• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Plasma characteristics and broadband electromagnetic wave absorption in argon and helium capacitively coupled plasma?

    2021-09-28 02:18:04WenChongOuyang歐陽(yáng)文沖QiLiu劉琦TaoJin金濤andZhengWeiWu吳征威
    Chinese Physics B 2021年9期
    關(guān)鍵詞:劉琦文沖歐陽(yáng)

    Wen-Chong Ouyang(歐陽(yáng)文沖),Qi Liu(劉琦),Tao Jin(金濤),and Zheng-Wei Wu(吳征威)

    School of Nuclear Science and Technology,University of Science and Technology of China,Hefei 230026,China

    Keywords:capacitively coupled plasma,electron number density,absorption frequency,plasma stealth

    1.Introduction

    In recent years,the interaction between electromagnetic wave and plasma has received wide attention,for it has important applications in military,aeronautics,and industry,specifically,in plasma stealth,[1,2]communication blackout during atmospheric reentry,[3,4]and plasma diagnosis.[5,6]etc.The methods of computing the interaction of electromagnetic wave and plasma was developed by many researchers.[7–10]Zhang et al.numerically analyzed the reflection and absorption characteristics of electromagnetic waves propagating in a multilayer plasma plate by the wave impedance matching method.[11]Chen et al.studied the scattering characteristics of time-varying plasma at different incident angles and frequency bands by using the finite-difference time-difference(FDTD)method.[12]Guo L J and Guo L X theoretically solved the absorption coefficient of electromagnetic wave in a moving non-uniform plasma plate based on the covariance of Maxwell equations and the phase invariance of plane wave.[13]

    With the application of plasma to the discharge devices,many researchers pay attention to the propagation characteristics of electromagnetic waves in inductively coupled plasma(ICP)[14,15]and capacitively coupled plasma.[16,17]Li et al.used the improved scattering matrix method(SMM)to study the influence of collision frequency and incident angle on resonance absorption based on the plasma distribution of typical inductively coupled plasma discharge.[18]Wei et al.investigated the influence of the power and atmospheric pressure parameters of ICP discharge on the attenuation of 4 GHz–5 GHz electromagnetic waves.[19]Zhang et al.studied the changes of electromagnetic wave transmission attenuation with the pressure and applied voltage parameters of CCP discharge,and discussed the applications of helium CCP in absorbing electromagnetic waves.[20]However,the parameters that affect the attenuation of electromagnetic wave are not only the pressure but also power.According to our previous research,[4]the electron number density and collision frequency are the main factors that affect the attenuation of electromagnetic waves.The difference in discharge gas,power frequency,discharge gap,and other parameters will also change plasma parameters(electron number density and collision frequency)and affect the attenuation of electromagnetic wave.Therefore,it is necessary to study the characteristics of CCP plasma discharge under these conditions and further analyze their influence on the electromagnetic wave propagation for plasma stealth applications.

    In this paper,a self-consistent calculation model for CCP discharge and electromagnetic wave propagation is developed.Then the influence of difference in discharge gas,discharge gap,power frequency,pressure,and power on the plasma distribution and transmission attenuation are analyzed.Finally,the corresponding parameters of the best electromagnetic wave absorption effect and the applications in plasma stealth are discussed.

    2.Description of model

    2.1.CCP discharge model

    2.1.1.Equation of fluid model

    The CCP is a classical plasma discharge device used to study plasma diagnosis and electromagnetic wave propagation characteristics.The numerical simulation methods of CCP mainly include particle-in-cell(PIC)model,[21]fluid model[20]and global model.Compared with the other two methods,the fluid model is widely used due to the fast calculation speed and better description of the plasma process.

    In this paper,a one-dimensional drift diffusion fluid model is used to investigate the CCP discharge characteristics under different conditions(such as the discharge gas,RF power,etc.).The electron density and electron energy density are obtained by solving the drift diffusion equation

    where neis the electron density,nεis the electron energy density,E is the electric field,seand sεrepresent the electron source term and the electron energy source term produced,respectively,by inelastic collision and elastic collision between electrons and neutral particles,etc.,ΓeandΓεare respectively solved according to

    whereμeandμεrepresent the mobility coefficient of electron and electron energy,respectively.According to the Surendra’s conclusion,[22]the electron mobility coefficient and neutral density satisfy the following relationship:

    The mobility coefficient of electron energy is calculated from

    The diffusion coefficients is defined as

    where Deand Dεrepresent the diffusion coefficient of electron and electron energy,respectively,kBis the Boltzmann constant,Teis the electron temperature.

    The terms seand sεare obtained from the following equations,respectively:

    where kiis the ionization coefficient,nαis the density of species a,Δεαis the energy loss rate coefficient,meis the electron mass,mαis the mass of heavy species a,Tgis the gas temperature,and ve,nrepresents the electron–neutral momentum transfer collision frequency.

    The electron temperature and the average electron energy have the following relationship:

    where nε/nerepresents the average electron energy.

    For ions and other neutral particles,they are expressed by solving the average diffusion model of the mixture[23,24]

    whereρis the density of mixed species,wais the mass fraction of species a,u is the average velocity of all species(can be regarded as fluid),jarepresents the mass flux of species a,and Rais the source term related to the reaction rate of species a.

    The density of mixed species and mass flux of species are calculated from the following equations,respectively:

    where Mnis the average molar mass,pAis the absolute pressure,R is the gas constant,T is the gas temperature,and vais the velocity of species a.

    The velocity of the species a is obtained by solving the following equation:

    The electric field is calculated from the Poisson equation

    2.1.2.Discharge parameters

    The structure of the CCP discharge device is shown in Fig.1.It consists of two electrodes with 30 cm in length,the two electrodes are parallel and have a certain interspace.The upper electrode and the lower electrode are externally connected by an RF power supply,and the lower electrode is grounded.

    Fig.1.Schematic diagram of CCP discharge device.

    In order to study the influence of different discharge parameters on plasma discharge characteristics and electromagnetic wave propagation characteristics,the discharge gap,RF power,RF frequency and pressure in the cavity are set to be 5 cm–15 cm,50 W–300 W,13.56 MHz–45 MHz and 0.1 Torr–0.5 Torr(1 Torr=1.33322×102Pa)in this paper,respectively.The specific conditions of each discharge parameter are shown in Table 1.

    Table 1.Specific values of discharge parameters.

    2.1.3.Chemical reaction of gas discharge

    In this model,the argon and helium are considered as discharge gas.Four species and seven chemical reactions are taken into account in the argon discharge model as shown in Table 2.The four species are Ar(argon atom),Ar?(argon metastable atom),Ar+(argon ion),and e(electron),respectively.

    Table 2.Chemical reactions in argon plasma discharge model.

    Table 3.Chemical reaction in helium plasma discharge model.

    For the helium plasma discharge model,four species including He(helium atom),He?(helium metastable atom),He+(helium ion),and e(electron)are considered in the chemical reactions.The specific chemical reactions for yielding the four species are shown in Table 3.The reaction coefficient indicated by f(ε)in argon and helium plasma discharge model are computed by cross-section data and BOLSIG+.

    2.1.4.Boundary conditions

    The heat emission flux is approximately ignored in this paper,and the boundary conditions of electron and electron energy flux on the wall in the CCP discharge model are respectively expressed by

    where n represents the normal pointing towards the wall,reis the reflection coefficient,ve,this the thermal velocity of a single electron,andγais the secondary electron emission coefficient.

    In addition,the initial temperature in the discharge cavity is set to be 300 K,the reflection coefficient of the wall boundary is zero,the initial electron number density is 1014m?3,and the initial average electron energy is 4 eV.The input power is expressed as

    The total time-average power density satisfies the following relationship:

    where Wtis the total time-average power density and S is the parallel plate electrode areas.According to Eq.(18),the electric field can be solved by the total power density[20]

    The corresponding electric potential and current density are obtained according to the following equations:[20]

    where V is the electric potential,J is the current density,and Γαis the flux of species a.

    2.2.Electromagnetic wave propagation model

    Since the one-dimensional CCP discharge model in this paper simulates the characteristics of plasma discharge from anode to cathode,the multilayer transmission model[25]is used to calculate the propagation characteristics of electromagnetic waves in plasma generated by CCP discharge.The plasma between the anode and the cathode can be divided into l homogeneous layers,and electromagnetic waves propagate through the plasma in the y-axis direction.

    The electromagnetic wave propagation coefficient of the l layer is solved according to the following equation:

    where w is the angular frequency of electromagnetic wave,c is the speed of light,εr(l)is the relative dielectric constant of plasma in the l-th layer.

    The electric field of the l-th layer is expressed as

    where Clis the reflection coefficient,Dlis the transmission coefficient,and E is the electric field.

    Since the electric field and magnetic field on the propagation boundary meet the continuity of the tangential component and phase matching,the relationship between reflection coefficient and transmission coefficient can be expressed in the matrix form as follows:

    where Smis expressed as

    By substituting the boundary conditions into Eq.(25),the following relationship is obtained

    Fig.2.Algorithm flowchart of self-consistent calculation model for CCP discharge and electromagnetic wave propagation.

    where A is the total reflection coefficient,F is the total transmission coefficient,Sgis expressed in the matrix form,Vpis defined as follows:

    Finally,the total reflection coefficient and transmission coefficient are solved according to the following equation:

    The attenuation of the electromagnetic wave through the CCP discharge plasma is obtained according to the transmission coefficient

    where Att is the attenuation value.

    Based on the CCP plasma discharge and electromagnetic wave propagation model,a one-dimensional self-consistent calculation model is proposed to investigate the propagation characteristics of electromagnetic waves in the plasma discharge device.The specific algorithm flow can be divided into two steps as shown in Fig.2.The first step is to use the CCP discharge model established by COMSOL multiphysics to study the effect of the difference in discharge gas,discharge gap,RF power,RF frequency,and pressure on the characteristics of the generated plasma.The second step is to take the electron number density and collision frequency of the plasma as inputs into the electromagnetic wave transmission model established by MATLAB code,and the influence of difference in discharge parameter and the discharge gas on the electromagnetic wave attenuation are obtained.

    3.Simulation results and discussion

    3.1.Plasma characteristics under different discharge gases and parameters

    In the process of numerical solution of CCP discharge model,a large number of RF cycles(102–105)are needed to obtain a steady-state solution.In order to speed up the calculation efficiency,the COMSOL plasma module introduces periodic boundary conditions to quickly calculate the stable state.Taking the metastable particles in the CCP discharge for example,the evolution of the particles is described by using Eq.(33),and the periodic boundary conditions are shown in Eq.(34);

    where n is the number of metastable particles.The first term on the right-hand side in Eq.(33)represents the periodic generation of metastable states and periodic oscillation in the plasma sheath.The second term refers to the loss caused by the collision with the background gas,and the third term is the loss caused by the collision between metastable particles.

    In order to verify the accuracy of the CCP discharge model,figure 3 shows the comparison of electron number density between CCP discharges of argon and helium,for measurement results and simulation results obtained from the present study and other researchers.[20,26]It can be seen from Fig.3(a)that the electron number density distribution of helium discharge in this paper is in good agreement with the simulation results given by Zhang et al.[20]The electron number density distribution in the argon discharge in this paper accords well with the simulation results and experimental results reported by Pan et al.[26]However,the electron number density distribution near the electrode is quite different,because the edge effect is not considered in Ref.[26].

    Figure 4 shows the electron density distribution of argon discharge and helium discharge at gas pressure p=0.5 Torr,discharge gap L=0.1 m,RF power P=300 W,and RF frequency f=13.56 MHz.It is obvious that the electron number density under argon discharge is higher than that under helium discharge.And the maximum electron number density differs by more than 10 times,which is consistent with the conclusion drawn under the inductively coupled plasma(ICP)discharge mode.[27]In addition,although the electron number density of helium is lower than that of argon,the uniform range of plasma in the central region is larger than the case of argon discharge.The reason is that the degree of ionization of argon gas is higher than that of helium gas.It is also verified from the side that the electron number density and uniformity are often mutually restricted.

    Fig.3.Comparison of electron number density distribution between argon and helium CCP discharges,for measurement results and simulation results obtained from the present research and other researches,showing(a)helium discharge at gas pressure p=0.5 Torr,discharge gap L=0.123 m,parallel plate length l=0.28 m,input voltage V=1000 V,and RF frequency f=13.56 MHz,and(b)argon discharge at gas pressure p=250 Pa,discharge gap L=0.078 m,parallel plate length l=0.1 m,RF power P=100 W,and RF frequency f=13.56 MHz.

    Fig.4.Electron number density distribution of argon discharge and helium discharge at gas pressure p=0.5 Torr,discharge gap L=0.1 m,RF power P=300 W,and RF frequency f=13.56 MHz.

    The electron number density distributions of argon discharge under different gas pressures are shown in Fig.5.It can be concluded that the electron number density increases with gas pressure increasing.The maximum electron density corresponding to gas pressure p=0.1 Torr,0.3 Torr,and 0.5 Torr is 4.71×1016m?3,1.59×1017m?3,and 2.09×1017m?3,respectively.The increase in gas pressure will intensify the collisions between different particles,leading the electron number density to increase.

    Fig.5.Electron number density distributions of argon under different gas pressures at discharge gap L=0.1 m,RF power P=300 W,and RF frequency f=13.56 MHz.

    Fig.6.Electron number density distributions of argon discharge under different discharge gaps at gas pressure p=0.5 Torr,RF power P=300 W,and RF frequency f=13.56 MHz.

    Figure 6 shows the electron number density distributions under different discharge gaps.It is obvious that the electron number density first increases and then decreases with discharge gap increasing,and the maximum appears in the case L=0.1 m.The results show that the maximum electron densities are 6.81×1016m?3,2.09×1017m?3,and 1.88×1017m?3,corresponding to the discharge gap of 0.05 m,0.1 m,and 0.15 m,respectively.As the discharge gap decreases exponentially,the uniform range of the plasma density in the central area decreases more than the discharge gap does.Figures 7 and 8 respectively show the electron number density distribution under different values of RF power and RF frequency.It can be seen from Figs.7 and 8 that the electron number density increases with the augment of RF power and frequency.The increase of the input power will make the electrons gain more energies in the electrode sheath,and more high-energy particles will collide with the background gas in the cavity to generate more electrons.The increase of the RF frequency will cause the RF frequency and the oscillation frequency of the electrons to increase,thereby increasing the collision between the electrons and the particles in the background gas.On the other hand,the induced component,as a factor that affects the electron number density,also increases with RF frequency rising.[28]In addition,the influence of RF power on the electron number density is greater than that of RF frequency.

    Fig.7.Electron number density distributions of argon discharge under different values of RF power at gas pressure p=0.5 Torr,discharge gap L=0.1 m,and RF frequency f=13.56 MHz.

    Fig.8.Electron number density distributions of argon discharge under different RF frequencies at gas pressure p=0.5 Torr,discharge gap L=0.1 m,and RF frequency f=13.56 MHz.

    3.2.Electromagnetic wave attenuation for different discharge gases and parameters

    The self-consistent simulation model of CCP discharge and electromagnetic wave is based on the electron number density and collision frequency data in CCP discharge to study the attenuation of electromagnetic wave propagation in plasma.The electron collision frequency can be estimated by the following equation:[29]

    where veis the electron collision frequency,r is the sum of electron–neutral collisional radius(According to Refs.[30]and[31]the average cross section of helium satisfiesπr2=7.63×10?20m2,the average cross section of argon follows πr2=2.32×10?19m2).According to the simulation results in this paper,the periodic average values of the electron temperatures of helium and argon are about 5 eV and 10 eV(1 eV=11300 K),respectively.Combining Zhang’s estimation[20]of the electron collision frequency under CCP discharge,the final formulas for collision frequency of helium and argon are obtained,respectively,

    where veand p are measured in units GHz and Torr,respectively.

    3.3.Transmission attenuation of different discharge gases

    Figure 9 shows the transmission attenuation in argon discharge plasma and helium discharge plasma at the same discharge parameters.It is obvious that the attenuation of electromagnetic wave in argon discharge is greater than that in helium discharge.The reason is that although the electron collision frequency of argon discharge is higher than that of helium discharge,the electron number density of argon discharge is much higher than that of helium discharge.It is generally believed that the normal communication cannot be achieved if the signal attenuation exceeds?5 dB.The plasma produced by helium discharge has little absorption of electromagnetic wave energy and weaker interference to signal communication.The plasma produced by argon discharge has significant absorption of electromagnetic wave energy in a frequency range from 0.01 GHz to 10 GHz,and the absorption peak reaches?13 dB at 2.41 GHz.Therefore,the plasma generated by argon discharge is more suitable for the research of plasma stealth applications.

    Fig.9.Plots of transmission attenuation of electromagnetic wave in argon discharge and helium discharge.

    In addition,it can be seen from Fig.9 that the transmission attenuation curve under argon discharge can be divided into two parts.The electromagnetic wave frequency range of part 1 is 0.01 GHz–2.41 GHz,and the transmission attenuation decreases significantly with frequency increasing.At this time,the wavelength is greater than the thickness of the plasma layer,the diffraction effect is dominant,and the penetration effect is not obvious.The electromagnetic wave frequency of part 2 is greater than 2.41 GHz,and the transmission attenuation increases significantly with the frequency increasing.The corresponding wavelength is close to and slowly far below the thickness of the plasma layer.At this time,the penetration effect is dominant and the diffraction effect can be ignored.

    3.4.Transmission attenuation of different discharge parameters

    Figure 10 shows the attenuation of electromagnetic waves in plasma generated by argon discharge at different pressures.The transmission attenuation decreases with the increase of pressure,because the increase in pressure causes the electron density in the discharge plasma to increase.However,this trend will not always be maintained.It can be seen from Fig.10 that the maximum transmission attenuation under a pressure of 0.3 Torr is higher than 0.5 Torr.The reason is that the increase in pressure leads the mean free path of electrons to decrease,which increases the frequency of electron collisions.At this time,the influence of electron collision frequency is higher than that of the change of electron number density.Therefore,the gas pressure needs to be carefully selected according to actual influence.

    Fig.10.Plots of transmission attenuation of electromagnetic waves in argon discharges at different gas pressures.

    As the discharge gap increases,the thickness of the plasma sheath increases,while the electron number density first increases and then decreases.Therefore,the transmission attenuation of electromagnetic waves does not change monotonically with the discharge gap increasing.Figure 11 shows the transmission attenuation in plasma generated by different discharge gaps.The peaks of transmission attenuation are?3.8 dB,?12.9 dB,and?12.8 dB,corresponding to the discharge gaps of 0.05 m,0.1 m,and 0.15 m,respectively.The transmission attenuation of electromagnetic waves first increases and then decreases with the discharge gap inceasing,and the attenuation reaches a maximum value at L=0.1 m.The transmission attenuation is within?5 dB when the discharge gap is 0.05 m,which shows that the plasma generated at this time has little interference to the signal.

    Fig.11.Plots of transmission attenuation of electromagnetic waves in argon discharges of different discharge gaps.

    Figures 12 and 13 respectively illustrate the transmission attenuation of plasma generated by different values of RF power and RF frequency.It is obvious that the transmission attenuation of electromagnetic waves increases with the augment of RF power and RF frequency.The reason is that the increase of RF power and RF frequency have no effect on the electron collision frequency,but it will increase the electron number density.

    Fig.12.Plots of transmission attenuation of electromagnetic waves in argon discharges of different values of RF power.

    One can observe that higher RF power and RF frequency have a wider strong absorption frequency band for electromagnetic waves.The peaks of transmission attenuation are?3.7 dB,?7.8 dB,and?12.9 dB,corresponding to the RF power of 50 W,150 W,and 300 W,respectively.The plasma generated at power of 50 W has almost no interference to electromagnetic wave transmission in any frequency band.But when the power is increased to 300 W,the wave frequency range that can be absorbed is 0.01 GHZ–9.1 GHz,which includes L-band,S-band,and C-band.When the RF frequency increases from 13.56 MHz to 45 MHz,the transmission attenuation increases from?12.9 dB to?22.5 dB.Meanwhile,the maximum frequency of electromagnetic wave absorption ranges from 9.1 GHz to 13.7 GHz,and the frequency band for electromagnetic wave absorption expands from C-band to X-band,and even Ku-band.

    Fig.13.Plots of transmission attenuation of electromagnetic waves in argon discharges of different RF frequencies.

    4.Conclusions and perspectives

    Based on the CCP discharge method,the effects of different gases and discharge parameters on the electron number density and transmission attenuation are studied in this paper.A large amount of helium and argon plasma are generated between two 30-cm-long parallel rectangular plates where gas pressure is p=0.1 Torr–0.5 Torr,discharge gap is L=0.025 m–0.1 m,RF power is P=50 W–300 W,RF frequency is f=13.56 MHz–45 MHz.The CCP discharge characteristics and electromagnetic wave transmission attenuation under different discharge gases and parameters are obtained by a self-consistent calculation model combining the drift diffusion fluid model and the improved scattering matrix method.Conclusions are summarized below.

    (i)The electron number density increases with the augment of gas pressure,RF power,and RF frequency,while it first increases and then decreases with the increase of discharge gap.In addition,the electron density of argon plasma discharge is much higher than that of helium plasma discharge.

    (ii)The absorption effect of argon discharge plasma on electromagnetic waves is much greater than that of helium discharge plasma,so it will be prioritized as the discharge gas for plasma stealth.Meanwhile,transmission attenuation increases with the augment of RF power and RF frequency.So the RF power and RF frequency should be increased as much as possible without affecting the normal discharge of CCP.However,the choice of gas pressure and discharge gap should be considered based on the actual situation,because the transmission attenuation does not increase or decrease monotonically with the increase of pressure and discharge gap.

    (iii)The maximum transmission attenuation of CCP discharge plasma to electromagnetic waves under the best parameters in this paper is?22.5 dB.The maximum frequency of electromagnetic wave absorption is 13.7 GHz,and the corresponding absorption electromagnetic wave band ranges from S band to Ku band.

    The discharge characteristics of CCP and the corresponding transmission attenuation are of great significance in plasma stealth applications.The experimental platform of microwave chamber for CCP discharge and electromagnetic wave propagation is currently being built.And the two-dimensional and three-dimensional self-consistent models combining CCP discharge and electromagnetic wave propagation will be studied in our future work.

    猜你喜歡
    劉琦文沖歐陽(yáng)
    咕咕叫的肚皮
    初心引航,構(gòu)建“雙減”新樣態(tài)
    勇毅前行開創(chuàng)未來(lái)
    ———記中船黃埔文沖船舶有限公司
    繼往開來(lái)憶往昔砥礪前行譜新篇
    ——記廣州文沖船舶修造有限公司
    我家的健忘老媽
    歐陽(yáng)彥等
    逆勢(shì)而上 奮楫向前
    ——記中船黃埔文沖船舶有限公司
    依依送別歐陽(yáng)鶴先生
    GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO THE HYPERBOLIC GEOMETRY FLOW WITH TIME-DEPENDENT DISSIPATION?
    歐陽(yáng)麗作品
    亚洲 欧美 日韩 在线 免费| 免费看美女性在线毛片视频| 麻豆国产97在线/欧美| 国产成年人精品一区二区| 久久久久久国产a免费观看| 99精品欧美一区二区三区四区| 国产av不卡久久| 亚洲片人在线观看| 久久久久久久午夜电影| 成人特级av手机在线观看| 一夜夜www| 久久久久久久精品吃奶| 日日干狠狠操夜夜爽| 男女之事视频高清在线观看| 亚洲精品中文字幕一二三四区| 岛国在线免费视频观看| 18美女黄网站色大片免费观看| 99在线视频只有这里精品首页| 中文字幕精品亚洲无线码一区| 很黄的视频免费| 欧美极品一区二区三区四区| 日本三级黄在线观看| 国产成人av激情在线播放| 欧美高清成人免费视频www| 亚洲午夜精品一区,二区,三区| 色哟哟哟哟哟哟| 美女免费视频网站| 波多野结衣高清作品| 搡老妇女老女人老熟妇| 男人和女人高潮做爰伦理| 毛片女人毛片| 中文字幕av在线有码专区| 亚洲av成人一区二区三| 九九在线视频观看精品| 色在线成人网| 国产三级在线视频| 波多野结衣高清作品| 日本a在线网址| 桃红色精品国产亚洲av| 国产精华一区二区三区| 在线观看免费午夜福利视频| 青草久久国产| 欧美中文日本在线观看视频| 无人区码免费观看不卡| 国产精品av视频在线免费观看| 国产蜜桃级精品一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 99久久精品热视频| 中文字幕人妻丝袜一区二区| 变态另类丝袜制服| 国产高清有码在线观看视频| 给我免费播放毛片高清在线观看| 麻豆成人午夜福利视频| 精品午夜福利视频在线观看一区| 99热这里只有是精品50| 亚洲一区二区三区不卡视频| 精品国产超薄肉色丝袜足j| 又粗又爽又猛毛片免费看| 国内揄拍国产精品人妻在线| 久久香蕉国产精品| 两人在一起打扑克的视频| 亚洲午夜理论影院| 国产精品香港三级国产av潘金莲| 丝袜人妻中文字幕| 级片在线观看| h日本视频在线播放| 一区福利在线观看| 久久性视频一级片| 亚洲国产欧美网| 此物有八面人人有两片| 制服丝袜大香蕉在线| 成人鲁丝片一二三区免费| 村上凉子中文字幕在线| 亚洲aⅴ乱码一区二区在线播放| 精品99又大又爽又粗少妇毛片 | 五月伊人婷婷丁香| 亚洲五月天丁香| 欧洲精品卡2卡3卡4卡5卡区| 黄色成人免费大全| 九色成人免费人妻av| 日韩有码中文字幕| 亚洲国产日韩欧美精品在线观看 | 国产精品女同一区二区软件 | 免费电影在线观看免费观看| 成年人黄色毛片网站| 久久久久久久久免费视频了| 亚洲 国产 在线| 综合色av麻豆| 色视频www国产| 两性午夜刺激爽爽歪歪视频在线观看| 久久亚洲精品不卡| 麻豆成人午夜福利视频| 欧美高清成人免费视频www| 亚洲乱码一区二区免费版| 99国产综合亚洲精品| 狂野欧美激情性xxxx| 757午夜福利合集在线观看| 男女下面进入的视频免费午夜| 欧美黑人巨大hd| 高清在线国产一区| 国产精品综合久久久久久久免费| 日本免费a在线| 成熟少妇高潮喷水视频| 动漫黄色视频在线观看| 嫩草影院精品99| 久久久国产成人精品二区| 亚洲最大成人中文| 五月玫瑰六月丁香| 国产精品美女特级片免费视频播放器 | 丁香六月欧美| 午夜免费成人在线视频| a级毛片在线看网站| 两个人看的免费小视频| 久久久久亚洲av毛片大全| 国内毛片毛片毛片毛片毛片| 国内久久婷婷六月综合欲色啪| 国产视频一区二区在线看| www.999成人在线观看| 国产美女午夜福利| 免费无遮挡裸体视频| 九九久久精品国产亚洲av麻豆 | 手机成人av网站| 欧美午夜高清在线| 后天国语完整版免费观看| 国产av麻豆久久久久久久| 日本五十路高清| 一夜夜www| 国内久久婷婷六月综合欲色啪| 动漫黄色视频在线观看| 我要搜黄色片| 日本三级黄在线观看| 亚洲精品在线美女| 偷拍熟女少妇极品色| 色av中文字幕| 亚洲中文字幕日韩| 成在线人永久免费视频| 高清在线国产一区| 午夜福利在线在线| 麻豆av在线久日| 欧美一级a爱片免费观看看| 伊人久久大香线蕉亚洲五| 制服丝袜大香蕉在线| 色尼玛亚洲综合影院| 亚洲中文字幕一区二区三区有码在线看 | 特大巨黑吊av在线直播| 欧美不卡视频在线免费观看| 午夜免费成人在线视频| 长腿黑丝高跟| 99国产综合亚洲精品| 精品一区二区三区四区五区乱码| 亚洲在线自拍视频| 熟妇人妻久久中文字幕3abv| 国产精品综合久久久久久久免费| 宅男免费午夜| 色精品久久人妻99蜜桃| 精品午夜福利视频在线观看一区| 一本综合久久免费| 亚洲 国产 在线| 国产av不卡久久| 男插女下体视频免费在线播放| 欧美中文综合在线视频| 欧美日韩瑟瑟在线播放| 少妇人妻一区二区三区视频| 亚洲精品粉嫩美女一区| 国产欧美日韩一区二区精品| 午夜精品一区二区三区免费看| 亚洲中文字幕日韩| 一进一出好大好爽视频| 欧美黑人巨大hd| 日本三级黄在线观看| h日本视频在线播放| 一级a爱片免费观看的视频| 国产精品日韩av在线免费观看| 99riav亚洲国产免费| 很黄的视频免费| 国内精品久久久久精免费| 九九在线视频观看精品| 九九久久精品国产亚洲av麻豆 | 欧美一级毛片孕妇| 又黄又粗又硬又大视频| 精品人妻1区二区| 久久久久久久午夜电影| av女优亚洲男人天堂 | 麻豆国产97在线/欧美| 香蕉国产在线看| 两个人看的免费小视频| 国产99白浆流出| 中文字幕人妻丝袜一区二区| 一本一本综合久久| 最近最新中文字幕大全电影3| 久久国产精品影院| 亚洲一区二区三区色噜噜| 国产精品99久久久久久久久| 老汉色∧v一级毛片| 国产精品久久久人人做人人爽| 精品免费久久久久久久清纯| 国产亚洲精品综合一区在线观看| 日本熟妇午夜| 亚洲乱码一区二区免费版| 嫩草影视91久久| 亚洲欧美精品综合一区二区三区| ponron亚洲| 午夜福利在线在线| 国产精品免费一区二区三区在线| 亚洲av熟女| 无人区码免费观看不卡| 成人精品一区二区免费| 国产乱人视频| 久久久久久国产a免费观看| 99在线视频只有这里精品首页| 欧美大码av| 亚洲自偷自拍图片 自拍| 亚洲欧美激情综合另类| 黄色丝袜av网址大全| 欧美绝顶高潮抽搐喷水| 久久久久久人人人人人| 他把我摸到了高潮在线观看| 亚洲五月天丁香| av黄色大香蕉| 在线a可以看的网站| 久久99热这里只有精品18| 中亚洲国语对白在线视频| 国内久久婷婷六月综合欲色啪| 三级男女做爰猛烈吃奶摸视频| 久久精品国产亚洲av香蕉五月| 天天躁日日操中文字幕| 成人18禁在线播放| 麻豆国产97在线/欧美| 久久久久久人人人人人| 久久精品国产清高在天天线| 久久午夜综合久久蜜桃| 在线观看免费视频日本深夜| 天堂动漫精品| 在线观看免费午夜福利视频| 精品久久久久久久人妻蜜臀av| 国产乱人视频| 成人特级av手机在线观看| 在线看三级毛片| 国产亚洲精品综合一区在线观看| 最好的美女福利视频网| 91av网站免费观看| 老司机福利观看| 黄色日韩在线| 久久天堂一区二区三区四区| 久久久国产成人免费| av在线天堂中文字幕| 成年免费大片在线观看| 国产精品1区2区在线观看.| 国产高清视频在线观看网站| 午夜精品在线福利| 欧美最黄视频在线播放免费| 欧美不卡视频在线免费观看| 国产v大片淫在线免费观看| 麻豆一二三区av精品| 黄色 视频免费看| 欧美黑人欧美精品刺激| 别揉我奶头~嗯~啊~动态视频| 久久国产精品人妻蜜桃| 日本黄大片高清| 欧美绝顶高潮抽搐喷水| 在线a可以看的网站| 啦啦啦免费观看视频1| 国产精品自产拍在线观看55亚洲| 亚洲av第一区精品v没综合| www.999成人在线观看| 亚洲欧美日韩高清专用| 中文字幕久久专区| 国产三级在线视频| 国产高清有码在线观看视频| 特大巨黑吊av在线直播| 国产午夜精品论理片| 精华霜和精华液先用哪个| 亚洲精华国产精华精| 亚洲人成网站高清观看| 久久久久久九九精品二区国产| 一个人免费在线观看的高清视频| 久久久久国产一级毛片高清牌| 国产乱人伦免费视频| 欧美黄色片欧美黄色片| 国产淫片久久久久久久久 | 国产野战对白在线观看| 亚洲av熟女| 久久久久久久久免费视频了| 日韩精品青青久久久久久| 搡老妇女老女人老熟妇| 国产人伦9x9x在线观看| 亚洲 欧美 日韩 在线 免费| 长腿黑丝高跟| 国产aⅴ精品一区二区三区波| 18禁黄网站禁片免费观看直播| 中文字幕精品亚洲无线码一区| 欧美三级亚洲精品| 男插女下体视频免费在线播放| 免费无遮挡裸体视频| 欧美日韩乱码在线| 无限看片的www在线观看| 国产亚洲欧美在线一区二区| 成人欧美大片| 亚洲av美国av| 黄色丝袜av网址大全| www日本黄色视频网| 在线看三级毛片| 国内少妇人妻偷人精品xxx网站 | 国产成人系列免费观看| 少妇的丰满在线观看| 此物有八面人人有两片| 国产成人一区二区三区免费视频网站| 999久久久国产精品视频| 我要搜黄色片| aaaaa片日本免费| 欧美日韩福利视频一区二区| 好看av亚洲va欧美ⅴa在| 免费av毛片视频| 国产精品美女特级片免费视频播放器 | 国产一区二区三区视频了| 国产精品自产拍在线观看55亚洲| 日韩欧美国产在线观看| 嫩草影视91久久| 嫩草影院入口| 精品久久久久久久人妻蜜臀av| 国产v大片淫在线免费观看| 精品国产超薄肉色丝袜足j| 最近视频中文字幕2019在线8| 国产精品永久免费网站| 国产一区二区三区视频了| 免费大片18禁| xxx96com| 欧美日本亚洲视频在线播放| 18禁裸乳无遮挡免费网站照片| 脱女人内裤的视频| 99国产极品粉嫩在线观看| 亚洲精华国产精华精| 国产av麻豆久久久久久久| 91av网一区二区| 给我免费播放毛片高清在线观看| 好看av亚洲va欧美ⅴa在| 国产91精品成人一区二区三区| 在线看三级毛片| 变态另类成人亚洲欧美熟女| 淫秽高清视频在线观看| 午夜成年电影在线免费观看| 亚洲 国产 在线| 中国美女看黄片| 亚洲av片天天在线观看| 国产伦精品一区二区三区视频9 | 香蕉丝袜av| 国产精品 欧美亚洲| 午夜福利18| 国产淫片久久久久久久久 | 成年人黄色毛片网站| 在线播放国产精品三级| 老熟妇仑乱视频hdxx| 最近最新免费中文字幕在线| 国产1区2区3区精品| 国产不卡一卡二| www.www免费av| 国产午夜精品论理片| 黄色女人牲交| 成人性生交大片免费视频hd| 又黄又粗又硬又大视频| 国产精品久久久久久精品电影| 亚洲成人久久爱视频| 白带黄色成豆腐渣| 19禁男女啪啪无遮挡网站| 亚洲avbb在线观看| 日韩免费av在线播放| 欧美在线一区亚洲| 日韩av在线大香蕉| 国产黄片美女视频| 午夜福利在线观看吧| 婷婷精品国产亚洲av| 欧美激情在线99| www日本在线高清视频| 18禁美女被吸乳视频| 亚洲va日本ⅴa欧美va伊人久久| 制服丝袜大香蕉在线| 亚洲自偷自拍图片 自拍| 午夜亚洲福利在线播放| 激情在线观看视频在线高清| 国产精品久久视频播放| 日本黄色视频三级网站网址| 久久性视频一级片| 成人av一区二区三区在线看| 在线免费观看不下载黄p国产 | 亚洲男人的天堂狠狠| 国内揄拍国产精品人妻在线| 午夜久久久久精精品| 久久天堂一区二区三区四区| 夜夜躁狠狠躁天天躁| АⅤ资源中文在线天堂| 中文字幕高清在线视频| 俄罗斯特黄特色一大片| 天天一区二区日本电影三级| 中亚洲国语对白在线视频| 精品福利观看| 18禁裸乳无遮挡免费网站照片| 欧美三级亚洲精品| 操出白浆在线播放| 亚洲乱码一区二区免费版| 国产单亲对白刺激| 热99在线观看视频| 国产精品一区二区免费欧美| 久久久久久久午夜电影| 国产精品亚洲美女久久久| 国产黄色小视频在线观看| 搡老熟女国产l中国老女人| 19禁男女啪啪无遮挡网站| 中文字幕最新亚洲高清| 人妻夜夜爽99麻豆av| 亚洲欧美精品综合一区二区三区| 亚洲精品国产精品久久久不卡| 久久午夜综合久久蜜桃| 九九久久精品国产亚洲av麻豆 | 99热这里只有精品一区 | 久久99热这里只有精品18| 久久久久性生活片| 在线十欧美十亚洲十日本专区| 啦啦啦韩国在线观看视频| 国产精品久久久久久亚洲av鲁大| av视频在线观看入口| av黄色大香蕉| 色在线成人网| 91在线精品国自产拍蜜月 | 观看免费一级毛片| 草草在线视频免费看| 欧美中文日本在线观看视频| 999久久久国产精品视频| 男人和女人高潮做爰伦理| 一进一出抽搐gif免费好疼| 国产成人av教育| 2021天堂中文幕一二区在线观| 精品午夜福利视频在线观看一区| 香蕉av资源在线| 国产成人av激情在线播放| 国产三级黄色录像| 国产免费男女视频| 国产精品久久视频播放| 成人av一区二区三区在线看| 欧美3d第一页| 九九久久精品国产亚洲av麻豆 | 久久精品国产亚洲av香蕉五月| 久久国产精品人妻蜜桃| 综合色av麻豆| 国内精品一区二区在线观看| 桃红色精品国产亚洲av| 大型黄色视频在线免费观看| 91麻豆av在线| 国产私拍福利视频在线观看| 国产伦精品一区二区三区四那| 久久中文字幕一级| av福利片在线观看| 亚洲国产色片| 无遮挡黄片免费观看| 亚洲人成电影免费在线| 国产成年人精品一区二区| 精品久久久久久成人av| 亚洲片人在线观看| 制服人妻中文乱码| 九九热线精品视视频播放| 亚洲专区字幕在线| 这个男人来自地球电影免费观看| 12—13女人毛片做爰片一| 亚洲成a人片在线一区二区| 国产精品香港三级国产av潘金莲| 91老司机精品| 国产精品自产拍在线观看55亚洲| 一个人看的www免费观看视频| 香蕉国产在线看| 久久久久久人人人人人| 99精品久久久久人妻精品| 国产99白浆流出| 中文字幕精品亚洲无线码一区| 999精品在线视频| 欧美性猛交╳xxx乱大交人| 成人欧美大片| 淫秽高清视频在线观看| 国产亚洲精品av在线| 我要搜黄色片| 国产精品国产高清国产av| 亚洲aⅴ乱码一区二区在线播放| 一个人看的www免费观看视频| 日本 欧美在线| 一二三四在线观看免费中文在| 性色avwww在线观看| 黄色日韩在线| 中国美女看黄片| 小说图片视频综合网站| 99久久无色码亚洲精品果冻| 国产毛片a区久久久久| 亚洲av第一区精品v没综合| 亚洲自偷自拍图片 自拍| 性色av乱码一区二区三区2| 韩国av一区二区三区四区| 淫秽高清视频在线观看| 91在线观看av| 黄色视频,在线免费观看| 国产精品99久久久久久久久| 男女之事视频高清在线观看| 特级一级黄色大片| 欧美日韩乱码在线| 又黄又粗又硬又大视频| 叶爱在线成人免费视频播放| 一区二区三区国产精品乱码| 亚洲精品国产精品久久久不卡| 国产精品电影一区二区三区| 老汉色av国产亚洲站长工具| 精品一区二区三区av网在线观看| 99热只有精品国产| 99热这里只有是精品50| 中文字幕人妻丝袜一区二区| 啦啦啦观看免费观看视频高清| 欧美一区二区国产精品久久精品| 亚洲av五月六月丁香网| 在线观看免费午夜福利视频| 在线观看一区二区三区| 啦啦啦韩国在线观看视频| 18禁美女被吸乳视频| 国产午夜福利久久久久久| 日本黄色片子视频| 亚洲,欧美精品.| 日韩欧美在线乱码| 成人无遮挡网站| 又粗又爽又猛毛片免费看| 国产精品久久电影中文字幕| 国产一区二区在线观看日韩 | 狂野欧美激情性xxxx| 丰满人妻一区二区三区视频av | 久久国产精品影院| 非洲黑人性xxxx精品又粗又长| 一a级毛片在线观看| 午夜精品一区二区三区免费看| 在线观看美女被高潮喷水网站 | 国产激情欧美一区二区| 欧美在线一区亚洲| 大型黄色视频在线免费观看| 欧美国产日韩亚洲一区| 国产精品爽爽va在线观看网站| av福利片在线观看| x7x7x7水蜜桃| 宅男免费午夜| 国产精品99久久久久久久久| 久久午夜亚洲精品久久| 美女免费视频网站| 人妻丰满熟妇av一区二区三区| а√天堂www在线а√下载| 麻豆久久精品国产亚洲av| 久久草成人影院| 长腿黑丝高跟| 白带黄色成豆腐渣| 午夜激情福利司机影院| 午夜免费观看网址| 久久精品亚洲精品国产色婷小说| a在线观看视频网站| 亚洲乱码一区二区免费版| 国产精品一区二区免费欧美| 黄频高清免费视频| 两个人的视频大全免费| 美女扒开内裤让男人捅视频| 国产亚洲欧美在线一区二区| 日本成人三级电影网站| 国产亚洲欧美98| 五月玫瑰六月丁香| 欧美激情久久久久久爽电影| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久精品电影| 欧美乱码精品一区二区三区| 桃红色精品国产亚洲av| 搡老岳熟女国产| 可以在线观看毛片的网站| 嫩草影院入口| 最好的美女福利视频网| 夜夜躁狠狠躁天天躁| 欧美在线一区亚洲| 日韩精品青青久久久久久| 久久午夜综合久久蜜桃| 性色av乱码一区二区三区2| 日韩欧美 国产精品| 欧美国产日韩亚洲一区| 欧美一区二区国产精品久久精品| 欧美日韩瑟瑟在线播放| 毛片女人毛片| 亚洲精品在线观看二区| 美女扒开内裤让男人捅视频| 久久久久久久午夜电影| 中文亚洲av片在线观看爽| 又爽又黄无遮挡网站| 欧美黑人欧美精品刺激| 欧美不卡视频在线免费观看| 亚洲人成伊人成综合网2020| 男女做爰动态图高潮gif福利片| 淫妇啪啪啪对白视频| 久久中文看片网| 99精品在免费线老司机午夜| 国产欧美日韩精品亚洲av| 少妇的丰满在线观看| 日韩欧美在线二视频| 国产精品免费一区二区三区在线| 中文字幕久久专区| 欧美性猛交╳xxx乱大交人| 欧美乱色亚洲激情| 一夜夜www| 国产毛片a区久久久久| 国模一区二区三区四区视频 | 哪里可以看免费的av片| 中文字幕av在线有码专区| 国产精品98久久久久久宅男小说| 男女之事视频高清在线观看| 激情在线观看视频在线高清| 男人的好看免费观看在线视频| 国产极品精品免费视频能看的| 亚洲色图 男人天堂 中文字幕| 99久久久亚洲精品蜜臀av| 亚洲人成伊人成综合网2020| 国产一区在线观看成人免费| 亚洲精品乱码久久久v下载方式 |