• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gauss quadrature based finite temperature Lanczos method

    2022-05-16 07:07:34JianLi李健andHaiQingLin林海青
    Chinese Physics B 2022年5期
    關(guān)鍵詞:李健林海

    Jian Li(李健) and Hai-Qing Lin(林海青)

    Beijing Computational Science Research Center,Beijing 100193,China

    Keywords: exact diagonalization,Lanczos method,orthogonal polynomials

    1. Introduction

    In the study of quantum many-body systems, the exact diagonalization (ED) method is intensively used to calculate static and dynamic quantities.[1–4]Since the dimension of many-body Hilbert space increases exponentially with system size, ED is only appliable on systems of relatively small size.But ED is still an effective method since it can always get unbiased result compared with other variational methods like density matrix renormalization group,[5–7]and does not suffer from sign problem in quantum Monte Carlo simulations.[8–10]To solve the problem of large matrix dimension, ED is often based on algorithms from sparse matrix calculation,especially Lanczos method[11–14]and kernel polynomial method(KPM).[15–18]

    The Lanczos method is originally used in the calculation of ground state properties, since only extreme eigenvalues and eigenvectors converge well. With the introduction of finite temperature Lanczos method (FTLM) by Jakliˇc and Prelovˇsek,[19,20]finite temperature static and dynamic quantities can be calculated accurately. In FTLM, the true HamiltonianHis represented by an effective Hamiltonian ?Hin the Krylov subspace generated by Lanczos iteration. Then by expanding exp(-βH) into Taylor series, the calculation is reduced to evaluating quadratic forms of the type〈n|HkBHlA|n〉,which can be achieved using effective Hamiltonian ?H.

    KPM is another method used in the calculation of finite temperature properties. The main idea behind KPM is using Chebyshev polynomials to expand quantities like density of states, static and dynamic correlation functions. KPM converges very well at high temperature. But when temperature comes to zero,the low lying states,which KPM does not calculate very accurately,contribute an important part in thermodynamic quantities. To overcome this, the KPM should run several Lanczos iterations to get accurate low lying states,and projects these states out in later calculations. Despite the inaccuracy at low lying states, KPM is believed to be simpler and faster than Lanczos method,and does not suffer from the problem of losing orthogonality occurred in high order Lanczos iteration.[15]

    Recently there have been numerical experiments benchmarking the accuracy of FTLM and KPM,[21,22]but the relationship between these two classes of ED methods has not been well explored yet. In this paper, we develop and formulate FTLM in the framework of Gauss quadrature and orthogonal polynomials. In this framework, the Lanczos iteration in FTLM is regarded as a procedure to generate a series of orthogonal polynomials by which different functions of Hamiltonian is expanded. These orthogonal polynomials play the same role as that of Chebyshev polynomials in KPM.The combination of Gauss quadrature and Lanczos iteration has been used in the matrix computation community,[23,24]for example,to give error estimate of solution of linear equations,which is related to the quadratic formsu?A-iufori= 1,2.Here we generalized this method to the calculation of more general formu?f(H)Ag(H)v,which needs the notion of twodimensional Gauss quadrature and can be applied in the calculation of finite temperature dynamic correlation functions.This Gauss quadrature based framework fills the conceptual gap between FTLM and KPM, which makes it easy to apply orthogonal polynomial techniques commonly used by KPM in the FTLM calculation. The implementation of FTLM is reduced to one-or two-dimensional Gauss quadratures,which is similar to that of KPM, and is simpler than the procedure of Taylor series expansion.

    2. Fundamental theory

    In large scale exact diagonalization of quantum manybody systems, the HamiltonianHis given as a sparse Hermitian matrix of dimensionN. Usually the study of static and dynamic quantities involves calculating trace off(H), wherefis a smooth function. For example,f(H)=exp(-βH)for the calculation of partition function, andf(H)=exp(-iHt)for the calculation of real time evolution. As we will see in Section 3, we can get many static and dynamic quantities by a suitable choice off(H), and an effective way to calculate following quantities:

    1.u?f(H)u,

    2.u?f(H)vwhereu/=v,

    3.u?f(H)Ag(H)v.

    HereuandvareN-dimensional vectors representing quantum many-body states. As developed in following sections,the first quantity is related to one-dimensional Gauss quadrature,and the second and third quantities can be calculated by two-dimensional Gauss quadrature.

    2.1. Weighted summation and Gauss quadrature

    LetHbe a Hermitian matrix of dimensionNwith following eigenvalue decomposition:

    We can see thatu?f(H)ucan be seen as a weighted summation with weightswi=|(X?u)i|2and evaluation pointsλibeing the eigenvalue ofH. This form is exactly the same as that of Gauss quadrature,[25]which is extensively used in numerical calculation of integrals.

    To be more specific, Gauss quadrature is an approximation method to calculate integrals numerically. It transforms the integral into a weighted summation

    To validate the algorithm of FTLM above, we need to dig into the mathematical principles behind Gauss quadrature,which leads us to the theory of orthogonal polynomials. Furthermore,theory of orthogonal polynomials can give error estimates of FTLM,which is essential in numerical simulation.

    2.2. Theory of orthogonal polynomials

    The theory of orthogonal polynomials[27]is fundamental in the implementation and analysis of Gauss quadrature.Given interval(a,b),define inner product of any two functionsfandgin(a,b)as

    Equation(17)is the fundamental result of Gauss quadrature, which states that we can choose a set ofnnodes and weights to construct a quadrature rule of order 2n-1. One can find detailed proof of Eqs.(14)and(17)in Appendix A.

    We can restate Gauss quadrature in the language of discrete inner product. Given the nodesxiand weightswidefined above, we can define a discrete inner product in [a,b] and its associated norm by

    2.3. Relationship with Lanczos iteration

    Lanczos iteration is a standard method to transform a Hermitian matrix into tridiagonal form by an unitary transformation. For a given matrixHand a starting normalized vectoru,the Lanczos iteration is given by

    The transformed tridiagonal matrix is exactly the same asTndefined in Eq.(13).

    We can see many similarities between Eqs.(11)and(21).Actually Lanczos iteration does its transformation according to a sequence of orthogonal polynomials.[24]To see this, let us defineqi=pi(H)q0,wherepiis a polynomial of degreei.According to Eq.(21),we have

    which is the same recurrence relation ofpnin Eq.(11).

    Here for simplicity we assume that for the Hermitian matrixHof dimensionN, we can transform it into a tridiagonal matrixTNof the same dimension by Lanczos iteration with a suitable normalized starting vectoru. Note that Lanczos tridiagonalization procedure is generally an unitary transformation,namely,

    which is the same weight as that of Gauss quadrature in Eq.(16).

    Now we can explain more explicitly the algorithm of FTLM in Subsection 2.1 using the language of discrete inner product. Supposefis a smooth function anduis a normalized vector,by definition,we have

    which means thatMLanczos iterations will give approximation up to order of 2M.

    2.4. Two-dimensional Gauss quadrature

    Here comes to the question of how to calculate the following quantities:

    1.u?f(H)vwhereu/=v,

    2.u?f(H)Ag(H)v.

    We can see that the second quantity is a general form of the first one givenA=g(H)=1. As for the first case, ifu,vare real vectors andHis a real symmetric matrix,we can use the following identity[23]to calculateuT f(H)v:

    Then we can use the method talked before to calculateuT f(H)v, the only difference is that we need to run Lanczos iteration twice.

    But for the general case, namely,u?f(H)Ag(H)v, we need a different method, which needs the notion of twodimensional Gauss quadrature,as will be discussed below.

    Two-dimensional Gauss quadrature, and also twodimensional orthogonal polynomials, can be easily constructed from a tensor product of two one-dimensional Gauss quadratures and orthogonal polynomials respectively. Formally,given two weighted Hilbert spaceL2w(a,b)andL2?w(a,b),we can construct a Hilbert space on(a,b)×(a,b)by defining the following inner product:

    in which we have introduced an auxiliary functionC(x,y). It is only defined at some discrete points as follows:which means that we only need to run one Lanczos iteration forM1steps. In general case,the numerical effort for the calculation ofμmnranges betweenN(M1+M2)andNM1M2operations,depending on whether memory is available for savingM1(orM2)vectors of dimensionN.

    3. Formulas for static and dynamic quantities

    Until now we have not discussed how to calculate static and dynamic quantities for a real quantum system. Actually the routines in FTLM share many similarities as in KPM,[15,17]thus can be expressed in a unified form.

    In this section and later Dirac bra–ket notations will be used to denote matrix vector multiplication, this notation is inconvenient in previous sections but more suitable when it comes to physical applications.

    3.1. Stochastic evaluation of traces

    Although we have the method to calculate〈u|f(H)|u〉,in many cases we need to evaluate the trace of a given operator.For example,the partition function is given by a trace

    where{|i〉}is a complete set of basis.

    At first glance it seems impossible to evaluate since the Lanczos iteration needs to be repeated for allNstates of a given basis, which makes the total computational effort proportional toN2. It turns out that extremely good approximation of the trace can be obtained with a much simpler approach: stochastic evaluation of trace, in which estimate of trace is based on the average over a small numberR ?Nof randomly chosen vectors[15,30]

    Typical chosen ofξrican be Gaussian distribution with average 0 and standard deviation 1.

    3.2. Thermal average and density of states

    Given partition functionZ=tr[e-βH], the thermal average of operatorAis

    We can use stochastic evaluation of traces to calculate these quantities. From Eq. (43) we can see that only one Gauss quadrature rule is need to calculate both〈r|e-βH|r〉and〈r|e-βHA|r〉for each given random vector|r〉, so only one Lanczos iteration is need for the given random vector. This can be generalized to many operators if we want to calculate thermal average of these operators at the same time.

    Here we consider two limiting cases to illustrate the accuracy of FTLM.

    1.β →0. This is the high temperature limit,where

    and according to Eq.(32),few Lanczos iteration will give accurate result.

    2.β →∞. This is the low temperature limit, e-βxwill be sharply dominated atx=Emin. From the theory of orthogonal polynomial expansion, many high order expansion will contribute to this nearly discontinuous function. Furthermore,Gibbs oscillation[17,31]will creep into the expanded function,which introduces numerical instability. In this case,low temperature Lanczos method[32]have been proposed to address this problem. One can also use ground state Lanczos method in this super low temperature regime,which is generally more accurate.

    As for density of states,it is defined as

    3.3. Real time evolution

    As a studying case,here we consider real time evolution.Specifically,we are interested in the quantity

    equation(59)is accurate for very few Lanczos iteration.

    2.t →∞. In this case both sin(tx) and cos(tx) will oscillate badly in the integration interval[Emin,Emax],and Gauss quadrature based integration rule will fail to converge.

    So the real time evaluation is different from imaginary time evaluation in the sense that real time evaluation will fail to converge in thet →∞limit, while imaginary time evaluation will admit accurate results in bothβ →0 andβ →∞limits.

    3.4. Dynamic correlation function

    Before we dig into the calculation of finite temperature correlation function, we may first give a glance for the zero temperature case. For zero temperature,the dynamic correlation function for two operatorAandBis

    in which the term〈r|e(-β+it)HAe-iHtA|r〉follows the general form〈u|f(H)Ag(H)|v〉withf(x;t)= e(-β+it)xandg(x;t)=e-itx, and needs a two-dimensional Gauss quadrature to calculate.

    As mentioned in real time evolution, Gauss quadrature based FTLM is not accurate for evolution timetbeing large,this is also true in Eq.(61). In this case it is better to calculate the Fourier transform ofC(t)

    4. Numerical results of 1D XY model

    In this section we give numerical results to illustrate the idea of Gauss quadrature based finite temperature Lanczos method. The numerical calculation is carried out on the onedimensionalXYmodel.

    TheXYmodel is introduced by Lieb,Schultz and Mattis in 1961,[33]they considered a chain ofN1/2-spins,governed by the Hamiltonian

    Fig.1.(a)specific heat and(b)magnetic susceptibility of 1D XY model.In both figures the Lanczos iteration steps is set to 100,and the number of random vectors(denoted by R)is set to 20 and 100 respectively.

    The second quantity we consider is magnetic susceptibility,which is defined as Both〈m2z〉and〈mz〉can be calculated by an unsymmetrical Gauss quadrature of the form〈u|f(H)|v〉. The numerical results are shown in Fig.1(b).

    The computational effort to calculateCVandχare approximately same,since only one Lanczos iteration is needed to calculate the symmetric Gauss quadrature〈u|f(H)|u〉and the unsymmetrical Gauss quadrature〈u|f(H)|v〉. In both case the Lanczos iteration steps is set to 100,and the number of random vectors(denoted byR)is set to 20 and 100 respectively.From Fig.1 we can see that FTLM is accurate at high temperature, while the accuracy at low temperature is influenced by statistical fluctuations from random vectors.

    The third quantity we calculate is the dynamic correlation function of the average magnetization inzdirection,[34]which is defined as

    This quantity can be calculated by a two-dimensional Gauss quadrature of the form〈u|f(H)Ag(H)|v〉. The numerical results are shown in Fig.2(a).

    We can see that numerical result agrees well with exact result whent <10. But for lagert, the numerical result is very inaccurate. As discussed in real time evolution(see Subsection 3.3), Gauss quadrature based integration will fail to converge for highly oscillate functions such as eitHfor larget.

    It is usually more convenient to study the Fourier transform ofχ(t)defined as follows:

    The numerical results are shown in Fig.2(b).

    The calculation ofχ(ω) also involves two-dimensional Gauss quadrature in which the Diracδfunctions are replaced by Lorentz functions(see Eq.(65)). Since the time scale that FTLM can accurately calculate can not be large, the resolution inωspace, which is represented by the parameterεin Lorentz function,is also limited due to the time-energy uncertainty principle. As shown in Fig.2(b),the parameterεis set to 0.01. Smallerεwill lead to negativeχ(ω) values, which indicates the failure of convergence.

    5. Conclusion

    This paper has shown the tight relationship between Lanczos algorithm and orthogonal polynomials, and developed finite temperature Lanczos method in the framework of Gauss quadrature. The Lanczos algorithm can be regarded as a procedure to generate a series of orthogonal polynomials by which different functions of HamiltonianHare expanded.These orthogonal polynomials also define Gauss quadrature rules.The nodes and weights of Gauss quadrature are given by the eigenvalues and eigenvectors of tridiagonal matrix which is generated by the Lanczos iteration.Given the Gauss quadrature rule,the calculation of quadratic formu?f(H)u,which is the main part of finite temperature Lanczos method, can be reduced to a one-dimensional Gauss quadrature. The calculation of more general formu?f(H)Ag(H)vcan be reduced to a two-dimensional Gauss quadrature. Then we showed that many finite temperature static and dynamic quantities can be calculated by one-or two-dimensional Gauss quadratures.

    Our development of FTLM is not to improve numerically the original FTLM introduced by Jakliˇc and Prelovˇsek, since both methods admit same numerical results. The advantage of this Gauss quadrature based framework is that it fills the conceptual gap between FTLM and KPM, and makes it easy to apply orthogonal polynomial techniques commonly used by KPM in the FTLM calculation. One unexplored extension of this framework is applying different kernels in FTLM to reduce Gibbs oscillation in the expansion of incontinuous functions. We believe that after this development,FTLM will find more applications in the calculations of quantum many-body systems.

    Appendix A: Two theorems on orthogonal polynomials

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China (Grant Nos. 11734002 and U1930402).All numerical computations were carried out on the Tianhe-2JK at the Beijing Computational Science Research Center(CSRC).

    猜你喜歡
    李健林海
    李健 藏石欣賞
    寶藏(2018年12期)2019-01-29 01:51:10
    李健 用平淡演繹傳奇
    海峽姐妹(2018年10期)2018-12-26 01:21:06
    李健作品
    李健美術(shù)作品六幅
    戲劇之家(2018年12期)2018-06-13 10:08:20
    歡 沁
    琴童(2017年10期)2017-10-31 06:43:07
    冬陽
    琴童(2017年9期)2017-10-16 16:47:03
    林海
    寶藏(2017年6期)2017-07-20 10:01:06
    郝林海的水彩畫與俳意
    中華奇石(2016年11期)2017-03-16 07:59:49
    李健 互聯(lián)網(wǎng)二手車更“有愛”
    中國汽車界(2016年1期)2016-07-18 11:13:32
    郝林海的水彩畫與俳意
    中華奇石(2016年6期)2016-06-21 08:11:04
    久久精品久久精品一区二区三区| 亚洲精品一区蜜桃| 欧美激情国产日韩精品一区| 欧美丝袜亚洲另类| 51国产日韩欧美| 男女那种视频在线观看| 国产黄片美女视频| 精品久久久久久电影网| 久久99热这里只频精品6学生| 国产精品国产三级国产专区5o| 99热这里只有是精品50| 亚洲第一区二区三区不卡| 欧美日韩精品成人综合77777| 在线观看国产h片| 高清欧美精品videossex| av线在线观看网站| 亚洲国产高清在线一区二区三| 亚洲自拍偷在线| 噜噜噜噜噜久久久久久91| 麻豆成人午夜福利视频| 欧美潮喷喷水| 亚洲精品久久久久久婷婷小说| 一级片'在线观看视频| 日韩免费高清中文字幕av| 久久久久久久久久久丰满| 久久精品国产亚洲av涩爱| 蜜臀久久99精品久久宅男| 免费不卡的大黄色大毛片视频在线观看| 精品久久久久久久末码| av在线老鸭窝| 纵有疾风起免费观看全集完整版| 夫妻午夜视频| 人妻系列 视频| 男人添女人高潮全过程视频| freevideosex欧美| 亚洲精品久久午夜乱码| 日本三级黄在线观看| 久久久久国产网址| 亚洲怡红院男人天堂| 亚洲国产精品成人综合色| 91精品国产九色| 99re6热这里在线精品视频| 国产精品偷伦视频观看了| 狂野欧美激情性xxxx在线观看| 国产美女午夜福利| 少妇的逼水好多| 久久精品人妻少妇| 少妇裸体淫交视频免费看高清| 日本黄色片子视频| 内射极品少妇av片p| 亚洲成人精品中文字幕电影| 69av精品久久久久久| 欧美极品一区二区三区四区| 白带黄色成豆腐渣| 99热国产这里只有精品6| 免费观看性生交大片5| 香蕉精品网在线| 亚洲最大成人中文| 亚洲综合色惰| 国产精品嫩草影院av在线观看| 又黄又爽又刺激的免费视频.| 九九在线视频观看精品| 亚州av有码| 99久久精品国产国产毛片| 99热这里只有是精品50| 汤姆久久久久久久影院中文字幕| 国产高清有码在线观看视频| 精品人妻一区二区三区麻豆| 国内精品美女久久久久久| 国产精品人妻久久久影院| 亚洲欧美清纯卡通| 久久久欧美国产精品| 只有这里有精品99| av又黄又爽大尺度在线免费看| 免费观看无遮挡的男女| 午夜激情福利司机影院| 国产日韩欧美在线精品| 亚洲欧美精品自产自拍| 噜噜噜噜噜久久久久久91| 久久99热6这里只有精品| 人人妻人人爽人人添夜夜欢视频 | 青春草视频在线免费观看| 纵有疾风起免费观看全集完整版| 精品久久国产蜜桃| 最近2019中文字幕mv第一页| 国产又色又爽无遮挡免| 26uuu在线亚洲综合色| 卡戴珊不雅视频在线播放| 亚洲美女搞黄在线观看| 国产免费一级a男人的天堂| 日韩av免费高清视频| 精品人妻熟女av久视频| 人妻制服诱惑在线中文字幕| 日韩大片免费观看网站| 少妇熟女欧美另类| 成人免费观看视频高清| 亚洲精品色激情综合| 国产老妇伦熟女老妇高清| 男女国产视频网站| 成人二区视频| 夜夜看夜夜爽夜夜摸| 亚洲自偷自拍三级| 国产视频内射| 日韩,欧美,国产一区二区三区| 26uuu在线亚洲综合色| 97热精品久久久久久| 丝袜喷水一区| 午夜福利在线在线| 亚洲国产最新在线播放| 国产在线男女| 少妇人妻一区二区三区视频| 亚洲综合精品二区| 成人午夜精彩视频在线观看| 免费播放大片免费观看视频在线观看| av女优亚洲男人天堂| 另类亚洲欧美激情| 男女下面进入的视频免费午夜| 美女内射精品一级片tv| 日韩一区二区视频免费看| 午夜福利在线在线| 菩萨蛮人人尽说江南好唐韦庄| 一区二区三区免费毛片| 一级爰片在线观看| 中文欧美无线码| 久久97久久精品| 久久精品国产鲁丝片午夜精品| 国产午夜福利久久久久久| 亚洲国产欧美人成| 美女视频免费永久观看网站| 人人妻人人澡人人爽人人夜夜| 七月丁香在线播放| 亚洲人与动物交配视频| 三级男女做爰猛烈吃奶摸视频| 五月玫瑰六月丁香| 免费看日本二区| 看十八女毛片水多多多| 久久久久久久午夜电影| 熟妇人妻不卡中文字幕| 全区人妻精品视频| 精品一区在线观看国产| 青春草国产在线视频| 高清视频免费观看一区二区| 亚洲国产精品专区欧美| 午夜激情福利司机影院| 精品国产露脸久久av麻豆| 大片电影免费在线观看免费| 如何舔出高潮| 成人毛片a级毛片在线播放| 在线观看国产h片| 中文字幕免费在线视频6| 插逼视频在线观看| 久久久久久久午夜电影| 久久久久久久久久久丰满| 我的老师免费观看完整版| 成人漫画全彩无遮挡| 亚洲精品国产av蜜桃| 国产熟女欧美一区二区| 久久综合国产亚洲精品| 国产精品麻豆人妻色哟哟久久| 日韩一本色道免费dvd| 午夜亚洲福利在线播放| 精品久久久噜噜| 汤姆久久久久久久影院中文字幕| 观看美女的网站| 午夜福利视频精品| 国产熟女欧美一区二区| 午夜亚洲福利在线播放| 亚洲欧美日韩另类电影网站 | 综合色丁香网| 日韩 亚洲 欧美在线| 99久久人妻综合| 老司机影院毛片| 亚洲av免费在线观看| 亚洲精品国产av成人精品| 欧美一级a爱片免费观看看| 国产爱豆传媒在线观看| av又黄又爽大尺度在线免费看| 好男人视频免费观看在线| 人妻少妇偷人精品九色| tube8黄色片| 伦理电影大哥的女人| 少妇丰满av| 91精品伊人久久大香线蕉| 熟妇人妻不卡中文字幕| 99视频精品全部免费 在线| 亚洲综合色惰| 亚洲av免费高清在线观看| 国产高清三级在线| 国产免费福利视频在线观看| 亚洲精品国产成人久久av| 国产 精品1| 日韩电影二区| 欧美三级亚洲精品| 国产精品国产三级国产av玫瑰| 一个人观看的视频www高清免费观看| 最近2019中文字幕mv第一页| 成人综合一区亚洲| 成年版毛片免费区| 日韩不卡一区二区三区视频在线| 深爱激情五月婷婷| 99热6这里只有精品| 99久久精品一区二区三区| 1000部很黄的大片| 噜噜噜噜噜久久久久久91| 少妇 在线观看| 青春草视频在线免费观看| 国产毛片在线视频| 国产淫语在线视频| 欧美高清成人免费视频www| 国产成人freesex在线| 在线播放无遮挡| 男女啪啪激烈高潮av片| 最近最新中文字幕免费大全7| 国内精品宾馆在线| 国产日韩欧美在线精品| 国产免费福利视频在线观看| 国产男人的电影天堂91| 久久久色成人| 干丝袜人妻中文字幕| 99re6热这里在线精品视频| 日产精品乱码卡一卡2卡三| 国产av不卡久久| 91久久精品国产一区二区成人| 一级av片app| 午夜免费男女啪啪视频观看| 亚洲欧美精品自产自拍| 国产亚洲午夜精品一区二区久久 | 成人高潮视频无遮挡免费网站| 久久国产乱子免费精品| 国产黄片视频在线免费观看| 国产视频内射| www.av在线官网国产| 久久久久精品久久久久真实原创| av在线播放精品| 一级av片app| 亚洲国产精品999| 深夜a级毛片| 少妇猛男粗大的猛烈进出视频 | 91aial.com中文字幕在线观看| 欧美日韩视频高清一区二区三区二| 久久久久性生活片| 99久久九九国产精品国产免费| 国产黄色免费在线视频| 一边亲一边摸免费视频| 少妇人妻精品综合一区二区| 亚洲人成网站在线观看播放| 国产av码专区亚洲av| 高清av免费在线| 大香蕉97超碰在线| 中文字幕免费在线视频6| 国产91av在线免费观看| 国产探花极品一区二区| av免费在线看不卡| 午夜福利视频1000在线观看| av线在线观看网站| 伦理电影大哥的女人| 少妇人妻 视频| 一区二区三区乱码不卡18| videos熟女内射| 国产有黄有色有爽视频| 国产成人91sexporn| 亚洲国产精品成人久久小说| 免费人成在线观看视频色| 亚洲第一区二区三区不卡| 亚洲国产欧美人成| 三级国产精品片| 亚洲av中文字字幕乱码综合| 免费看a级黄色片| 啦啦啦在线观看免费高清www| 热99国产精品久久久久久7| 午夜精品一区二区三区免费看| 国产成人精品久久久久久| 一边亲一边摸免费视频| 成人二区视频| 国产精品久久久久久久电影| 亚洲国产av新网站| 嫩草影院入口| 国产精品久久久久久久久免| 欧美日韩综合久久久久久| 亚洲国产欧美在线一区| 中文乱码字字幕精品一区二区三区| 国产淫语在线视频| 午夜日本视频在线| 日日摸夜夜添夜夜爱| videos熟女内射| 成人毛片60女人毛片免费| 成人国产av品久久久| 日韩电影二区| 22中文网久久字幕| 国产精品精品国产色婷婷| 国产欧美日韩一区二区三区在线 | 日产精品乱码卡一卡2卡三| 久久精品久久精品一区二区三区| 亚洲天堂国产精品一区在线| 欧美xxⅹ黑人| 激情 狠狠 欧美| 亚洲图色成人| 亚洲欧美精品自产自拍| 国产一区二区亚洲精品在线观看| 中文字幕免费在线视频6| 在线看a的网站| 国产精品精品国产色婷婷| 直男gayav资源| 欧美精品一区二区大全| 久久精品久久精品一区二区三区| 联通29元200g的流量卡| 国产爱豆传媒在线观看| 欧美一区二区亚洲| 极品教师在线视频| 国产精品久久久久久久电影| 嫩草影院精品99| 高清毛片免费看| 国产精品一区二区三区四区免费观看| 日日撸夜夜添| 精品一区二区三区视频在线| 精品少妇黑人巨大在线播放| 精品久久久久久久久亚洲| 亚洲精品影视一区二区三区av| 午夜免费男女啪啪视频观看| 免费不卡的大黄色大毛片视频在线观看| 亚洲成人久久爱视频| 尾随美女入室| 国产精品一及| 国产亚洲一区二区精品| 国产白丝娇喘喷水9色精品| 国产国拍精品亚洲av在线观看| 最近的中文字幕免费完整| 亚洲精华国产精华液的使用体验| 中国三级夫妇交换| 女的被弄到高潮叫床怎么办| 成人亚洲欧美一区二区av| 免费不卡的大黄色大毛片视频在线观看| 美女高潮的动态| 国产男女超爽视频在线观看| 亚洲激情五月婷婷啪啪| 一级毛片久久久久久久久女| 中文乱码字字幕精品一区二区三区| 久久精品国产亚洲av天美| 成人毛片60女人毛片免费| 久久久精品94久久精品| 如何舔出高潮| 人妻夜夜爽99麻豆av| 国产成年人精品一区二区| 欧美xxxx性猛交bbbb| 成年版毛片免费区| 国产成人精品婷婷| 美女视频免费永久观看网站| 国产精品一区二区性色av| 免费大片18禁| 亚洲图色成人| 亚洲精品视频女| 最近中文字幕高清免费大全6| 日日啪夜夜爽| 亚洲精品乱码久久久久久按摩| 免费观看无遮挡的男女| 赤兔流量卡办理| 亚洲欧洲国产日韩| 麻豆乱淫一区二区| 免费观看av网站的网址| 成人漫画全彩无遮挡| 亚洲av成人精品一区久久| 亚洲精品自拍成人| 久久午夜福利片| 精品人妻一区二区三区麻豆| 久久精品人妻少妇| 日韩免费高清中文字幕av| 亚洲欧美日韩东京热| 精品久久久久久久久av| 国产精品久久久久久精品古装| 国产熟女欧美一区二区| 观看美女的网站| 国产日韩欧美亚洲二区| 亚洲一区二区三区欧美精品 | 黄色一级大片看看| 有码 亚洲区| av黄色大香蕉| 中文欧美无线码| 老司机影院成人| 久久鲁丝午夜福利片| 国产男女内射视频| 老女人水多毛片| 日本色播在线视频| 日韩免费高清中文字幕av| 色5月婷婷丁香| 亚洲自偷自拍三级| 久久久久久久大尺度免费视频| 91午夜精品亚洲一区二区三区| 春色校园在线视频观看| 免费看日本二区| 黄色日韩在线| 久久ye,这里只有精品| 直男gayav资源| 国产乱人视频| 六月丁香七月| 高清视频免费观看一区二区| 最近最新中文字幕免费大全7| 国产69精品久久久久777片| 日本免费在线观看一区| 亚洲,一卡二卡三卡| 少妇的逼水好多| 国产精品国产三级国产av玫瑰| 欧美日韩亚洲高清精品| 国产女主播在线喷水免费视频网站| 亚洲高清免费不卡视频| 欧美高清成人免费视频www| 精品久久久久久电影网| 日韩一区二区三区影片| 哪个播放器可以免费观看大片| 国产91av在线免费观看| 中国三级夫妇交换| 日韩一区二区视频免费看| 日韩av免费高清视频| 小蜜桃在线观看免费完整版高清| 观看美女的网站| 国产毛片a区久久久久| 大片免费播放器 马上看| 久久久久久久久久人人人人人人| 插阴视频在线观看视频| 两个人的视频大全免费| 免费在线观看成人毛片| 黄片wwwwww| 国产乱人偷精品视频| 国产一区亚洲一区在线观看| 波多野结衣巨乳人妻| 一级二级三级毛片免费看| 国产成人freesex在线| 欧美成人a在线观看| 欧美区成人在线视频| 久久久色成人| 日产精品乱码卡一卡2卡三| 亚洲精品456在线播放app| 免费播放大片免费观看视频在线观看| 最近最新中文字幕大全电影3| 久久人人爽人人爽人人片va| 国产精品不卡视频一区二区| av在线播放精品| 成人亚洲欧美一区二区av| 亚洲av免费高清在线观看| 日韩一本色道免费dvd| 性色av一级| 美女主播在线视频| 新久久久久国产一级毛片| 精品午夜福利在线看| 少妇的逼水好多| 观看美女的网站| 亚洲av二区三区四区| 国产在视频线精品| 亚洲精品自拍成人| 成人亚洲精品av一区二区| 亚洲av.av天堂| 国产探花在线观看一区二区| 成人漫画全彩无遮挡| 精品酒店卫生间| 亚洲欧美清纯卡通| 神马国产精品三级电影在线观看| 免费看日本二区| 国产精品爽爽va在线观看网站| 精品视频人人做人人爽| 啦啦啦在线观看免费高清www| 国产又色又爽无遮挡免| 一二三四中文在线观看免费高清| 免费观看av网站的网址| 久久精品国产亚洲网站| 亚洲美女视频黄频| 男人添女人高潮全过程视频| 欧美日韩视频高清一区二区三区二| 国产人妻一区二区三区在| 男女边摸边吃奶| 一级av片app| 99热网站在线观看| 国产在线男女| 91久久精品国产一区二区成人| 日本免费在线观看一区| 韩国av在线不卡| 五月伊人婷婷丁香| 国产成人a区在线观看| 国产视频首页在线观看| 国产黄片美女视频| 丝袜脚勾引网站| 日韩欧美精品v在线| 97在线人人人人妻| 丰满乱子伦码专区| 成人免费观看视频高清| 亚洲欧美中文字幕日韩二区| 国产精品国产三级专区第一集| 18禁动态无遮挡网站| 七月丁香在线播放| 18+在线观看网站| 久久97久久精品| 国产老妇女一区| 中文乱码字字幕精品一区二区三区| 2021天堂中文幕一二区在线观| 久热久热在线精品观看| 五月玫瑰六月丁香| 久热这里只有精品99| 亚洲最大成人av| 欧美激情久久久久久爽电影| 日韩亚洲欧美综合| 成人黄色视频免费在线看| 新久久久久国产一级毛片| 久久精品综合一区二区三区| 免费大片黄手机在线观看| 午夜福利视频1000在线观看| 男女边摸边吃奶| 在线亚洲精品国产二区图片欧美 | 在线观看人妻少妇| 狂野欧美激情性xxxx在线观看| 三级经典国产精品| 亚洲欧美一区二区三区国产| 五月伊人婷婷丁香| 成年av动漫网址| 草草在线视频免费看| 国产免费又黄又爽又色| 一级毛片久久久久久久久女| 日本熟妇午夜| 天天躁日日操中文字幕| 国产av码专区亚洲av| 少妇熟女欧美另类| 亚洲综合色惰| 欧美日本视频| 欧美成人一区二区免费高清观看| 男女啪啪激烈高潮av片| 九九爱精品视频在线观看| 国产精品三级大全| 伦理电影大哥的女人| 亚洲欧美中文字幕日韩二区| 男女下面进入的视频免费午夜| 欧美潮喷喷水| 国产成人a∨麻豆精品| 午夜福利高清视频| 国产久久久一区二区三区| 精品久久国产蜜桃| h日本视频在线播放| 日韩 亚洲 欧美在线| 精品国产三级普通话版| 久久久精品免费免费高清| 免费观看无遮挡的男女| 国产永久视频网站| 国产爽快片一区二区三区| 亚洲国产欧美人成| 免费av不卡在线播放| 久久人人爽人人片av| 久久久久久久久大av| 免费av观看视频| 性色avwww在线观看| 国产精品偷伦视频观看了| 丝袜喷水一区| 校园人妻丝袜中文字幕| 永久免费av网站大全| 午夜精品国产一区二区电影 | 国产亚洲av片在线观看秒播厂| 日韩强制内射视频| 一级毛片黄色毛片免费观看视频| 婷婷色av中文字幕| 中文精品一卡2卡3卡4更新| 免费大片黄手机在线观看| 中文乱码字字幕精品一区二区三区| 成人黄色视频免费在线看| 又爽又黄a免费视频| 麻豆国产97在线/欧美| 国产精品一区二区三区四区免费观看| 亚洲成人久久爱视频| 日本wwww免费看| 91精品一卡2卡3卡4卡| 好男人视频免费观看在线| 欧美亚洲 丝袜 人妻 在线| 久久精品国产亚洲av天美| 爱豆传媒免费全集在线观看| 色5月婷婷丁香| 在现免费观看毛片| 国内揄拍国产精品人妻在线| 欧美高清成人免费视频www| 国产在视频线精品| 亚洲成人中文字幕在线播放| 日韩一区二区视频免费看| 好男人视频免费观看在线| 国产精品偷伦视频观看了| 免费少妇av软件| 免费观看无遮挡的男女| 亚洲精品日韩在线中文字幕| av在线老鸭窝| 久久6这里有精品| 久久精品人妻少妇| 国产大屁股一区二区在线视频| 日韩强制内射视频| 天堂中文最新版在线下载 | 亚洲精品乱码久久久久久按摩| 精品人妻一区二区三区麻豆| 日韩成人av中文字幕在线观看| 国产高潮美女av| 亚洲美女搞黄在线观看| 99九九线精品视频在线观看视频| 亚洲av日韩在线播放| 亚洲不卡免费看| 国产精品女同一区二区软件| 1000部很黄的大片| 伊人久久国产一区二区| 色视频在线一区二区三区| 22中文网久久字幕| 国产大屁股一区二区在线视频| 国产黄片视频在线免费观看| 日韩av不卡免费在线播放| 国产综合懂色| 欧美激情在线99| 欧美亚洲 丝袜 人妻 在线| 看黄色毛片网站| 婷婷色综合www| 久久精品久久久久久噜噜老黄| 亚洲精品一二三| 2021少妇久久久久久久久久久| 美女主播在线视频| 免费av观看视频| 亚洲精品日本国产第一区| www.色视频.com| 中文资源天堂在线|