• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An improved model of damage depth of shock-melted metal in microspall under triangular wave loading?

    2021-09-28 02:20:48WenBinLiu劉文斌AnMinHe何安民KunWang王昆JianTingXin辛建婷JianLiShao邵建立NanShengLiu劉難生andPeiWang王裴
    Chinese Physics B 2021年9期
    關(guān)鍵詞:王昆安民

    Wen-Bin Liu(劉文斌),An-Min He(何安民),Kun Wang(王昆),Jian-Ting Xin(辛建婷),Jian-Li Shao(邵建立),Nan-Sheng Liu(劉難生),and Pei Wang(王裴),,7,?

    1Department of Modern Mechanics,University of Science and Technology of China,Hefei 230027,China

    2Institute of Applied Physics and Computational Mathematics,Beijing 100094,China

    3Graduate School of China Academy of Engineering Physics,Beijing 100088,China

    4College of Materials Science and Engineering,Hunan University,Changsha 410082,China

    5Science and Technology on Plasma Physics Laboratory,Research Center of Laser Fusion,China Academy of Engineering Physics,Mianyang 621900,China

    6State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China

    7Center for Applied Physics and Technology,Peking University,Beijing 100871,China

    Keywords:damage depth,theoretical modeling,microspall,triangular wave

    1.Introduction

    When a triangular wave propagating in the material reflects from the free surface,the interaction of the incident rarefaction wave with the reflected rarefaction wave generates tensile stress that may internally damage the material,and this damage can range from small voids or cracks to macroscopic fractures and the ejection of one or several spall layers.[1]If the material is shocked above its melting pressure or melted on release from a lower shock pressure,tensile stress emerges in the melted materials and the dynamic damage process is referred to as“microspall”.[2]Microspall has attracted great attention from scientists and engineers over the past decades because it has been observed in inertial confinement fusion[3–6]and laser-driven surface micromachining.[7–9]

    Experimental,theoretical and computational studies of microspall have been carried out over the past decades.Andriot et al.[2]studied the effect of melting on spallation using Doppler laser interferometry and x-ray densitometry.Several features of microspall were reported,including a dramatic decrease in free-surface reflectivity,continuous ejection of material and a significant increase in the number of ejecta.Ress′eguier et al.[5,10]studied the microspall of tin using the time-resolved velocity measurements and post-shock observations of recovered targets and fragments,and they found that the velocity interferometer system for any reflector(VISAR)signal disappeared when the material melts,which is consistent with Andriot’s discovery.Kanel et al.[11]investigated the spall strength of tin and lead,and they found that melting reduces the spall strength of lead and tin by at least an order of magnitude.Chen et al.[4]developed an improved Asay window technique to study the microspall of tin.An analytical method is developed to convert the measured data into the spatial volume density distribution,and the results are in good agreement with those obtained from x-ray radiograph.Theoretically,Kuksin et al.[12]established a spall model for liquids based on a void nucleation and growth approach.The model was applied to the estimation of liquid spall strength,and the result agrees well with experimental data.Xiang et al.[13]developed a model of microspall by coupling dynamic ductile damage and melting.The model was added to the finite element code and simulated spall experiments,and the simulation results are in good agreement with previous experiments.Computationally,molecular dynamics(MD)is an important theoretical tool for studying microspall.Luo et al.[14]investigated spallation in solid and liquid copper at high strain rates.Shao et al.[15,16]studied the failure mechanism and spall strength of single crystal aluminum under triangular wave loadings.Xiang et al.[17,18]studied the effects of shock intensity and loading rise time on the spall behavior of lead.Wang et al.[19]investigated the spall behaviors of melted lead under various triangular waves.However,most of the existing studies are focused on the mechanism of microspall damage,and there are few studies on the damage depth of microspall.Damage depth,the ratio of the damage mass per unit surface area to the density at rest condition,is an important parameter to describe the degree of damage.On the one hand,when a triangular wave reflects from the free surface of the material,the interaction of the incident rarefaction wave with the reflected rarefaction wave generates tensile stress that internally damages the material,where the material changes from continuous material to damaged material,and it is necessary to know the mass of damaged material.On the other hand,the damage depth is closely related to the physical processes such as secondary shock and particle-gas mixing.[20–22]Shao et al.[23]proposed an approximate description of damage depth under triangular wave loading when the material’s compressibility is considered.However,under strong triangular wave loading,the effect of the relative movement is obvious and should also be taken into account when performing theoretical modeling of damage depth.

    In order to study the damage depth of shock-melted metal in microspall under triangular wave loading,an improved model of damage depth of shock-melted metal is proposed,taking into account not only the effect of the material’s compressibility,but also the effect of the relative movement.Then,the microspall is investigated in the laser-driven shock loading experiment,and the proposed model is compared with the experiment and the model considering only the effect of the material’s compressibility.[23]Finally,the effects of peak stress and decay length of the incident triangular wave on the damage depth are investigated by SPH simulations.Besides,the applicability of the threshold stress criterion for melted metal at high strain rates is analyzed in microspall.

    This paper is organized as follows.In Section 2,an improved model of damage depth of shock-melted metal in microspall is proposed.Then in Section 3,the proposed model is validated by the laser-driven shock loading experiment.In Section 4,the SPH simulations are carried out to investigate the effects of peak stress and decay length of the incident triangular wave on the damage depth.Finally,the conclusions are drawn in Section 5.

    2.Proposed model

    Under strong triangular wave loading,the material has already melted,and the effect of the material’s compressibility is obvious.On the other hand,the effect of the relative movement is obvious in the time from the front of the incident triangular wave reaching the free surface of the material to the completion of last spallation.Therefore,using the threshold stress criterion and rules of propagation of simple wave,a model of damage depth of shock-melted metal in microspall is proposed considering the material’s compressibility and relative movement.

    When the incident triangular wave I of peak stressσmand decay length hλreflects from the free surface,the stress distribution near the free surface can be obtained on the assumption that the intensity of the reflected triangular wave R remains constant,as shown in Fig.1.The stresses of the incident triangular wave I and reflected triangular wave R inside the material at a distance d from the free surface are[(hλ?2d)/(hλ)]σmand?σm,respectively,where the parameter d represents the distance from the front of reflected triangular wave R to the free surface.Therefore,the stress inside the material at a distance d for the free surface is(2d/hλ)σm.Based on the threshold stress criterion,i.e.,dynamic spallation occurs when the tensile stress reaches spall strengthσs,after the first spallation,the thickness of spall layer d1is given by

    Fig.1.Stress distribution near the free surface under triangular wave loading.The symbol I represents the incident triangular wave,the symbol R represents the reflected triangular wave,the quantitiesσm and hλdenote the peak stress and decay length of the incident triangular wave,respectively,and the quantity d represents the distance from the front of reflected triangular wave R to the free surface at the current moment.

    For the remaining incident triangular wave inside the material,the peak stress isσm?σsand the decay length is hλ?2d1.If the peak stress of the incident triangular wave is high enough,the second spallation occurs,and the thickness of the spall layer remains constant.After the last spallation,the number of spall layer n and the failure depth of the material hdare

    When the material is shocked above its melting pressure or melted on release from a lower shock pressure,the spall strength of melted material can be negligible compared with the peak stress,and the failure depth of the material hdcan be simplified as

    However,the failure depth hdis independent of the material mass.Figure 2 gives a schematic diagram for solving the damage depth hs,which is defined as the ratio of the damage mass per unit surface area to the density at the rest condition.The main idea of solving the damage depth hsis to know the failure depth hdafter the last spallation,and to solve the damage depth hsat the moment when the front of the incident triangle wave reaches the free surface of the material,taking into account the effects of material’s compressibility and relative movement.Therefore,damage material,the substance to the right of the blue dotted line at time t2,is the substance to the right of the red dotted line at time t1.According to the propagation laws of simple wave,the expression of the damage mass msand damage depth hsinduced by the ideal triangular wave in microspall can be derived as

    where the(1/2)(ρi+ρm)reflects the effect of material’s compressibility,the hireflects the effect of relative movement,and hi,ρmandρiare given by

    According to Eqs.(4),(6)and(7),if the material parameters(ρ0,c,s),the peak velocity um(or peak stressσm=?ρ0(c0+sum)um)and decay length hλof the incident triangular wave are known,the damage depth of the melted material hscan be obtained under triangular wave loadings.The material parameters of tin are presented in Table 1.

    Table 1.Material parameters of tin.

    Fig.2.Schematic diagram for solving the damage depth.t1 is the moment when the incident triangular wave reaches the free surface,t2 is the moment when the last spallation ends,the blue dotted line is the position of matrix at time t2,the red dotted line is the position of blue dotted line at time t1,the green dotted line is the beginning position of incident triangular wave and the black dotted line is the end position of incident triangular wave at time t1.ρi is the density at the red dotted line at time t1,the quantitiesρm,σm and hλ denote the peak density,peak stress and decay length of the incident triangular wave at time t1,respectively,hd is the failure depth,hi is the relative movement between time t1 and t2.

    3.Laser-driven experiment validation

    After completing the theoretical model of the damage depth,the laser-driven experiments of microspall are performed.The damage depth obtained from the proposed model is compared with the experimental result and also compared with the model proposed by Shao et al.[23]

    3.1.Experimental setup

    The experiments are performed on the SGII-U laser facility.Figure 3 shows the experimental setup of microspall.[24]Two of eight driven laser beams work at 0.351μm wavelength and with 3 ns duration,and focus onto the target at 45°angle.The beams are smoothed by the continuous phase plates(CPP),and the irradiated spots are quasi circular of about 2 mm diameter on the target.

    The samples are tin foil with a thickness of 500μm and a roughness of 400 nm after surface polishing.Two experiments are performed on the tin sample with the same expected energy of the driving laser.The shot 1 is the microspall experiment,and the shot 2 adds a LiF window on the tin surface under the same conditions,which is used to measure the interface velocity history with photonic Doppler velocimetry(PDV)and obtain the profile of the incident triangular wave in the sample.The actual energy measured by the energy meter in shot 1 and shot 2 are 1282 J and 1272 J,respectively.

    Fig.3.The experimental setup of microspall.

    3.2.Experimental results and analysis

    Fig.4.(a)The historical curves of the interface velocity between the tin sample and LiF in shot 2 based on PDV measurement and SPH simulation.(b)Stress profile of the incident triangular wave from SPH simulation in shot 1 and shot 2.

    Figure 4(a)shows the historical curve of the interface velocity between the tin sample and LiF in shot 2 based on PDV measurement.Since the incident shock wave is a triangular wave,the interface velocity continues to decay.The selfdeveloped 2D SPH code[25,26]is used to determine the peak stress and decay length of the incident triangular wave.Therefore,the stress profile of the incident triangular wave in shot 1 and shot 2 can be determined,as shown in Fig.4(b),where the peak stress is?36 GPa and the decay length is 198μm.The historical curve of the interface velocity in SPH simulation is also shown in Fig.4(a).Based on the initial maximum and early decreasing slope of the interface velocity,which determine the peak stress and unloading rate of the incident triangular wave,it can be seen that the SPH simulation is almost consistent with the experimental result.

    Table 2.The damage depth obtained from the microspall experiment and models.

    Fig.5.(a)Areal density and volume density of the x-ray radiography image in shot 1.The red box is selected to count the volume density.(b)The areal density distribution along the shock direction.The symbol A indicates the position of matrix,and the symbol B indicates the start position of the statistics.

    4.The effects of peak stress and decay length on the damage depth

    According to the proposed model,it can be seen that,in addition to the material parameters,the peak stress and decay length of the incident triangular wave determine the damage depth.In this section,two-groups of SPH simulations are carried out to investigate the effects of peak stress and decay length on the damage depth,respectively,and the results of the SPH simulation are compared with the proposed model.In addition,the applicability of the threshold stress criterion for melted metals at high strain rates is analyzed in microspall.

    4.1.Model and method

    The microspall simulations of tin are carried out using a self-developed 2D SPH code.[25,26]In the SPH method,the material is discretized into a series of particles with independent information.Due to its Lagrangian nature,SPH has the advantage of simulating free-surface flows with large deformations.[27]The pressure is modeled by the Mie–Gr¨uneisen equation of state,[28]as follows:

    where theη=ρ/ρ0?1 is the compression ratio,γis the Gr¨uneisen constant,and the parameters a1,a2,and a3are given by

    The Steinberg–Guinan constitutive model[29]is used,and the shear modulus strength G and yield strength Y are given as follows:

    where the subscript“0”denotes the reference state(T=300 K,p=0 Pa,ε=0 s?1),εpis equivalent plastic strain,βand n are working hardening parameters,and T is the temperature.

    The melting temperature is modeled using the Lindermann’s melting law[29]

    where Tm0and Vm0are melting temperature and specific volume at reference state(p=0 Pa,ε=0 s?1).

    The threshold stress criterion is adopted,i.e.,the tin spalls when the stress within the material is larger thanσ≥σmin=1.2 GPa.After tin melts,its spall strength is set to 0.1 GPa.[11]The material parameters of tin are presented in Table 1.

    Fig.6.The profiles of the incident triangular wave in SPH simulations:(a)different decay lengths at a peak stress of?50 GPa;(b)different peak stresses at a decay length of 300μm.

    In the simulation,the width of the sample is 100μm,the initial inter-particle distance is 0.25μm,and the smoothing length is 0.375μm.Different triangular waves can be obtained by changing the length of sample,the length of flyer and the velocity of flyer.In the following discussion,the time is set to 0 ns when the front of the incident triangular wave reaches the free surface of sample.Two-groups of SPH simulations are conducted to investigate the effects of peak stress and decay length on the damage depth,respectively,and the profiles of the incident triangular waves are shown in Fig.6.Figure 6(a)shows the profiles of the incident triangular waves when the peak stress is?50 GPa and the decay length is ranged from 100μm to 500μm,Figure 6(b)shows the profiles of the incident triangular waves when the decay length is 300μm and the peak stress is ranged from?30 GPa to?70 GPa.The above peak stresses indicate that the tin has melted under the given loading conditions.[30]

    4.2.SPH simulation results and analysis

    Figure 7 gives the result of microspall at 300 ns when the peak stress is?50 GPa and the decay length is 300μm.The black dotted line indicates the position of the matrix,so the material to the right of the black dotted line is the damage material in microspall,and the damage mass msand damage depth hs=(ms)/((1·ly)·ρ0)can be obtained,where ly=100μm is the width of the sample.

    Fig.7.Microspall at 300 ns in SPH simulations when the peak stress is?50 GPa,and the decay length is 300μm.The black dotted line indicates the position of the matrix.

    Figure 8 shows the results of the damage depth of the SPH simulations and the proposed model.As shown in Fig.8(a),with the increase of decay length hλ,the damage depth hsincreases linearly,and the results of the SPH simulations agree well with those of the model with a maximum error of 0.029.As shown in Fig.8(b),with the increase of peak stressσm,the damage depth hsincreases nonlinearly,the increase in damage depth gradually slows down with an increase in peak stressσm,and the results of the SPH simulations agree well with those of the model with a maximum error of 0.033.

    In contrast to the free-surface velocity associated with the first spallation,the damage depth is related to the spallation inside the material.Since the threshold stress criterion is adopted in the current SPH simulations,and the damage depths obtained from the SPH simulation are in good agreement with the results of the proposed model,it can be judged that the threshold stress criterion can satisfy the requirements of microspall of melted metal.

    Fig.8.The damage depth vs.(a)decay length hλand(b)peak stressσm.

    5.Conclusion

    In this paper,an improved model of damage depth of shock-melted metal in microspall under triangular wave loading is proposed considering the material’s compressibility and relative movement.Then,the microspall is investigated in the laser-driven shock loading experiment,and the damage depth obtained from the proposed model is compared with the experimental result.Finally,two-groups of SPH simulations are performed to investigate the effects of peak stress and decay length of the incident triangular wave on the damage depth.The details are as follows:

    (I)Using the threshold stress criterion and rules of propagation of simple wave,a model of damage depth of shockmelted metal considering both the material’s compressibility and relative movement is proposed.When the physical parameters of the material,peak velocity(or peak stress)and decay length of the triangular wave are known,the damage depth of the melted metal can be obtained under triangular wave loading.The proposed model is validated by the laser-driven experiment.Compared with the previous model,the proposed model can predict the damage depth of shock-melted metal in microspall more accurately.

    (II)As the decay length increases,the damage depth increases linearly.As the peak stress increases,the damage depth increases nonlinearly,and the increase in damage depth gradually slows down.The results of the SPH simulation agree well with those of the proposed model.

    (III)Combining the damage depth results of the SPH simulations and the proposed model,it is found that the threshold stress criterion can reflect the macroscopic characteristics of microspall of melted metal.

    猜你喜歡
    王昆安民
    THE EXISTENCE AND NON-EXISTENCE OFSIGN-CHANGING SOLUTIONS TO BI-HARMONIC EQUATIONS WITH A p-LAPLACIAN*
    超聲引導(dǎo)腰部豎脊肌平面阻滯在老年患者髖關(guān)節(jié)置換術(shù)中的應(yīng)用效果
    搏擊長(zhǎng)空
    同學(xué)情誼
    打羽毛球
    易安民聲
    易安民聲
    A thermostable serralysin inhibitor from marine bacterium Flavobacterium sp. YS-80-122*
    龔遂治亂安民的“高招”
    你不曾真的離開(kāi)
    亚洲精品久久午夜乱码| 麻豆精品久久久久久蜜桃| 妹子高潮喷水视频| 亚洲,欧美,日韩| 亚洲精品aⅴ在线观看| 美女主播在线视频| 欧美日韩视频高清一区二区三区二| 久久久久网色| av专区在线播放| 你懂的网址亚洲精品在线观看| 国内揄拍国产精品人妻在线| 国精品久久久久久国模美| 三级国产精品片| 日韩一区二区视频免费看| 在线天堂最新版资源| 国产精品秋霞免费鲁丝片| 视频中文字幕在线观看| a 毛片基地| 欧美日韩亚洲高清精品| 97在线人人人人妻| 成年av动漫网址| 中文字幕亚洲精品专区| 国产大屁股一区二区在线视频| 在线观看人妻少妇| 国产伦在线观看视频一区| 91精品一卡2卡3卡4卡| 中文资源天堂在线| 岛国毛片在线播放| 日韩在线高清观看一区二区三区| 人妻一区二区av| 国产伦理片在线播放av一区| 久久av网站| 国产探花极品一区二区| av天堂中文字幕网| 久久久久久久久久人人人人人人| 日本-黄色视频高清免费观看| 永久免费av网站大全| 男女免费视频国产| 91久久精品电影网| 国产午夜精品久久久久久一区二区三区| 99久久中文字幕三级久久日本| 男女边吃奶边做爰视频| 国产黄色视频一区二区在线观看| 国产在线男女| av在线观看视频网站免费| 欧美另类一区| 免费看日本二区| 欧美人与善性xxx| 免费高清在线观看视频在线观看| av一本久久久久| 最近2019中文字幕mv第一页| 日韩成人伦理影院| 观看av在线不卡| 久久精品久久精品一区二区三区| av线在线观看网站| 天堂中文最新版在线下载| 国产精品国产三级国产av玫瑰| 18禁裸乳无遮挡免费网站照片| 尤物成人国产欧美一区二区三区| 两个人的视频大全免费| 多毛熟女@视频| 国产成人aa在线观看| 人妻 亚洲 视频| 精品人妻偷拍中文字幕| 国产高清国产精品国产三级 | 中文天堂在线官网| 夫妻午夜视频| 国产无遮挡羞羞视频在线观看| 欧美+日韩+精品| 亚洲精品久久久久久婷婷小说| 91久久精品国产一区二区三区| 97精品久久久久久久久久精品| 夜夜爽夜夜爽视频| 亚洲av欧美aⅴ国产| 国产精品人妻久久久影院| 春色校园在线视频观看| 国产欧美日韩精品一区二区| 日产精品乱码卡一卡2卡三| 成人18禁高潮啪啪吃奶动态图 | 夫妻性生交免费视频一级片| 一本色道久久久久久精品综合| 最近手机中文字幕大全| 99久久精品一区二区三区| 日本-黄色视频高清免费观看| 精品国产三级普通话版| 大片电影免费在线观看免费| 欧美国产精品一级二级三级 | 偷拍熟女少妇极品色| 国产免费一区二区三区四区乱码| 色视频www国产| 日韩视频在线欧美| 联通29元200g的流量卡| 精品一品国产午夜福利视频| 国产av一区二区精品久久 | 99re6热这里在线精品视频| 人人妻人人澡人人爽人人夜夜| 制服丝袜香蕉在线| av国产免费在线观看| 欧美精品国产亚洲| 欧美zozozo另类| 国产成人aa在线观看| 国产在线一区二区三区精| 国产午夜精品一二区理论片| 久久女婷五月综合色啪小说| 久久国产乱子免费精品| 九九久久精品国产亚洲av麻豆| 毛片一级片免费看久久久久| 免费人成在线观看视频色| 成人毛片60女人毛片免费| 国产成人精品婷婷| 男人狂女人下面高潮的视频| 亚洲国产高清在线一区二区三| 黑人高潮一二区| 国产片特级美女逼逼视频| 欧美变态另类bdsm刘玥| 国产一区二区在线观看日韩| 热99国产精品久久久久久7| 美女中出高潮动态图| 久久久亚洲精品成人影院| 成人特级av手机在线观看| 国产精品一二三区在线看| 十八禁网站网址无遮挡 | 少妇裸体淫交视频免费看高清| 国产精品蜜桃在线观看| 永久网站在线| 深爱激情五月婷婷| 久久久久久久大尺度免费视频| 亚洲经典国产精华液单| 一边亲一边摸免费视频| 久久久久久久大尺度免费视频| 黑丝袜美女国产一区| 日韩中文字幕视频在线看片 | 少妇人妻一区二区三区视频| 国产在视频线精品| 97超碰精品成人国产| 日本av免费视频播放| 久久 成人 亚洲| 97在线人人人人妻| 国产亚洲5aaaaa淫片| 欧美zozozo另类| 老女人水多毛片| 国内少妇人妻偷人精品xxx网站| 久久综合国产亚洲精品| 欧美高清性xxxxhd video| 国产熟女欧美一区二区| 久久ye,这里只有精品| 亚洲国产成人一精品久久久| 国产爱豆传媒在线观看| 成人漫画全彩无遮挡| 欧美 日韩 精品 国产| h日本视频在线播放| 爱豆传媒免费全集在线观看| 天堂俺去俺来也www色官网| 亚洲最大成人中文| 亚洲国产欧美在线一区| 亚洲精品456在线播放app| .国产精品久久| 国产亚洲91精品色在线| 成年av动漫网址| 制服丝袜香蕉在线| 女人十人毛片免费观看3o分钟| 丝袜喷水一区| 日本av免费视频播放| 欧美成人一区二区免费高清观看| 久久亚洲国产成人精品v| 免费播放大片免费观看视频在线观看| 久久久久国产精品人妻一区二区| 一个人看视频在线观看www免费| 午夜福利在线在线| 又粗又硬又长又爽又黄的视频| 精品久久久久久电影网| 99热网站在线观看| 国产视频首页在线观看| 女人十人毛片免费观看3o分钟| 日本欧美国产在线视频| 九九爱精品视频在线观看| 高清视频免费观看一区二区| 日韩av在线免费看完整版不卡| 爱豆传媒免费全集在线观看| 精品久久久久久久末码| 国产精品熟女久久久久浪| 简卡轻食公司| 国产淫语在线视频| 天堂中文最新版在线下载| 男人舔奶头视频| 男女下面进入的视频免费午夜| 各种免费的搞黄视频| av一本久久久久| 国产老妇伦熟女老妇高清| 又爽又黄a免费视频| 色5月婷婷丁香| 少妇人妻一区二区三区视频| 一本一本综合久久| 亚洲无线观看免费| 我的女老师完整版在线观看| 美女视频免费永久观看网站| 久久久亚洲精品成人影院| 日日摸夜夜添夜夜爱| 亚洲三级黄色毛片| 精品久久久久久电影网| 色视频www国产| 国产熟女欧美一区二区| 亚洲欧美日韩卡通动漫| 午夜视频国产福利| 日韩中文字幕视频在线看片 | 3wmmmm亚洲av在线观看| 狂野欧美激情性bbbbbb| 人体艺术视频欧美日本| 一级二级三级毛片免费看| 亚洲精品一区蜜桃| 国产真实伦视频高清在线观看| 国产视频内射| 性高湖久久久久久久久免费观看| 青春草亚洲视频在线观看| 极品少妇高潮喷水抽搐| 精品人妻视频免费看| 国产精品久久久久成人av| 亚洲无线观看免费| 国产亚洲午夜精品一区二区久久| 精品亚洲成a人片在线观看 | 在线观看人妻少妇| 久久精品国产自在天天线| 成年人午夜在线观看视频| 内射极品少妇av片p| 各种免费的搞黄视频| 亚洲精品456在线播放app| 亚洲av日韩在线播放| 日本av手机在线免费观看| 日本欧美视频一区| 久久99热这里只有精品18| 亚洲人与动物交配视频| 男女免费视频国产| 男男h啪啪无遮挡| 欧美变态另类bdsm刘玥| 婷婷色麻豆天堂久久| 人人妻人人添人人爽欧美一区卜 | 国产精品一区二区在线观看99| 美女国产视频在线观看| 亚洲国产精品成人久久小说| 少妇的逼水好多| 一区在线观看完整版| 亚洲,一卡二卡三卡| 少妇人妻精品综合一区二区| 高清视频免费观看一区二区| 久久久成人免费电影| 在现免费观看毛片| 成年av动漫网址| 久久久久久久久久人人人人人人| 精品久久久久久电影网| 国产老妇伦熟女老妇高清| 亚洲人成网站在线观看播放| 日本与韩国留学比较| 高清不卡的av网站| 成年av动漫网址| 高清黄色对白视频在线免费看 | 日韩中文字幕视频在线看片 | 99re6热这里在线精品视频| 2022亚洲国产成人精品| 久久影院123| 热re99久久精品国产66热6| 国产一区二区三区综合在线观看 | 色婷婷av一区二区三区视频| 国产av国产精品国产| 最近的中文字幕免费完整| 一级爰片在线观看| 亚洲电影在线观看av| 日日撸夜夜添| 久久久久网色| 国产在线视频一区二区| 久久ye,这里只有精品| 又黄又爽又刺激的免费视频.| av免费观看日本| 亚洲欧美一区二区三区国产| 身体一侧抽搐| 久久国内精品自在自线图片| 精品酒店卫生间| 久久影院123| 欧美97在线视频| 亚洲av成人精品一二三区| 建设人人有责人人尽责人人享有的 | 久热这里只有精品99| 国产成人91sexporn| 国产亚洲一区二区精品| 汤姆久久久久久久影院中文字幕| 国产精品99久久99久久久不卡 | 国产精品一区二区三区四区免费观看| 少妇裸体淫交视频免费看高清| av专区在线播放| 亚洲精品乱久久久久久| 中文字幕人妻熟人妻熟丝袜美| 少妇人妻一区二区三区视频| 欧美丝袜亚洲另类| 中文字幕av成人在线电影| 插阴视频在线观看视频| 老司机影院毛片| 少妇裸体淫交视频免费看高清| 80岁老熟妇乱子伦牲交| 久久久国产一区二区| 精品亚洲成国产av| 99热网站在线观看| 伊人久久国产一区二区| 久久久久精品久久久久真实原创| 亚洲精品456在线播放app| 这个男人来自地球电影免费观看 | 啦啦啦视频在线资源免费观看| 国产精品国产av在线观看| xxx大片免费视频| 老熟女久久久| 少妇人妻 视频| 蜜桃亚洲精品一区二区三区| 国产精品福利在线免费观看| 天堂俺去俺来也www色官网| 国产永久视频网站| a 毛片基地| 国产免费福利视频在线观看| 午夜福利影视在线免费观看| 国产有黄有色有爽视频| 国产亚洲最大av| 国产深夜福利视频在线观看| 欧美区成人在线视频| 久久久久久久久大av| 久久午夜福利片| 91精品国产九色| 三级经典国产精品| 丰满人妻一区二区三区视频av| 99久久精品国产国产毛片| 免费少妇av软件| 亚洲av欧美aⅴ国产| 免费久久久久久久精品成人欧美视频 | 身体一侧抽搐| 丰满人妻一区二区三区视频av| 一区二区三区乱码不卡18| 日韩视频在线欧美| 免费人妻精品一区二区三区视频| 最近中文字幕高清免费大全6| 精品亚洲乱码少妇综合久久| 边亲边吃奶的免费视频| 噜噜噜噜噜久久久久久91| 建设人人有责人人尽责人人享有的 | 日韩伦理黄色片| 干丝袜人妻中文字幕| 蜜臀久久99精品久久宅男| 国产成人aa在线观看| 国产女主播在线喷水免费视频网站| 99久久精品国产国产毛片| 欧美区成人在线视频| 国产免费一区二区三区四区乱码| 最近中文字幕2019免费版| 六月丁香七月| 最近中文字幕2019免费版| 不卡视频在线观看欧美| 国产精品爽爽va在线观看网站| 久久久精品免费免费高清| 久久久国产一区二区| 夜夜爽夜夜爽视频| 精品久久国产蜜桃| 欧美变态另类bdsm刘玥| 成人18禁高潮啪啪吃奶动态图 | 免费在线观看成人毛片| 久久99精品国语久久久| 婷婷色av中文字幕| 婷婷色综合大香蕉| 久久久久久人妻| 3wmmmm亚洲av在线观看| 丝瓜视频免费看黄片| 亚洲欧洲国产日韩| 高清毛片免费看| 成人国产麻豆网| 熟妇人妻不卡中文字幕| 日本wwww免费看| 99热这里只有精品一区| 国产成人91sexporn| 亚洲精品一区蜜桃| 18禁裸乳无遮挡动漫免费视频| 老师上课跳d突然被开到最大视频| 国产伦精品一区二区三区视频9| 精品99又大又爽又粗少妇毛片| 观看av在线不卡| 美女视频免费永久观看网站| 99热国产这里只有精品6| 久久久久久久国产电影| 最新中文字幕久久久久| 秋霞在线观看毛片| 高清黄色对白视频在线免费看 | 亚洲欧美一区二区三区国产| 亚洲久久久国产精品| 日韩制服骚丝袜av| 亚洲精品第二区| 99视频精品全部免费 在线| 舔av片在线| 国产色婷婷99| 26uuu在线亚洲综合色| 久久久久精品性色| 国产男女超爽视频在线观看| 美女xxoo啪啪120秒动态图| 国产乱人偷精品视频| 成人黄色视频免费在线看| 一区二区三区乱码不卡18| 青春草视频在线免费观看| 亚洲天堂av无毛| 国产老妇伦熟女老妇高清| 精品少妇黑人巨大在线播放| 亚洲精品色激情综合| 三级国产精品片| 精品熟女少妇av免费看| 久久青草综合色| 国产高清三级在线| 深夜a级毛片| 在线免费十八禁| 亚洲av二区三区四区| 日韩强制内射视频| 欧美日韩亚洲高清精品| 国内少妇人妻偷人精品xxx网站| 天天躁日日操中文字幕| 97超碰精品成人国产| 日日撸夜夜添| 男人狂女人下面高潮的视频| 日韩欧美 国产精品| 久久99热这里只频精品6学生| 成年女人在线观看亚洲视频| 亚洲怡红院男人天堂| 国产人妻一区二区三区在| 两个人的视频大全免费| 熟女人妻精品中文字幕| 国产永久视频网站| 婷婷色av中文字幕| 少妇人妻久久综合中文| 黄色欧美视频在线观看| 久久久久人妻精品一区果冻| 亚洲,欧美,日韩| 日韩成人av中文字幕在线观看| 伊人久久精品亚洲午夜| 丰满少妇做爰视频| 边亲边吃奶的免费视频| 性色av一级| 日韩中字成人| 乱码一卡2卡4卡精品| 久久久国产一区二区| 国产成人午夜福利电影在线观看| 精品国产露脸久久av麻豆| 十分钟在线观看高清视频www | 老熟女久久久| 777米奇影视久久| 欧美变态另类bdsm刘玥| 免费观看性生交大片5| 欧美最新免费一区二区三区| av不卡在线播放| 国产永久视频网站| 一级av片app| 成人国产麻豆网| 少妇精品久久久久久久| 男女国产视频网站| 黄色配什么色好看| 午夜福利影视在线免费观看| 久久精品人妻少妇| 亚洲精品第二区| 国产精品国产三级专区第一集| 久久午夜福利片| 亚洲第一区二区三区不卡| 国内精品宾馆在线| 一区二区三区精品91| 精品99又大又爽又粗少妇毛片| 日韩大片免费观看网站| 人人妻人人看人人澡| 91在线精品国自产拍蜜月| 波野结衣二区三区在线| 亚洲欧美中文字幕日韩二区| 中文字幕av成人在线电影| 亚洲精品中文字幕在线视频 | 18禁裸乳无遮挡动漫免费视频| 精品一品国产午夜福利视频| 精品少妇久久久久久888优播| 久久国产精品大桥未久av | 国产淫语在线视频| 综合色丁香网| 在线天堂最新版资源| 精品人妻熟女av久视频| 哪个播放器可以免费观看大片| 亚洲精品一区蜜桃| 多毛熟女@视频| 日韩国内少妇激情av| 最后的刺客免费高清国语| 交换朋友夫妻互换小说| 国产精品久久久久久久久免| av免费在线看不卡| 久久久欧美国产精品| 久久青草综合色| 夜夜看夜夜爽夜夜摸| 欧美xxxx性猛交bbbb| 美女主播在线视频| 黄色欧美视频在线观看| 国产综合精华液| 黄色日韩在线| 亚洲人与动物交配视频| 在线观看一区二区三区| 日韩视频在线欧美| 校园人妻丝袜中文字幕| 免费观看av网站的网址| 我要看黄色一级片免费的| 日本免费在线观看一区| 人妻制服诱惑在线中文字幕| 少妇被粗大猛烈的视频| 国产精品一二三区在线看| 久久久午夜欧美精品| 丝袜脚勾引网站| 在线看a的网站| 在线 av 中文字幕| 成人毛片60女人毛片免费| 国产片特级美女逼逼视频| 成年美女黄网站色视频大全免费 | 亚洲三级黄色毛片| 亚洲精品aⅴ在线观看| 亚洲av免费高清在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲av日韩在线播放| 最后的刺客免费高清国语| 久久久久精品久久久久真实原创| 在线亚洲精品国产二区图片欧美 | 欧美成人午夜免费资源| 亚洲av男天堂| 国产免费又黄又爽又色| 男女国产视频网站| 在线精品无人区一区二区三 | 高清视频免费观看一区二区| 国产精品秋霞免费鲁丝片| 国产精品久久久久久精品古装| 蜜臀久久99精品久久宅男| 国产精品久久久久久精品电影小说 | 交换朋友夫妻互换小说| 亚洲四区av| 中文天堂在线官网| 少妇熟女欧美另类| 亚洲天堂av无毛| 内地一区二区视频在线| 精品久久久久久电影网| 精品人妻一区二区三区麻豆| 亚洲精品色激情综合| 日韩电影二区| 成人影院久久| 中国美白少妇内射xxxbb| 亚洲精品久久午夜乱码| 成人亚洲精品一区在线观看 | 少妇精品久久久久久久| 一级片'在线观看视频| 成年女人在线观看亚洲视频| 成人特级av手机在线观看| 人人妻人人爽人人添夜夜欢视频 | 免费av中文字幕在线| 国产精品99久久久久久久久| 男男h啪啪无遮挡| 天堂中文最新版在线下载| 亚洲欧美一区二区三区国产| 国产一区二区三区av在线| 高清毛片免费看| av又黄又爽大尺度在线免费看| av专区在线播放| 七月丁香在线播放| 国产欧美日韩一区二区三区在线 | 激情 狠狠 欧美| 亚洲人成网站高清观看| 菩萨蛮人人尽说江南好唐韦庄| av黄色大香蕉| 日韩av免费高清视频| 观看免费一级毛片| 国产伦精品一区二区三区视频9| 精品亚洲成a人片在线观看 | 亚洲精品第二区| 蜜臀久久99精品久久宅男| 乱系列少妇在线播放| 午夜福利在线在线| 天堂俺去俺来也www色官网| 深夜a级毛片| 国产乱人偷精品视频| 精品久久国产蜜桃| 伊人久久精品亚洲午夜| 国产永久视频网站| 少妇猛男粗大的猛烈进出视频| 亚洲丝袜综合中文字幕| 日韩av免费高清视频| 91狼人影院| 一区二区三区免费毛片| 欧美3d第一页| 日韩成人伦理影院| 亚洲va在线va天堂va国产| 男女啪啪激烈高潮av片| 亚洲精品456在线播放app| www.色视频.com| av线在线观看网站| 免费不卡的大黄色大毛片视频在线观看| 在线观看免费视频网站a站| 伦理电影免费视频| 成人免费观看视频高清| 丝袜脚勾引网站| 日产精品乱码卡一卡2卡三| 蜜桃亚洲精品一区二区三区| 99久久精品热视频| 夜夜爽夜夜爽视频| 狂野欧美激情性xxxx在线观看| 国产av一区二区精品久久 | 男人舔奶头视频| 欧美 日韩 精品 国产| 亚洲精品乱久久久久久| 日韩成人伦理影院| 国产成人免费无遮挡视频| 国产高清不卡午夜福利| 我要看黄色一级片免费的| 久久久亚洲精品成人影院| 久久久久久久大尺度免费视频| 久久久成人免费电影| 久久婷婷青草| 欧美性感艳星| 黄色配什么色好看| 女性被躁到高潮视频| 中文欧美无线码| 亚洲人成网站高清观看|