• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Linear and nonlinear optical response of g-C3N4-based quantum dots*

    2021-07-30 07:42:38JingZhiZhang張競(jìng)之andHongZhang張紅
    Chinese Physics B 2021年7期
    關(guān)鍵詞:張紅

    Jing-Zhi Zhang(張競(jìng)之) and Hong Zhang(張紅)

    1College of Physics,Sichuan University,Chengdu 610065,China

    2Key Laboratory of High Energy Density Physics and Technology of Ministry of Education,Sichuan University,Chengdu 610065,China

    Keywords: graphite carbon nitride,optical response,ultra-fast laser,plasmon

    1. Introduction

    Graphitic carbon nitride(g-C3N4)is a dazzling star in the field of semiconductor photocatalysis technology, which has become one of the most attractive research fields for removing organic pollutants and converting solar energy.[1,2]As a metal-free catalyst, g-C3N4has been widely used in photosplitting water to produce hydrogen,[3,4]photo-degrading organic pollutants,[5,6]and photo-catalytic CO2reduction.[7,8]It is the most stable allotrope among various carbonitrides under ambient conditions, with unique optical and electronic properties, high thermal and chemical stability, and low synthesis cost.[9-12]However, wide band gap~2.7 eV, small specific surface area, and high photo-generated hole recombination rate limit the application of g-C3N4.[13]

    With the deepening of theories and experiments,g-C3N4has gradually been applied to the field of optoelectronics as diodes,lithium batteries,storages,and photodetectors. Today with increasingly higher requirements for integration, to improve light utilization, theoretical research on g-C3N4-based quantum dots (QDs) is far from enough, which arouses our great interest. g-C3N4is generally synthesized by thermal condensation of nitrogen-rich precursors such as cyanamide,dicyandiamide,and melamine.[14]Yanget al.[15]have synthesized ultra-thin g-C3N4nanosheets with a thickness of about 2 nm. Research has focused on the modification of g-C3N4to obtain better performance.[16-18]The specific surface area of g-C3N4with a layered structure similar to graphite can be increased to as high as 2500 m2·g-1theoretically.[19]In addition,the morphology modulation of g-C3N4has been demonstrated as a successful method to endow it with large specific surface areas,abundant reaction sites for promoting lightharvesting,charge separation and transfer,and mass diffusion,all of which enhance the photocatalytic performance. For example, Zhanget al.[20]have fabricated g-C3N4with ordered mesopores and cylindrical channels to have a surface area up to 517 m2·g-1. At the atomic level, reasonable simulations and basic calculations help to design and synthesis g-C3N4.

    To improve light energy utilization of g-C3N4,this paper combines band gap engineering and other modification strategies to design QDs based on g-C3N4,and calculates the electronic and optical properties of each composite through firstprinciples theory. We first explore the optical response of QDs under basic control methods such as polarization direction,the number of layers and size,thus proves the adjustability of band gap and reveals the law of light absorption. Next, the use of precious metal chain coupling,functional group modification,etc. attempts to expand the visible light absorption of the g-C3N4composites.

    2. Computational details

    Calculations are performed based onab initiodensity functional theory (DFT) as implemented in the CASTEP[21]and OCTOPUS[22]codes. First, geometries are optimized by CASTEP using the gradient approximation(GGA)expressed by the Perdew-Burke-Ernzerhof (PBE)[23]function for the exchange-correlation. The energy band and density of states are calculated using HSEO6 hybrid functional.

    The central tenet is that all physical properties of an interacting many-electron system can be determined from its timedependent density.[24,25]We numerically propagate Eq.(1)in real time and real space using the OCTOPUS code. Carbon, nitrogen, hydrogen, copper, silver, and gold atoms are described by the Hartwigsen-Goedecker-Hutter pseudopotentials. We perform calculations in a 7 ?A radius spherical box and discretize the problem on a Cartesian grid with spacing 0.2 ?A. In real-time propagation, an approximated enforced time-reversal symmetry(AETRS)algorithm is used to approximate the evolutionary operator. The motion equation of the system is the time-dependent Kohn-Sham equation

    that the electron wave functionψi(r,t)obeys,evolved for typically 6000 steps with a time step of Δt=0.003ˉh/eV.The system is excited by a functional pulse that describes the perturbation of the total density of the system to obtain a linear optical absorption spectrum in a particular direction. At timet=0,all the wave functions have an instantaneous phase shift

    wherek0is the perturbation of the external field momentum along thezdirection. Then, the time-dependent dipole momentd(t) can be obtained from the time evolution of the Kohn-Sham wave function. The dynamic polarizabilityα(ω)is derived by using the Fourier transform of the dipole moment and the induced charge density distribution is extracted accordingly. The absorption spectrum is expressed as a dipole intensity functionS(ω), and its relation with polarizability isS(ω)=(2ω/π)Imα(ω).

    We simulate the laser-atom interaction with the dipole approximation using an external potential defined as

    wheref(x,y,z) is defined by a field type and polarization or a scalar potential, cosine controls the waveform,ωcontrols the frequency, andφis the time-dependent phase. Theg(t)function centered aroundt0describes the waveform of the ultrafast laser. For the time evolution, we use a time step of 0.003ˉh/eV≈0.0020 fs.

    3. Results and discussion

    3.1. Geometry and electronic structure of the monolayer g-C3N4

    The pristine g-C3N4structure is a two-dimensional framework of tri-s-triazine (tri-ring of C6N7) subunits linked by tertiary amines. The optimized monolayer g-C3N4reference structure is displayed in Fig. 1, with lattice constants ofa1=a2= 6.95 ?A. The calculation results of the electronic properties(see Fig.2),containing the band structure and density of states,show that monolayer g-C3N4is a large direct-gap semiconductor with a bandgap of 2.925 eV.The energy distribution of the conduction band is between 2.4 eV and 10.4 eV,mainly including two density peaks of states,which are mostly contributed by the p orbitals of nitrogen and carbon atoms.The valence band near the Fermi level is mainly contributed by the p orbitals of nitrogen atoms. It corresponds to the fact that in photocatalysis, nitrogen atoms provide oxidation and reduction active sites, while carbon atoms provide reduction active sites.[26]

    Fig.1. (a)Side,(b)top,and(c)front views of optimized monolayer g-C3N4.Silver and blue atoms sand for carbon and nitrogen,respectively.

    Fig. 2. (a) Electronic band structure, (b) density of states (DOS) and partial densities of states(PDOSs)of monolayer g-C3N4.

    3.2. Linear optical response of g-C3N4 quantum dots

    3.2.1. Adjustment of polarization direction, number of layers, and size

    The properties of nanostructures and macroscopic materials are completely different due to quantum confinement effects. In order to design kinds of gCNQDs, we selected the periodic minimum unit structure of g-C3N4containing 10 nitrogen atoms and 6 carbon atoms. Because it is like but not synthetic precursor melem unit. The dangling bonds at the edges are passivated by hydrogen atoms, as shown in the inset in Fig.3(a). Figure 3(a)displays the results of optical responses when perturbation pulses with different polarization directions are applied to gCNQDs. It shows that gCNQDs have high responsivity in the ultraviolet region, revealing its application potential in the field of thin-film solar cells, photosensitive detectors, optical switches, and photoelectric converters. When the angle of the excitation direction relative to theXaxis is between-30°and 90°,the difference in the absorption spectrum is mainly reflected in the highest peak(approximately at 4.8 eV) intensity, where 0°(parallel to theXaxis)has the highest photoresponse.Besides,we find effective optical transitions for the first pair of valence and conduction bands(approximately at 3 eV)in low-energy regions that are magnified in the inset. Although the difference is subtle, we find that-30°and 60°have better performance.

    To explore the mechanism,we analyze the planar discrete Fourier transform of the induced-charge density distribution at respective energy resonance points displayed in Fig. 3(b).The distance from the upper surface of gCNQDs to the induced density plane is 0.9 ?A. Most of the induced electrons and holes are distributed on the edges of the nanostructures,with antisymmetric characteristics, presenting a dipole distribution,which is an antiphase double dipole mode of plasmons excitation. Because of the extendedπbond in g-C3N4,under the external field induction and electronic screening,the phenomenon of electron aggregation excitation and long-range charge transfer occur. Comparing the induced-charge at the intrinsic absorption peak, the electron-hole density at 0 excitation direction is concentrated with more obvious bilateral symmetry,followed by 60°. This is reflected in their stronger peaks in Fig. 3(a), revealing the advantage of plasmon resonance when excited parallel to the edge of the structure due to the long-distance transfer of electrons to the terminal nitrogen atoms. However, the regularity differs in the low energy region (2 eV-4 eV), which is affected by the original wave configuration of g-C3N4according to our conjecture.

    Fig. 3. Optical absorption of (a) g-C3N4 as a function of the polarization angle relative to the X axis (θ =-30°, 0°, 60°, 90°) and (b)monolayer gCNQDs(1g-C3N4),bilayer gCNQDs(2g-C3N4),and trilayer gCNQDs(3g-C3N4). Panels(b)and(d)are Fourier transformations of the induced-charge density distribution at energy resonance points.

    Figure 3(c) shows the light absorption of few-layer gCNQDs stacked in ABA with pulses in theXdirection, corresponding to 1g-C3N4(monolayer), 2g-C3N4(bilayer), and 3g-C3N4(trilayer). The layer spacing is 3.3 ?A.[27]As the number of layers increases, the peak value increases nonlinearly. It can be attributed to the formation of an electric field due to the excited state charge transfer caused by light absorption, which impairs the dipole response of the adjacent layer. The corresponding energy gap decreases as the number of layers increases shown in the enlarged part of Fig.3(c).As seen in Fig. 3(d), the induced charge density distributions at two energy resonance points of different layers have dipole oscillation characteristics,although the charge distribution in the high-energy region is more scattered. Especially for the electron-hole pairs of 3g-C3N4at 3.99 eV and 4.89 eV,we point out that there is a high energy mode of plasmons excitation[28-30]different from long-range charge transfer. It confirms that the interlayer interaction weakens the double dipole response.

    Fig.4. Optical absorption of three kinds of gCNQDs when the impulse excitation polarized along the X-axis (a) and Y-axis (b), respectively.Structural diagrams are displayed in legends.

    For comparison, we add two quantum dots polymerized in perpendicular directions shown in legends of Fig. 4.Spectra indicate that the width of the quantum dots increases along the polarization direction, the absorption peak of the low-energy region is red-shifted and the intensity increases,while the widening of the size along the vertical polarization direction only increases the absorption intensity. It is related to the in-plane electron confinement effect of the small two-dimensional nanostructure.[31]Quantum size effect affects dipole response. Besides, similar to the result of layer number control, the size widening gives rise to a decrease in the band gap along the polarization direction,as low as 2 eV.The widening of the band gap of gCNQDs indicates that the dielectric is enhanced.

    3.2.2. Metal/gCNQDs composites

    Recently, the exploration of g-C3N4-based composite photocatalysts has attracted widespread attention. In a tentative work,we select three kinds of metal nanochains as representatives to compound with gCNQDs. Metal/gCNQDs composites are expected to be widely used as a photosensitizerin vivo.[32]The gCNQDs is inserted into metal nanochains composed of 8 copper, silver, and gold atoms respectively along theX-axis direction, and the interatomic distances of these metal atoms are taken as experimental values of 2.55 ?A,2.89 ?A, and 2.89 ?A, respectively. The distance between the terminal metal atom and its nearest hydrogen atom is 2.89 ?A as well.[33]We denote these composites as Cu/g-C3N4,Ag/g-C3N4,and Au/g-C3N4. The impulse excites along theX-axis.

    Figures 5(a)-5(c)present the absorption spectrum of the composites (Cu/g-C3N4, Ag/g-C3N4, and Au/g-C3N4), the separate gCNQDs(g-C3N4),and the isolated metal nanowires(Cu, Ag, and Au). Surprisingly, strong significant absorption peaks with higher intrinsic intensity and red-shift energy appear in the visible light region, compared with metal nanochains. The most pronounced effects are found for Au/g-C3N4and Ag/g-C3N4,where the light absorption strength exceeds 30 eV-1and the light absorption limit is extended to 2.11 eV. It demonstrates the existence of collective plasmon excitation in the composites, that is, coherent resonance. It can be analyzed by the insets of the induced charge density distribution shown in Fig.5. When the excitation direction is parallel to the metal nanochain,the dipole interaction between noble metal atoms appears as an attraction, which could lead to such as redshift away from the excimer resonant frequency according to the theory of dipole interaction.[34]But there are different phenomena in the higher energy region(4 eV-6 eV).Compared to the g-C3N4, the optical absorption of the composites decreases instead.

    Furthermore, as the metal nanochains changes from Cu to Ag and then to Au,the optical absorption of the composite increases respectively, and the resonance frequency is related to the eigenfrequency of the corresponding metal nanochains.It suggests that a host-guest interaction between gCNQDs and the metal nanochains introduces a certain amount of free electrons to gCNQDs. Metal nanochains as electronic conductive channels,transfer light energy to the reaction system,thus lead to carrier concentration increase. It plays a leading role to separate photoinduced electron-hole pairs efficiently and further enhance the visible-light photocatalytic.Pristine gCNQDs can recombine with electron-rich systems through charge-transfer complexation to form nanocomposites, resulting in a rearrangement of the electron density. Owing to composition with metal nanochains, especially gold, composites expand light absorption into the near-infrared region of g-C3N4from the ultraviolet region. It does not require the high cost of pure metal but exhibits stronger light absorption, which improves its application potential in wide-light photosensitive detectors and photocatalytic.

    Fig.5. Optical absorption of(a)Cu/g-C3N4, g-C3N4, Cu nanochains, (b)Ag/g-C3N4, g-C3N4, Ag nanochains, (c)Ag/g-C3N4, g-C3N4 and Au nanochains. Illustrations are Fourier transform of the induced charge density distribution of(a)Cu/g-C3N4 at 2.34 eV,(b)Ag/g-C3N4 at 2.11 eV,and(c)Au/g-C3N4 at 2.33 eV.

    3.2.3. Functional group modification of gCNQDs

    Since carbon nitride itself is metal-free,it can also tolerate functional groups. Another approach for modification of the textural structure of g-C3N4is the introduction of other organic additives during the polymerization process of the nitrogen precursor. So the modified tri-s-triazine ring with specific anchoring groups may enhance its light-harvesting ability and be suitable for multipurpose applications in biosensors and biomass conversion. Schwinghammeret al.[35]fabricated an amorphous variant of poly (triazine imide) exhibiting an extended better hydrogen evolution activity due to light absorption up to 800 nm. We still focus on monomer gCNQDs and replace its three bridging nitrogen atoms with amino(-NH2),hydroxyl(-OH),and methyl(-CH3). In Fig.6,the absorption peaks of CNNH2, CNOH, and CNCH3(structures shown in Figs. 7(b)-7(d) respectively) sequentially blue shift, which is conducive to the application of deep ultraviolet photoelectric detection.

    Fig.6. Optical absorption of CNNH2,CNOH,and CNCH3.

    Fig. 7. (a) Structure of minimum periodic unit of monolayer g-C3N4 and QDs modified with amino groups (CNNH2), hydroxyl groups(CNOH), and methyl groups (CNCH3). Fourier transformations of induced-charge density distribution at energy resonance points for (e)CNNH2, (f) CNOH, and (g) CHCH3. Selected bond lengths: N-H =1.01 ?A; O-H =2.28 ?A; C-H =1.09 ?A. White, silver, blue, and red atoms sand for hydrogen,carbon,nitrogen,and oxygen,respectively.

    The advantages of the group to electronic modification in gCNQDs are different from those in periodic g-C3N4. Figures 7(e)-7(g) reveal that the reason for the difference is the change of the oscillation mode, which manifests as the electron transfer from long range to short range. Although the dipole response still exists, the electron-hole pairs gradually disperse from the structure boundary. In fact, the replacement of bridging nitrogen atoms changes the nitrogen-rich environment for the smallest gCNQDs. It is also attributed to the boundary effect on the nanometer scale, which can be observed directly with STM and scanning tunneling spectroscopy experiments.[36]

    3.3. Nonlinear optical response of gCNQDs

    Recently,the g-C3N4QDs have been used as fluorescent probes for HeLa cell imaging.[37]Its application is extended to the fields ofin vitrobioimaging,[38]biological analysis,and photodynamic therapy.[39,40]Increasing researches have been devoted to the nonlinear optical properties of QDs, attracting people’s interest from the perspective of basic science to study various potential applications.[41,42]The external field effect is an effective tool for studying the carrier dynamics of organic semiconductors.[43,44]Herein, gCNQDs mentioned above are selected to study the change of electron occupancy state over time by calculating the highest electron level(HEL)and density of states (DOS) of QDs under the ultrafast laser. The wavelength range of the incident lasers is from 194 nm to 900 nm,covering common ultraviolet lasers to infrared lasers.Figures 8(a)-8(c)show an experimental model equipped with a linearly polarized incident laser to illuminate the waveguide and laser detector of gCNQDs.

    Fig. 8. (a) Schematic demonstration of proposed experimental geometry. The incident laser is emitted along (b) x direction parallel to the upper surface of(c)gCNQDs.

    We explore the interaction between ultrafast laser and gCNQDs and study the time-dependent HEL under different wavelength lasers with intensities of 5 eV/?A as shown in Fig.9(a). The ultrafast laser lasts 6 fs, but we investigate the interaction till 8 fs owing to the laser delay effect.[45]We find that HELs amplitude is significantly reduced when the laser incident time reaches 4.5 fs. HELs in final states increase first and then decrease with the decrease of the incident laser wavelength. Notably, when the wavelength decreases to 337 nm(the ultraviolet region), the HEL crosses the Fermi level unexpectedly. However, when the wavelength decreases below 337 nm,the HEL drops sharply to an insulating state.

    The main reason for this phenomenon is that the 337 nm closer to the intrinsic frequency of gCNQDs allows optical carriers to obtain higher resonance energy. The shorter the laser wavelength,the higher the energy. When the energy exceeds the potential to bind the electrons, the outermost electrons are destroyed after absorbing laser energy. Therefore,the HEL exceeds the Fermi level and photoelectric conversion makes gCNQDs realize the transition to the metallic state and the state lasts to 8 fs.But in the case of wavelengths of 250 nm and 190 nm, the HEL of gCNQDs crosses the Fermi level at around 1.75 fs. A brief metallic state appears, but eventually the electronic level collapse occurs. The higher energy speeds up the electronic oscillation and brings electrons closer to the nucleus in the scattering process.[46]

    Fig. 9. (a) HEL in gCNQDs with intensity of incident ultrafast laser being 5.0 eV/A? for various wavelengths of 194 nm, 250 nm, 337 nm,514 nm, 720 nm, and 900 nm. (b) DOS of gCNQDs at 0 fs and 9 fs with intensity of incident ultrafast laser being 5.0 eV/A? for wavelength of 337 nm.

    In Fig.9(b),the change of intrinsic DOS from the initial to final state visually shows the electronic occupied state and the electrons across the Fermi level. Electron-electron interaction can insulate conductive materials,and insulating-metal phase transition is a typical expression of the competition between charge-carrier itinerancy and localization.[47]

    To further explore the interaction of gCNQDs with the 600 nm wavelength laser, we adopt an intensity range from 4.5 eV/?A to 5.5 eV/?A with an interval of 0.25 eV/?A as shown in Fig. 10(a). The influence of the electric field intensity is non-negligible. In Fig. 10(b), the degree of HEL fluctuation increases as the electric field intensity increases and is inseparable from the laser waveform. When the laser intensity exceeds 5 eV/?A,HELs cross the Fermi level,which verifies the above phenomenon of transition to metal. It reflects from the side that,like the two-dimensional g-C3N4,[48]gCNQDs also exhibit excellent stability.

    Fig.10. (a)Laser oscillograph and(b)HEL in gCNQDs under 337 nm incident ultrafast laser with various intensities of 4.5 eV/?A,4.75 eV/?A,5.0 eV/?A,5.25 eV/?A,and 5.5 eV/?A.

    We explore the conditions for laser-induced changes in the structure and physical properties of gCNQDs. The critical external field condition for the transition to the metallic state is about 337 nm wavelength laser and 5 eV electric field intensity. The results laid a theoretical foundation for the experimental preparation of gCNQDs and the research in the field of laser surface modification.

    4. Conclusion

    We studied the linear and nonlinear optical response of gCNQDs, based on time-dependent density functional theory. Under the control of direction,the number of layers,and size, the light absorption and dipole response of each gCNQDs exhibit different characteristics, which could engineer the band gap of gCNQDs. Through the design of sophisticated gCNQDs composited with noble metal nanochains, we improved the absorption and utilization in the visible light region of gCNQDs significantly. Metal/gCNQDs composites may be used as metalloenzymes in future. For nonlinear response, gCNQDs display high stability overall. Lone pair electrons provided by it facilitate its electronic coupling with non-metal electrodes, thus making it useful in metalfree high-performance storage devices. Depending on the successful combination of theoretical prediction and experimental technique for g-C3N4in the field of quantum devices, plenty of other capacities should be explored to develop commonly available materials across the areas of heterogeneous catalysis,biosensors, and nano-plasma devices. The further theoretical calculation is still on its way.

    猜你喜歡
    張紅
    Core level excitation spectra of La and Mn ions in LaMnO3
    Theoretical study of M6X2 and M6XX'structure(M =Au,Ag;X,X'=S,Se): Electronic and optical properties,ability of photocatalytic water splitting,and tunable properties under biaxial strain
    貓一直在
    貓一直在
    Stability,electronic structure,and optical properties of lead-free perovskite monolayer Cs3B2X9(B=Sb,Bi;X =Cl,Br,I)and bilayer vertical heterostructure Cs3B2X9/Cs3X9(B,B′=Sb,Bi;X =Cl,Br,I)
    First-principles study of plasmons in doped graphene nanostructures?
    Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays*
    我愛(ài)你,中國(guó)
    2015年高考英語(yǔ)最可能考的短語(yǔ)
    15 Neurological Disorder
    免费av不卡在线播放| 久久精品国产清高在天天线| 深夜a级毛片| 91久久精品电影网| 国产免费一级a男人的天堂| 国产野战对白在线观看| 午夜a级毛片| 香蕉av资源在线| 国产国拍精品亚洲av在线观看| 国产三级黄色录像| 性插视频无遮挡在线免费观看| 给我免费播放毛片高清在线观看| 亚洲av不卡在线观看| 十八禁国产超污无遮挡网站| 91狼人影院| av福利片在线观看| 91午夜精品亚洲一区二区三区 | 久9热在线精品视频| 亚洲人与动物交配视频| 小蜜桃在线观看免费完整版高清| 精品一区二区三区人妻视频| 欧美精品国产亚洲| 中亚洲国语对白在线视频| 极品教师在线免费播放| 午夜老司机福利剧场| 国产视频内射| 成人美女网站在线观看视频| 国产亚洲精品av在线| 欧美激情久久久久久爽电影| 此物有八面人人有两片| 国产高清视频在线播放一区| 精品人妻1区二区| 九色成人免费人妻av| 欧美激情在线99| 真人一进一出gif抽搐免费| 欧美色欧美亚洲另类二区| 精品久久久久久成人av| 国产av麻豆久久久久久久| 色综合婷婷激情| 亚洲国产精品合色在线| 一a级毛片在线观看| 欧美黄色片欧美黄色片| 91在线精品国自产拍蜜月| 十八禁人妻一区二区| 老司机午夜十八禁免费视频| 国产成人a区在线观看| 99精品在免费线老司机午夜| 久久香蕉精品热| 中文字幕av成人在线电影| 国产av在哪里看| 色哟哟·www| 国模一区二区三区四区视频| 蜜桃亚洲精品一区二区三区| 小蜜桃在线观看免费完整版高清| 国产激情偷乱视频一区二区| 久久久久久久久中文| 亚洲av五月六月丁香网| 精品人妻1区二区| www日本黄色视频网| 亚洲国产欧洲综合997久久,| 精品久久久久久久末码| 久久久久精品国产欧美久久久| 国产乱人伦免费视频| 一a级毛片在线观看| 免费搜索国产男女视频| 高清在线国产一区| 日本黄大片高清| 亚洲18禁久久av| 欧美乱妇无乱码| 日本一本二区三区精品| 精品人妻偷拍中文字幕| 免费看美女性在线毛片视频| 99热这里只有精品一区| 亚洲国产高清在线一区二区三| 国产91精品成人一区二区三区| 亚洲精品久久国产高清桃花| 国产高清三级在线| 免费在线观看影片大全网站| 国产精品精品国产色婷婷| 99热6这里只有精品| 18+在线观看网站| 国产精品久久久久久亚洲av鲁大| 性色av乱码一区二区三区2| 亚洲人成伊人成综合网2020| 亚洲天堂国产精品一区在线| 欧美xxxx黑人xx丫x性爽| 亚洲,欧美精品.| 少妇人妻一区二区三区视频| 一进一出抽搐gif免费好疼| 麻豆成人av在线观看| 精品福利观看| 白带黄色成豆腐渣| 白带黄色成豆腐渣| 人人妻人人看人人澡| 国产在线男女| 中文字幕免费在线视频6| 精品午夜福利视频在线观看一区| 国产精品伦人一区二区| xxxwww97欧美| 国产单亲对白刺激| 欧美3d第一页| 校园春色视频在线观看| 国产精品永久免费网站| 国产熟女xx| 身体一侧抽搐| 国产免费av片在线观看野外av| 成年女人永久免费观看视频| 男女视频在线观看网站免费| xxxwww97欧美| 9191精品国产免费久久| 成人av一区二区三区在线看| 国产精品,欧美在线| 亚洲aⅴ乱码一区二区在线播放| 国产麻豆成人av免费视频| 国产在视频线在精品| 国产探花极品一区二区| 美女大奶头视频| 国产亚洲欧美在线一区二区| 欧美成狂野欧美在线观看| 99久国产av精品| 窝窝影院91人妻| 伦理电影大哥的女人| 色在线成人网| 淫秽高清视频在线观看| 青草久久国产| 久久久久精品国产欧美久久久| 在线十欧美十亚洲十日本专区| 国产精品影院久久| 国产av不卡久久| 欧美成人一区二区免费高清观看| 国产精品伦人一区二区| 少妇熟女aⅴ在线视频| 国产三级中文精品| 久久久久久国产a免费观看| 欧美成狂野欧美在线观看| 99久久成人亚洲精品观看| 欧美绝顶高潮抽搐喷水| 日本黄色视频三级网站网址| 日本精品一区二区三区蜜桃| 国产淫片久久久久久久久 | 欧美潮喷喷水| 麻豆久久精品国产亚洲av| 日本 av在线| 极品教师在线免费播放| 国产69精品久久久久777片| 成人欧美大片| 久久精品91蜜桃| 国产高清激情床上av| 亚洲国产欧美人成| 热99在线观看视频| 精品一区二区三区av网在线观看| 欧美另类亚洲清纯唯美| 日韩av在线大香蕉| 噜噜噜噜噜久久久久久91| 18禁在线播放成人免费| 亚洲av日韩精品久久久久久密| 九色成人免费人妻av| 国产三级黄色录像| 丰满乱子伦码专区| 综合色av麻豆| 听说在线观看完整版免费高清| 日日干狠狠操夜夜爽| 久久午夜福利片| 性色avwww在线观看| 毛片女人毛片| 亚洲欧美日韩高清专用| 日本一二三区视频观看| 俄罗斯特黄特色一大片| 欧美性猛交╳xxx乱大交人| 亚洲综合色惰| 精品久久久久久久久av| 久久精品影院6| 97碰自拍视频| 欧美日本亚洲视频在线播放| 中文字幕av成人在线电影| 老熟妇仑乱视频hdxx| 大型黄色视频在线免费观看| 日韩欧美精品v在线| 国产不卡一卡二| 黄色一级大片看看| 国产午夜精品论理片| 99国产精品一区二区三区| 欧美国产日韩亚洲一区| 桃色一区二区三区在线观看| 亚洲欧美清纯卡通| 少妇人妻精品综合一区二区 | 一个人看的www免费观看视频| 国产精品综合久久久久久久免费| 久久精品91蜜桃| 在线观看66精品国产| 精品久久久久久久久久久久久| 老司机午夜十八禁免费视频| 一级黄片播放器| 毛片一级片免费看久久久久 | 日韩欧美精品免费久久 | 亚洲电影在线观看av| 少妇熟女aⅴ在线视频| 成人欧美大片| 99热精品在线国产| 在线国产一区二区在线| 窝窝影院91人妻| 淫妇啪啪啪对白视频| 国产精品永久免费网站| av在线老鸭窝| 精品一区二区三区av网在线观看| www.熟女人妻精品国产| 国产亚洲精品久久久com| 一边摸一边抽搐一进一小说| 成人午夜高清在线视频| 狠狠狠狠99中文字幕| 最近最新免费中文字幕在线| 精品不卡国产一区二区三区| 免费av不卡在线播放| 波多野结衣高清无吗| 亚洲国产精品成人综合色| 日日夜夜操网爽| 亚洲第一区二区三区不卡| 国产蜜桃级精品一区二区三区| 一级毛片久久久久久久久女| 免费在线观看成人毛片| 人妻丰满熟妇av一区二区三区| 免费av不卡在线播放| 久久精品夜夜夜夜夜久久蜜豆| 老鸭窝网址在线观看| 日韩欧美在线二视频| 国产精品亚洲一级av第二区| 免费电影在线观看免费观看| 亚洲欧美日韩高清专用| 啦啦啦韩国在线观看视频| 欧美一区二区精品小视频在线| 国产亚洲欧美在线一区二区| 欧美xxxx性猛交bbbb| 在线播放无遮挡| 日本与韩国留学比较| 欧美日韩乱码在线| 亚洲精品456在线播放app | 日本三级黄在线观看| 欧美区成人在线视频| 十八禁网站免费在线| 一进一出抽搐动态| 亚洲在线观看片| 精品国产亚洲在线| 精品一区二区免费观看| 免费看美女性在线毛片视频| 一本久久中文字幕| 亚洲美女搞黄在线观看 | 国产伦精品一区二区三区视频9| 一夜夜www| 久久伊人香网站| av福利片在线观看| 久久精品影院6| 女人被狂操c到高潮| 国产精品一区二区三区四区免费观看 | 变态另类丝袜制服| 久久久久久久精品吃奶| 日韩欧美在线二视频| 成人av一区二区三区在线看| 亚洲av第一区精品v没综合| 直男gayav资源| 熟女电影av网| 宅男免费午夜| 在现免费观看毛片| 在线播放无遮挡| av中文乱码字幕在线| 国产精品久久久久久人妻精品电影| 国产精品一区二区免费欧美| 久久热精品热| 日日干狠狠操夜夜爽| 精品一区二区三区av网在线观看| 日韩欧美国产一区二区入口| 国产一区二区三区在线臀色熟女| 人妻久久中文字幕网| 婷婷亚洲欧美| 日本成人三级电影网站| 国产精品美女特级片免费视频播放器| 欧美丝袜亚洲另类 | 国内久久婷婷六月综合欲色啪| xxxwww97欧美| 国产免费男女视频| 757午夜福利合集在线观看| 人人妻,人人澡人人爽秒播| 无遮挡黄片免费观看| 亚洲av日韩精品久久久久久密| 美女xxoo啪啪120秒动态图 | 婷婷精品国产亚洲av| 亚洲经典国产精华液单 | 久久午夜福利片| 别揉我奶头 嗯啊视频| 亚洲av成人精品一区久久| 日韩欧美 国产精品| 国产精品影院久久| or卡值多少钱| 婷婷丁香在线五月| 国产综合懂色| 国产黄片美女视频| 欧美三级亚洲精品| 美女高潮喷水抽搐中文字幕| 亚洲综合色惰| 免费观看的影片在线观看| 欧美xxxx黑人xx丫x性爽| 国产成人啪精品午夜网站| 精品一区二区三区av网在线观看| h日本视频在线播放| 三级国产精品欧美在线观看| 国内揄拍国产精品人妻在线| 亚洲18禁久久av| 午夜老司机福利剧场| 99在线视频只有这里精品首页| 成熟少妇高潮喷水视频| 国产成人a区在线观看| 一个人看的www免费观看视频| 欧美最新免费一区二区三区 | 久久精品夜夜夜夜夜久久蜜豆| 91久久精品国产一区二区成人| 毛片女人毛片| 国产精品电影一区二区三区| 内射极品少妇av片p| 午夜福利高清视频| 五月伊人婷婷丁香| 99久久无色码亚洲精品果冻| 久久午夜亚洲精品久久| 日本三级黄在线观看| 国产激情偷乱视频一区二区| 永久网站在线| 亚洲精品亚洲一区二区| 美女高潮喷水抽搐中文字幕| 99久久精品热视频| 国产精品爽爽va在线观看网站| 啪啪无遮挡十八禁网站| 两人在一起打扑克的视频| 激情在线观看视频在线高清| 一进一出好大好爽视频| 久久6这里有精品| www.www免费av| 能在线免费观看的黄片| 国产精品电影一区二区三区| 色5月婷婷丁香| 日本五十路高清| 精华霜和精华液先用哪个| 久久精品综合一区二区三区| 极品教师在线免费播放| 十八禁人妻一区二区| 精品熟女少妇八av免费久了| 国产日本99.免费观看| 啦啦啦观看免费观看视频高清| 亚洲一区二区三区不卡视频| 欧美又色又爽又黄视频| eeuss影院久久| 午夜亚洲福利在线播放| 欧洲精品卡2卡3卡4卡5卡区| 亚洲中文字幕一区二区三区有码在线看| 欧美精品国产亚洲| 美女高潮的动态| 日本黄色视频三级网站网址| 狠狠狠狠99中文字幕| 美女 人体艺术 gogo| 亚洲va日本ⅴa欧美va伊人久久| 久久人人爽人人爽人人片va | 色综合婷婷激情| 久久精品国产亚洲av香蕉五月| 真人一进一出gif抽搐免费| 国产探花极品一区二区| 深夜精品福利| 国产69精品久久久久777片| 欧美最新免费一区二区三区 | 亚洲aⅴ乱码一区二区在线播放| 日韩大尺度精品在线看网址| 国产伦精品一区二区三区视频9| 又爽又黄无遮挡网站| 欧美最新免费一区二区三区 | 日韩亚洲欧美综合| 久久久精品大字幕| 此物有八面人人有两片| а√天堂www在线а√下载| 亚洲美女搞黄在线观看 | a级毛片a级免费在线| 麻豆国产av国片精品| 国产精品人妻久久久久久| 成人av一区二区三区在线看| 国产精品爽爽va在线观看网站| 如何舔出高潮| 永久网站在线| 免费看美女性在线毛片视频| 人妻丰满熟妇av一区二区三区| 亚洲国产精品999在线| 欧美xxxx性猛交bbbb| 成人一区二区视频在线观看| 亚洲片人在线观看| 国产视频内射| 精品国产亚洲在线| 蜜桃久久精品国产亚洲av| 国产毛片a区久久久久| 日韩欧美国产一区二区入口| 99riav亚洲国产免费| 搡老熟女国产l中国老女人| 长腿黑丝高跟| 国产在视频线在精品| 国产真实伦视频高清在线观看 | 毛片一级片免费看久久久久 | 天堂影院成人在线观看| 精品一区二区三区视频在线观看免费| 国产精品自产拍在线观看55亚洲| 欧美极品一区二区三区四区| 在线观看av片永久免费下载| 色精品久久人妻99蜜桃| netflix在线观看网站| 亚洲自偷自拍三级| 色视频www国产| 日本成人三级电影网站| 天堂√8在线中文| 国产亚洲欧美98| 麻豆成人av在线观看| 97人妻精品一区二区三区麻豆| 天美传媒精品一区二区| av黄色大香蕉| 一个人看视频在线观看www免费| 久久久久久大精品| 亚洲三级黄色毛片| 国产高清激情床上av| 老司机午夜福利在线观看视频| 在线观看66精品国产| 一区二区三区四区激情视频 | 欧美区成人在线视频| 午夜亚洲福利在线播放| 真人做人爱边吃奶动态| 色吧在线观看| 91麻豆av在线| 老熟妇乱子伦视频在线观看| 国产精品日韩av在线免费观看| 国产av一区在线观看免费| 国产乱人伦免费视频| 日韩欧美免费精品| 国产在线精品亚洲第一网站| 亚洲一区二区三区色噜噜| 69av精品久久久久久| 国产精品一区二区三区四区免费观看 | 亚洲五月天丁香| 首页视频小说图片口味搜索| 变态另类成人亚洲欧美熟女| АⅤ资源中文在线天堂| 在线看三级毛片| 国产黄片美女视频| 欧美精品国产亚洲| 欧美色欧美亚洲另类二区| 婷婷亚洲欧美| 变态另类丝袜制服| 国产精品久久久久久久久免 | 好男人电影高清在线观看| 91在线精品国自产拍蜜月| 国产精品一区二区免费欧美| 精品人妻1区二区| 最近最新免费中文字幕在线| 日日夜夜操网爽| 一a级毛片在线观看| 国产亚洲欧美98| av在线观看视频网站免费| 亚洲欧美激情综合另类| 亚洲成人免费电影在线观看| 男女之事视频高清在线观看| 日本五十路高清| 免费观看精品视频网站| 好看av亚洲va欧美ⅴa在| 亚洲自偷自拍三级| 日本撒尿小便嘘嘘汇集6| 天天一区二区日本电影三级| 十八禁网站免费在线| 午夜福利成人在线免费观看| 12—13女人毛片做爰片一| 高清毛片免费观看视频网站| 成人高潮视频无遮挡免费网站| 久久精品国产清高在天天线| 最新在线观看一区二区三区| 免费人成在线观看视频色| 国产高清视频在线观看网站| av黄色大香蕉| 日韩欧美三级三区| 天堂影院成人在线观看| 免费电影在线观看免费观看| 中文字幕人妻熟人妻熟丝袜美| 午夜免费成人在线视频| 两个人视频免费观看高清| 免费看光身美女| 精品久久国产蜜桃| 精品久久久久久久末码| 婷婷精品国产亚洲av| 亚洲av电影在线进入| 国产综合懂色| av中文乱码字幕在线| 亚洲最大成人av| 99热这里只有精品一区| 国产男靠女视频免费网站| 一区二区三区免费毛片| 亚洲三级黄色毛片| 热99在线观看视频| 嫩草影院新地址| 国产高潮美女av| 最近最新免费中文字幕在线| 在线播放无遮挡| 亚洲熟妇中文字幕五十中出| 午夜福利成人在线免费观看| 久久欧美精品欧美久久欧美| 十八禁人妻一区二区| 99国产精品一区二区三区| 久久久久久久午夜电影| 精品久久久久久久久久久久久| 搡老岳熟女国产| 久9热在线精品视频| 老司机深夜福利视频在线观看| 久久久久久久久久黄片| 精品午夜福利视频在线观看一区| av在线蜜桃| 亚洲av一区综合| 美女被艹到高潮喷水动态| 欧美黑人欧美精品刺激| 亚洲av不卡在线观看| 午夜福利高清视频| 18美女黄网站色大片免费观看| 亚洲欧美日韩东京热| 亚洲性夜色夜夜综合| 久久久精品大字幕| 一级a爱片免费观看的视频| 美女cb高潮喷水在线观看| 丁香六月欧美| 自拍偷自拍亚洲精品老妇| 亚洲人与动物交配视频| 亚洲 欧美 日韩 在线 免费| 我要看日韩黄色一级片| 老司机午夜福利在线观看视频| 精品人妻1区二区| 国产中年淑女户外野战色| 午夜两性在线视频| 中国美女看黄片| 看十八女毛片水多多多| 久久6这里有精品| 国产精品99久久久久久久久| 97超视频在线观看视频| 亚洲av不卡在线观看| 午夜福利18| 好男人在线观看高清免费视频| 欧美区成人在线视频| 99国产精品一区二区蜜桃av| 天堂影院成人在线观看| 日韩中字成人| 精品日产1卡2卡| 精品人妻视频免费看| 精品无人区乱码1区二区| 国产爱豆传媒在线观看| 久9热在线精品视频| 精品国产亚洲在线| 中国美女看黄片| 国产精品一区二区性色av| 亚洲五月婷婷丁香| 亚洲专区国产一区二区| 一本久久中文字幕| 99久久久亚洲精品蜜臀av| 在现免费观看毛片| 国产免费一级a男人的天堂| av女优亚洲男人天堂| 亚洲专区中文字幕在线| 美女cb高潮喷水在线观看| 色哟哟哟哟哟哟| 亚洲人成电影免费在线| 老熟妇仑乱视频hdxx| 可以在线观看的亚洲视频| 在线天堂最新版资源| 国产亚洲av嫩草精品影院| 此物有八面人人有两片| 成人鲁丝片一二三区免费| 日韩欧美一区二区三区在线观看| 午夜久久久久精精品| 精品午夜福利在线看| 脱女人内裤的视频| 全区人妻精品视频| 51午夜福利影视在线观看| 特级一级黄色大片| 观看美女的网站| 精品99又大又爽又粗少妇毛片 | 在线a可以看的网站| 久久性视频一级片| 国产黄片美女视频| 一边摸一边抽搐一进一小说| 国语自产精品视频在线第100页| 日韩高清综合在线| 国产午夜福利久久久久久| 亚洲人与动物交配视频| 久久人人精品亚洲av| 特大巨黑吊av在线直播| 午夜a级毛片| 99久久成人亚洲精品观看| 亚州av有码| 日日摸夜夜添夜夜添小说| 国产欧美日韩精品亚洲av| 又黄又爽又刺激的免费视频.| 国产成年人精品一区二区| 99热精品在线国产| 欧美日韩中文字幕国产精品一区二区三区| 看片在线看免费视频| av在线天堂中文字幕| 国产熟女xx| 一个人免费在线观看电影| 欧美精品啪啪一区二区三区| 狠狠狠狠99中文字幕| 亚洲av五月六月丁香网| 中国美女看黄片| 国产极品精品免费视频能看的| 亚洲人成电影免费在线| 午夜影院日韩av| 精品久久久久久成人av| 免费电影在线观看免费观看| 波多野结衣巨乳人妻| 免费看美女性在线毛片视频| 在线观看66精品国产| 精品熟女少妇八av免费久了| 自拍偷自拍亚洲精品老妇| 亚洲av电影不卡..在线观看|