• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Plasma characteristics and broadband electromagnetic wave absorption in argon and helium capacitively coupled plasma?

    2021-09-28 02:18:04WenChongOuyang歐陽(yáng)文沖QiLiu劉琦TaoJin金濤andZhengWeiWu吳征威
    Chinese Physics B 2021年9期
    關(guān)鍵詞:劉琦文沖歐陽(yáng)

    Wen-Chong Ouyang(歐陽(yáng)文沖),Qi Liu(劉琦),Tao Jin(金濤),and Zheng-Wei Wu(吳征威)

    School of Nuclear Science and Technology,University of Science and Technology of China,Hefei 230026,China

    Keywords:capacitively coupled plasma,electron number density,absorption frequency,plasma stealth

    1.Introduction

    In recent years,the interaction between electromagnetic wave and plasma has received wide attention,for it has important applications in military,aeronautics,and industry,specifically,in plasma stealth,[1,2]communication blackout during atmospheric reentry,[3,4]and plasma diagnosis.[5,6]etc.The methods of computing the interaction of electromagnetic wave and plasma was developed by many researchers.[7–10]Zhang et al.numerically analyzed the reflection and absorption characteristics of electromagnetic waves propagating in a multilayer plasma plate by the wave impedance matching method.[11]Chen et al.studied the scattering characteristics of time-varying plasma at different incident angles and frequency bands by using the finite-difference time-difference(FDTD)method.[12]Guo L J and Guo L X theoretically solved the absorption coefficient of electromagnetic wave in a moving non-uniform plasma plate based on the covariance of Maxwell equations and the phase invariance of plane wave.[13]

    With the application of plasma to the discharge devices,many researchers pay attention to the propagation characteristics of electromagnetic waves in inductively coupled plasma(ICP)[14,15]and capacitively coupled plasma.[16,17]Li et al.used the improved scattering matrix method(SMM)to study the influence of collision frequency and incident angle on resonance absorption based on the plasma distribution of typical inductively coupled plasma discharge.[18]Wei et al.investigated the influence of the power and atmospheric pressure parameters of ICP discharge on the attenuation of 4 GHz–5 GHz electromagnetic waves.[19]Zhang et al.studied the changes of electromagnetic wave transmission attenuation with the pressure and applied voltage parameters of CCP discharge,and discussed the applications of helium CCP in absorbing electromagnetic waves.[20]However,the parameters that affect the attenuation of electromagnetic wave are not only the pressure but also power.According to our previous research,[4]the electron number density and collision frequency are the main factors that affect the attenuation of electromagnetic waves.The difference in discharge gas,power frequency,discharge gap,and other parameters will also change plasma parameters(electron number density and collision frequency)and affect the attenuation of electromagnetic wave.Therefore,it is necessary to study the characteristics of CCP plasma discharge under these conditions and further analyze their influence on the electromagnetic wave propagation for plasma stealth applications.

    In this paper,a self-consistent calculation model for CCP discharge and electromagnetic wave propagation is developed.Then the influence of difference in discharge gas,discharge gap,power frequency,pressure,and power on the plasma distribution and transmission attenuation are analyzed.Finally,the corresponding parameters of the best electromagnetic wave absorption effect and the applications in plasma stealth are discussed.

    2.Description of model

    2.1.CCP discharge model

    2.1.1.Equation of fluid model

    The CCP is a classical plasma discharge device used to study plasma diagnosis and electromagnetic wave propagation characteristics.The numerical simulation methods of CCP mainly include particle-in-cell(PIC)model,[21]fluid model[20]and global model.Compared with the other two methods,the fluid model is widely used due to the fast calculation speed and better description of the plasma process.

    In this paper,a one-dimensional drift diffusion fluid model is used to investigate the CCP discharge characteristics under different conditions(such as the discharge gas,RF power,etc.).The electron density and electron energy density are obtained by solving the drift diffusion equation

    where neis the electron density,nεis the electron energy density,E is the electric field,seand sεrepresent the electron source term and the electron energy source term produced,respectively,by inelastic collision and elastic collision between electrons and neutral particles,etc.,ΓeandΓεare respectively solved according to

    whereμeandμεrepresent the mobility coefficient of electron and electron energy,respectively.According to the Surendra’s conclusion,[22]the electron mobility coefficient and neutral density satisfy the following relationship:

    The mobility coefficient of electron energy is calculated from

    The diffusion coefficients is defined as

    where Deand Dεrepresent the diffusion coefficient of electron and electron energy,respectively,kBis the Boltzmann constant,Teis the electron temperature.

    The terms seand sεare obtained from the following equations,respectively:

    where kiis the ionization coefficient,nαis the density of species a,Δεαis the energy loss rate coefficient,meis the electron mass,mαis the mass of heavy species a,Tgis the gas temperature,and ve,nrepresents the electron–neutral momentum transfer collision frequency.

    The electron temperature and the average electron energy have the following relationship:

    where nε/nerepresents the average electron energy.

    For ions and other neutral particles,they are expressed by solving the average diffusion model of the mixture[23,24]

    whereρis the density of mixed species,wais the mass fraction of species a,u is the average velocity of all species(can be regarded as fluid),jarepresents the mass flux of species a,and Rais the source term related to the reaction rate of species a.

    The density of mixed species and mass flux of species are calculated from the following equations,respectively:

    where Mnis the average molar mass,pAis the absolute pressure,R is the gas constant,T is the gas temperature,and vais the velocity of species a.

    The velocity of the species a is obtained by solving the following equation:

    The electric field is calculated from the Poisson equation

    2.1.2.Discharge parameters

    The structure of the CCP discharge device is shown in Fig.1.It consists of two electrodes with 30 cm in length,the two electrodes are parallel and have a certain interspace.The upper electrode and the lower electrode are externally connected by an RF power supply,and the lower electrode is grounded.

    Fig.1.Schematic diagram of CCP discharge device.

    In order to study the influence of different discharge parameters on plasma discharge characteristics and electromagnetic wave propagation characteristics,the discharge gap,RF power,RF frequency and pressure in the cavity are set to be 5 cm–15 cm,50 W–300 W,13.56 MHz–45 MHz and 0.1 Torr–0.5 Torr(1 Torr=1.33322×102Pa)in this paper,respectively.The specific conditions of each discharge parameter are shown in Table 1.

    Table 1.Specific values of discharge parameters.

    2.1.3.Chemical reaction of gas discharge

    In this model,the argon and helium are considered as discharge gas.Four species and seven chemical reactions are taken into account in the argon discharge model as shown in Table 2.The four species are Ar(argon atom),Ar?(argon metastable atom),Ar+(argon ion),and e(electron),respectively.

    Table 2.Chemical reactions in argon plasma discharge model.

    Table 3.Chemical reaction in helium plasma discharge model.

    For the helium plasma discharge model,four species including He(helium atom),He?(helium metastable atom),He+(helium ion),and e(electron)are considered in the chemical reactions.The specific chemical reactions for yielding the four species are shown in Table 3.The reaction coefficient indicated by f(ε)in argon and helium plasma discharge model are computed by cross-section data and BOLSIG+.

    2.1.4.Boundary conditions

    The heat emission flux is approximately ignored in this paper,and the boundary conditions of electron and electron energy flux on the wall in the CCP discharge model are respectively expressed by

    where n represents the normal pointing towards the wall,reis the reflection coefficient,ve,this the thermal velocity of a single electron,andγais the secondary electron emission coefficient.

    In addition,the initial temperature in the discharge cavity is set to be 300 K,the reflection coefficient of the wall boundary is zero,the initial electron number density is 1014m?3,and the initial average electron energy is 4 eV.The input power is expressed as

    The total time-average power density satisfies the following relationship:

    where Wtis the total time-average power density and S is the parallel plate electrode areas.According to Eq.(18),the electric field can be solved by the total power density[20]

    The corresponding electric potential and current density are obtained according to the following equations:[20]

    where V is the electric potential,J is the current density,and Γαis the flux of species a.

    2.2.Electromagnetic wave propagation model

    Since the one-dimensional CCP discharge model in this paper simulates the characteristics of plasma discharge from anode to cathode,the multilayer transmission model[25]is used to calculate the propagation characteristics of electromagnetic waves in plasma generated by CCP discharge.The plasma between the anode and the cathode can be divided into l homogeneous layers,and electromagnetic waves propagate through the plasma in the y-axis direction.

    The electromagnetic wave propagation coefficient of the l layer is solved according to the following equation:

    where w is the angular frequency of electromagnetic wave,c is the speed of light,εr(l)is the relative dielectric constant of plasma in the l-th layer.

    The electric field of the l-th layer is expressed as

    where Clis the reflection coefficient,Dlis the transmission coefficient,and E is the electric field.

    Since the electric field and magnetic field on the propagation boundary meet the continuity of the tangential component and phase matching,the relationship between reflection coefficient and transmission coefficient can be expressed in the matrix form as follows:

    where Smis expressed as

    By substituting the boundary conditions into Eq.(25),the following relationship is obtained

    Fig.2.Algorithm flowchart of self-consistent calculation model for CCP discharge and electromagnetic wave propagation.

    where A is the total reflection coefficient,F is the total transmission coefficient,Sgis expressed in the matrix form,Vpis defined as follows:

    Finally,the total reflection coefficient and transmission coefficient are solved according to the following equation:

    The attenuation of the electromagnetic wave through the CCP discharge plasma is obtained according to the transmission coefficient

    where Att is the attenuation value.

    Based on the CCP plasma discharge and electromagnetic wave propagation model,a one-dimensional self-consistent calculation model is proposed to investigate the propagation characteristics of electromagnetic waves in the plasma discharge device.The specific algorithm flow can be divided into two steps as shown in Fig.2.The first step is to use the CCP discharge model established by COMSOL multiphysics to study the effect of the difference in discharge gas,discharge gap,RF power,RF frequency,and pressure on the characteristics of the generated plasma.The second step is to take the electron number density and collision frequency of the plasma as inputs into the electromagnetic wave transmission model established by MATLAB code,and the influence of difference in discharge parameter and the discharge gas on the electromagnetic wave attenuation are obtained.

    3.Simulation results and discussion

    3.1.Plasma characteristics under different discharge gases and parameters

    In the process of numerical solution of CCP discharge model,a large number of RF cycles(102–105)are needed to obtain a steady-state solution.In order to speed up the calculation efficiency,the COMSOL plasma module introduces periodic boundary conditions to quickly calculate the stable state.Taking the metastable particles in the CCP discharge for example,the evolution of the particles is described by using Eq.(33),and the periodic boundary conditions are shown in Eq.(34);

    where n is the number of metastable particles.The first term on the right-hand side in Eq.(33)represents the periodic generation of metastable states and periodic oscillation in the plasma sheath.The second term refers to the loss caused by the collision with the background gas,and the third term is the loss caused by the collision between metastable particles.

    In order to verify the accuracy of the CCP discharge model,figure 3 shows the comparison of electron number density between CCP discharges of argon and helium,for measurement results and simulation results obtained from the present study and other researchers.[20,26]It can be seen from Fig.3(a)that the electron number density distribution of helium discharge in this paper is in good agreement with the simulation results given by Zhang et al.[20]The electron number density distribution in the argon discharge in this paper accords well with the simulation results and experimental results reported by Pan et al.[26]However,the electron number density distribution near the electrode is quite different,because the edge effect is not considered in Ref.[26].

    Figure 4 shows the electron density distribution of argon discharge and helium discharge at gas pressure p=0.5 Torr,discharge gap L=0.1 m,RF power P=300 W,and RF frequency f=13.56 MHz.It is obvious that the electron number density under argon discharge is higher than that under helium discharge.And the maximum electron number density differs by more than 10 times,which is consistent with the conclusion drawn under the inductively coupled plasma(ICP)discharge mode.[27]In addition,although the electron number density of helium is lower than that of argon,the uniform range of plasma in the central region is larger than the case of argon discharge.The reason is that the degree of ionization of argon gas is higher than that of helium gas.It is also verified from the side that the electron number density and uniformity are often mutually restricted.

    Fig.3.Comparison of electron number density distribution between argon and helium CCP discharges,for measurement results and simulation results obtained from the present research and other researches,showing(a)helium discharge at gas pressure p=0.5 Torr,discharge gap L=0.123 m,parallel plate length l=0.28 m,input voltage V=1000 V,and RF frequency f=13.56 MHz,and(b)argon discharge at gas pressure p=250 Pa,discharge gap L=0.078 m,parallel plate length l=0.1 m,RF power P=100 W,and RF frequency f=13.56 MHz.

    Fig.4.Electron number density distribution of argon discharge and helium discharge at gas pressure p=0.5 Torr,discharge gap L=0.1 m,RF power P=300 W,and RF frequency f=13.56 MHz.

    The electron number density distributions of argon discharge under different gas pressures are shown in Fig.5.It can be concluded that the electron number density increases with gas pressure increasing.The maximum electron density corresponding to gas pressure p=0.1 Torr,0.3 Torr,and 0.5 Torr is 4.71×1016m?3,1.59×1017m?3,and 2.09×1017m?3,respectively.The increase in gas pressure will intensify the collisions between different particles,leading the electron number density to increase.

    Fig.5.Electron number density distributions of argon under different gas pressures at discharge gap L=0.1 m,RF power P=300 W,and RF frequency f=13.56 MHz.

    Fig.6.Electron number density distributions of argon discharge under different discharge gaps at gas pressure p=0.5 Torr,RF power P=300 W,and RF frequency f=13.56 MHz.

    Figure 6 shows the electron number density distributions under different discharge gaps.It is obvious that the electron number density first increases and then decreases with discharge gap increasing,and the maximum appears in the case L=0.1 m.The results show that the maximum electron densities are 6.81×1016m?3,2.09×1017m?3,and 1.88×1017m?3,corresponding to the discharge gap of 0.05 m,0.1 m,and 0.15 m,respectively.As the discharge gap decreases exponentially,the uniform range of the plasma density in the central area decreases more than the discharge gap does.Figures 7 and 8 respectively show the electron number density distribution under different values of RF power and RF frequency.It can be seen from Figs.7 and 8 that the electron number density increases with the augment of RF power and frequency.The increase of the input power will make the electrons gain more energies in the electrode sheath,and more high-energy particles will collide with the background gas in the cavity to generate more electrons.The increase of the RF frequency will cause the RF frequency and the oscillation frequency of the electrons to increase,thereby increasing the collision between the electrons and the particles in the background gas.On the other hand,the induced component,as a factor that affects the electron number density,also increases with RF frequency rising.[28]In addition,the influence of RF power on the electron number density is greater than that of RF frequency.

    Fig.7.Electron number density distributions of argon discharge under different values of RF power at gas pressure p=0.5 Torr,discharge gap L=0.1 m,and RF frequency f=13.56 MHz.

    Fig.8.Electron number density distributions of argon discharge under different RF frequencies at gas pressure p=0.5 Torr,discharge gap L=0.1 m,and RF frequency f=13.56 MHz.

    3.2.Electromagnetic wave attenuation for different discharge gases and parameters

    The self-consistent simulation model of CCP discharge and electromagnetic wave is based on the electron number density and collision frequency data in CCP discharge to study the attenuation of electromagnetic wave propagation in plasma.The electron collision frequency can be estimated by the following equation:[29]

    where veis the electron collision frequency,r is the sum of electron–neutral collisional radius(According to Refs.[30]and[31]the average cross section of helium satisfiesπr2=7.63×10?20m2,the average cross section of argon follows πr2=2.32×10?19m2).According to the simulation results in this paper,the periodic average values of the electron temperatures of helium and argon are about 5 eV and 10 eV(1 eV=11300 K),respectively.Combining Zhang’s estimation[20]of the electron collision frequency under CCP discharge,the final formulas for collision frequency of helium and argon are obtained,respectively,

    where veand p are measured in units GHz and Torr,respectively.

    3.3.Transmission attenuation of different discharge gases

    Figure 9 shows the transmission attenuation in argon discharge plasma and helium discharge plasma at the same discharge parameters.It is obvious that the attenuation of electromagnetic wave in argon discharge is greater than that in helium discharge.The reason is that although the electron collision frequency of argon discharge is higher than that of helium discharge,the electron number density of argon discharge is much higher than that of helium discharge.It is generally believed that the normal communication cannot be achieved if the signal attenuation exceeds?5 dB.The plasma produced by helium discharge has little absorption of electromagnetic wave energy and weaker interference to signal communication.The plasma produced by argon discharge has significant absorption of electromagnetic wave energy in a frequency range from 0.01 GHz to 10 GHz,and the absorption peak reaches?13 dB at 2.41 GHz.Therefore,the plasma generated by argon discharge is more suitable for the research of plasma stealth applications.

    Fig.9.Plots of transmission attenuation of electromagnetic wave in argon discharge and helium discharge.

    In addition,it can be seen from Fig.9 that the transmission attenuation curve under argon discharge can be divided into two parts.The electromagnetic wave frequency range of part 1 is 0.01 GHz–2.41 GHz,and the transmission attenuation decreases significantly with frequency increasing.At this time,the wavelength is greater than the thickness of the plasma layer,the diffraction effect is dominant,and the penetration effect is not obvious.The electromagnetic wave frequency of part 2 is greater than 2.41 GHz,and the transmission attenuation increases significantly with the frequency increasing.The corresponding wavelength is close to and slowly far below the thickness of the plasma layer.At this time,the penetration effect is dominant and the diffraction effect can be ignored.

    3.4.Transmission attenuation of different discharge parameters

    Figure 10 shows the attenuation of electromagnetic waves in plasma generated by argon discharge at different pressures.The transmission attenuation decreases with the increase of pressure,because the increase in pressure causes the electron density in the discharge plasma to increase.However,this trend will not always be maintained.It can be seen from Fig.10 that the maximum transmission attenuation under a pressure of 0.3 Torr is higher than 0.5 Torr.The reason is that the increase in pressure leads the mean free path of electrons to decrease,which increases the frequency of electron collisions.At this time,the influence of electron collision frequency is higher than that of the change of electron number density.Therefore,the gas pressure needs to be carefully selected according to actual influence.

    Fig.10.Plots of transmission attenuation of electromagnetic waves in argon discharges at different gas pressures.

    As the discharge gap increases,the thickness of the plasma sheath increases,while the electron number density first increases and then decreases.Therefore,the transmission attenuation of electromagnetic waves does not change monotonically with the discharge gap increasing.Figure 11 shows the transmission attenuation in plasma generated by different discharge gaps.The peaks of transmission attenuation are?3.8 dB,?12.9 dB,and?12.8 dB,corresponding to the discharge gaps of 0.05 m,0.1 m,and 0.15 m,respectively.The transmission attenuation of electromagnetic waves first increases and then decreases with the discharge gap inceasing,and the attenuation reaches a maximum value at L=0.1 m.The transmission attenuation is within?5 dB when the discharge gap is 0.05 m,which shows that the plasma generated at this time has little interference to the signal.

    Fig.11.Plots of transmission attenuation of electromagnetic waves in argon discharges of different discharge gaps.

    Figures 12 and 13 respectively illustrate the transmission attenuation of plasma generated by different values of RF power and RF frequency.It is obvious that the transmission attenuation of electromagnetic waves increases with the augment of RF power and RF frequency.The reason is that the increase of RF power and RF frequency have no effect on the electron collision frequency,but it will increase the electron number density.

    Fig.12.Plots of transmission attenuation of electromagnetic waves in argon discharges of different values of RF power.

    One can observe that higher RF power and RF frequency have a wider strong absorption frequency band for electromagnetic waves.The peaks of transmission attenuation are?3.7 dB,?7.8 dB,and?12.9 dB,corresponding to the RF power of 50 W,150 W,and 300 W,respectively.The plasma generated at power of 50 W has almost no interference to electromagnetic wave transmission in any frequency band.But when the power is increased to 300 W,the wave frequency range that can be absorbed is 0.01 GHZ–9.1 GHz,which includes L-band,S-band,and C-band.When the RF frequency increases from 13.56 MHz to 45 MHz,the transmission attenuation increases from?12.9 dB to?22.5 dB.Meanwhile,the maximum frequency of electromagnetic wave absorption ranges from 9.1 GHz to 13.7 GHz,and the frequency band for electromagnetic wave absorption expands from C-band to X-band,and even Ku-band.

    Fig.13.Plots of transmission attenuation of electromagnetic waves in argon discharges of different RF frequencies.

    4.Conclusions and perspectives

    Based on the CCP discharge method,the effects of different gases and discharge parameters on the electron number density and transmission attenuation are studied in this paper.A large amount of helium and argon plasma are generated between two 30-cm-long parallel rectangular plates where gas pressure is p=0.1 Torr–0.5 Torr,discharge gap is L=0.025 m–0.1 m,RF power is P=50 W–300 W,RF frequency is f=13.56 MHz–45 MHz.The CCP discharge characteristics and electromagnetic wave transmission attenuation under different discharge gases and parameters are obtained by a self-consistent calculation model combining the drift diffusion fluid model and the improved scattering matrix method.Conclusions are summarized below.

    (i)The electron number density increases with the augment of gas pressure,RF power,and RF frequency,while it first increases and then decreases with the increase of discharge gap.In addition,the electron density of argon plasma discharge is much higher than that of helium plasma discharge.

    (ii)The absorption effect of argon discharge plasma on electromagnetic waves is much greater than that of helium discharge plasma,so it will be prioritized as the discharge gas for plasma stealth.Meanwhile,transmission attenuation increases with the augment of RF power and RF frequency.So the RF power and RF frequency should be increased as much as possible without affecting the normal discharge of CCP.However,the choice of gas pressure and discharge gap should be considered based on the actual situation,because the transmission attenuation does not increase or decrease monotonically with the increase of pressure and discharge gap.

    (iii)The maximum transmission attenuation of CCP discharge plasma to electromagnetic waves under the best parameters in this paper is?22.5 dB.The maximum frequency of electromagnetic wave absorption is 13.7 GHz,and the corresponding absorption electromagnetic wave band ranges from S band to Ku band.

    The discharge characteristics of CCP and the corresponding transmission attenuation are of great significance in plasma stealth applications.The experimental platform of microwave chamber for CCP discharge and electromagnetic wave propagation is currently being built.And the two-dimensional and three-dimensional self-consistent models combining CCP discharge and electromagnetic wave propagation will be studied in our future work.

    猜你喜歡
    劉琦文沖歐陽(yáng)
    咕咕叫的肚皮
    初心引航,構(gòu)建“雙減”新樣態(tài)
    勇毅前行開創(chuàng)未來(lái)
    ———記中船黃埔文沖船舶有限公司
    繼往開來(lái)憶往昔砥礪前行譜新篇
    ——記廣州文沖船舶修造有限公司
    我家的健忘老媽
    歐陽(yáng)彥等
    逆勢(shì)而上 奮楫向前
    ——記中船黃埔文沖船舶有限公司
    依依送別歐陽(yáng)鶴先生
    GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO THE HYPERBOLIC GEOMETRY FLOW WITH TIME-DEPENDENT DISSIPATION?
    歐陽(yáng)麗作品
    色播在线永久视频| 给我免费播放毛片高清在线观看| av视频免费观看在线观看| 亚洲成人免费电影在线观看| 精品久久久久久久人妻蜜臀av | 欧美一级a爱片免费观看看 | 村上凉子中文字幕在线| 午夜激情av网站| 人人澡人人妻人| 欧美色欧美亚洲另类二区 | 精品久久久精品久久久| 亚洲精品久久国产高清桃花| 纯流量卡能插随身wifi吗| 中文字幕久久专区| 亚洲成国产人片在线观看| 男人的好看免费观看在线视频 | 午夜成年电影在线免费观看| 久久精品国产亚洲av高清一级| 天天躁狠狠躁夜夜躁狠狠躁| 丁香六月欧美| 美女 人体艺术 gogo| 欧美老熟妇乱子伦牲交| 午夜福利高清视频| 日韩精品中文字幕看吧| 欧美大码av| 在线观看免费午夜福利视频| 国产精品一区二区三区四区久久 | 黑人欧美特级aaaaaa片| 伦理电影免费视频| 精品一区二区三区四区五区乱码| 亚洲av第一区精品v没综合| 一a级毛片在线观看| 91成人精品电影| 搡老熟女国产l中国老女人| 老司机午夜福利在线观看视频| 一个人观看的视频www高清免费观看 | 三级毛片av免费| 18禁美女被吸乳视频| av视频免费观看在线观看| 老司机靠b影院| 美国免费a级毛片| 国内久久婷婷六月综合欲色啪| 国产熟女午夜一区二区三区| 久久久精品欧美日韩精品| 巨乳人妻的诱惑在线观看| 精品少妇一区二区三区视频日本电影| 国产成人av激情在线播放| 久久久精品国产亚洲av高清涩受| 香蕉丝袜av| 一区二区日韩欧美中文字幕| 999久久久精品免费观看国产| 亚洲av成人一区二区三| 91麻豆av在线| 久久久久久国产a免费观看| 亚洲av成人av| 纯流量卡能插随身wifi吗| 美国免费a级毛片| 国产高清videossex| 精品熟女少妇八av免费久了| 日韩视频一区二区在线观看| 一a级毛片在线观看| 99re在线观看精品视频| 亚洲中文字幕一区二区三区有码在线看 | 男人的好看免费观看在线视频 | 丁香六月欧美| 成熟少妇高潮喷水视频| 国产亚洲av嫩草精品影院| 黑丝袜美女国产一区| 日本 av在线| 国产精品综合久久久久久久免费 | 自线自在国产av| 手机成人av网站| 精品一区二区三区av网在线观看| 性少妇av在线| 给我免费播放毛片高清在线观看| 久久精品影院6| 久久国产精品男人的天堂亚洲| 在线观看www视频免费| 亚洲国产日韩欧美精品在线观看 | www.999成人在线观看| 神马国产精品三级电影在线观看 | 日韩av在线大香蕉| 一二三四社区在线视频社区8| 国产在线观看jvid| 激情视频va一区二区三区| 国产亚洲精品av在线| 制服人妻中文乱码| 十分钟在线观看高清视频www| 黄片大片在线免费观看| 久久中文字幕一级| 一进一出好大好爽视频| 97碰自拍视频| 国产精品亚洲一级av第二区| 9191精品国产免费久久| 日韩欧美国产在线观看| 亚洲成a人片在线一区二区| 久久久久久久久久久久大奶| 成人免费观看视频高清| 久久亚洲精品不卡| 好男人电影高清在线观看| 久热爱精品视频在线9| 9191精品国产免费久久| 精品第一国产精品| 少妇的丰满在线观看| 香蕉国产在线看| 午夜亚洲福利在线播放| 天堂√8在线中文| 在线观看一区二区三区| ponron亚洲| av免费在线观看网站| 精品高清国产在线一区| 成人18禁在线播放| 免费在线观看亚洲国产| 日韩高清综合在线| 亚洲av第一区精品v没综合| 欧美日本中文国产一区发布| av在线播放免费不卡| 天天躁夜夜躁狠狠躁躁| 97人妻天天添夜夜摸| 久久精品国产综合久久久| 人人澡人人妻人| 多毛熟女@视频| 很黄的视频免费| 成年人黄色毛片网站| 欧美在线一区亚洲| 久久精品人人爽人人爽视色| 国产精品,欧美在线| 午夜影院日韩av| 一区二区三区高清视频在线| 免费无遮挡裸体视频| 9191精品国产免费久久| 精品国内亚洲2022精品成人| 天堂影院成人在线观看| 久久久久国产一级毛片高清牌| 国产精品爽爽va在线观看网站 | 国产激情欧美一区二区| 成人三级做爰电影| 精品一区二区三区四区五区乱码| 欧美乱妇无乱码| 亚洲精华国产精华精| 日韩欧美免费精品| 岛国视频午夜一区免费看| 久热这里只有精品99| 精品久久久久久,| 此物有八面人人有两片| 欧美成人午夜精品| 久久精品亚洲熟妇少妇任你| 99久久99久久久精品蜜桃| 脱女人内裤的视频| 久久国产精品人妻蜜桃| 亚洲精品国产一区二区精华液| 亚洲成a人片在线一区二区| 一进一出抽搐动态| 真人一进一出gif抽搐免费| 午夜福利在线观看吧| av视频在线观看入口| 成在线人永久免费视频| 欧美激情极品国产一区二区三区| 国产欧美日韩一区二区三| 男人舔女人下体高潮全视频| 亚洲成人精品中文字幕电影| 国产精品影院久久| 18禁观看日本| 国产一区二区三区视频了| 侵犯人妻中文字幕一二三四区| 欧美性长视频在线观看| 好看av亚洲va欧美ⅴa在| 亚洲中文日韩欧美视频| 日韩大尺度精品在线看网址 | 精品国产一区二区三区四区第35| 啦啦啦免费观看视频1| 亚洲中文字幕一区二区三区有码在线看 | 狂野欧美激情性xxxx| 精品一区二区三区四区五区乱码| 日韩有码中文字幕| 99精品久久久久人妻精品| 大香蕉久久成人网| 桃红色精品国产亚洲av| 桃红色精品国产亚洲av| 香蕉国产在线看| 女警被强在线播放| 国产成人一区二区三区免费视频网站| 国产欧美日韩综合在线一区二区| 三级毛片av免费| 99热只有精品国产| 一进一出好大好爽视频| 国产精品一区二区三区四区久久 | 日韩中文字幕欧美一区二区| 女同久久另类99精品国产91| 国产乱人伦免费视频| 中文亚洲av片在线观看爽| 激情视频va一区二区三区| 一进一出抽搐gif免费好疼| 纯流量卡能插随身wifi吗| 人人妻,人人澡人人爽秒播| 欧美日本亚洲视频在线播放| 巨乳人妻的诱惑在线观看| 久热这里只有精品99| 日韩欧美三级三区| 免费高清视频大片| 成人免费观看视频高清| 成在线人永久免费视频| 日本免费a在线| a级毛片在线看网站| 午夜精品在线福利| 国产精品秋霞免费鲁丝片| 国产精品秋霞免费鲁丝片| 久久久久国产一级毛片高清牌| 一卡2卡三卡四卡精品乱码亚洲| 午夜久久久在线观看| 级片在线观看| 久久人妻av系列| 黑人欧美特级aaaaaa片| 亚洲成国产人片在线观看| 久久久国产成人免费| 国产伦人伦偷精品视频| 国产成人精品在线电影| 国产亚洲精品久久久久5区| 一级片免费观看大全| 视频在线观看一区二区三区| 男人操女人黄网站| 18禁黄网站禁片午夜丰满| 两人在一起打扑克的视频| 少妇的丰满在线观看| 级片在线观看| 亚洲 欧美一区二区三区| 看黄色毛片网站| 一级毛片高清免费大全| 色婷婷久久久亚洲欧美| 国产伦一二天堂av在线观看| 亚洲一区二区三区不卡视频| 久久精品国产综合久久久| 香蕉久久夜色| 又黄又粗又硬又大视频| 国产免费男女视频| 欧美绝顶高潮抽搐喷水| 亚洲一区中文字幕在线| 成年版毛片免费区| 久热爱精品视频在线9| 亚洲成人免费电影在线观看| 不卡一级毛片| 日韩精品免费视频一区二区三区| 中文字幕人妻丝袜一区二区| 久久精品成人免费网站| 中文字幕色久视频| 国产精品乱码一区二三区的特点 | 免费高清视频大片| 视频区欧美日本亚洲| 欧美在线一区亚洲| 一区在线观看完整版| 久久久国产成人精品二区| 啦啦啦韩国在线观看视频| 免费看a级黄色片| 亚洲熟妇熟女久久| 久久精品aⅴ一区二区三区四区| 日韩av在线大香蕉| 亚洲成国产人片在线观看| 国产精品1区2区在线观看.| 成人三级黄色视频| 日本免费a在线| 国产成人欧美在线观看| 女性被躁到高潮视频| 亚洲五月天丁香| 高清黄色对白视频在线免费看| 久久久久久久精品吃奶| 欧美大码av| 女性被躁到高潮视频| 国产xxxxx性猛交| 国产精品 国内视频| 国产亚洲欧美98| 看黄色毛片网站| 久久人人97超碰香蕉20202| 黑丝袜美女国产一区| 十分钟在线观看高清视频www| 一边摸一边抽搐一进一出视频| 亚洲国产精品sss在线观看| 亚洲第一欧美日韩一区二区三区| 国产精品一区二区在线不卡| 激情视频va一区二区三区| 久久久久久久午夜电影| 性少妇av在线| 国产亚洲av高清不卡| 亚洲狠狠婷婷综合久久图片| 国产精品久久电影中文字幕| 亚洲中文字幕日韩| 天堂动漫精品| 午夜老司机福利片| 一本综合久久免费| 亚洲国产看品久久| 午夜免费激情av| 九色国产91popny在线| 在线观看免费视频日本深夜| 国产成年人精品一区二区| 99香蕉大伊视频| 欧美性长视频在线观看| 黄片小视频在线播放| 久99久视频精品免费| 国产成人精品久久二区二区免费| 久久久国产欧美日韩av| 99精品欧美一区二区三区四区| 别揉我奶头~嗯~啊~动态视频| 国产精品亚洲美女久久久| 欧美激情 高清一区二区三区| 桃色一区二区三区在线观看| 又紧又爽又黄一区二区| 91麻豆精品激情在线观看国产| 香蕉国产在线看| 99国产精品一区二区三区| 精品一品国产午夜福利视频| 又大又爽又粗| 法律面前人人平等表现在哪些方面| 91老司机精品| av免费在线观看网站| 欧美在线黄色| 国产精品av久久久久免费| 国产麻豆69| 亚洲一区中文字幕在线| 亚洲 国产 在线| 99热只有精品国产| 久久亚洲真实| 色av中文字幕| 亚洲国产精品合色在线| 亚洲,欧美精品.| 国产熟女午夜一区二区三区| 亚洲天堂国产精品一区在线| 欧美日韩瑟瑟在线播放| 国产99白浆流出| 手机成人av网站| 国产一区二区三区综合在线观看| 国产欧美日韩综合在线一区二区| 又黄又爽又免费观看的视频| 在线观看一区二区三区| 色播亚洲综合网| 欧美丝袜亚洲另类 | 免费观看人在逋| 黄色片一级片一级黄色片| 亚洲情色 制服丝袜| 在线观看66精品国产| 国产一卡二卡三卡精品| 久久久久国内视频| 久久青草综合色| 精品福利观看| 一级毛片高清免费大全| 9热在线视频观看99| 国产av一区二区精品久久| 嫩草影院精品99| 国产成人欧美在线观看| www.熟女人妻精品国产| 国产精品野战在线观看| 一边摸一边做爽爽视频免费| 午夜a级毛片| 一级,二级,三级黄色视频| 精品熟女少妇八av免费久了| 在线播放国产精品三级| 亚洲欧美日韩另类电影网站| 久久国产精品男人的天堂亚洲| 久久中文字幕一级| 啦啦啦免费观看视频1| 精品国产美女av久久久久小说| 一进一出好大好爽视频| 国产成人精品久久二区二区91| 波多野结衣一区麻豆| 欧美一级毛片孕妇| 91九色精品人成在线观看| 亚洲中文字幕一区二区三区有码在线看 | 久久亚洲真实| 亚洲第一欧美日韩一区二区三区| netflix在线观看网站| 久热爱精品视频在线9| 日韩精品青青久久久久久| 国产精品一区二区三区四区久久 | 欧美精品啪啪一区二区三区| 久热爱精品视频在线9| 午夜a级毛片| 19禁男女啪啪无遮挡网站| 桃红色精品国产亚洲av| 国产区一区二久久| 日韩欧美国产在线观看| 免费在线观看日本一区| 欧美日本亚洲视频在线播放| 搡老妇女老女人老熟妇| 精品欧美国产一区二区三| 50天的宝宝边吃奶边哭怎么回事| 亚洲欧美激情在线| 97人妻精品一区二区三区麻豆 | 欧美 亚洲 国产 日韩一| 亚洲 欧美 日韩 在线 免费| 人人妻人人澡欧美一区二区 | 一边摸一边抽搐一进一小说| 久久久国产成人精品二区| 精品久久久精品久久久| 亚洲成人久久性| 长腿黑丝高跟| 大型av网站在线播放| 99久久国产精品久久久| 最新美女视频免费是黄的| 超碰成人久久| 久久久久亚洲av毛片大全| 亚洲av日韩精品久久久久久密| 老鸭窝网址在线观看| 亚洲成a人片在线一区二区| 国产亚洲精品综合一区在线观看 | 亚洲熟妇熟女久久| 夜夜爽天天搞| 操美女的视频在线观看| 日韩大尺度精品在线看网址 | 精品久久久久久久毛片微露脸| 精品无人区乱码1区二区| 人人澡人人妻人| 又紧又爽又黄一区二区| 宅男免费午夜| 久久久久久久精品吃奶| 精品一区二区三区四区五区乱码| 精品国内亚洲2022精品成人| ponron亚洲| 亚洲熟妇中文字幕五十中出| 久9热在线精品视频| 国产av一区在线观看免费| 亚洲一区中文字幕在线| 嫩草影视91久久| 亚洲精品美女久久久久99蜜臀| 欧美成人一区二区免费高清观看 | 黄色视频不卡| 操出白浆在线播放| 国内精品久久久久精免费| 成人国产一区最新在线观看| 十八禁人妻一区二区| 成人永久免费在线观看视频| 村上凉子中文字幕在线| 亚洲性夜色夜夜综合| 精品久久蜜臀av无| 国产亚洲精品综合一区在线观看 | 国产野战对白在线观看| 男女之事视频高清在线观看| 亚洲欧美激情综合另类| 香蕉久久夜色| 午夜福利18| av网站免费在线观看视频| 日韩欧美在线二视频| 国产视频一区二区在线看| 男女做爰动态图高潮gif福利片 | 母亲3免费完整高清在线观看| 精品欧美一区二区三区在线| 久9热在线精品视频| 成人三级做爰电影| 熟妇人妻久久中文字幕3abv| 91字幕亚洲| 日韩欧美三级三区| a在线观看视频网站| 国产片内射在线| 少妇熟女aⅴ在线视频| 欧美日本亚洲视频在线播放| 国产成人精品在线电影| 久99久视频精品免费| 日日爽夜夜爽网站| 男人舔女人的私密视频| 日韩欧美免费精品| 中出人妻视频一区二区| 一级黄色大片毛片| 久久精品国产亚洲av香蕉五月| 欧美在线一区亚洲| 两个人看的免费小视频| 成人特级黄色片久久久久久久| 亚洲第一青青草原| bbb黄色大片| 久久久久久久久中文| 悠悠久久av| 国产黄a三级三级三级人| 久久久国产成人免费| 淫妇啪啪啪对白视频| 国产一区二区三区视频了| 亚洲熟妇中文字幕五十中出| 日韩一卡2卡3卡4卡2021年| 窝窝影院91人妻| 18禁观看日本| videosex国产| 亚洲男人的天堂狠狠| 国产成+人综合+亚洲专区| 人人妻,人人澡人人爽秒播| 中文字幕另类日韩欧美亚洲嫩草| 久久伊人香网站| 国产精品亚洲一级av第二区| 日韩三级视频一区二区三区| 免费看十八禁软件| 国产人伦9x9x在线观看| 日本黄色视频三级网站网址| 免费在线观看完整版高清| 如日韩欧美国产精品一区二区三区| 欧美久久黑人一区二区| 亚洲一区二区三区色噜噜| 丝袜美腿诱惑在线| 久久久久国产一级毛片高清牌| 午夜激情av网站| 国产午夜精品久久久久久| 久久久精品国产亚洲av高清涩受| 香蕉久久夜色| 97人妻精品一区二区三区麻豆 | 国产在线观看jvid| 欧美成人性av电影在线观看| 50天的宝宝边吃奶边哭怎么回事| 纯流量卡能插随身wifi吗| 国产成人精品久久二区二区91| 午夜久久久久精精品| 91字幕亚洲| 欧美在线一区亚洲| 精品第一国产精品| 欧美成人午夜精品| 免费高清视频大片| 非洲黑人性xxxx精品又粗又长| 女人爽到高潮嗷嗷叫在线视频| 91麻豆精品激情在线观看国产| 99精品久久久久人妻精品| 色老头精品视频在线观看| 国产黄a三级三级三级人| 伦理电影免费视频| 一进一出抽搐gif免费好疼| 69av精品久久久久久| 久久人妻av系列| 乱人伦中国视频| 一区二区三区精品91| 可以在线观看毛片的网站| 在线视频色国产色| 久久久久九九精品影院| 日日爽夜夜爽网站| 国产av一区二区精品久久| 亚洲一卡2卡3卡4卡5卡精品中文| 成人国产综合亚洲| 亚洲av美国av| 女人精品久久久久毛片| 亚洲一区二区三区色噜噜| 国产精品自产拍在线观看55亚洲| 欧美成人免费av一区二区三区| 老司机深夜福利视频在线观看| 亚洲熟妇熟女久久| 亚洲第一欧美日韩一区二区三区| 国产精品综合久久久久久久免费 | av有码第一页| 天堂影院成人在线观看| 日韩精品青青久久久久久| 男人的好看免费观看在线视频 | 午夜精品国产一区二区电影| 国产成人精品在线电影| 精品久久久久久久久久免费视频| 最好的美女福利视频网| 欧美色视频一区免费| 欧美性长视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 国产一区二区三区在线臀色熟女| 婷婷丁香在线五月| 91字幕亚洲| 91av网站免费观看| 窝窝影院91人妻| 国产欧美日韩一区二区三| 亚洲天堂国产精品一区在线| 美女大奶头视频| 成人三级做爰电影| 久久精品91蜜桃| 国产一区二区激情短视频| 国产99久久九九免费精品| 亚洲片人在线观看| 亚洲一区高清亚洲精品| 久久香蕉精品热| 午夜福利免费观看在线| av天堂久久9| 免费看a级黄色片| 在线观看免费日韩欧美大片| 亚洲国产日韩欧美精品在线观看 | 老汉色av国产亚洲站长工具| 久久久久精品国产欧美久久久| 好男人电影高清在线观看| 成年人黄色毛片网站| 在线十欧美十亚洲十日本专区| 免费在线观看亚洲国产| 午夜视频精品福利| 日本 欧美在线| 久久久久国产精品人妻aⅴ院| 88av欧美| 国产aⅴ精品一区二区三区波| 国产野战对白在线观看| 国产亚洲av嫩草精品影院| 免费在线观看视频国产中文字幕亚洲| 91精品三级在线观看| 99精品久久久久人妻精品| 9热在线视频观看99| 日本a在线网址| 国产精品野战在线观看| 亚洲熟妇中文字幕五十中出| 午夜久久久在线观看| 国产真人三级小视频在线观看| 视频在线观看一区二区三区| 9热在线视频观看99| videosex国产| 久久 成人 亚洲| 宅男免费午夜| 国产人伦9x9x在线观看| 涩涩av久久男人的天堂| 亚洲色图 男人天堂 中文字幕| 亚洲 欧美 日韩 在线 免费| 一夜夜www| 99国产精品99久久久久| 国产私拍福利视频在线观看| 欧美黄色淫秽网站| 日韩精品青青久久久久久| 女人精品久久久久毛片| 丝袜在线中文字幕| 久9热在线精品视频| 少妇粗大呻吟视频| 亚洲精品久久国产高清桃花| 少妇粗大呻吟视频| 青草久久国产| 国产精品综合久久久久久久免费 | 免费人成视频x8x8入口观看| 亚洲五月色婷婷综合| 欧美成人一区二区免费高清观看 | a级毛片在线看网站|