• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-layer structures including zigzag sculptured thin films for corrosion protection of AISI 304 stainless steel?

    2021-03-19 03:21:58FatemeAbdi
    Chinese Physics B 2021年3期

    Fateme Abdi

    Department of Engineering Sciences,Faculty of Advanced Technologies,University of Mohaghegh Ardabili,Namin,Iran

    Keywords: corrosion protection,multilayer,zigzag thin film,EIS,equivalent circuit

    1. Introduction

    AISI 304 stain less steel has many applications in industry and technology due to its good mechanical properties and good corrosion resistance. However, this substance does not have high resistance to corrosion in the environments containing aggressive ions, such as Cl?and S?2, especially at high temperatures, and environments with very high or very low pHs.[1-3]Therefore,improving the corrosion resistance of this widely used substance is a fundamental requirement. So far,many methods have been employed to increase the corrosion resistance of the AISI 304 stainless steel. The previous older methods such as painting have been extensively used due to the good adhesion of paints to steel.[4]Paint is a thick coating, and the use of thin coatings to protect steel from corrosion is very essential. To do so, ion implantation,[5]arc ion plating,[6]sol-gel coating,[7,8]chemical deposition,[9]and physical depositions[5,10,11]have been used. The advantage of using physical depositions is that the layers are more controllable. In the previous study, the researchers used a physical coating to form multilayer structures on steel and revealed that the application of manganese nitride multilayer structure instead of the monolayer structure significantly increased the corrosion resistance.[12]The very purpose of the present study is to improve multilayer structures,for which the zigzag structure is used in the multilayer thin films.

    2. Experiment

    Sheets of AISI 304 stainless steel with dimensions of 20 mm×20 mm×1 mm and the compounds listed in Table 1 were considered as substrates. To begin with, all substrates were first cleaned in acetone, in alcohol, in in ultrasonic bath in sequence. Then, the substrates were glued to the substrate holder with a special vacuum adhesive. Manganese was considered as the protecting material,and the deposition was performed by using An Edwards(Edwards E19 A3)machine and electron beam at room temperature with a base pressure of 2×10?7Torr (1 Torr=1.33322×102Pa) over four steps.At each step of the deposition, thin films of manganese with 55-nm thickness were formed, so that the total thickness of the manganese thin films on the substrate was 220 nm. In the four-step deposition process,there is a 15-min interval between two depositions. The purpose of this interruption was to cool the previous layer and stabilize the grains. Figure 1(a)demonstrates the mentioned four-layer structure(conventional multilayer thin film).

    Table 1. Chemical compositions of AISI 304-type stainless steel used in this work.

    The next task was to deform the middle layers (layers 2 and 3). To do so, first a 55-nm-thin film of manganese was formed on a substrate. Then, a 110-nm zigzag structure was formed on the previous thin film,and finally a 55-nm-thin film of manganese was formed on this zigzag structure by returning the substrate to its original state. To form the zigzag structure,after forming the conventional 55-nm-thin film, the substrate was placed at an angle of 20?relative to the line perpendicular to the substrate,and this structure is called zigzag 1 structure for short. Figure 1(b)shows this structure.

    Fig.1. Schematic diagram of(a)conventional multilayer thin film,(b)multilayer thin film with zigzag 1 structure, and (c) multilayer thin film with zigzag 2 structure.

    To better investigate the effect of the geometry on the protection against corrosion,the other task was to convert each of zigzag arms into a zigzag structure. That is, after depositing a 55-nm-thin film, the zigzag structure was formed twice so that the thickness of each zigzag arm was 27.5 nm, and the total thickness of the middle layer(two zigzag structures containing 4 arms) was 110 nm. Finally, a 55-nm-thin film was deposited on them. Figure 1(c)shows a schematic representation of this design. This structure is called zigzag 2 structure for short.

    After forming the conventional multilayer thin films,zigzag 1 and zigzag 2 structures, their nitriding process was performed by using a furnace (Exciton, 1200-30/6, T.H, Iran equipped with Shinko temperature programmable controller- PCD33A). To do so, the samples were annealed with a 400-sccm nitrogen flux at 623 K.The annealing processes consisted of the following three stages:

    Stage AIt took an hour for the temperature to reach 623 K(in steps of 6?C per min).

    Stage BThe samples were kept at this temperature for 4 h.

    Stage CThe device was turned off to cool down to temperature slowly from 623 K to room temperature.

    In all the above-mentioned stages, the nitrogen flux passed through the samples.

    Fig.2. The FESEM image of(a)conventional multilayer thin film,(b)multilayer thin film with zigzag 1 structure, and (c) multilayer thin film with zigzag 2 structure.

    The film thickness and cross sections of structures were observed by field emission scanning electron microscope(FESEM)(Hitachi S-4100 SEM,Japan). Figures 2(a)-2(c)show the FESEM images of the conventional multilayer thin film,zigzag 1 structure,and zigzag 2 structure respectively. To ensure the formation of manganese nitride phase and to investigate the crystallinity degree of the samples, x-ray diffraction(XRD) analysis was performed (model STADI MP Diffractometer, Germany (Cu-Kαradiation) in steps of 0.01?and count time of 1.0 s per step),In addition,the surface morphology of samples was examined by using an atomic force microscope(AFM)(Nt-mdt scanning probe microscope,BL022,Russia; with low stress silicon nitride tip of less than 200 ?A in radius and tip opening of 18?). Polarization test was performed to determine the corrosion rate and tendency. Furthermore, the electrochemical impedance spectroscopy(EIS)test was performed to investigate the corrosion resistances of different structures by using a three-electrode cell and the Ivum state model of Potentiostat device made by Ivum Company.The 3.5%NaCl solution was considered as the corrosive solution. Furthermore,the AgCl solution,reference electrode,and platinum electrode were used as auxiliary electrodes.

    The samples were placed in the fixture as a working electrode in such a way that only a circle with a diameter of 1 cm of the samples was exposed to the corrosive environment. Polarization measurements were performed at potentials ranging from ?1 V to 2 V at a rate of 50 mV/s. Moreover,the EIS test was performed in a frequency range from 1 kHz to 0.01 kHz with a voltage range of 0.01 V.Prior to the measurement,the samples were placed in the solution for 0.5 h to stabilize the open circuit potential (OCP). After performing the corrosion test,the SEM images were taken from the samples to observe the surface.

    3. Results

    3.1. XRD results

    Figures 3(a) and 3(b) indicate the XRD results of the 304 stainless steel as compared with the XRD of multilayer structures (conventional multilayer thin film, zigzag 1 structure, and zigzag 2 structure) before and after annealing at nitrogen flux, respectively. As the figures reveal that the XRD spectra of the 304 stainless steel have four peaks,which are located at 2θ =43.7?,2θ =50.7?,2θ =74.8?,and 2θ =90.8?which represent the γ-Fe (111), γ-Fe (200), γ-Fe (220), and γ-Fe(311)phases,respectively.

    Figure 3(a) demonstrates that in the XRD spectrum of the multilayer structures (conventional multilayer thin film,zigzag 1 structure and zigzag 2 structure), in addition to the peaks related to the substrate,namely the phases γ -Fe(200),γ -Fe (220), and γ -Fe (311), other peak is located at 2θ =43.03?, which represents the crystallographic orientation of Mn(330)(according to the standard card 00-020-0180).

    Figure 3(b)indicates that the XRD spectrum of the conventional manganese multilayer thin film does not change much in the nitrogen flux. Only the Mn (330) peak intensity increases slightly due to the grain growth as a result of annealing,and no phase of manganese nitride is observed. However,unlike this structure,the zigzag multilayer structure(zigzag 1 structure and zigzag 2 structure) has a peak at 2θ =40.44?,which indicates the formation of manganese nitride phase and represents the Mn4N (111) crystallographic orientation (according to the standard card 00-001-1202). The formation of the nitride phase in this structure can be attributed to the porosity nature of the sculptured thin film and the better possibility of reaction and nitride formation. Figure 3(b) shows that the magnesium nitride phase intensity,for the zigzag 2 structure is less than the zigzag 1 structure. The reason is due to the small zigzag arms of this structure.

    Fig.3. XRD patterns of AISI 304 stainless steel, conventional multilayer thin film, multilayer thin film with zigzag 1 structure, and multilayer thin film with zigzag 2 structure,before(a)and after(b)annealing.

    3.2. AFM results

    The surface morphology of the conventional multilayer thin film and zigzag multilayer structures (zigzag 1 structure and zigzag 2 structure)is investigated after annealing in nitrogen flux,by using the atomic force microscopy(AFM).

    Fig.4.The 2D and 3D AFM images of(a)conventional multilayer thin film,(b)multilayer thin film with zigzag 1 structure,and(c)multilayer thin film with zigzag 2 structure.

    Figure 4 demonstrates the two-dimensional (2D) and three-dimensional(3D)images of these samples.As the figure evidently indicates,the sample with the zigzag 1 structure has a smaller grain size than that of the conventional multilayer sample.

    In addition,the sample with zigzag 2 structure has smaller grains than the sample with zigzag 1 structure, which can be attributed to the shadowing effect in the glancing angle deposition.

    The reason why the smaller grain sizes can change the geometry of thin film from the conventional multilayer thin film into zigzag 1 and zigzag 2 structures can be explained as follows:

    (i) The conventional multilayer thin film consists of four 55-nm-thick layers with the least porosity, so the possibility with which the diffusion process takes place in this structure during the annealing is high and large columns might be formed in this process.

    (ii) Compared with the conventional multilayer thin film,zigzag 1 structure has high porosity, which reduces its grain size. Thus the diffusion process will be less effective.

    (iii) Zigzag 2 structure has higher porosity and smaller grains than the previous two structures due to the shortness of the columns, with the thickness of the middle layer being smaller.

    In fact, the grain size increases with thickness increasing. So, conventional multilayer structures and zigzag structure 1 have larger grains than zigzag 2 structure due to their longer arm length in each step of deposition. Average grain size(DAFM), average surface roughness(Rave), and deviation from the mean(Rms)obtained by using Nova software are presented in Table 2.

    Table 2. Details of experimental results for AISI 304 stainless steel.

    As figure 3 indicates, the reason for the reduction in nitride phase intensity by converting zigzag 1 structure into zigzag 2 structure is due to the shrinkage of the grains in this process.

    3.3. Corrosion results

    3.3.1. Polarization test results

    Figure 5 shows the polarization curves of conventional multilayer thin film and zigzag structures (zigzag 1 structure and zigzag 2 structure)in a 3.5%salt solution. The corrosion current and corrosion potential obtained from these curves(using the Tafel slope) are given in columns 5 and 6 of Table 2, respectively. The results reveal that the zigzag multilayer structures(zigzag 1 and zigzag 2 structures)have higher corrosion potential and lower corrosion current than the conventional multilayer thin film.Given that the current corrosion and the potential corrosion control the corrosion rate and corrosion tendency,respectively,the zigzag multilayer structures have a lower corrosion tendency and corrosion rate than that of the conventional multilayer thin film due to the formation of the nitride phase.

    As figure 5 indicates,the zigzag 2 structure has the lowest corrosion current,the highest corrosion potential,and thereby resulting in the highest corrosion resistance. Considering the fact that this structure has a lower nitride phase intensity than that of the zigzag 1 structure,the reason for the higher corrosion resistance,in addition to the nitride phase formation,can be attributed to the geometry of the zigzag 2 structure and the greater number of interfaces, which will be further explained in the subsection of the EIS results.

    Fig.5. Potentiodynamic polarization curve of conventional multilayer thin film, multilayer thin film with zigzag 1 structure, and multilayer thin film with zigzag 2 structure.

    3.3.2. EIS test results

    The Nyquist curves of the conventional multilayer thin film structure and the zigzag multilayer structures (zigzag1 and zigzag 2 structures)are presented in Fig.6.

    Fig.6. Experimental Nyquist diagram of conventional multilayer thin film,multilayer thin film with zigzag 1 structure, and multilayer thin film with zigzag 2 structure.

    This figure demonstrates that the Nyquist curve of the conventional multilayer thin film has an inductive loop that occurs at low frequencies. The above-mentioned inductive behavior indicates the production of corrosion products and the formation of salt on the sample surface through the pitting of Chlorine ions on the sample surface.[13-17]The mentioned behavior is not observed in the Nyquist curves of zigzag structures. The comparison between Nyquist curves reveals that zigzag 1 structure has a better corrosion resistance than the conventional multilayer thin film due to the presence of nitride phase in this structure. Moreover, the results show that zigzag 2 structure has a much higher corrosion resistance than zigzag 1 structure. The mentioned finding can be attributed to the zigzag geometry of this structure.The equivalent circuit of these structures is provided to better evaluate the EIS results of different multilayer structures.

    Figure 7 shows the equivalent circuits for the conventional and zigzag multilayer structures(zigzag 1 and zigzag 2 structures). In these circuits, Rsis the resistance of the solution,L is the coefficient related to the inductive behavior,and CC1,2is the capacitance related to the coating and is observed in incomplete coatings where the solution penetrates the coating. Subscripts 1 and 2 indicate the existence of two coatings with different substances. Due to the fact that the formation of oxides and nitrides on the surface does not change r thickness much,two types of capacitors are considered in the equivalent circuit.

    Fig.7. Equivalent circuit of the experimental EIS data of (a) conventional multilayer thin film and(b)multilayer thin film with zigzag 1 structure and multilayer thin film with zigzag 2 structure.

    Cdlis the double-layer capacitance formed at the metalcoating interface and is obtained from the following equation

    where d is the thickness of the coating,A is the area exposed to the solution,and ε is the dielectric constant of the coating.Rdlis the resistance related to the double layer capacitance,and R1,2is the resistance related to the coating. Due to the heterogeneity and roughness of the surfaces of the electrodes,capacitors are not considered to be ideal, and the parameters α1,α2,α3respectively express how far they are from the ideal capacitor. Corrosion resistances for different circuits are obtained from the difference between the impedance at infinite frequency and impedance at zero frequency,respectively.

    Fig.8. Bode (column I) and phase (column II) diagrams of all samples for experimental results (solid line) and simulation results (dashed line of(a)conventional multilayer thin film,(b)multilayer thin film with zigzag 1 structure,and(c)multilayer thin film with zigzag 2 structure.

    Bode and phase plots obtained from experiments and simulations performed by equivalent circuits of different multilayer structures (conventional multilayer thin film, zigzag 1 structure,and zigzag 2 structure)are presented in Fig.8.These figures indicate the best fit between the experimental and simulation results.

    Table 3 presents the equivalent circuit quantities obtained by using the simulations with ZView software. The data indicate that the zigzag structures(zigzag 1structure,and zigzag 2 structure)have smaller coating capacitance(Ccor)than the conventional multilayer thin film. The mentioned finding can be attributed to the smaller grains of zigzag structures than that of the multilayer structure due to the shadowing effect. Because the coating capacitance is a set of parallel capacitors,the total capacitance decreases as the number of parallel capacitors increases(decrease of the grain size and increase of the number of grain boundaries).

    This table shows that the zigzag structures have high electrical resistances as compared with the conventional multilayer thin film due to the better nitride phase formation in these structures. The better formation of the nitride phase in the zigzag structures also eliminates the inductive behavior. The findings reveal that zigzag 2 structure has a smaller double layer capacitance (Cd) than zigzag 1 structure due to the geometry of the zigzag structure,since the capacitance decreases as the dielectric is tilted. The loss of induction behavior and the increase of electrical resistance with the decrease of the double layer and coatings capacitances in zigzag 2 structures increase the electrical impedance,and thus increasing the corrosion resistance of this structure.

    Table 3. Electrochemical parameters of AISI 304 stainless steel obtained from fitting of EIS spectra by equivalent circuit.

    3.4. SEM results

    To examine the surfaces of the samples after corrosion, SEM images of the conventional multilayer thin film and zigzag multilayer structures (zigzag 1 and zigzag 2 structures) are studied after corrosion test. These images are shown in Fig.8.Comparison of Fig.9(a) with Figs. 9(b) and 9(c), which show the SEM images of the conventional multilayer thin film and zigzag multilayer structures,respectively,reveal that the surface of the conventional multilayer thin film has a higher degradation than zigzag structures. Zigzag 1 structures have less degradation than the conventional multilayer structure. Moreover,zigzag 2 structure has a more suitable structure for protecting steel from corrosion.

    Fig.9. SEM micrograph of (a) conventional multilayer thin film, (b) multilayer thin film with zigzag 1 structure, and (c) multilayer thin film with zigzag 2 structure.

    4. Conclusions

    In the present study,conventional multilayer thin film and multilayer thin films including zigzag structures(zigzag 1 and zigzag 2 structures)are considered for the corrosion protection of AISI 304 stainless steel. Surface and crystalline studies of structures by using AFM and XRD reveal that although the zigzag structures have smaller grains than conventional multilayer structure due to the shadowing effect, nitride phase formation is better due to the porosity of these structures. The investigation of corrosion tests and SEM images indicate that multilayer thin films including zigzag structures have a lower corrosion rate,lower corrosion tendency,and higher corrosion resistance,and zigzag 2 structure has the best coating for corrosion protection in the samples. The equivalent circuit simulation by ZView software shows that the high corrosion resistance of zigzag 2 is attributed to the loss of inductance,the decrease of double layer capacitance, the decrease of coating capacitance,and the increase of the electrical resistance.

    国产成人精品在线电影| 最新美女视频免费是黄的| 亚洲成人精品中文字幕电影 | 日日夜夜操网爽| 91大片在线观看| 搡老乐熟女国产| 成年女人毛片免费观看观看9| 亚洲免费av在线视频| 人人妻人人澡人人看| 欧美丝袜亚洲另类 | 久热爱精品视频在线9| 午夜免费鲁丝| www.精华液| 国产精品久久久久成人av| 欧美一区二区精品小视频在线| 香蕉久久夜色| 老司机午夜十八禁免费视频| 99精国产麻豆久久婷婷| 国产免费av片在线观看野外av| 亚洲自拍偷在线| 国产无遮挡羞羞视频在线观看| 成年版毛片免费区| 搡老熟女国产l中国老女人| 国产成人免费无遮挡视频| 亚洲欧洲精品一区二区精品久久久| 精品久久久久久成人av| 国产精品秋霞免费鲁丝片| 久久香蕉激情| 99在线视频只有这里精品首页| a在线观看视频网站| 亚洲人成伊人成综合网2020| 丁香六月欧美| 欧美一区二区精品小视频在线| 欧美午夜高清在线| 叶爱在线成人免费视频播放| 色婷婷av一区二区三区视频| 热re99久久国产66热| 又紧又爽又黄一区二区| 亚洲精品一区av在线观看| 老汉色av国产亚洲站长工具| 一区在线观看完整版| 久久精品国产99精品国产亚洲性色 | 丰满饥渴人妻一区二区三| 51午夜福利影视在线观看| 国产精品爽爽va在线观看网站 | 黄色女人牲交| 亚洲视频免费观看视频| 91麻豆精品激情在线观看国产 | 一级片'在线观看视频| 如日韩欧美国产精品一区二区三区| 两性夫妻黄色片| 久久天躁狠狠躁夜夜2o2o| 69av精品久久久久久| 亚洲九九香蕉| 男女之事视频高清在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av电影在线进入| 久久精品人人爽人人爽视色| 丝袜美腿诱惑在线| 在线观看午夜福利视频| 两性夫妻黄色片| 国产成人精品在线电影| 人人澡人人妻人| 久久香蕉激情| 国产伦人伦偷精品视频| 91av网站免费观看| 亚洲熟妇中文字幕五十中出 | tocl精华| 男人操女人黄网站| 欧美丝袜亚洲另类 | 男男h啪啪无遮挡| 老司机亚洲免费影院| 久久香蕉精品热| 搡老岳熟女国产| 中文字幕人妻丝袜一区二区| 久久精品影院6| 他把我摸到了高潮在线观看| 日韩精品免费视频一区二区三区| 欧美在线黄色| 精品一品国产午夜福利视频| 免费av毛片视频| 精品人妻在线不人妻| 亚洲精品美女久久久久99蜜臀| av视频免费观看在线观看| 国产精品国产av在线观看| 人人妻人人爽人人添夜夜欢视频| 色综合站精品国产| 亚洲七黄色美女视频| 亚洲av熟女| 久久性视频一级片| 日韩有码中文字幕| 国产97色在线日韩免费| 三级毛片av免费| 欧美黄色淫秽网站| 成年女人毛片免费观看观看9| 丰满人妻熟妇乱又伦精品不卡| 久久午夜综合久久蜜桃| 久久久久久免费高清国产稀缺| 国产高清激情床上av| 亚洲国产精品一区二区三区在线| 欧美中文日本在线观看视频| www日本在线高清视频| 99久久人妻综合| 久久久水蜜桃国产精品网| 黄片大片在线免费观看| 久久久久久久久久久久大奶| 亚洲欧洲精品一区二区精品久久久| 九色亚洲精品在线播放| 日本欧美视频一区| 黑丝袜美女国产一区| 久99久视频精品免费| 黄色a级毛片大全视频| 热re99久久精品国产66热6| 午夜福利欧美成人| 欧美日韩乱码在线| 一级片免费观看大全| 成人亚洲精品av一区二区 | 亚洲七黄色美女视频| 老司机午夜福利在线观看视频| 一级毛片高清免费大全| 国产成人系列免费观看| 国产亚洲精品久久久久5区| 97超级碰碰碰精品色视频在线观看| 国产精品电影一区二区三区| 悠悠久久av| 国产91精品成人一区二区三区| 成年人黄色毛片网站| 国产单亲对白刺激| 777久久人妻少妇嫩草av网站| 巨乳人妻的诱惑在线观看| 久久香蕉国产精品| 成人三级做爰电影| 女同久久另类99精品国产91| 午夜免费观看网址| 国产精品美女特级片免费视频播放器 | 极品人妻少妇av视频| 亚洲av片天天在线观看| 日韩欧美国产一区二区入口| 极品教师在线免费播放| 国产精品久久电影中文字幕| a级毛片黄视频| 天天影视国产精品| 一个人免费在线观看的高清视频| 精品无人区乱码1区二区| 久久久久久久久中文| 亚洲 国产 在线| 国产精品国产av在线观看| 18禁美女被吸乳视频| 国产成人av教育| 久久久久国产一级毛片高清牌| 色综合婷婷激情| 人人妻,人人澡人人爽秒播| 精品乱码久久久久久99久播| 欧美精品一区二区免费开放| 国产精品电影一区二区三区| 国产三级在线视频| 麻豆av在线久日| 免费av中文字幕在线| 欧美激情久久久久久爽电影 | 久久精品国产99精品国产亚洲性色 | 久久中文看片网| 男人舔女人下体高潮全视频| 久久狼人影院| 国产黄a三级三级三级人| 国内毛片毛片毛片毛片毛片| 欧美日韩亚洲综合一区二区三区_| 激情在线观看视频在线高清| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品国产区一区二| 高清欧美精品videossex| 麻豆一二三区av精品| 韩国av一区二区三区四区| 国产成+人综合+亚洲专区| 国产亚洲精品久久久久久毛片| 涩涩av久久男人的天堂| 免费av毛片视频| 大陆偷拍与自拍| 久久精品成人免费网站| 很黄的视频免费| 91国产中文字幕| 久久久国产成人免费| www.精华液| 又黄又粗又硬又大视频| 好男人电影高清在线观看| 在线永久观看黄色视频| av在线天堂中文字幕 | 法律面前人人平等表现在哪些方面| 99国产精品一区二区三区| 一进一出好大好爽视频| 一级作爱视频免费观看| 老司机亚洲免费影院| 国产精品国产av在线观看| 欧美精品一区二区免费开放| 女人爽到高潮嗷嗷叫在线视频| 一a级毛片在线观看| 一级,二级,三级黄色视频| 黄色a级毛片大全视频| 欧美+亚洲+日韩+国产| 黄频高清免费视频| 日韩大尺度精品在线看网址 | 免费观看人在逋| 欧美另类亚洲清纯唯美| 亚洲全国av大片| 国产成人精品无人区| 国产精品永久免费网站| 18禁观看日本| 国产精品久久视频播放| 成人精品一区二区免费| 欧美在线黄色| 母亲3免费完整高清在线观看| 淫妇啪啪啪对白视频| 亚洲三区欧美一区| 丝袜美腿诱惑在线| 人妻丰满熟妇av一区二区三区| 男人舔女人的私密视频| 一个人观看的视频www高清免费观看 | 老司机午夜十八禁免费视频| 97人妻天天添夜夜摸| 91精品三级在线观看| 精品无人区乱码1区二区| 日本欧美视频一区| 久9热在线精品视频| 韩国av一区二区三区四区| 国产成人系列免费观看| av福利片在线| 国产亚洲精品久久久久久毛片| 亚洲狠狠婷婷综合久久图片| 黄色丝袜av网址大全| 丝袜在线中文字幕| 最近最新中文字幕大全免费视频| 在线国产一区二区在线| 他把我摸到了高潮在线观看| 老司机午夜十八禁免费视频| 麻豆成人av在线观看| 亚洲av美国av| 成人亚洲精品av一区二区 | av福利片在线| 亚洲欧美一区二区三区久久| 欧美黑人欧美精品刺激| 国产激情久久老熟女| 久久久久久免费高清国产稀缺| 琪琪午夜伦伦电影理论片6080| 欧美中文日本在线观看视频| 亚洲精品国产区一区二| 免费人成视频x8x8入口观看| 在线观看免费高清a一片| 国产在线观看jvid| 国产极品粉嫩免费观看在线| 久热爱精品视频在线9| 露出奶头的视频| 精品久久久久久成人av| av天堂在线播放| 中国美女看黄片| 热re99久久国产66热| 丰满的人妻完整版| 十分钟在线观看高清视频www| 一二三四在线观看免费中文在| 亚洲久久久国产精品| 亚洲免费av在线视频| 久久国产精品影院| 精品国产乱码久久久久久男人| 制服人妻中文乱码| 成人国产一区最新在线观看| 真人一进一出gif抽搐免费| 亚洲av片天天在线观看| 亚洲精品美女久久av网站| 亚洲欧美精品综合久久99| 亚洲人成77777在线视频| 欧美成人免费av一区二区三区| 美女国产高潮福利片在线看| 亚洲国产看品久久| 69精品国产乱码久久久| 欧美不卡视频在线免费观看 | 国产av一区在线观看免费| 伊人久久大香线蕉亚洲五| 中国美女看黄片| 成人永久免费在线观看视频| 国产主播在线观看一区二区| 久久久久久亚洲精品国产蜜桃av| 色哟哟哟哟哟哟| 国产伦人伦偷精品视频| 亚洲午夜理论影院| 精品国产美女av久久久久小说| 久久香蕉激情| 亚洲欧美激情在线| 日韩人妻精品一区2区三区| 亚洲欧美一区二区三区久久| 亚洲中文av在线| √禁漫天堂资源中文www| 男人舔女人的私密视频| 日韩高清综合在线| 咕卡用的链子| 亚洲av成人av| 美女扒开内裤让男人捅视频| 久久久国产欧美日韩av| 成人手机av| 怎么达到女性高潮| 国产精品99久久99久久久不卡| 在线天堂中文资源库| 久久久精品国产亚洲av高清涩受| 成人特级黄色片久久久久久久| 男女之事视频高清在线观看| 人人澡人人妻人| 久久久国产欧美日韩av| x7x7x7水蜜桃| 午夜视频精品福利| 1024视频免费在线观看| 亚洲欧美一区二区三区久久| 国产一区二区三区综合在线观看| 日韩欧美在线二视频| 亚洲成人久久性| 日本a在线网址| 脱女人内裤的视频| 80岁老熟妇乱子伦牲交| 成熟少妇高潮喷水视频| 亚洲少妇的诱惑av| 国产精品成人在线| 少妇 在线观看| 香蕉丝袜av| 少妇的丰满在线观看| 国产精品一区二区免费欧美| 欧美不卡视频在线免费观看 | 法律面前人人平等表现在哪些方面| 日韩大尺度精品在线看网址 | 亚洲av片天天在线观看| 久久青草综合色| 日本vs欧美在线观看视频| 成年版毛片免费区| 亚洲av成人不卡在线观看播放网| 嫩草影院精品99| 国产精品 欧美亚洲| 精品一区二区三区视频在线观看免费 | www日本在线高清视频| 亚洲一区二区三区色噜噜 | 国产av精品麻豆| 日韩大码丰满熟妇| 操出白浆在线播放| 欧美乱色亚洲激情| 久久久久久免费高清国产稀缺| 国产精品二区激情视频| 国产午夜精品久久久久久| 人人妻人人澡人人看| 91在线观看av| 免费少妇av软件| 亚洲一区二区三区欧美精品| 久久久国产一区二区| 女性被躁到高潮视频| 男人舔女人下体高潮全视频| 亚洲一区二区三区欧美精品| 成年女人毛片免费观看观看9| 国产精品免费视频内射| 一进一出好大好爽视频| 亚洲人成电影免费在线| 看黄色毛片网站| 999久久久国产精品视频| 日韩欧美免费精品| 久久午夜综合久久蜜桃| 久久久精品国产亚洲av高清涩受| 丁香六月欧美| 国产亚洲欧美精品永久| 50天的宝宝边吃奶边哭怎么回事| 97人妻天天添夜夜摸| 19禁男女啪啪无遮挡网站| 成人亚洲精品av一区二区 | 久久人妻福利社区极品人妻图片| 久久久久九九精品影院| 国产成人免费无遮挡视频| 女人高潮潮喷娇喘18禁视频| 亚洲欧美一区二区三区黑人| 视频在线观看一区二区三区| 午夜免费鲁丝| 老熟妇仑乱视频hdxx| 国产亚洲欧美在线一区二区| 无人区码免费观看不卡| 亚洲国产精品合色在线| 丰满的人妻完整版| aaaaa片日本免费| 久久热在线av| 国产精品九九99| aaaaa片日本免费| 精品一区二区三区视频在线观看免费 | 又黄又爽又免费观看的视频| 午夜福利免费观看在线| 欧美中文综合在线视频| 国产无遮挡羞羞视频在线观看| 久久亚洲真实| 国产成人av激情在线播放| 精品人妻1区二区| 90打野战视频偷拍视频| 久久久国产成人精品二区 | 交换朋友夫妻互换小说| 高潮久久久久久久久久久不卡| 欧美av亚洲av综合av国产av| 黄片大片在线免费观看| 久久精品亚洲熟妇少妇任你| 免费在线观看完整版高清| 国产成人av教育| 亚洲熟女毛片儿| 18禁美女被吸乳视频| 91精品国产国语对白视频| 亚洲视频免费观看视频| 高清av免费在线| 国产亚洲精品久久久久久毛片| 久久精品国产亚洲av高清一级| 精品国产国语对白av| 女生性感内裤真人,穿戴方法视频| 欧美中文综合在线视频| 精品人妻1区二区| 日韩有码中文字幕| 每晚都被弄得嗷嗷叫到高潮| a级毛片在线看网站| a级毛片黄视频| 丝袜美腿诱惑在线| 国产成人精品久久二区二区免费| 国产精品国产av在线观看| 欧美丝袜亚洲另类 | a在线观看视频网站| 岛国在线观看网站| 99国产精品免费福利视频| 夫妻午夜视频| 日本五十路高清| 久久久久久久久久久久大奶| 在线观看舔阴道视频| 在线免费观看的www视频| 国产亚洲精品久久久久5区| aaaaa片日本免费| 亚洲精品成人av观看孕妇| 一级,二级,三级黄色视频| 9热在线视频观看99| 男女之事视频高清在线观看| 精品一区二区三区av网在线观看| 18禁国产床啪视频网站| 美女扒开内裤让男人捅视频| 久久国产乱子伦精品免费另类| 午夜精品久久久久久毛片777| 亚洲人成网站在线播放欧美日韩| 亚洲aⅴ乱码一区二区在线播放 | 在线国产一区二区在线| 国产精品免费一区二区三区在线| 波多野结衣一区麻豆| 黑人猛操日本美女一级片| 亚洲自偷自拍图片 自拍| 日本精品一区二区三区蜜桃| 在线观看免费视频网站a站| 女同久久另类99精品国产91| 欧美大码av| 国产精品一区二区在线不卡| 人人妻人人添人人爽欧美一区卜| 人人妻人人添人人爽欧美一区卜| 91老司机精品| 亚洲国产欧美日韩在线播放| 国产成人精品久久二区二区免费| 久99久视频精品免费| 黄色女人牲交| 亚洲精品一卡2卡三卡4卡5卡| 激情视频va一区二区三区| 亚洲熟妇中文字幕五十中出 | 国产精品亚洲一级av第二区| 黄色视频不卡| 免费日韩欧美在线观看| 真人做人爱边吃奶动态| 久久精品国产99精品国产亚洲性色 | 黄片大片在线免费观看| 日韩一卡2卡3卡4卡2021年| 美女福利国产在线| 97人妻天天添夜夜摸| 亚洲精品中文字幕在线视频| 丰满的人妻完整版| 18美女黄网站色大片免费观看| 又大又爽又粗| 男女高潮啪啪啪动态图| 亚洲国产精品合色在线| 国产在线观看jvid| 国产有黄有色有爽视频| 精品一区二区三区四区五区乱码| 免费在线观看日本一区| 一区二区三区激情视频| 99国产极品粉嫩在线观看| 在线观看一区二区三区| 久久中文字幕人妻熟女| 操美女的视频在线观看| 人妻丰满熟妇av一区二区三区| 色播在线永久视频| 国产亚洲精品久久久久久毛片| 国产aⅴ精品一区二区三区波| 色综合欧美亚洲国产小说| 黑人欧美特级aaaaaa片| 亚洲一区二区三区不卡视频| 色在线成人网| 黑丝袜美女国产一区| www.www免费av| 高清av免费在线| 超碰成人久久| 91成人精品电影| 天堂√8在线中文| 国产极品粉嫩免费观看在线| bbb黄色大片| 麻豆一二三区av精品| 丝袜在线中文字幕| 麻豆一二三区av精品| 久久久久久免费高清国产稀缺| 搡老岳熟女国产| 日本a在线网址| 国产精品久久电影中文字幕| 成人18禁在线播放| 成人特级黄色片久久久久久久| 一进一出抽搐gif免费好疼 | 色综合欧美亚洲国产小说| 一进一出好大好爽视频| 黑人猛操日本美女一级片| 无遮挡黄片免费观看| 少妇被粗大的猛进出69影院| 欧美精品啪啪一区二区三区| 一级黄色大片毛片| 成人国产一区最新在线观看| 欧美激情 高清一区二区三区| 亚洲人成电影观看| 日本三级黄在线观看| 高清欧美精品videossex| 丰满饥渴人妻一区二区三| 成人av一区二区三区在线看| 纯流量卡能插随身wifi吗| 中文字幕人妻丝袜一区二区| www.www免费av| 色播在线永久视频| 在线永久观看黄色视频| 久久天躁狠狠躁夜夜2o2o| 好看av亚洲va欧美ⅴa在| 国产主播在线观看一区二区| 如日韩欧美国产精品一区二区三区| 一本大道久久a久久精品| 亚洲久久久国产精品| e午夜精品久久久久久久| 亚洲国产精品合色在线| 欧美日本中文国产一区发布| 69av精品久久久久久| 亚洲一区二区三区不卡视频| 精品乱码久久久久久99久播| 精品欧美一区二区三区在线| 成年版毛片免费区| 90打野战视频偷拍视频| 国产高清国产精品国产三级| 欧美av亚洲av综合av国产av| 老司机午夜十八禁免费视频| 亚洲精品久久成人aⅴ小说| 法律面前人人平等表现在哪些方面| 成人永久免费在线观看视频| 成人免费观看视频高清| 高潮久久久久久久久久久不卡| 黑丝袜美女国产一区| 无限看片的www在线观看| 啦啦啦 在线观看视频| 久久 成人 亚洲| 日韩av在线大香蕉| 成年版毛片免费区| 三级毛片av免费| 波多野结衣高清无吗| 法律面前人人平等表现在哪些方面| 欧美日本亚洲视频在线播放| 黄片播放在线免费| 长腿黑丝高跟| 又黄又粗又硬又大视频| 免费女性裸体啪啪无遮挡网站| 看免费av毛片| 日韩av在线大香蕉| 中文亚洲av片在线观看爽| 免费在线观看亚洲国产| 国产又爽黄色视频| 91老司机精品| 亚洲成av片中文字幕在线观看| www日本在线高清视频| 交换朋友夫妻互换小说| 日本免费一区二区三区高清不卡 | 波多野结衣一区麻豆| 成人国产一区最新在线观看| 免费av中文字幕在线| 久久亚洲精品不卡| 国产激情欧美一区二区| 亚洲熟女毛片儿| 免费女性裸体啪啪无遮挡网站| 最新美女视频免费是黄的| 亚洲精品美女久久av网站| 亚洲av五月六月丁香网| 亚洲一码二码三码区别大吗| 女人被躁到高潮嗷嗷叫费观| e午夜精品久久久久久久| 亚洲久久久国产精品| 国产1区2区3区精品| a级毛片在线看网站| 久久香蕉精品热| 在线观看日韩欧美| 亚洲 欧美 日韩 在线 免费| 精品久久久久久电影网| 在线观看一区二区三区| 91精品国产国语对白视频| 国产精品爽爽va在线观看网站 | 午夜精品国产一区二区电影| 精品国产一区二区久久| 国产蜜桃级精品一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 国产伦人伦偷精品视频| 黄色a级毛片大全视频| 夜夜爽天天搞| 激情视频va一区二区三区| 精品欧美一区二区三区在线| 视频区欧美日本亚洲| 香蕉久久夜色| 后天国语完整版免费观看| 波多野结衣高清无吗| 淫妇啪啪啪对白视频| 美女高潮到喷水免费观看| 一级黄色大片毛片| 国产欧美日韩一区二区精品| av欧美777| 婷婷丁香在线五月|