• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GeSn(0.524 eV)single-junction thermophotovoltaic cells based on the device transport model

    2022-05-16 07:12:24XinMiaoZhu朱鑫淼MinCui崔敏YuWang汪宇TianJingYu于添景JinXiangDeng鄧金祥andHongLiGao高紅麗
    Chinese Physics B 2022年5期

    Xin-Miao Zhu(朱鑫淼) Min Cui(崔敏) Yu Wang(汪宇) Tian-Jing Yu(于添景)Jin-Xiang Deng(鄧金祥) and Hong-Li Gao(高紅麗)

    1Faculty of Science,Beijing University of Technology,Beijing 100124,China

    2Department of Physics,Faculty of Science,Kunming University of Science and Technology,Kunming 650500,China

    Keywords: GeSn,thermophotovoltaic device,active layer,photovoltaic cell

    1. Introduction

    Over the past few decades, thermophotovoltaics(TPVs)[1–6]have received increasing interest due to their excellent characteristics such as high energy conversion efficiency, superior output power, compactness, etc. The need exists with TPV cells to increase their efficiency with narrow band gap (0.5 eV–0.7 eV)[7]engineered materials compatible with economical substrates. Compared with conventional TPV materials, GeSn provides a tunable narrow band gap(0.5 eV–0.66 eV) by controlling the Sn content in directtransition semiconductors with increasing Sn concentration,higher carrier mobility and epitaxial fabrication for large-scale Si processes.[8]Therefore, these advantages of GeSn suggest the potential application of GeSn in TPV devices.

    However,epitaxial growth of GeSn crystals is very challenging because of the huge lattice mismatch between Ge andα-Sn (14.7%), the surface segregation of Sn in Ge[9]and the extremely low equilibrium solubility of Sn in Ge(~1%).[10]Recently,many research groups have successfully fabricated high-quality GeSn epitaxial films[11–13]and GeSn photodetectors,[14,15]but photovoltaic research on GeSn is still in its initial stage. Conleyet al.[8,16]have manufactured highquality GeSn films on Si using a relaxed Ge buffer layer,which can be used in high-efficiency multi-junction PV and TPV cells. The relaxation of strain in GeSn alloys with a higher Sn content(12%)has been investigated by Kondratenkoet al.,[17]with promising results for GeSn PV cell applications. Up to now,there have been few investigations into GeSn TPVs. It is thus urgent to study GeSn for TPV applications both theoretically and experimentally.

    In this paper, based on the transport equation for semiconductor devices, we focus on studying the dependence of thermal radiation conversion performance on the active layer and black-body temperature using a 0.524 eV GeSn TPV cell as an ideal diode. Four concrete configurations, p–on–n and n–on–p stacks in normal and inverted form,were investigated and compared. The results of this work can offer many profitable guidelines for the development of related TPV cells.

    2. Model and simulation

    A previous report[18]stated that direct band gap GeSn(0.524 eV)with a Sn content of 10%has been fabricated;we use this as our study material. Four GeSn single-junction TPV cells with p+/n,n+/p,p/n+,and n/p+structures,respectively,were studied. For each structure,an ideal diode was extracted from its practical condition as the device active layer. The effects of surface photonic reflection loss,front electrode shadowing and parasitic resistance on cell performance have been neglected in this work. On the basis of the classical photovoltaic cell model,[19]the current density(J)–voltage(V)characteristics are given as

    whereλandλmare the incident wavelength and cutting wavelength,respectively.φ(λ)is the irradiation spectrum of incident light andQE(λ)is the internal quantum efficiency,which can be found in the classical text of Sze and Mattis.[19]φ(λ)is described in terms of Plank-like black-body irradiation as

    whereμmin,e/h/μmax,e/hdenotes the value of electron/hole minority carrier mobility at the exceedingly low (high) doping density,αe/his the suggested fitting parameter andNref,e/hrepresents the doping concentration at which the mobility is decreased to half the value it reaches for low doping at room temperature.Le/hin Eq.(6)is given as

    whereBopt,τSRH,e/h, andΛare the radiation recombination coefficient,trap-assisted recombination lifetime and Auger recombination coefficient,respectively.

    Therefore, after obtaining theJ–Vcharacteristics of the photovoltaic device and combining it with the total powerσT4BB, whereσis the Stefan–Boltzmann constant,ηfor the TPV cell can be obtained. Table 1 shows the simulation parameters derived from experimental data used in this work.

    Table 1. Some model parameters used in simulation.

    3. Results and discussion

    Generally, the specific structure of a diode active layer can be constructed in the p–on–n or n–on–p configuration.Depending on the highly doped layer in the front(emitter)or rear(base) layer of diode, a normal or inverted structure can be further obtained for each configuration. To reveal the electricity generation controlled by the active layer, taking the doping profile at 1019(1017) cm-3for the highly (lightly) doped layer, we have systematically researched the thickness evolution of the active layer on power conversion efficiency with aTBBof 1500 K.The calculated results for the p–on–n configuration are shown in Fig.1. It can be observed in Fig.1(a)that with increasing thickness of the emitter,ηdemonstrates only a slight improvement initially and then a rapid decline. As the base thickness increases,ηincreases rapidly then slowly.As described in Fig. 1(b), when the base thickness is 15 μm,the emitter increases to 0.09 μm, which gives the maximum conversion efficiency. Meanwhile,figure 1(c)shows that with increasing thickness of the base,ηis enhanced from steeply increasing to flat and then increases to saturation; when the base is 5.4 μm thick a suboptimumηof 5.17% is obtained.We found that the cell showed higher efficiency with a thinner emitter and a thicker base, because the emitter plays a major role in the conversion efficiency. The emitter region can easily absorb high-energy photons and has a very small penetration depth, while the base region can more easily absorb long-wavelength photons and has a larger penetration depth.Moreover,the smaller thickness of the optimal emitter can be ascribed to a shorter minority carrier diffusion length due to the higher doping concentration in the emitter region. More significantly,in contrast to the optimum structure,the employment of quite a few suboptimal configurations is not remarkably degrading. From the viewpoint of designing an economical structure using fewer materials,a suboptimal structure can be a better choice.

    In comparison with p+/n,the results for the p/n+configuration are different, as shown in Fig. 1(d). As the emitter thickness increases,ηimproves initially and then decreases,and with increasing base thickness,ηdisplays an initial rapid enhancement and then tends to be stable. Specifically, as can be seen in Fig.1(e),the critical emitter thickness is 0.54 μm.Figure 1(f)shows that the base thickness with a tendency to increase to saturation is approximately 3.6 μm,and this presents a suboptimumηof 4.24%. In contrast to the optimal normal configuration, the entire cell thickness is reduced. Thus, the degradation of the absorption spectrum results in a decrease ofη. For the inverted case, there is an increase in the optimum emitter thickness compared with the normal configuration. Physically,when reducing the doping profile of a device emitter, enlargement of the minority diffusion lengthLerequires a thicker emitter.

    Fig. 1. Efficiency versus active layer thickness for p+/n (a) and p/n+ (d) configurations. For p+/n and p/n+ structures, the base thickness respectively is 15 μm(b)and 10 μm(e),η versus the emitter thickness;the emitter thickness respectively is 0.09 μm(c)and 0.54 μm(f),η versus the base thickness.

    The n–on–p configuration as a function of active thickness is schematically described in Fig.2. The dependence ofηon the active layer thickness for the n+/p device is shown in Fig. 2(a). With increasing emitter thickness, a peak value ofηis observed,and as the base thickness increases,ηdisplays an initial rapid increase and then tends to saturation,which is consistent with the normal p+/n structure. It can be observed in Fig. 2(b) that when the base thickness is 12 μm, a critical emitter thickness of 0.024 μm is observed, which gives the maximum value ofη. Figure 2(c) shows that when the base thickness increases to about 3.48 μm, a suboptimalηof 4.59% is achieved. The results can be understood as follows: sinceμein the p-type emitter is smaller thanμhin the n-type base,promoting the collection of minority electrons in the front layer,the resulting smallLerequires a thinner emitter.To compensate for the absorption loss caused by the thinner emitter, the base thickness should be appropriately enlarged for better spectral utilization. Compared with the n+/p configuration, the results for the n/p+structure are diverse. As depicted in Fig.2(d),with increasing emitter thickness,an initial increase and then a reduction inηwas observed. To be specific,ηis plotted as a function of the emitter thickness in Fig. 2(e), where the optimum emitter thickness is 0.39 μm,and as shown in Fig.2(f)the base thickness tends to increase to saturation at approximately 2.48 μm,giving a suboptimalηof 4.04%.

    In contrast to Figs.1 and 2,we can see that the output performance of the inverted configuration is inferior to the normal one,and the p+/n structure shows an optimal conversion efficiency.Physically,for the p+/n construction,a higher minority carrier(electrons)mobility in the highly doped emitter makes it easier to collect photogenerated charge carriers. In the normal p+/n construction, a reasonable active layer can be composed of a 100 nm–300 nm emitter and a 3 μm–6 μm base.These results for the configuration and active layer thickness can give useful guidelines for the GeSn TPV cell experiment.

    Fig.2. Active layer thickness-dependent efficiency for n+/p(a)and n/p+ (d)structures. For n+/p and n/p+ configurations,the base thickness is 12 μm(b)and 8 μm(e),respectively,the emitter thickness-dependent η;the emitter thickness is 0.024 μm(c)and 0.39 μm(f),respectively,the base thickness-dependent η.

    To further reveal the doping versus cell output characteristic, we can tuneNd(a)in the lightly doped layer of the optimal configuration. The evolution ofJ0andJscwith doping level is schematically displayed in Fig. 3. As shown in Fig. 3(a), with increasing doping,J0presents an initial dramatic reduction and then tends to saturation. The degradation ofJ0can be attributed to the inverse relationship between the doping concentration andJ0(as shown in Eq.(6)). As can be seen from Fig.3(b),Jscfor the p+/n(n+/p)configuration decreases from 14.53(14.47)A·cm-2forNd(a)=1×1017cm-3to 13.72 (14.09) A·cm-2forNd(a)=9×1018cm-3. In the same doping range,Jscfor the inverted structure decreases from 13.83 (14.01) A·cm-2withNd(a)of 1×1017cm-3to 13.07(12.81)A·cm-2withNd(a)of 9×1018cm-3for the p/n+(n/p+)configuration. The weak degradation for each structure can be ascribed to the reduction ofτe/hdue to the increased doping. Thus,a reasonable doping level would improve TPV electricity generation.

    Meanwhile, the corresponding characteristics ofVoc, fill factor (FF), andηas a function of the doping profile in the lightly doped layer for the optimum construction are evaluated in Fig. 4. Figure 4(a) shows thatVocimproves initially and then tends to be stable with increased doping. Specifically,Vocfor the p+/n structure can be increased from 0.19 V forNd=1×1017cm-3to 0.27 V forNd=6×1018cm-3and then slightly diminishes,whileVoc(≈0.26 V)for the n+/p configuration manifests extreme enhancement in the initial stage and then saturates at a higher doping level. As shown in Fig.4(b),with variation in doping level, FF is highly consistent with the observedVoc. Consequently,ηshows a distinct augmentation accompanying the upgraded doping in Fig. 4(c). For the p+/n(n+/p)construction,ηdisplays an initial observable improvement when doping in the base region increases from 1×1017cm-3to 3(7)×1018cm-3,for which a maximumηcan be observed. A further increase in doping induces a slight reduction inη.These results are similar to the literature results for the 0.53 eV GaInAsSb TPV diode described by Wang and Lou.[31]For the p/n+(n/p+)construction,ηslowly improves from 4.28% (4.34%) withNd(a)= 1×1017cm-3to 8.62%(8.49%)withNd(a)=9×1018cm-3. Under the same doping profile,the conversion efficiency of the normal construction is higher than that of the inverted one, which can be attributed to sufficient utilization of the spectrum due to the improved active layer thickness in the normal structure. Hence,with increasing doping, the enhancement ofηis dominated by the increasingVoc.

    Fig.3.The J0(a)and Jsc(b)of the optimum configurations versus the doping concentration in the lightly doped layer.

    Fig.4. The Voc (a),FF(b),and η (c)of the optimum configurations versus the doping concentration in the lightly doped layer.

    Since the radiation characteristic of an intermediate radiator can be controlled by artificial engineering, it is worth evaluating the potential effect of radiator temperature on device output performance of the optimal configuration. Figure 5 shows the photon flux(a)as a function of wavelength at differentTBB, andJsc(b),Voc(c), FF (d), POD (e), andη(f)versus the variation ofTBBfor our considered configurations have been studied.As can be seen from Fig.5(a),with increasingTBB,the photon flux displays remarkable enhancement and a blue shift of the radiation peak was observed. In addition,GeSn (0.524 eV) with a cutoff wavelength of 2.36 μm was observed in the near-infrared band where it can capture most thermal radiation of photons from a black-body at 1500 K;this would facilitate the use of GeSn material in TPV cell applications. Figure 5(b) shows thatJscshows exponential enhancement with the increasingTBB. To be specific,Jscimproves from 1 A·cm-2forTBB=1000 K up to 170 A·cm-2forTBB=2500 K,which can be attributed to the enhancement of photon flux owing to the increasedTBB. BothVocand FF for each structure display evident improvement with the upgradedTBB. For the p+/n construction,Voc(FF)in Figs. 5(c)and 5(d) increases from 0.12 V (53.87%) forTBB=1000 K up to 0.26 V (69.13%) forTBB=2500 K. The enlargement ofVoccan be understood because the increasingTBBresults in improved carrier collection,which can improve the band state,further leading to the band-filling effect[31,32]and slight augmentation ofVoc. For the normal structureVocis invariably larger than for the inverted one,which can be attributed to the smallerJ0for the normal one. The improvement of FF can be attributed to the increasedTBB,and is derived from the empirical formula[33]FF = [Voc-ln(Voc+0.72)]/(1+Voc). Figure 5(e) shows that POD displays exponential improvement with increasingTBBdue to the combined effect ofJsc,Voc,and FF (POD=Jsc×Voc×FF). Moreover,ηof the p+/n (n+/p)configuration increases from 1.22%(1.07%)forTBB=1000 K to 14.05%(13.28%)forTBB=2500 K;in the sameTBBrange,ηfor the n/p+(p/n+) configuration increases from 0.65%(0.69%)to 10.46%(10.89%), as shown in Fig.5(f). Accordingly,an almost linear increase inηwas observed,presenting a 12–16-fold improvement and revealing the significance of controllableTBBfor TPV devices.

    We know that surface recombination is a very important parameter for TPV cells. To reveal the potential effect of surface recombination rates, using the p+/n configuration as an example,we have depicted TPV performance parameters versus the variablesSBandSFin Fig. 6, whereSBandSFof the optimal structure are equivalent to aTBBof 1500 K. In Fig. 6(a), it is obvious that the concernedηvaries when the value ofSF/Bis in the range of 103cm·s-1–107cm·s-1. The analogous behavior for other parameters such asJsc,Voc, FF,and POD is also shown in Fig.6. Cell performance would be improved with decreasingSF/B,In particular,cell performance decreases at high(107cm·s-1–1010cm·s-1)surface recombination rates,but low(101cm·s-1–103cm·s-1)surface recombination rates give a higher thermoelectric conversion performance,indicating the significance of good quality contacts in practical TPV applications. A feasible way to reduceSF/Bis by passivating the surface of the device to remove the recombination resource formed by surface impurities;this is helpful for improving cell conversion efficiency.[34]

    Fig.5. Photon flux per unit wavelength at different TBB (a),and dependence of the optimal structure Jsc (b),Voc (c),FF(d),POD(e),and η (f)on various values of black-body illumination.

    Fig.6. Device performances of Jsc,Voc,η (a)and FF,POD(b)with variation of SF/B.

    4. Conclusion

    In this paper, we have systematically studied the effects of the active layer on the output performance of GeSn singlejunction TPV cells with normal and inverted configurations.The results show that GeSn TPV cells with acceptable performance consisting of a 100 nm–300 nm emitter and a 3 μm–6 μm base with low device cost and the optimal p+/n structure have been obtained. In the p+/n (n+/p) structure, there is an optimum base dopingNd(a)=3(7)×1018cm-3.Performance of the GeSn TPV cells can be improved by increasing the radiator temperature and decreasing surface recombination. The simulated results provide some useful guidelines for the fabrication of economical GeSn TPV devices.

    Acknowledgment

    Project supported by the Beijing Natural Science Foundation Program,China(Grant No.4192016).

    这个男人来自地球电影免费观看| av免费在线观看网站| 日韩免费av在线播放| 丁香欧美五月| 亚洲九九香蕉| 一进一出抽搐动态| 亚洲av片天天在线观看| 最好的美女福利视频网| 国产亚洲欧美在线一区二区| 操出白浆在线播放| 啦啦啦韩国在线观看视频| 亚洲三区欧美一区| 国产精品一区二区三区四区久久 | 国产一区二区三区在线臀色熟女| 精品国产一区二区久久| 免费在线观看日本一区| 国产欧美日韩一区二区三区在线| 国产一区二区在线av高清观看| 黄片大片在线免费观看| 久久久久久久久免费视频了| 老司机靠b影院| 1024香蕉在线观看| 国产色视频综合| 最新美女视频免费是黄的| 在线观看66精品国产| 精品一品国产午夜福利视频| 色精品久久人妻99蜜桃| 91大片在线观看| 777久久人妻少妇嫩草av网站| 免费少妇av软件| 99国产综合亚洲精品| 黄色片一级片一级黄色片| 怎么达到女性高潮| 动漫黄色视频在线观看| 老汉色av国产亚洲站长工具| 精品熟女少妇八av免费久了| 亚洲av片天天在线观看| 亚洲欧美日韩无卡精品| 大型av网站在线播放| 性欧美人与动物交配| 国产伦一二天堂av在线观看| 国产又色又爽无遮挡免费看| 日韩大码丰满熟妇| 正在播放国产对白刺激| 国产乱人伦免费视频| 久久狼人影院| 免费看十八禁软件| 高潮久久久久久久久久久不卡| 亚洲国产高清在线一区二区三 | 国产欧美日韩精品亚洲av| 久久精品成人免费网站| 淫妇啪啪啪对白视频| 一区二区三区激情视频| 啦啦啦 在线观看视频| 亚洲午夜理论影院| 国产亚洲精品第一综合不卡| 51午夜福利影视在线观看| 亚洲成a人片在线一区二区| 看黄色毛片网站| 好男人电影高清在线观看| 久久久水蜜桃国产精品网| 国产欧美日韩一区二区精品| 国产99久久九九免费精品| 国产成人欧美| 美女高潮到喷水免费观看| 欧美日韩福利视频一区二区| av电影中文网址| 色在线成人网| 国产精品久久久久久人妻精品电影| 自拍欧美九色日韩亚洲蝌蚪91| 欧美 亚洲 国产 日韩一| 无遮挡黄片免费观看| 国内毛片毛片毛片毛片毛片| 日本vs欧美在线观看视频| 丁香六月欧美| 久久久国产欧美日韩av| 中亚洲国语对白在线视频| 高清在线国产一区| 99久久久亚洲精品蜜臀av| 国产欧美日韩精品亚洲av| 欧美人与性动交α欧美精品济南到| 中文字幕久久专区| 纯流量卡能插随身wifi吗| 亚洲精品粉嫩美女一区| 国产成人一区二区三区免费视频网站| 亚洲一区二区三区不卡视频| 久久亚洲精品不卡| 国产亚洲av嫩草精品影院| 91老司机精品| av中文乱码字幕在线| 俄罗斯特黄特色一大片| 成人亚洲精品av一区二区| 九色亚洲精品在线播放| 免费高清视频大片| 久久精品国产99精品国产亚洲性色 | 亚洲精品国产色婷婷电影| 亚洲av五月六月丁香网| 一进一出好大好爽视频| 午夜精品久久久久久毛片777| 久久 成人 亚洲| 亚洲专区中文字幕在线| 久久精品国产亚洲av高清一级| 国产成人啪精品午夜网站| 久久国产精品影院| 19禁男女啪啪无遮挡网站| 国产国语露脸激情在线看| 一级毛片高清免费大全| 国产精品久久久av美女十八| a级毛片在线看网站| 亚洲精品国产色婷婷电影| 激情视频va一区二区三区| 99在线人妻在线中文字幕| 男人的好看免费观看在线视频 | 女警被强在线播放| 午夜老司机福利片| 91麻豆av在线| 国产亚洲精品一区二区www| 日本黄色视频三级网站网址| 亚洲 国产 在线| 日韩免费av在线播放| 乱人伦中国视频| 久久国产精品男人的天堂亚洲| av视频免费观看在线观看| 午夜福利,免费看| 一个人免费在线观看的高清视频| 搡老妇女老女人老熟妇| 久久久久九九精品影院| 国内精品久久久久久久电影| 久久伊人香网站| 国产1区2区3区精品| 少妇粗大呻吟视频| 国产精品爽爽va在线观看网站 | 欧美日韩亚洲国产一区二区在线观看| 亚洲成人免费电影在线观看| 久久中文字幕一级| 中文字幕最新亚洲高清| av天堂在线播放| 亚洲欧美一区二区三区黑人| 日韩欧美国产在线观看| 亚洲精品在线观看二区| 亚洲人成电影观看| 亚洲一区二区三区不卡视频| 国产精品,欧美在线| 99精品久久久久人妻精品| av电影中文网址| 久热这里只有精品99| tocl精华| 日韩国内少妇激情av| 一进一出好大好爽视频| 桃色一区二区三区在线观看| 亚洲国产高清在线一区二区三 | 最近最新中文字幕大全免费视频| 高潮久久久久久久久久久不卡| 婷婷精品国产亚洲av在线| а√天堂www在线а√下载| 正在播放国产对白刺激| 人人妻人人澡欧美一区二区 | 国产一级毛片七仙女欲春2 | 国产精品久久电影中文字幕| 嫩草影视91久久| 欧美成人性av电影在线观看| xxx96com| 91成人精品电影| 1024视频免费在线观看| 韩国av一区二区三区四区| 国产不卡一卡二| 国产av又大| 99久久99久久久精品蜜桃| 一区福利在线观看| 国产成人av教育| 岛国在线观看网站| 亚洲av成人av| 一卡2卡三卡四卡精品乱码亚洲| 在线观看www视频免费| 露出奶头的视频| 美女扒开内裤让男人捅视频| 黑人巨大精品欧美一区二区蜜桃| 国产成人影院久久av| 中文字幕高清在线视频| 午夜免费观看网址| 国产精品亚洲av一区麻豆| 女同久久另类99精品国产91| 欧美日韩亚洲综合一区二区三区_| 亚洲国产精品久久男人天堂| 午夜免费成人在线视频| 国产野战对白在线观看| 欧美成狂野欧美在线观看| 最新美女视频免费是黄的| 欧美日韩瑟瑟在线播放| 激情视频va一区二区三区| 91成人精品电影| 久久久水蜜桃国产精品网| 日本精品一区二区三区蜜桃| 在线观看免费日韩欧美大片| 女人精品久久久久毛片| 久久热在线av| 亚洲精品一区av在线观看| 久久亚洲真实| 免费在线观看日本一区| 日韩欧美一区二区三区在线观看| 两人在一起打扑克的视频| 久久精品亚洲熟妇少妇任你| 琪琪午夜伦伦电影理论片6080| 成人三级做爰电影| 人人妻,人人澡人人爽秒播| 啪啪无遮挡十八禁网站| 黑人操中国人逼视频| 欧美午夜高清在线| 色综合欧美亚洲国产小说| 999久久久精品免费观看国产| 制服丝袜大香蕉在线| 人人澡人人妻人| 丁香欧美五月| 18禁黄网站禁片午夜丰满| 成人国产综合亚洲| 变态另类丝袜制服| 成熟少妇高潮喷水视频| 亚洲精品一区av在线观看| 一本久久中文字幕| 一本综合久久免费| av有码第一页| 久久国产精品人妻蜜桃| 一区福利在线观看| 亚洲成国产人片在线观看| 亚洲三区欧美一区| 国产精品久久久久久人妻精品电影| 91精品国产国语对白视频| 男人舔女人下体高潮全视频| 操美女的视频在线观看| 久久久久久人人人人人| 在线观看免费日韩欧美大片| 亚洲精品一卡2卡三卡4卡5卡| 露出奶头的视频| 久久午夜综合久久蜜桃| 久久国产精品男人的天堂亚洲| 午夜精品久久久久久毛片777| 9热在线视频观看99| 19禁男女啪啪无遮挡网站| 免费久久久久久久精品成人欧美视频| 午夜影院日韩av| 如日韩欧美国产精品一区二区三区| 免费在线观看视频国产中文字幕亚洲| 亚洲熟妇中文字幕五十中出| 色尼玛亚洲综合影院| 欧美+亚洲+日韩+国产| 电影成人av| 日日爽夜夜爽网站| 在线免费观看的www视频| 精品久久蜜臀av无| 神马国产精品三级电影在线观看 | 黄频高清免费视频| 亚洲av成人一区二区三| 久久香蕉国产精品| 久久人人爽av亚洲精品天堂| 午夜福利一区二区在线看| 亚洲人成电影免费在线| 妹子高潮喷水视频| 免费搜索国产男女视频| 熟妇人妻久久中文字幕3abv| 淫秽高清视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 久久精品国产清高在天天线| 法律面前人人平等表现在哪些方面| 亚洲精品在线观看二区| 免费在线观看黄色视频的| 国产亚洲av高清不卡| 日本免费a在线| 久久青草综合色| 国产蜜桃级精品一区二区三区| 亚洲一区高清亚洲精品| 老汉色∧v一级毛片| 久久亚洲真实| 美女国产高潮福利片在线看| 日本免费a在线| 看片在线看免费视频| 一进一出好大好爽视频| 成人亚洲精品av一区二区| 99国产极品粉嫩在线观看| 亚洲成av人片免费观看| 精品少妇一区二区三区视频日本电影| 一级片免费观看大全| 欧美日本视频| 亚洲人成77777在线视频| 国产成人av激情在线播放| 午夜a级毛片| 亚洲一区高清亚洲精品| 人人妻人人澡欧美一区二区 | 丁香欧美五月| 国产成人欧美在线观看| 涩涩av久久男人的天堂| 99久久精品国产亚洲精品| 女人被躁到高潮嗷嗷叫费观| 麻豆国产av国片精品| 九色亚洲精品在线播放| 啪啪无遮挡十八禁网站| 手机成人av网站| 亚洲九九香蕉| 丝袜美足系列| 露出奶头的视频| 免费观看精品视频网站| 国产精品免费一区二区三区在线| 日本在线视频免费播放| av欧美777| 久久精品国产99精品国产亚洲性色 | 欧美午夜高清在线| 色尼玛亚洲综合影院| 巨乳人妻的诱惑在线观看| 非洲黑人性xxxx精品又粗又长| 欧美亚洲日本最大视频资源| 真人一进一出gif抽搐免费| 又紧又爽又黄一区二区| 日本 欧美在线| 色婷婷久久久亚洲欧美| 两个人视频免费观看高清| 欧美日本视频| 久久精品人人爽人人爽视色| 亚洲中文日韩欧美视频| 91精品三级在线观看| 黄色丝袜av网址大全| av在线播放免费不卡| 精品久久蜜臀av无| 巨乳人妻的诱惑在线观看| 国产区一区二久久| 国产野战对白在线观看| 久久久国产成人精品二区| 婷婷精品国产亚洲av在线| 久99久视频精品免费| 老汉色∧v一级毛片| 亚洲五月婷婷丁香| 亚洲国产高清在线一区二区三 | 亚洲人成电影免费在线| 午夜精品国产一区二区电影| 中文字幕人妻熟女乱码| 国产高清视频在线播放一区| 操出白浆在线播放| 嫩草影视91久久| 在线观看免费午夜福利视频| 亚洲精品国产区一区二| 午夜精品久久久久久毛片777| 妹子高潮喷水视频| 国产欧美日韩一区二区精品| 999久久久精品免费观看国产| 桃红色精品国产亚洲av| 欧美成人午夜精品| 1024视频免费在线观看| 亚洲熟女毛片儿| 中国美女看黄片| 九色亚洲精品在线播放| 丝袜人妻中文字幕| 亚洲成人免费电影在线观看| 久久九九热精品免费| 亚洲欧美日韩另类电影网站| 大香蕉久久成人网| 999精品在线视频| 黄频高清免费视频| 超碰成人久久| 男女之事视频高清在线观看| 一本综合久久免费| 欧美黑人欧美精品刺激| 国产国语露脸激情在线看| 一区二区三区国产精品乱码| 日本欧美视频一区| 日韩大码丰满熟妇| 亚洲在线自拍视频| 午夜免费成人在线视频| 一个人观看的视频www高清免费观看 | av视频在线观看入口| 熟女少妇亚洲综合色aaa.| 欧美日韩黄片免| 国产av精品麻豆| 亚洲精品国产色婷婷电影| 日本免费一区二区三区高清不卡 | 搡老熟女国产l中国老女人| 久久亚洲精品不卡| 中文字幕人妻熟女乱码| 欧美不卡视频在线免费观看 | 亚洲熟妇熟女久久| 一级毛片精品| 欧美日韩中文字幕国产精品一区二区三区 | 999久久久精品免费观看国产| 91国产中文字幕| 中文亚洲av片在线观看爽| 嫁个100分男人电影在线观看| 日韩中文字幕欧美一区二区| 亚洲一码二码三码区别大吗| 老熟妇乱子伦视频在线观看| 丝袜人妻中文字幕| 999精品在线视频| 69精品国产乱码久久久| 久久人人97超碰香蕉20202| 三级毛片av免费| 自线自在国产av| 99久久国产精品久久久| 男女午夜视频在线观看| 成人亚洲精品av一区二区| 精品一品国产午夜福利视频| 国产aⅴ精品一区二区三区波| 欧美午夜高清在线| 啦啦啦观看免费观看视频高清 | 无限看片的www在线观看| 一夜夜www| 少妇熟女aⅴ在线视频| 欧美在线一区亚洲| 久久国产精品影院| 真人一进一出gif抽搐免费| 女人被躁到高潮嗷嗷叫费观| aaaaa片日本免费| 人人妻人人澡欧美一区二区 | 18禁国产床啪视频网站| 中文字幕久久专区| 国产一区二区三区在线臀色熟女| 久久精品亚洲熟妇少妇任你| 麻豆av在线久日| 成人特级黄色片久久久久久久| 国产av又大| 日韩免费av在线播放| 老司机午夜十八禁免费视频| 中文字幕人成人乱码亚洲影| 国产精品永久免费网站| www.999成人在线观看| 欧美最黄视频在线播放免费| 黑丝袜美女国产一区| 欧美 亚洲 国产 日韩一| 日韩av在线大香蕉| 亚洲电影在线观看av| 69精品国产乱码久久久| 国产男靠女视频免费网站| 久久草成人影院| 日本 av在线| 久久午夜综合久久蜜桃| 亚洲精品国产精品久久久不卡| 亚洲中文日韩欧美视频| 日本a在线网址| 午夜激情av网站| 亚洲人成电影观看| 午夜精品国产一区二区电影| 久久久国产成人精品二区| 国产精品香港三级国产av潘金莲| 欧美久久黑人一区二区| 女生性感内裤真人,穿戴方法视频| 国产亚洲精品av在线| 一夜夜www| 国产精品免费视频内射| 成年人黄色毛片网站| 伊人久久大香线蕉亚洲五| 亚洲免费av在线视频| 男女下面进入的视频免费午夜 | 国产1区2区3区精品| 叶爱在线成人免费视频播放| av免费在线观看网站| 午夜精品在线福利| 久久欧美精品欧美久久欧美| 成人亚洲精品av一区二区| 色综合亚洲欧美另类图片| 精品欧美一区二区三区在线| 国产av一区二区精品久久| 久久人妻av系列| 国产三级黄色录像| 一本综合久久免费| 18美女黄网站色大片免费观看| 999久久久精品免费观看国产| 无人区码免费观看不卡| 国产在线观看jvid| 国产aⅴ精品一区二区三区波| 国产一区二区在线av高清观看| 99久久99久久久精品蜜桃| а√天堂www在线а√下载| 黄色成人免费大全| 制服诱惑二区| 国产精品久久久久久亚洲av鲁大| 大码成人一级视频| 1024香蕉在线观看| 丝袜美足系列| av网站免费在线观看视频| 亚洲中文字幕日韩| 非洲黑人性xxxx精品又粗又长| 欧美在线黄色| 国产精品一区二区免费欧美| av在线天堂中文字幕| 日韩精品中文字幕看吧| 制服诱惑二区| 亚洲成人精品中文字幕电影| 天堂影院成人在线观看| 国产成人精品在线电影| 97人妻天天添夜夜摸| 真人一进一出gif抽搐免费| 涩涩av久久男人的天堂| 伦理电影免费视频| 成人亚洲精品一区在线观看| 国产精品国产高清国产av| 一区二区三区精品91| 波多野结衣高清无吗| 精品日产1卡2卡| 美女高潮喷水抽搐中文字幕| 精品国产国语对白av| 啪啪无遮挡十八禁网站| 久久久久久人人人人人| 成人三级做爰电影| 老汉色av国产亚洲站长工具| 不卡av一区二区三区| 黄片大片在线免费观看| 神马国产精品三级电影在线观看 | 桃色一区二区三区在线观看| 一进一出好大好爽视频| 亚洲国产欧美网| 国产精品 国内视频| 午夜视频精品福利| 老司机福利观看| 亚洲久久久国产精品| 91九色精品人成在线观看| 电影成人av| 老熟妇仑乱视频hdxx| 精品日产1卡2卡| www.999成人在线观看| 中文字幕精品免费在线观看视频| 国产精华一区二区三区| 午夜免费成人在线视频| 中文字幕最新亚洲高清| 成在线人永久免费视频| 国产亚洲精品久久久久久毛片| 亚洲人成伊人成综合网2020| 在线永久观看黄色视频| 成人精品一区二区免费| 日本 欧美在线| 男人舔女人的私密视频| 多毛熟女@视频| 国产精品九九99| 曰老女人黄片| 亚洲人成电影免费在线| 久久亚洲精品不卡| 精品高清国产在线一区| 18美女黄网站色大片免费观看| 97碰自拍视频| 亚洲精品国产色婷婷电影| 亚洲狠狠婷婷综合久久图片| 国产精品亚洲一级av第二区| 亚洲成a人片在线一区二区| 国产一卡二卡三卡精品| 精品久久久精品久久久| 在线观看免费日韩欧美大片| 久久国产乱子伦精品免费另类| 欧美久久黑人一区二区| 亚洲精品在线观看二区| 国产高清videossex| 久久久国产精品麻豆| 黄色成人免费大全| 男人操女人黄网站| 亚洲专区中文字幕在线| 精品无人区乱码1区二区| 欧美+亚洲+日韩+国产| 国产成人一区二区三区免费视频网站| 久久久久久人人人人人| 成人国语在线视频| 国产精品久久久久久精品电影 | 亚洲伊人色综图| 亚洲欧洲精品一区二区精品久久久| 国产精品自产拍在线观看55亚洲| 夜夜看夜夜爽夜夜摸| 十分钟在线观看高清视频www| 亚洲第一青青草原| 午夜福利影视在线免费观看| 在线观看午夜福利视频| 黑人巨大精品欧美一区二区蜜桃| 天堂影院成人在线观看| 精品国产乱码久久久久久男人| 妹子高潮喷水视频| 人妻久久中文字幕网| 亚洲熟妇熟女久久| 欧美精品亚洲一区二区| 精品一区二区三区四区五区乱码| 国产私拍福利视频在线观看| 国产免费男女视频| 99精品久久久久人妻精品| 久热这里只有精品99| 黑人操中国人逼视频| 国产亚洲av嫩草精品影院| 国产xxxxx性猛交| 久久国产亚洲av麻豆专区| 一边摸一边抽搐一进一小说| 午夜免费成人在线视频| 黄片播放在线免费| 高清黄色对白视频在线免费看| 男人舔女人的私密视频| 午夜久久久久精精品| 制服丝袜大香蕉在线| 一区二区三区高清视频在线| 国产精品久久电影中文字幕| 日韩视频一区二区在线观看| 亚洲精品在线美女| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久大精品| 久久精品91蜜桃| 精品午夜福利视频在线观看一区| 女性生殖器流出的白浆| 一级黄色大片毛片| 久久久久久亚洲精品国产蜜桃av| www.999成人在线观看| 97人妻天天添夜夜摸| 女人精品久久久久毛片| АⅤ资源中文在线天堂| 国产精品1区2区在线观看.| 国产区一区二久久| 久久久水蜜桃国产精品网| 久热爱精品视频在线9| 女人精品久久久久毛片| АⅤ资源中文在线天堂| 久久国产精品影院| 中文字幕色久视频| 色综合站精品国产| 国产视频一区二区在线看| 欧美中文日本在线观看视频| 日韩三级视频一区二区三区| 麻豆成人av在线观看| 亚洲成国产人片在线观看| 国产三级黄色录像|