天堂激情| 久久6这里有精品| 特大巨黑吊av在线直播| 尾随美女入室| 国产三级中文精品| 五月玫瑰六月丁香| 午夜免费激情av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | kizo精华| 成人毛片60女人毛片免费| 久久中文看片网| 久久韩国三级中文字幕| 性欧美人与动物交配| 人人妻人人看人人澡| 国产精品综合久久久久久久免费| 丰满人妻一区二区三区视频av| 亚洲va在线va天堂va国产| 国产成人精品一,二区 | av卡一久久| 干丝袜人妻中文字幕| 午夜精品一区二区三区免费看| 国产一级毛片七仙女欲春2| 亚洲一级一片aⅴ在线观看| 国产精品嫩草影院av在线观看| 国内精品久久久久精免费| 日本免费一区二区三区高清不卡| АⅤ资源中文在线天堂| 美女cb高潮喷水在线观看| 最近最新中文字幕大全电影3| 日本黄大片高清| 欧美一区二区国产精品久久精品| 少妇人妻精品综合一区二区 | 日本成人三级电影网站| 哪个播放器可以免费观看大片| 国产精品日韩av在线免费观看| 亚洲人与动物交配视频| 日韩欧美在线乱码| 中文字幕av成人在线电影| 国产国拍精品亚洲av在线观看| 18禁裸乳无遮挡免费网站照片| 欧洲精品卡2卡3卡4卡5卡区| 国产精品1区2区在线观看.| 我的女老师完整版在线观看| 亚洲av免费高清在线观看| 精品久久久久久久人妻蜜臀av| 身体一侧抽搐| 国产av在哪里看| 久久婷婷人人爽人人干人人爱| 亚洲欧美日韩卡通动漫| 亚洲av电影不卡..在线观看| 女同久久另类99精品国产91| 亚洲自偷自拍三级| 免费观看的影片在线观看| 国产亚洲av片在线观看秒播厂 | 少妇被粗大猛烈的视频| 日日摸夜夜添夜夜爱| 女人被狂操c到高潮| 伦精品一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| videossex国产| 青春草视频在线免费观看| 国产亚洲5aaaaa淫片| 国产视频首页在线观看| 久久人人爽人人片av| 91精品一卡2卡3卡4卡| 男人舔奶头视频| 免费观看人在逋| 久久久久久久久久久丰满| 国内精品美女久久久久久| 青春草亚洲视频在线观看| 校园春色视频在线观看| 九九在线视频观看精品| 成人特级av手机在线观看| 春色校园在线视频观看| 国产在线精品亚洲第一网站| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧洲日产国产| 久久精品国产亚洲网站| 少妇熟女aⅴ在线视频| 99久久中文字幕三级久久日本| 能在线免费观看的黄片| 国产精品野战在线观看| 亚洲精品亚洲一区二区| 日本av手机在线免费观看| 日韩欧美国产在线观看| 久久久久久九九精品二区国产| 观看美女的网站| 国产在视频线在精品| 身体一侧抽搐| 九九热线精品视视频播放| 欧美色欧美亚洲另类二区| 成人永久免费在线观看视频| 99久久精品热视频| 能在线免费观看的黄片| 黄色配什么色好看| 国产成人91sexporn| 禁无遮挡网站| 赤兔流量卡办理| 看非洲黑人一级黄片| 麻豆国产av国片精品| 国产探花极品一区二区| 亚洲欧美成人综合另类久久久 | 色哟哟·www| 啦啦啦啦在线视频资源| 九草在线视频观看| 99久久中文字幕三级久久日本| 久久午夜亚洲精品久久| 成人欧美大片| 久久人人精品亚洲av| 卡戴珊不雅视频在线播放| 丝袜喷水一区| 男女啪啪激烈高潮av片| 日本免费a在线| 国产精品永久免费网站| 身体一侧抽搐| 我要看日韩黄色一级片| 老司机福利观看| 亚洲国产高清在线一区二区三| 精品久久国产蜜桃| 久久久国产成人精品二区| 成人高潮视频无遮挡免费网站| 久久精品国产亚洲av香蕉五月| 亚洲av免费高清在线观看| 少妇的逼水好多| 看非洲黑人一级黄片| 免费观看的影片在线观看| 看黄色毛片网站| 久久精品国产自在天天线| 亚洲欧美清纯卡通| 国产伦精品一区二区三区四那| 中文欧美无线码| 欧美xxxx黑人xx丫x性爽| 成人一区二区视频在线观看| 亚洲欧美日韩无卡精品| 欧美xxxx黑人xx丫x性爽| 国产色婷婷99| 少妇人妻一区二区三区视频| 在现免费观看毛片| 岛国毛片在线播放| 亚洲精品国产成人久久av| 精品日产1卡2卡| 国产午夜福利久久久久久| 欧美一区二区亚洲| 国产日韩欧美在线精品| 国产精品无大码| 欧美色视频一区免费| 大香蕉久久网| a级毛片免费高清观看在线播放| 亚洲欧美精品综合久久99| 麻豆久久精品国产亚洲av| 女人十人毛片免费观看3o分钟| 日韩欧美精品免费久久| 少妇的逼水好多| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲欧洲日产国产| 在线播放国产精品三级| 一进一出抽搐gif免费好疼| 69人妻影院| 99精品在免费线老司机午夜| 日韩欧美一区二区三区在线观看| 麻豆av噜噜一区二区三区| 国产黄片美女视频| 97在线视频观看| 最近最新中文字幕大全电影3| 亚洲成人中文字幕在线播放| 毛片女人毛片| 大香蕉久久网| 丰满乱子伦码专区| 99热这里只有是精品50| 蜜臀久久99精品久久宅男| 一个人观看的视频www高清免费观看| 国产欧美日韩精品一区二区| 精品一区二区免费观看| 能在线免费观看的黄片| 国产精品.久久久| 综合色av麻豆| 国产高清三级在线| 精品国产三级普通话版| 男人舔女人下体高潮全视频| 夜夜夜夜夜久久久久| 不卡一级毛片| 18禁在线无遮挡免费观看视频| 欧美高清成人免费视频www| 久久久久久久久大av| 成年免费大片在线观看| 一区二区三区高清视频在线| 亚洲精品久久国产高清桃花| 久久久久免费精品人妻一区二区| 99在线人妻在线中文字幕| 校园春色视频在线观看| 12—13女人毛片做爰片一| 夜夜爽天天搞| 久久久久免费精品人妻一区二区| 亚洲一级一片aⅴ在线观看| 午夜福利成人在线免费观看| 国产极品天堂在线| 亚洲国产色片| 亚洲电影在线观看av| 亚洲婷婷狠狠爱综合网| 看免费成人av毛片| 国产精品三级大全| 乱码一卡2卡4卡精品| 最新中文字幕久久久久| 麻豆乱淫一区二区| 日韩人妻高清精品专区| 精品一区二区三区视频在线| 国产老妇女一区| 欧美成人一区二区免费高清观看| 看免费成人av毛片| 日日干狠狠操夜夜爽| 看免费成人av毛片| 青青草视频在线视频观看| 久久久久久久亚洲中文字幕| 亚洲美女视频黄频| 成人鲁丝片一二三区免费| 国产高潮美女av| 中国美女看黄片| 亚洲最大成人中文| 日本免费a在线| 亚洲欧美成人精品一区二区| 色综合站精品国产| 欧美最黄视频在线播放免费| 日韩制服骚丝袜av| 国产精品久久久久久久久免| 国产乱人视频| 99久国产av精品国产电影| 麻豆成人av视频| 国国产精品蜜臀av免费| 国产成人aa在线观看| 国产白丝娇喘喷水9色精品| 青青草视频在线视频观看| 免费一级毛片在线播放高清视频| 91麻豆精品激情在线观看国产| 成人亚洲精品av一区二区| 最好的美女福利视频网| 亚洲欧美中文字幕日韩二区| 全区人妻精品视频| 亚洲高清免费不卡视频| 看免费成人av毛片| 免费大片18禁| 亚洲欧美成人精品一区二区| 有码 亚洲区| 欧美潮喷喷水| 亚洲国产欧洲综合997久久,| 午夜久久久久精精品| 国产高清激情床上av| 人妻久久中文字幕网| 精品人妻视频免费看| 麻豆精品久久久久久蜜桃| 亚洲av中文av极速乱| 国产淫片久久久久久久久| 麻豆久久精品国产亚洲av| 亚洲欧美日韩高清专用| 麻豆久久精品国产亚洲av| 日韩亚洲欧美综合| 夜夜看夜夜爽夜夜摸| 一区二区三区免费毛片| 久久久久久久久久久免费av| 亚洲av第一区精品v没综合| 欧美人与善性xxx| 日本av手机在线免费观看| 免费看光身美女| 欧美zozozo另类| 免费无遮挡裸体视频| 18禁在线无遮挡免费观看视频| 成人亚洲欧美一区二区av| videossex国产| 国产高清不卡午夜福利| 精品久久久久久久末码| av天堂中文字幕网| 春色校园在线视频观看| 国产极品精品免费视频能看的| 久久久久网色| 男女啪啪激烈高潮av片| 午夜激情福利司机影院| av天堂在线播放| 国产精品一二三区在线看| 2021天堂中文幕一二区在线观| 日韩一区二区三区影片| 亚洲真实伦在线观看| 午夜激情欧美在线| 欧美+亚洲+日韩+国产| 人妻系列 视频| 深夜a级毛片| 校园春色视频在线观看| 国产伦精品一区二区三区视频9| 校园春色视频在线观看| 最新中文字幕久久久久| 亚洲人成网站在线播| 一区福利在线观看| 九九爱精品视频在线观看| 色综合亚洲欧美另类图片| 又黄又爽又刺激的免费视频.| АⅤ资源中文在线天堂| 小蜜桃在线观看免费完整版高清| 嫩草影院精品99| 看免费成人av毛片| 18禁在线无遮挡免费观看视频| 人体艺术视频欧美日本| 男人的好看免费观看在线视频| 精品一区二区三区人妻视频| 乱系列少妇在线播放| 久久欧美精品欧美久久欧美| 性欧美人与动物交配|