• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An improved model of damage depth of shock-melted metal in microspall under triangular wave loading?

    2021-09-28 02:20:48WenBinLiu劉文斌AnMinHe何安民KunWang王昆JianTingXin辛建婷JianLiShao邵建立NanShengLiu劉難生andPeiWang王裴
    Chinese Physics B 2021年9期
    關(guān)鍵詞:王昆安民

    Wen-Bin Liu(劉文斌),An-Min He(何安民),Kun Wang(王昆),Jian-Ting Xin(辛建婷),Jian-Li Shao(邵建立),Nan-Sheng Liu(劉難生),and Pei Wang(王裴),,7,?

    1Department of Modern Mechanics,University of Science and Technology of China,Hefei 230027,China

    2Institute of Applied Physics and Computational Mathematics,Beijing 100094,China

    3Graduate School of China Academy of Engineering Physics,Beijing 100088,China

    4College of Materials Science and Engineering,Hunan University,Changsha 410082,China

    5Science and Technology on Plasma Physics Laboratory,Research Center of Laser Fusion,China Academy of Engineering Physics,Mianyang 621900,China

    6State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China

    7Center for Applied Physics and Technology,Peking University,Beijing 100871,China

    Keywords:damage depth,theoretical modeling,microspall,triangular wave

    1.Introduction

    When a triangular wave propagating in the material reflects from the free surface,the interaction of the incident rarefaction wave with the reflected rarefaction wave generates tensile stress that may internally damage the material,and this damage can range from small voids or cracks to macroscopic fractures and the ejection of one or several spall layers.[1]If the material is shocked above its melting pressure or melted on release from a lower shock pressure,tensile stress emerges in the melted materials and the dynamic damage process is referred to as“microspall”.[2]Microspall has attracted great attention from scientists and engineers over the past decades because it has been observed in inertial confinement fusion[3–6]and laser-driven surface micromachining.[7–9]

    Experimental,theoretical and computational studies of microspall have been carried out over the past decades.Andriot et al.[2]studied the effect of melting on spallation using Doppler laser interferometry and x-ray densitometry.Several features of microspall were reported,including a dramatic decrease in free-surface reflectivity,continuous ejection of material and a significant increase in the number of ejecta.Ress′eguier et al.[5,10]studied the microspall of tin using the time-resolved velocity measurements and post-shock observations of recovered targets and fragments,and they found that the velocity interferometer system for any reflector(VISAR)signal disappeared when the material melts,which is consistent with Andriot’s discovery.Kanel et al.[11]investigated the spall strength of tin and lead,and they found that melting reduces the spall strength of lead and tin by at least an order of magnitude.Chen et al.[4]developed an improved Asay window technique to study the microspall of tin.An analytical method is developed to convert the measured data into the spatial volume density distribution,and the results are in good agreement with those obtained from x-ray radiograph.Theoretically,Kuksin et al.[12]established a spall model for liquids based on a void nucleation and growth approach.The model was applied to the estimation of liquid spall strength,and the result agrees well with experimental data.Xiang et al.[13]developed a model of microspall by coupling dynamic ductile damage and melting.The model was added to the finite element code and simulated spall experiments,and the simulation results are in good agreement with previous experiments.Computationally,molecular dynamics(MD)is an important theoretical tool for studying microspall.Luo et al.[14]investigated spallation in solid and liquid copper at high strain rates.Shao et al.[15,16]studied the failure mechanism and spall strength of single crystal aluminum under triangular wave loadings.Xiang et al.[17,18]studied the effects of shock intensity and loading rise time on the spall behavior of lead.Wang et al.[19]investigated the spall behaviors of melted lead under various triangular waves.However,most of the existing studies are focused on the mechanism of microspall damage,and there are few studies on the damage depth of microspall.Damage depth,the ratio of the damage mass per unit surface area to the density at rest condition,is an important parameter to describe the degree of damage.On the one hand,when a triangular wave reflects from the free surface of the material,the interaction of the incident rarefaction wave with the reflected rarefaction wave generates tensile stress that internally damages the material,where the material changes from continuous material to damaged material,and it is necessary to know the mass of damaged material.On the other hand,the damage depth is closely related to the physical processes such as secondary shock and particle-gas mixing.[20–22]Shao et al.[23]proposed an approximate description of damage depth under triangular wave loading when the material’s compressibility is considered.However,under strong triangular wave loading,the effect of the relative movement is obvious and should also be taken into account when performing theoretical modeling of damage depth.

    In order to study the damage depth of shock-melted metal in microspall under triangular wave loading,an improved model of damage depth of shock-melted metal is proposed,taking into account not only the effect of the material’s compressibility,but also the effect of the relative movement.Then,the microspall is investigated in the laser-driven shock loading experiment,and the proposed model is compared with the experiment and the model considering only the effect of the material’s compressibility.[23]Finally,the effects of peak stress and decay length of the incident triangular wave on the damage depth are investigated by SPH simulations.Besides,the applicability of the threshold stress criterion for melted metal at high strain rates is analyzed in microspall.

    This paper is organized as follows.In Section 2,an improved model of damage depth of shock-melted metal in microspall is proposed.Then in Section 3,the proposed model is validated by the laser-driven shock loading experiment.In Section 4,the SPH simulations are carried out to investigate the effects of peak stress and decay length of the incident triangular wave on the damage depth.Finally,the conclusions are drawn in Section 5.

    2.Proposed model

    Under strong triangular wave loading,the material has already melted,and the effect of the material’s compressibility is obvious.On the other hand,the effect of the relative movement is obvious in the time from the front of the incident triangular wave reaching the free surface of the material to the completion of last spallation.Therefore,using the threshold stress criterion and rules of propagation of simple wave,a model of damage depth of shock-melted metal in microspall is proposed considering the material’s compressibility and relative movement.

    When the incident triangular wave I of peak stressσmand decay length hλreflects from the free surface,the stress distribution near the free surface can be obtained on the assumption that the intensity of the reflected triangular wave R remains constant,as shown in Fig.1.The stresses of the incident triangular wave I and reflected triangular wave R inside the material at a distance d from the free surface are[(hλ?2d)/(hλ)]σmand?σm,respectively,where the parameter d represents the distance from the front of reflected triangular wave R to the free surface.Therefore,the stress inside the material at a distance d for the free surface is(2d/hλ)σm.Based on the threshold stress criterion,i.e.,dynamic spallation occurs when the tensile stress reaches spall strengthσs,after the first spallation,the thickness of spall layer d1is given by

    Fig.1.Stress distribution near the free surface under triangular wave loading.The symbol I represents the incident triangular wave,the symbol R represents the reflected triangular wave,the quantitiesσm and hλdenote the peak stress and decay length of the incident triangular wave,respectively,and the quantity d represents the distance from the front of reflected triangular wave R to the free surface at the current moment.

    For the remaining incident triangular wave inside the material,the peak stress isσm?σsand the decay length is hλ?2d1.If the peak stress of the incident triangular wave is high enough,the second spallation occurs,and the thickness of the spall layer remains constant.After the last spallation,the number of spall layer n and the failure depth of the material hdare

    When the material is shocked above its melting pressure or melted on release from a lower shock pressure,the spall strength of melted material can be negligible compared with the peak stress,and the failure depth of the material hdcan be simplified as

    However,the failure depth hdis independent of the material mass.Figure 2 gives a schematic diagram for solving the damage depth hs,which is defined as the ratio of the damage mass per unit surface area to the density at the rest condition.The main idea of solving the damage depth hsis to know the failure depth hdafter the last spallation,and to solve the damage depth hsat the moment when the front of the incident triangle wave reaches the free surface of the material,taking into account the effects of material’s compressibility and relative movement.Therefore,damage material,the substance to the right of the blue dotted line at time t2,is the substance to the right of the red dotted line at time t1.According to the propagation laws of simple wave,the expression of the damage mass msand damage depth hsinduced by the ideal triangular wave in microspall can be derived as

    where the(1/2)(ρi+ρm)reflects the effect of material’s compressibility,the hireflects the effect of relative movement,and hi,ρmandρiare given by

    According to Eqs.(4),(6)and(7),if the material parameters(ρ0,c,s),the peak velocity um(or peak stressσm=?ρ0(c0+sum)um)and decay length hλof the incident triangular wave are known,the damage depth of the melted material hscan be obtained under triangular wave loadings.The material parameters of tin are presented in Table 1.

    Table 1.Material parameters of tin.

    Fig.2.Schematic diagram for solving the damage depth.t1 is the moment when the incident triangular wave reaches the free surface,t2 is the moment when the last spallation ends,the blue dotted line is the position of matrix at time t2,the red dotted line is the position of blue dotted line at time t1,the green dotted line is the beginning position of incident triangular wave and the black dotted line is the end position of incident triangular wave at time t1.ρi is the density at the red dotted line at time t1,the quantitiesρm,σm and hλ denote the peak density,peak stress and decay length of the incident triangular wave at time t1,respectively,hd is the failure depth,hi is the relative movement between time t1 and t2.

    3.Laser-driven experiment validation

    After completing the theoretical model of the damage depth,the laser-driven experiments of microspall are performed.The damage depth obtained from the proposed model is compared with the experimental result and also compared with the model proposed by Shao et al.[23]

    3.1.Experimental setup

    The experiments are performed on the SGII-U laser facility.Figure 3 shows the experimental setup of microspall.[24]Two of eight driven laser beams work at 0.351μm wavelength and with 3 ns duration,and focus onto the target at 45°angle.The beams are smoothed by the continuous phase plates(CPP),and the irradiated spots are quasi circular of about 2 mm diameter on the target.

    The samples are tin foil with a thickness of 500μm and a roughness of 400 nm after surface polishing.Two experiments are performed on the tin sample with the same expected energy of the driving laser.The shot 1 is the microspall experiment,and the shot 2 adds a LiF window on the tin surface under the same conditions,which is used to measure the interface velocity history with photonic Doppler velocimetry(PDV)and obtain the profile of the incident triangular wave in the sample.The actual energy measured by the energy meter in shot 1 and shot 2 are 1282 J and 1272 J,respectively.

    Fig.3.The experimental setup of microspall.

    3.2.Experimental results and analysis

    Fig.4.(a)The historical curves of the interface velocity between the tin sample and LiF in shot 2 based on PDV measurement and SPH simulation.(b)Stress profile of the incident triangular wave from SPH simulation in shot 1 and shot 2.

    Figure 4(a)shows the historical curve of the interface velocity between the tin sample and LiF in shot 2 based on PDV measurement.Since the incident shock wave is a triangular wave,the interface velocity continues to decay.The selfdeveloped 2D SPH code[25,26]is used to determine the peak stress and decay length of the incident triangular wave.Therefore,the stress profile of the incident triangular wave in shot 1 and shot 2 can be determined,as shown in Fig.4(b),where the peak stress is?36 GPa and the decay length is 198μm.The historical curve of the interface velocity in SPH simulation is also shown in Fig.4(a).Based on the initial maximum and early decreasing slope of the interface velocity,which determine the peak stress and unloading rate of the incident triangular wave,it can be seen that the SPH simulation is almost consistent with the experimental result.

    Table 2.The damage depth obtained from the microspall experiment and models.

    Fig.5.(a)Areal density and volume density of the x-ray radiography image in shot 1.The red box is selected to count the volume density.(b)The areal density distribution along the shock direction.The symbol A indicates the position of matrix,and the symbol B indicates the start position of the statistics.

    4.The effects of peak stress and decay length on the damage depth

    According to the proposed model,it can be seen that,in addition to the material parameters,the peak stress and decay length of the incident triangular wave determine the damage depth.In this section,two-groups of SPH simulations are carried out to investigate the effects of peak stress and decay length on the damage depth,respectively,and the results of the SPH simulation are compared with the proposed model.In addition,the applicability of the threshold stress criterion for melted metals at high strain rates is analyzed in microspall.

    4.1.Model and method

    The microspall simulations of tin are carried out using a self-developed 2D SPH code.[25,26]In the SPH method,the material is discretized into a series of particles with independent information.Due to its Lagrangian nature,SPH has the advantage of simulating free-surface flows with large deformations.[27]The pressure is modeled by the Mie–Gr¨uneisen equation of state,[28]as follows:

    where theη=ρ/ρ0?1 is the compression ratio,γis the Gr¨uneisen constant,and the parameters a1,a2,and a3are given by

    The Steinberg–Guinan constitutive model[29]is used,and the shear modulus strength G and yield strength Y are given as follows:

    where the subscript“0”denotes the reference state(T=300 K,p=0 Pa,ε=0 s?1),εpis equivalent plastic strain,βand n are working hardening parameters,and T is the temperature.

    The melting temperature is modeled using the Lindermann’s melting law[29]

    where Tm0and Vm0are melting temperature and specific volume at reference state(p=0 Pa,ε=0 s?1).

    The threshold stress criterion is adopted,i.e.,the tin spalls when the stress within the material is larger thanσ≥σmin=1.2 GPa.After tin melts,its spall strength is set to 0.1 GPa.[11]The material parameters of tin are presented in Table 1.

    Fig.6.The profiles of the incident triangular wave in SPH simulations:(a)different decay lengths at a peak stress of?50 GPa;(b)different peak stresses at a decay length of 300μm.

    In the simulation,the width of the sample is 100μm,the initial inter-particle distance is 0.25μm,and the smoothing length is 0.375μm.Different triangular waves can be obtained by changing the length of sample,the length of flyer and the velocity of flyer.In the following discussion,the time is set to 0 ns when the front of the incident triangular wave reaches the free surface of sample.Two-groups of SPH simulations are conducted to investigate the effects of peak stress and decay length on the damage depth,respectively,and the profiles of the incident triangular waves are shown in Fig.6.Figure 6(a)shows the profiles of the incident triangular waves when the peak stress is?50 GPa and the decay length is ranged from 100μm to 500μm,Figure 6(b)shows the profiles of the incident triangular waves when the decay length is 300μm and the peak stress is ranged from?30 GPa to?70 GPa.The above peak stresses indicate that the tin has melted under the given loading conditions.[30]

    4.2.SPH simulation results and analysis

    Figure 7 gives the result of microspall at 300 ns when the peak stress is?50 GPa and the decay length is 300μm.The black dotted line indicates the position of the matrix,so the material to the right of the black dotted line is the damage material in microspall,and the damage mass msand damage depth hs=(ms)/((1·ly)·ρ0)can be obtained,where ly=100μm is the width of the sample.

    Fig.7.Microspall at 300 ns in SPH simulations when the peak stress is?50 GPa,and the decay length is 300μm.The black dotted line indicates the position of the matrix.

    Figure 8 shows the results of the damage depth of the SPH simulations and the proposed model.As shown in Fig.8(a),with the increase of decay length hλ,the damage depth hsincreases linearly,and the results of the SPH simulations agree well with those of the model with a maximum error of 0.029.As shown in Fig.8(b),with the increase of peak stressσm,the damage depth hsincreases nonlinearly,the increase in damage depth gradually slows down with an increase in peak stressσm,and the results of the SPH simulations agree well with those of the model with a maximum error of 0.033.

    In contrast to the free-surface velocity associated with the first spallation,the damage depth is related to the spallation inside the material.Since the threshold stress criterion is adopted in the current SPH simulations,and the damage depths obtained from the SPH simulation are in good agreement with the results of the proposed model,it can be judged that the threshold stress criterion can satisfy the requirements of microspall of melted metal.

    Fig.8.The damage depth vs.(a)decay length hλand(b)peak stressσm.

    5.Conclusion

    In this paper,an improved model of damage depth of shock-melted metal in microspall under triangular wave loading is proposed considering the material’s compressibility and relative movement.Then,the microspall is investigated in the laser-driven shock loading experiment,and the damage depth obtained from the proposed model is compared with the experimental result.Finally,two-groups of SPH simulations are performed to investigate the effects of peak stress and decay length of the incident triangular wave on the damage depth.The details are as follows:

    (I)Using the threshold stress criterion and rules of propagation of simple wave,a model of damage depth of shockmelted metal considering both the material’s compressibility and relative movement is proposed.When the physical parameters of the material,peak velocity(or peak stress)and decay length of the triangular wave are known,the damage depth of the melted metal can be obtained under triangular wave loading.The proposed model is validated by the laser-driven experiment.Compared with the previous model,the proposed model can predict the damage depth of shock-melted metal in microspall more accurately.

    (II)As the decay length increases,the damage depth increases linearly.As the peak stress increases,the damage depth increases nonlinearly,and the increase in damage depth gradually slows down.The results of the SPH simulation agree well with those of the proposed model.

    (III)Combining the damage depth results of the SPH simulations and the proposed model,it is found that the threshold stress criterion can reflect the macroscopic characteristics of microspall of melted metal.

    猜你喜歡
    王昆安民
    THE EXISTENCE AND NON-EXISTENCE OFSIGN-CHANGING SOLUTIONS TO BI-HARMONIC EQUATIONS WITH A p-LAPLACIAN*
    超聲引導(dǎo)腰部豎脊肌平面阻滯在老年患者髖關(guān)節(jié)置換術(shù)中的應(yīng)用效果
    搏擊長(zhǎng)空
    同學(xué)情誼
    打羽毛球
    易安民聲
    易安民聲
    A thermostable serralysin inhibitor from marine bacterium Flavobacterium sp. YS-80-122*
    龔遂治亂安民的“高招”
    你不曾真的離開(kāi)
    国产一区二区三区av在线| 国产1区2区3区精品| 一区二区av电影网| 免费观看人在逋| 国产成人系列免费观看| 王馨瑶露胸无遮挡在线观看| av片东京热男人的天堂| 中文天堂在线官网| kizo精华| 免费黄色在线免费观看| 免费高清在线观看视频在线观看| 久久人人爽人人片av| √禁漫天堂资源中文www| 久久国产精品男人的天堂亚洲| 欧美日韩一级在线毛片| 另类精品久久| 久久久久精品久久久久真实原创| 国产爽快片一区二区三区| 国产欧美日韩综合在线一区二区| 超碰97精品在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 看十八女毛片水多多多| 欧美97在线视频| 97精品久久久久久久久久精品| 久久久久久久精品精品| av片东京热男人的天堂| av网站免费在线观看视频| 久久av网站| 九九爱精品视频在线观看| 日本欧美国产在线视频| 久久热在线av| 国产 一区精品| 国产精品一区二区在线观看99| 国产日韩欧美亚洲二区| 国产乱来视频区| av卡一久久| 亚洲欧洲日产国产| 中文字幕人妻熟女乱码| 亚洲第一区二区三区不卡| 女性生殖器流出的白浆| 日本欧美视频一区| 热re99久久精品国产66热6| 我要看黄色一级片免费的| 欧美精品av麻豆av| 国产成人91sexporn| 久久免费观看电影| 女人久久www免费人成看片| 在线观看免费视频网站a站| 国产精品国产三级国产专区5o| 老司机深夜福利视频在线观看 | 王馨瑶露胸无遮挡在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲专区中文字幕在线 | 国产伦人伦偷精品视频| 久久av网站| 亚洲成人免费av在线播放| 亚洲欧美精品综合一区二区三区| 热re99久久国产66热| 99热网站在线观看| 国产成人91sexporn| 777米奇影视久久| 成人影院久久| xxxhd国产人妻xxx| 亚洲欧美一区二区三区久久| 久热爱精品视频在线9| 亚洲成人一二三区av| 成年av动漫网址| 免费少妇av软件| 国产av一区二区精品久久| 黄片小视频在线播放| 波野结衣二区三区在线| 永久免费av网站大全| 国产一区二区三区av在线| 精品久久蜜臀av无| 观看美女的网站| 午夜激情av网站| 熟妇人妻不卡中文字幕| 国产av码专区亚洲av| 十分钟在线观看高清视频www| av电影中文网址| 丝袜喷水一区| 天天躁夜夜躁狠狠久久av| 欧美国产精品一级二级三级| 飞空精品影院首页| 久久久久久久久久久免费av| 日韩中文字幕视频在线看片| 久久久久网色| 亚洲男人天堂网一区| 街头女战士在线观看网站| 黄片播放在线免费| 99久久人妻综合| 人体艺术视频欧美日本| 男女边吃奶边做爰视频| 欧美亚洲日本最大视频资源| 大陆偷拍与自拍| 色吧在线观看| 超碰成人久久| 国产精品国产av在线观看| 一区二区三区精品91| 欧美久久黑人一区二区| 18禁观看日本| 高清黄色对白视频在线免费看| 国产男女内射视频| 婷婷成人精品国产| 国产熟女欧美一区二区| 精品一区在线观看国产| 久久久久久久大尺度免费视频| 精品酒店卫生间| 免费观看a级毛片全部| 中文字幕av电影在线播放| 久久久久久人人人人人| 人人妻人人澡人人爽人人夜夜| 国产成人91sexporn| 超碰成人久久| 久久av网站| 亚洲美女黄色视频免费看| 亚洲精品久久午夜乱码| 久久久久久人人人人人| 欧美激情 高清一区二区三区| 日本av免费视频播放| 亚洲 欧美一区二区三区| 嫩草影视91久久| 中文字幕人妻丝袜制服| 国产亚洲最大av| 黄网站色视频无遮挡免费观看| 在线精品无人区一区二区三| 99热网站在线观看| 亚洲欧美日韩另类电影网站| 国产成人精品在线电影| 免费av中文字幕在线| 国产精品一二三区在线看| 欧美激情极品国产一区二区三区| xxx大片免费视频| a 毛片基地| 欧美激情 高清一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 99久国产av精品国产电影| 久久久精品免费免费高清| 黄片无遮挡物在线观看| 亚洲成人手机| h视频一区二区三区| 亚洲精品久久久久久婷婷小说| av国产精品久久久久影院| 十八禁高潮呻吟视频| 国产免费福利视频在线观看| 午夜免费鲁丝| 国产色婷婷99| 国产熟女午夜一区二区三区| 亚洲综合精品二区| 国产乱人偷精品视频| 人妻 亚洲 视频| av不卡在线播放| 麻豆精品久久久久久蜜桃| av线在线观看网站| 免费少妇av软件| 亚洲,欧美,日韩| 久久久久久久久久久免费av| 久久久久久久久久久免费av| 免费观看av网站的网址| 在线观看免费午夜福利视频| 亚洲精品国产色婷婷电影| 午夜91福利影院| 999精品在线视频| 日韩视频在线欧美| 色94色欧美一区二区| 成人手机av| 丰满乱子伦码专区| 黄色毛片三级朝国网站| 色婷婷久久久亚洲欧美| 中文字幕亚洲精品专区| 在线天堂中文资源库| 99热网站在线观看| 麻豆乱淫一区二区| 免费观看人在逋| svipshipincom国产片| 亚洲国产欧美日韩在线播放| 国产成人精品久久二区二区91 | 2021少妇久久久久久久久久久| 久久久精品免费免费高清| 国产熟女午夜一区二区三区| 国产精品久久久久成人av| 秋霞伦理黄片| 美女主播在线视频| 精品第一国产精品| 国产日韩欧美视频二区| 18禁国产床啪视频网站| 国产一区二区三区av在线| 日日摸夜夜添夜夜爱| 亚洲国产欧美日韩在线播放| 热re99久久国产66热| 久久久久网色| 在线观看免费视频网站a站| a级毛片在线看网站| 伦理电影免费视频| 女性被躁到高潮视频| 亚洲欧美色中文字幕在线| 天堂中文最新版在线下载| 日本vs欧美在线观看视频| 亚洲成人手机| 自线自在国产av| 午夜福利在线免费观看网站| 国产成人91sexporn| 无限看片的www在线观看| 国产亚洲av片在线观看秒播厂| 欧美日韩亚洲综合一区二区三区_| 亚洲av男天堂| 欧美国产精品va在线观看不卡| 男人添女人高潮全过程视频| 亚洲人成77777在线视频| 赤兔流量卡办理| 亚洲激情五月婷婷啪啪| 国产99久久九九免费精品| 国产1区2区3区精品| 午夜福利视频精品| 热re99久久国产66热| 老汉色∧v一级毛片| 欧美精品高潮呻吟av久久| 日韩电影二区| 亚洲av电影在线进入| 日韩av不卡免费在线播放| 亚洲激情五月婷婷啪啪| 日韩制服骚丝袜av| 日本av手机在线免费观看| 欧美精品av麻豆av| 亚洲国产中文字幕在线视频| 婷婷色综合www| 欧美日韩av久久| 精品视频人人做人人爽| 久久精品国产亚洲av高清一级| 欧美亚洲 丝袜 人妻 在线| 国产激情久久老熟女| 国产成人a∨麻豆精品| 18禁动态无遮挡网站| 午夜福利,免费看| 国产 一区精品| 高清欧美精品videossex| 国产淫语在线视频| 亚洲精品视频女| 国产精品一区二区在线不卡| 一边摸一边做爽爽视频免费| 亚洲,欧美精品.| 日本午夜av视频| 久久久久久久精品精品| 婷婷成人精品国产| 黄片小视频在线播放| 91aial.com中文字幕在线观看| 日本爱情动作片www.在线观看| 中文字幕制服av| 成人亚洲精品一区在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲精品国产av成人精品| 女人高潮潮喷娇喘18禁视频| 国产免费现黄频在线看| 少妇人妻 视频| 亚洲婷婷狠狠爱综合网| 一个人免费看片子| 纵有疾风起免费观看全集完整版| 国产亚洲午夜精品一区二区久久| 亚洲三区欧美一区| 19禁男女啪啪无遮挡网站| 日本wwww免费看| 色婷婷久久久亚洲欧美| 久久久欧美国产精品| 不卡视频在线观看欧美| 亚洲视频免费观看视频| 久久久久久久久久久久大奶| 成人三级做爰电影| 99久国产av精品国产电影| 久热这里只有精品99| 日韩av不卡免费在线播放| 青春草亚洲视频在线观看| 悠悠久久av| 国产精品一区二区在线观看99| av又黄又爽大尺度在线免费看| 午夜激情av网站| 亚洲国产精品999| 日韩伦理黄色片| 日韩免费高清中文字幕av| 久久国产精品男人的天堂亚洲| 综合色丁香网| 人人妻,人人澡人人爽秒播 | 男女午夜视频在线观看| 国产免费福利视频在线观看| 欧美日韩国产mv在线观看视频| 捣出白浆h1v1| 国产高清国产精品国产三级| av视频免费观看在线观看| 亚洲av男天堂| 日日啪夜夜爽| 性少妇av在线| 亚洲av在线观看美女高潮| 如日韩欧美国产精品一区二区三区| 97人妻天天添夜夜摸| 国产熟女欧美一区二区| 欧美乱码精品一区二区三区| 免费高清在线观看日韩| 高清不卡的av网站| 看免费成人av毛片| 国产一区二区 视频在线| 在线观看免费视频网站a站| 色吧在线观看| 精品亚洲成国产av| 日韩精品有码人妻一区| 欧美 日韩 精品 国产| 十八禁人妻一区二区| 曰老女人黄片| 男女下面插进去视频免费观看| 日韩欧美精品免费久久| 女人久久www免费人成看片| 精品一区二区三区av网在线观看 | 十分钟在线观看高清视频www| 三上悠亚av全集在线观看| 只有这里有精品99| 亚洲欧美激情在线| 亚洲精品自拍成人| 久久人人爽人人片av| 中文天堂在线官网| 777久久人妻少妇嫩草av网站| 欧美xxⅹ黑人| 五月天丁香电影| 国产熟女欧美一区二区| 亚洲欧美清纯卡通| 免费观看av网站的网址| 老司机深夜福利视频在线观看 | 19禁男女啪啪无遮挡网站| 亚洲精品一区蜜桃| 99精品久久久久人妻精品| 亚洲精品在线美女| 亚洲熟女精品中文字幕| 免费黄色在线免费观看| av网站免费在线观看视频| 免费日韩欧美在线观看| 亚洲七黄色美女视频| 一区二区三区乱码不卡18| 色94色欧美一区二区| 日日摸夜夜添夜夜爱| 老汉色av国产亚洲站长工具| 一区二区三区四区激情视频| 欧美激情极品国产一区二区三区| 国产成人免费无遮挡视频| 国产一区二区三区综合在线观看| 久久热在线av| 久久精品国产亚洲av涩爱| 久久午夜综合久久蜜桃| 国产亚洲精品第一综合不卡| 欧美日韩视频精品一区| 飞空精品影院首页| 成人国产麻豆网| 午夜精品国产一区二区电影| 人人妻人人澡人人看| 久久久久久久国产电影| 一区二区av电影网| 精品亚洲成a人片在线观看| 亚洲av成人精品一二三区| 久久久久久人妻| 欧美日韩福利视频一区二区| 免费黄网站久久成人精品| 久久精品久久久久久噜噜老黄| 18禁动态无遮挡网站| 别揉我奶头~嗯~啊~动态视频 | 国产日韩欧美视频二区| 街头女战士在线观看网站| 在线观看www视频免费| 欧美日韩成人在线一区二区| 亚洲精品中文字幕在线视频| 日韩伦理黄色片| 三上悠亚av全集在线观看| 少妇被粗大猛烈的视频| 国产在线一区二区三区精| 亚洲美女视频黄频| 丝瓜视频免费看黄片| 视频区图区小说| 亚洲精品国产av蜜桃| 少妇被粗大猛烈的视频| 精品亚洲乱码少妇综合久久| 中国三级夫妇交换| 国产成人系列免费观看| www.精华液| 午夜福利乱码中文字幕| 中国国产av一级| 欧美黄色片欧美黄色片| 校园人妻丝袜中文字幕| 久久久久久久久久久免费av| 一本久久精品| 成年美女黄网站色视频大全免费| 亚洲国产精品成人久久小说| 亚洲一区二区三区欧美精品| 精品国产超薄肉色丝袜足j| 国产精品一国产av| 18禁观看日本| 亚洲免费av在线视频| 一个人免费看片子| 国产精品免费大片| 欧美激情 高清一区二区三区| 91老司机精品| 国产一区二区激情短视频 | xxxhd国产人妻xxx| 免费在线观看完整版高清| 黄片播放在线免费| 日韩熟女老妇一区二区性免费视频| 久久国产亚洲av麻豆专区| 国产欧美亚洲国产| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩亚洲综合一区二区三区_| 欧美 亚洲 国产 日韩一| 大话2 男鬼变身卡| 免费黄色在线免费观看| 亚洲天堂av无毛| 纯流量卡能插随身wifi吗| 亚洲国产av新网站| 天天躁狠狠躁夜夜躁狠狠躁| 黑人猛操日本美女一级片| 亚洲第一青青草原| 少妇猛男粗大的猛烈进出视频| 亚洲av日韩精品久久久久久密 | 少妇人妻精品综合一区二区| 国产精品成人在线| 久久久久久人妻| 国产成人免费观看mmmm| 亚洲国产看品久久| 久久午夜综合久久蜜桃| 国产一区二区激情短视频 | 日日爽夜夜爽网站| 人体艺术视频欧美日本| a 毛片基地| 欧美日韩成人在线一区二区| 亚洲专区中文字幕在线 | 天天躁狠狠躁夜夜躁狠狠躁| 成人国产麻豆网| 侵犯人妻中文字幕一二三四区| 国产成人一区二区在线| 日韩不卡一区二区三区视频在线| 精品国产超薄肉色丝袜足j| 久久精品国产亚洲av高清一级| av卡一久久| 欧美日本中文国产一区发布| 国产高清国产精品国产三级| 男人添女人高潮全过程视频| 十分钟在线观看高清视频www| 熟妇人妻不卡中文字幕| 久久精品久久久久久噜噜老黄| 另类精品久久| 汤姆久久久久久久影院中文字幕| av女优亚洲男人天堂| 你懂的网址亚洲精品在线观看| 国产成人免费无遮挡视频| 亚洲,欧美,日韩| 亚洲欧洲精品一区二区精品久久久 | 精品人妻一区二区三区麻豆| 久久精品久久久久久噜噜老黄| 婷婷成人精品国产| 日韩大码丰满熟妇| 97精品久久久久久久久久精品| 亚洲一码二码三码区别大吗| 中文字幕精品免费在线观看视频| 日本黄色日本黄色录像| 国产精品一区二区在线不卡| 久久久久久久国产电影| 老司机靠b影院| 亚洲人成电影观看| 久久人妻熟女aⅴ| 巨乳人妻的诱惑在线观看| 少妇被粗大猛烈的视频| 少妇 在线观看| 亚洲国产精品一区二区三区在线| 美国免费a级毛片| 99国产综合亚洲精品| 黄色毛片三级朝国网站| 在线精品无人区一区二区三| 久久热在线av| kizo精华| 日本猛色少妇xxxxx猛交久久| 日韩 欧美 亚洲 中文字幕| 在线观看三级黄色| 男女午夜视频在线观看| 精品一区二区三区四区五区乱码 | 看免费av毛片| 亚洲,欧美,日韩| 欧美精品av麻豆av| 午夜福利乱码中文字幕| 啦啦啦在线观看免费高清www| 涩涩av久久男人的天堂| 精品一区二区免费观看| 99久久人妻综合| 一区二区av电影网| 999久久久国产精品视频| 一区在线观看完整版| 丝袜在线中文字幕| 午夜av观看不卡| 丰满饥渴人妻一区二区三| 青草久久国产| 丰满饥渴人妻一区二区三| 国产成人精品无人区| 我要看黄色一级片免费的| 精品国产露脸久久av麻豆| 一二三四中文在线观看免费高清| 波野结衣二区三区在线| 午夜激情av网站| 欧美人与性动交α欧美精品济南到| 精品亚洲成a人片在线观看| www.熟女人妻精品国产| 人人妻人人澡人人爽人人夜夜| 久久久久精品性色| 一区在线观看完整版| 国产精品麻豆人妻色哟哟久久| 青春草亚洲视频在线观看| 夫妻性生交免费视频一级片| 免费黄色在线免费观看| 日韩制服骚丝袜av| 热99久久久久精品小说推荐| 毛片一级片免费看久久久久| 久久免费观看电影| 黑人巨大精品欧美一区二区蜜桃| √禁漫天堂资源中文www| 国产在线免费精品| a级毛片黄视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美97在线视频| 久久99热这里只频精品6学生| 精品免费久久久久久久清纯 | 亚洲在久久综合| 夜夜骑夜夜射夜夜干| 大香蕉久久成人网| 丝袜喷水一区| 色视频在线一区二区三区| 精品国产露脸久久av麻豆| 亚洲三区欧美一区| 十分钟在线观看高清视频www| 黄片小视频在线播放| 国语对白做爰xxxⅹ性视频网站| 国产黄色免费在线视频| 新久久久久国产一级毛片| 中国国产av一级| 精品国产露脸久久av麻豆| 日韩中文字幕欧美一区二区 | 超碰成人久久| 一区在线观看完整版| 日韩视频在线欧美| 丁香六月欧美| 亚洲欧美一区二区三区黑人| 婷婷成人精品国产| 欧美日韩亚洲国产一区二区在线观看 | avwww免费| 日日爽夜夜爽网站| 久久免费观看电影| 国产乱人偷精品视频| 国产日韩一区二区三区精品不卡| 免费观看人在逋| 蜜桃国产av成人99| 熟女少妇亚洲综合色aaa.| www.av在线官网国产| 黄色视频在线播放观看不卡| 人人妻人人澡人人看| 热99久久久久精品小说推荐| 国语对白做爰xxxⅹ性视频网站| 91国产中文字幕| 亚洲成人免费av在线播放| 久久久久久久久免费视频了| 满18在线观看网站| 免费黄网站久久成人精品| 伦理电影免费视频| 免费观看人在逋| 老司机靠b影院| 欧美中文综合在线视频| 色94色欧美一区二区| 日韩一区二区三区影片| 中文字幕色久视频| 亚洲精品美女久久av网站| 欧美日韩精品网址| 亚洲伊人久久精品综合| 人妻一区二区av| 在线 av 中文字幕| 日韩精品有码人妻一区| 亚洲精华国产精华液的使用体验| 午夜福利影视在线免费观看| 日本午夜av视频| 成人午夜精彩视频在线观看| 精品久久久精品久久久| 哪个播放器可以免费观看大片| 久久精品熟女亚洲av麻豆精品| 美女福利国产在线| 超色免费av| 一级爰片在线观看| 丁香六月欧美| 国产精品国产三级专区第一集| 国产成人系列免费观看| 黄色毛片三级朝国网站| 亚洲精品久久久久久婷婷小说| 国产精品麻豆人妻色哟哟久久| 一区二区三区四区激情视频| 视频在线观看一区二区三区| 欧美av亚洲av综合av国产av | 国产成人精品无人区| 韩国精品一区二区三区| 亚洲情色 制服丝袜| 在线看a的网站| 日韩制服丝袜自拍偷拍| 亚洲情色 制服丝袜| 国产熟女欧美一区二区| 97精品久久久久久久久久精品| 别揉我奶头~嗯~啊~动态视频 | 建设人人有责人人尽责人人享有的| av福利片在线| 亚洲人成网站在线观看播放| 高清欧美精品videossex| 操出白浆在线播放| 久久亚洲国产成人精品v| 成年人午夜在线观看视频| 亚洲国产av影院在线观看| 99国产精品免费福利视频| 国产黄色视频一区二区在线观看| 成人国产av品久久久| 人人妻人人添人人爽欧美一区卜| 美女大奶头黄色视频| 在线观看人妻少妇|