• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability,electronic structure,and optical properties of lead-free perovskite monolayer Cs3B2X9(B=Sb,Bi;X =Cl,Br,I)and bilayer vertical heterostructure Cs3B2X9/Cs3X9(B,B′=Sb,Bi;X =Cl,Br,I)

    2022-02-24 08:59:06YaowenLong龍耀文HongZhang張紅andXinluCheng程新路
    Chinese Physics B 2022年2期
    關(guān)鍵詞:張紅新路

    Yaowen Long(龍耀文) Hong Zhang(張紅) and Xinlu Cheng(程新路)

    1College of Physics,Sichuan University,Chengdu 610065,China2Key Laboratory of High Energy Density Physics and Technology(Ministry of Education),Sichuan University,Chengdu 610065,China3Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,China

    The lead-free perovskites Cs3B2X9 (B=Sb,Bi; X =Cl,Br,I)as the popular photoelectric materials have excellent optical properties with lower toxicity. In this study, we systematically investigate the stable monolayer Cs3B2X9 and bilayer vertical heterostructure(B, B′ =Sb, Bi; X =Cl, Br, I) via first-principles simulations. By exploring the electrical structures and band edge positions, we find the band gap reduction and the band type transition in the heterostructuredue to the charge transfer between layers. Furthermore, the results of optical properties reveal light absorption from the visible light to UV region, especially monolayer Cs3Sb2I9 and heterostructure Cs3Sb2I9/Cs3Bi2I9, which have absorption peaks in the visible light region, leading to the possibility of photocatalytic water splitting. These results provide insights for more two-dimensional semiconductors applied in the optoelectronic and photocatalytic fields.

    Keywords: first principles simulations, lead-free perovskite, monolayer Cs3B2X9, vertical heterostructure,photoelectric materials

    1. Introduction

    In recent years, lead-free perovskites have attracted widespread attention and interest due to their non-toxic and unique optoelectronic properties.[1—3]A large number of studies on 3D perovskites, such as Bi-based cesium bismuth halides,Sb-based cesium antimony halides,double perovskite semiconductor Cs2Sn1?xTexI6and Cs2AgxNa1?xInCl6powders,[1,4—6]have shown that they have well performance in photocatalytic water splitting, light-emitting diodes and solar cell applications.

    Among those lead-free perovskites, Cs3B2X9(B= Sb,Bi;X= Cl, Br, I) compositions have been investigated as a promising material group due to their good properties. In 2019,Yousraet al.[7]reported that Cs3B2X9could be synthesized through dry mechanochemistry and showed white-light emission at room temperature through experiment. Moreover,first-principle studies of electronic and optical properties of Cs3Sb2X9revealed that the absorption red shifts from Cl to I as the band gap decreases.[4]Although 3D perovskites have experienced unprecedent rapid development in those years,their stability under the light and heat is still an important reason hindering their commercial applications.[8,9]Therefore,the corresponding two-dimensional perovskites have attracted more and more attention due to their excellent 2D quantum confinement effects.[10—13]The 2D halide perovskites are basically divided into two groups: inorganic layer and organic cation diversity. Lanzettaet al.[14]investigated the 2D organic tin halide perovskites (PEA)2SnIXBr4?xwith tunable optical properties in the visible spectrum by changing the I/Br ratio.Panet al.[15]investigated the layer-number-dependent electrical and optical properties of the all-inorganic 2D RP perovskite Cs2PbI2Cl2and emphasized that the excition-binding energy increases with the decreasing number of layers,which provides theoretical support to applications of 2D perovskites in photoelectric devices. In addition, we can also adjust the electrical and optical properties of perovskites by the composition, pressure or construction of heterostructures.[16—19]As mentioned above, lead-free perovskites based on Cs cation have been extensively studied, and the successfully synthesized 2D ultrathin few-layer(2—4 layers)Cs3Bi2I9provides a direction for the theoretical calculation.[20]In previous studies, there have not been systematic theoretical calculations for the two-dimensional monolayer Cs3B2X9perovskite, especially for stability of these substances.

    In this article, we perform a systematic study of electronic, stability and optical properties of all-inorganic 2Dmonolayer Cs3B2X9via first-principles density functional theory. In Section 2, we give a comprehensive description of the calculation details. In Section 3, firstly we check the stability of monolayer Cs3B2X9(B= Sb, Bi;X= Cl, Br,I), secondly we study their electronic structures, thirdly we analyze the feasibility of their photocatalytic water splitting through the work function and optical absorption, fourthly stability, electronic and optical properties of the heterostructure(B,B′=Sb,Bi;X=Cl,Br,I)are discussed. Finally,in Section 4 we summarize all the results.

    Fig. 1. (a), (b) and (d) Stereogram, top view, side view of the 2D monolayer Cs3B2X9,respectively,tagged with structure parameters. (c)The stereogram of heterostructure Cs3B2X9/Cs3X9 (B,B′ =Sb, Bi;X =Cl,Br,I).(e)The schematic diagram represents the Brillouin zone of the 2D monolayer Cs3B2X9 with high symmetric points Γ,M,K.

    2. Computational details

    All the calculations in this paper are based on firstprinciples density functional theory. Using the CASTEP[21]package for structural relaxation and phonon dispersions, we take different plane-wave cutoff energies from 400 eV to 750 eV to improve the computational efficiency for different systems and select the norm-conserving pseudopotentials. We utilize the approximation(GGA)represented by the Perdew—Burke—Ernzerhof(PBE)functional[22]to compute the phonon dispersions of the structure. The geometry optimization is finished when max ionic tolerance is lower than 0.03 eV/and the energy tolerances are less than 10?4per atom. We sample 2×2×1 grid ofk-point by Monkhorst—Pack scheme in Brillouin zone. The phonon dispersions are calculated by the linear response method.[23]

    In order to further study more about these materials,we make some calculations about monolayer Cs3B2X9band structures using the Heyd—Scuseria—Ernzerhof (HSE06) hybrid functional since it is able to accurately calculate the band gap.[24]We also use it to get their work function and optical properties. Furthermore,we consider the effect of the van der Waals force using the DFT-D3 correction method of Grimme to compute the heterostructure(B,B′=Sb,Bi;X=Cl,Br,I).[25]Thek-point we make is 6×6×1 grid ofk-point by Monkhorst—Pack scheme in Brillouin zone and the energy (both total energy and band structure energy) change between two steps is smaller than 10?8eV. The plane-wave cutoff energy is set to 400 eV. All the calculations for this section are carried out using the Viennaab initiosimulation package(VASP).[26]

    3. Results and discussion

    3.1. Stability of monolayer Cs3B2X9 (B = Sb,Bi; X =Cl,Br,I)

    Here we give a brief description of this structure. The 2D monolayer Cs3B2X9is a structure consisting of dioctahedraldimer-like units with corner-sharing connectivity surrounded by cesium cations (Fig. 1(a)). The vacuum layer between the upper and lower layers in thez-axis direction is about 20. The space-group symmetries of the monolayers Cs3B2X9are alland some of them are different from their 3D structures. For instance, the three-dimensional crystal structure of Cs3Bi2I9isP63/MMC.[27]

    Table 1. The results for optimized geometries and cohesive energies of monolayer Cs3Bi2X9 obtained using DFT with PBE.

    After the full structural relaxations,we obtain some structural information which included lattice constants,bond length and bond angle of monolayer Cs3B2X9as shown in Figs.1(a)and 1(d). The corresponding values are all listed in Table 1.To verify the stability of the monolayer Cs3B2X9structure,we perform calculations of the cohesive energy and calculations of the phonon dispersion. To calculate the cohesive energyEcohof monolayer Cs3B2X9,we use the standard formulawhereEtotis the total energy of monolayer Cs3B2X9,andEatomis the energy of each free atom, which is obtained by performing an isolated atom in a vacuum layer with a lattice constant of 15, avoiding the interaction between adjacent atoms. The cohesive energies listed in Table 1 are?3.314 eV(Cs3Sb2Cl9),?2.964 eV(Cs3Sb2Br9),?2.602 eV(Cs3Sb2I9),?3.344 eV(Cs3Bi2Cl9),?2.992 eV(Cs3Bi2Br9),?2.626 eV(Cs3Bi2I9). In the case of the same halogen atom, the absolute value of cohesive energy (see Table 1) of the monolayer Cs3Bi2X9is slightly higher than the monolayer Cs3Sb2X9, illustrating better stability of monolayer Cs3Bi2X9.

    To further explore the stability of the monolayer perovskites Cs3B2X9,we execute the phonon dispersion. The results (Fig. 2) show that the lead-free monolayer perovskites Cs3B2X9in the Brillouin zone along a high symmetry point path (Fig. 1(e)) have fully positive phonon dispersion. The minimum acoustic branch near the gamma point is linear,meeting the expected results for the long-wave approximation,which demonstrates the dynamical stability of these monolayer Cs3B2X9compounds.

    Combined with the above detailed analyses of the cohesive energy and phonon dispersion,we can conclude theoretically that the monolayer Cs3B2X9(B=Sb,Bi;X=Cl,Br,I)can exist stably.

    Fig.2. (a)—(f)The phonon dispersion of Cs3Bi2Cl9,Cs3Bi2Br9,Cs3Bi2I9,Cs3Sb2Cl9,Cs3Sb2Br9,Cs3Sb2I9,respectively.

    3.2. Band structures of monolayer Cs3B2X9 (B = Sb,Bi;X =Cl,Br,I)

    Before exploring the heterostructure Cs3B2X9/Cs3B′2X9(B,B′= Sb, Bi;X= Cl, Br, I), the calculations of monolayer Cs3B2X9(B=Sb,Bi;X=Cl,Br,I)band structures are carried out using HSE06 hybrid functional (see Fig. 3). The bandgaps of monolayer cesium bismuth halides are 4.198 eV(Cs3Bi2Cl9), 3.564 eV (Cs3Bi2Br9), 2.874 eV (Cs3Bi2I9), as shown in Figs.3(a)—3(c), and the bandgaps of monolayer cesium antimony halides are 3.503 eV (Cs3Sb2Cl9), 2.981 eV(Cs3Sb2Br9), 2.476 eV (Cs3Sb2I9), as shown in Figs. 3(d)—3(f). Compared with the 3D crystal structure Cs3B2X9, the band gap of the monolayer structure is higher due to its 2D electronic dimensionality (quantum confinement effects),which can cause lower VB maximums(VBMs)and higher CB minimums (CBMs).[4,28]One can see that the Cs3Bi2X9type monolayer perovskites are all indirect bands with the VBMs occurring along theG—Mdirection and CBMs located atGpoint,as shown in Figs.3(a)—3(c). For Cs3Sb2X9-type monolayer perovskites,the similar pattern occurs except monolayer Cs3Sb2Cl9which VBM is located atG, and CBM appears betweenGandM. Comparing monolayer cesium bismuth halides and cesium antimony halides, we find about 0.5 eV more band gaps in V-group element bismuth. Therefore, the wide bandgap of Cs3Bi2X9can apply to high-power electronic devices and UV light devices. Furthermore,the band gap decreases as the weight of the halogen atom increases in both Cs3Sb2X9and Cs3Bi2X9, especially for Cs3Sb2I9with only 2.476 eV.This means that 2D monolayer Cs3Sb2X9has potential applications in visible light devices.

    Kimet al.[16]reported that band gap increases as theB—Xdistance decreases in the crystal structure of Cs3B2X9,and the same features of monolayer structure show up (see Table 8).They also reported that the band gap increases as the electronegativity difference between theBsite metal andXsite halide increases, which is consistent with our present result(Fig. 3). However, the bond angleβ(Figs. 1(b) and 1(d))between two asymmetric atomsBrelative to central atomXshows an opposite trend in Cs3Sb2X9and Cs3Bi2X9. With the increase of band gap,the bond angleβof Cs3Sb2X9increases and the bond angleβof Cs3Bi2X9decreases.

    To understand the contribution of each element and the electronic states of its different orbitals to the band, we perform calculations of total densities of states(TDOS)and partial densities of states(PDOS)of the monolayer Cs3B2X9near the Fermi level. Due to few contributions ofd-orbital of all elements to the electronic states near the Fermi level,we omit it when drawing,and the results are shown in Fig.4. The more details of DOS are placed in Appendix A.

    Fig. 3. (a)—(c) Band structures of monolayer Cs3Bi2Cl9, Cs3Bi2Br9, Cs3Bi2I9, respectively. (d)—(f) Band structures of monolayer Cs3Sb2Cl9,Cs3Sb2Br9,Cs3Sb2I9. The blue dashed line represents the Fermi level set to zero. The location of the band gap is indicated by the red arrows.

    Fig.4. (a)—(c)TDOS and PDOS of the monolayer Cs3Bi2X9(X=Cl,Br,I),respectively. (d)—(f)TDOS and PDOS of the monolayer Cs3Sb2X9(X =Cl,Br,I).The black dashed line represents the Fermi energy level set to zero.

    It is observed from the PDOS of all six types of monolayer Cs3B2X9that the state near the Fermi level has contributions from the s orbital ofB(Sb, Bi), the p orbital ofX(Cl,Br,I)andB(Sb,Bi). We can find that the states closest to the CBM of all monolayer Cs3B2X9have contributions from the p orbitals ofB(Sb, Bi) andX(Cl, Br, I). This suggests the existence of anti-bonding states due to the strong interaction between the p orbitals ofBandX. In the case of the state closest to the VBM,the contributions from the s orbitals ofB(Sb,Bi)and the p orbitals ofX(Cl,Br,I)imply a typical s—p interaction of the orbital hybridization ofB(Sb,Bi)andX(Cl,Br,I) atoms. In addition, the lower energy region of the valenceband is occupied by electrons in the p orbitals,indicating that the existence of bonding states due to the interaction between theB(Sb, Bi) and theX(Cl, Br, I) atoms. In general, with the increase of atomic number ofX(Cl, Br, I), the density of states near the Fermi level also increases, which provides convenience for the excitation of photogenerated carriers,suggesting its potential applications in optoelectronic devices.

    3.3. Monolayer Cs3B2X9(B=Sb,Bi;X=Cl,Br,I)for water splitting

    Fig.5. (a)Band edge position of monolayer Cs3B2X9 (B=Sb,Bi;X =Cl,Br,I)relative to the vacuum level(blue dashed line)calculated with HSE06 functional. The redox potential is marked with red dotted lines,and the legends B—X (B=Sb,Bi;X=Cl,Br,I)represent monolayer Cs3B2X9(B=Sb,Bi;X=Cl,Br,I).(b)The absorption spectra of monolayer Cs3B2X9.(c)The absorption spectra of monolayer Cs3Sb2Br9 and Cs3Sb2I9 before and after applying the mechanical biaxial strain.

    As we all know, a good photocatalyst material needs a suitable band alignment. We have calculated the values of CBM and VBM via the hybridized functional HSE06 and determined the work function of the monolayer Cs3B2X9by calculating the vacuum level(see Fig.5).

    In order to become an excellent candidate for the semiconductor material, the band edges must straddle the water redox potentials, which means that the VBM should be above the reduction potential (VH+/H2=?4.44 eV) and the CBM should be below the oxidation potential (VOH?/O2=?5.67 eV). As shown in Fig.5(a),almost all monolayer perovskites Cs3B2X9meet the requirement of the band alignment.However,the band gap of photocatalyst driven by visible light should be less than 3.0 eV (λ >415 nm).[29]Herein, the monolayer Cs3Sb2Br9,Cs3Bi2I9and Cs3Sb2I9,corresponding to the green,purple and brown lines in Fig.5(a),can be used as potential materials for visible light photocatalytic equipment.

    In addition,we can see from the light absorption spectra(see Fig.5(b))that there are light absorptions in the visible region of Cs3Sb2I9and near-UV regions of Cs3Sb2Br9,Cs3Bi2I9monolayer lead-free perovskite,especially in Cs3Sb2I9,which shows an absorption peak in visible light region. Genget al.[17]have reported that the absorption edge of nanomaterial Cs3Bi2Br9exhibits a redshift with the increase of pressure,indicating a possible way to obtain the visible light absorption for monolayer Cs3Sb2Br9, Cs3Bi2I9. Furthermore, compared the changes in the light absorption coefficient of monolayer Cs3Sb2Br9and Cs3Sb2I9before and after applying the mechanical biaxial strain,it is seen that the red shifts occur with aη=6% compression (see Fig. 5(c)). This implies that the visible light absorption of monolayer Cs3B2X9can be achieved by applying an appropriate pressure.

    3.4. Stability, band structure and optical properties for bilayer Cs3B2X9/Cs3X9 (B,B′ =Sb,Bi; X =Cl,Br,I)heterostructure

    For the photocatalytic water splitting and photodetection,maintaining a long electron-hole recombination time is helpful for better detection and catalytic chemical reaction applications. The indirect band gap of monolayer Cs3B2X9must use the recombination center when conducting band electrons are recombined with valence band holes. Although the absorption efficiency is reduced in this process, the recombination time of electron-hole is prolonged (~ns) in contrast to some direct band gap materials(~ps).[30]In order to modulate the bandgap and obtain a longer carrier lifetime,two different twodimensional monolayer semiconductors are usually connected into a vertical heterostructure(HS).[31]Here,we can more easily combine Cs39(B′=Bi)and Cs3B2X9(B=Sb)to HSdue to their tiny mismatches of lattice constants,which are less than 1%.

    We first calculate the binding energy of the heterojunction to investigate the structural stability. A standard formula of binding energy is given as follows:

    whereEHSis the total energy of HS Cs3B2X9/Cs39(B,B′= Sb, Bi;X= Cl, Br, I), andElayer(Cs3B2X9),Elayer(Cs39)are the energy of the ground state monolayer Cs3B2X9(B=Sb;X=Cl, Br, I)and the ground state monolayer Cs39(B′=Bi;X=Cl,Br,I),respectively.The binding energies of HS (see Table 2) are?5.970 eV,?7.031 eV,?6.917 eV. Those are exothermic processes, indicating that the HS energy is reduced through the modulation of van der Waals forces.

    Table 2. The parameters of HS Cs3B2X9/Cs3X9 (B,B′=Sb,Bi;X =Cl,Br, I) after structure relaxation using the PBE exchange-correlation functional.

    Table 2. The parameters of HS Cs3B2X9/Cs3X9 (B,B′=Sb,Bi;X =Cl,Br, I) after structure relaxation using the PBE exchange-correlation functional.

    Structure Lattice constant(images/BZ_589_1417_292_1450_340.png) Binding energy(eV)Cs3Bi2Cl9/Cs3Sb2Cl9 7.710 —5.970 Cs3Bi2Br9/Cs3Sb2Br9 8.021 —7.031 Cs3Bi2I9/Cs3Sb2I9 8.607 —6.917

    We next explore the band structures and density of states of the Cs3B2X9/Cs39(B,B′= Sb, Bi;X= Cl, Br, I),as shown in Fig. 6, with band gaps 3.133 eV (direct band),2.659 eV(indirect band)and 2.143 eV(indirect band). Compared to the monolayer Cs3B2X9, an obvious band gap decrease is found in the heterojunction,which implies an easier way for electron excitation from valence band to conduction band under the light. Moreover,the changing in band gap type of Cs3Sb2Cl9/Cs3Bi2Cl9can be explained through the PDOS and band structure, as shown in Figs. 6(a), 6(d), 6(g). The states near the VBM are occupied by the Cs3Sb2Cl9layer and the states near the CBM are occupied by the Cs3Bi2Cl9layer,which means that the excitation of electrons is energetically favorable from the VBM of Cs3Sb2Cl9(Gpoint in monolayer structure) to the CBM of Cs3Bi2Cl9(Gpoint in monolayer structure).

    From the performed PDOS and band structures in Fig.6,it can be seen that all the three HS share the same trend that the VBM is dominated by the states from Cs3Sb2X9layer whereas the CBM is mainly provided by the states from Cs3Bi2X9layer. Furthermore, the valence band offset(VBO)and conduction band offset(CBO)between the Cs3Sb2X9and Cs3Bi2X9layers can be seen in Fig. 5(a), indicating the existence of the type II band alignment. Therefore, the transmission of photo-generated holes from Cs3Bi2X9to Cs3Sb2X9can be achieved through VBO and the electrons can be transferred from Cs3Sb2X9to Cs3Bi2X9powered by CBO.

    Fig. 6. (a)—(c) Projected density of states (PDOS) and (d)—(i) projected band structures (PBANDS) of heterostructures Cs3B2X9/Cs3X9(B,B′=Sb,Bi;X =Cl,Br,I),respectively.

    With the increase of the halogen atomic number of HS,it is observed that the states near the Fermi level are increased and give a narrower band gap (see Fig. 6). Unlike the alloyinduced phase transition,[27]Cs3Sb2I9/Cs3Bi2I9shows the most appropriate band gap for water splitting under the visible light, which is tuned by the charge transfer between layers,as shown in Fig.7(a). The type II band alignment caused by the interlayer electron excitation could adjust the electron transfer behavior as mentioned above to reduce the band gap.Photoinduced electron and hole transfers on different sides of the heterojunction promote charge-carrier separation to prevent rapid recombination of photogenerated carriers. Therefore, we explore the optical properties about heterostructure Cs3B2X9/Cs39(B,B′=Sb,Bi;X=Cl,Br,I).

    Fig.7. (a)Absorption spectra of Cs3B2X9/Cs3X9 and Cs3Sb2X9,the differential charge density of heterostructure Cs3Sb2I9/Cs3Bi2I9 (see inset). (b) Band edge position of heterostructures Cs3B2X9/Cs3X9 relative to the vacuum level (blue dashed line) calculated with the HSE06 functional,and the schematic of the band alignment(see inset).

    The frequency-dependent dielectric function is calculated, and then the absorption coefficient as photon energy is evaluated. Compared with the monolayer structure, the heterostructures Cs3B2X9/Cs39show absorption redshifts in the visible region, see Fig. 7(a), which meet the reduction of band gap. The overall absorption of light is enhanced,while there are some small decreases in different photon energy ranges (~3 eV of Cs3Sb2I9/Cs3Bi2I9,~3.5 eV of Cs3Sb2Br9/Cs3Bi2Br9and~4 eV of Cs3Sb2Cl9/Cs3Bi2Cl9).They all achieve significant light absorption in the near-UV regions(for 3 eV—5 eV).However,only the Cs3Sb2I9/Cs3Bi2I9shows satisfactory visible light absorption. The difference of CBM could become the main reason to modify the light absorption, in the case of similar VBM, as shown in Fig. 7(b).In practical applications,substrates are often added to support and grow the materials.They could adjust the absorption coefficient via the internal distance between materials and the polar substrates.[32]Therefore,the selection of suitable substrate may provide an idea for further optimization of the absorption coefficient of heterojunction Cs3B2X9/Cs39.

    4. Conclusions

    In summary,we have theoretically investigated the structural stability, electronic structure and optical properties of monolayer Cs3B2X9(B= Sb, Bi;X= Cl, Br, I) and heterostructure Cs3B2X9/Cs39(B,B′=Sb, Bi;X=Cl, Br,I) based on first-principles calculations. The stability of monolayer structures is verified through cohesive energy and phonon dispersion, and the stability of heterostructures is checked by binding energy. For monolayer structures, the indirect band gaps from~2.5 eV to~4.2 eV and band edge positions warrant good light absorption in the visible and near-UV region, which can be adjusted by appropriate pressure to achieve the redshift of light absorption. For the heterostructures Cs3B2X9/Cs39,the band gaps from~2.1 eV to~3.1 eV reduction are observed due to the type II band alignment, which shows different states occupied in different layers near the CBM and VBM. Moreover, the changing of band type from indirect to direct atΓpoint is found in Cs3Sb2Cl9/Cs3Bi2Cl9due to a particular way of charge transfer between layers.The Cs3Sb2I9/Cs3Bi2I9shows satisfactory visible light absorption which is suitable for photocatalytic water splitting,while the other two show excellent absorption in near-UV region. The above results provide more options for photocatalytic applications of two-dimensional semiconductors.

    Acknowledgements

    This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0303600), the National Natural Science Foundation of China (Grant No. 11974253),and the Science Specialty Program of Sichuan University(Grand No.2020SCUNL210).

    Appendix A

    Fig.A1. The DOS of different orbitals and elements of monolayer Cs3Sb2X9 (X =Cl,Br,I).

    Fig.A2. The DOS of different orbitals and elements of monolayer Cs3Bi2X9 (X =Cl,Br,I).

    猜你喜歡
    張紅新路
    Core level excitation spectra of La and Mn ions in LaMnO3
    Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
    Theoretical study of M6X2 and M6XX'structure(M =Au,Ag;X,X'=S,Se): Electronic and optical properties,ability of photocatalytic water splitting,and tunable properties under biaxial strain
    李學(xué)奇《新路》
    水土保持探新路 三十九年寫春秋
    Linear and nonlinear optical response of g-C3N4-based quantum dots*
    Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays*
    我愛你,中國
    蔬果種植走新路
    城鄉(xiāng)一體化走出的新路
    国产伦精品一区二区三区四那| 国内精品美女久久久久久| 在线播放国产精品三级| 久久久色成人| 免费看a级黄色片| av在线老鸭窝| 亚洲精品国产av成人精品 | 欧美不卡视频在线免费观看| 欧美绝顶高潮抽搐喷水| 国产探花在线观看一区二区| 日韩亚洲欧美综合| 99热全是精品| 亚洲欧美日韩无卡精品| 亚洲第一电影网av| 日韩亚洲欧美综合| 国产精品美女特级片免费视频播放器| 99久国产av精品国产电影| 天美传媒精品一区二区| 国产不卡一卡二| 美女大奶头视频| 老熟妇仑乱视频hdxx| 我的老师免费观看完整版| 大型黄色视频在线免费观看| 白带黄色成豆腐渣| 真人做人爱边吃奶动态| 午夜日韩欧美国产| 国产免费男女视频| 精品久久久久久久人妻蜜臀av| 在线播放无遮挡| 伊人久久精品亚洲午夜| 国产午夜精品论理片| 久久久久免费精品人妻一区二区| 亚洲av中文字字幕乱码综合| 国产av一区在线观看免费| 国产精品一区www在线观看| h日本视频在线播放| 老司机午夜福利在线观看视频| 欧美绝顶高潮抽搐喷水| 成年av动漫网址| 少妇熟女欧美另类| 国产亚洲精品久久久com| 亚洲高清免费不卡视频| 男女视频在线观看网站免费| 亚洲精品国产成人久久av| 精品人妻视频免费看| 国产精品综合久久久久久久免费| 国产免费男女视频| 国产伦在线观看视频一区| 国产伦一二天堂av在线观看| 色综合色国产| 久久人人精品亚洲av| 亚洲精品日韩av片在线观看| 听说在线观看完整版免费高清| 色播亚洲综合网| 日韩av在线大香蕉| 丝袜美腿在线中文| 91在线精品国自产拍蜜月| 嫩草影院精品99| 精品午夜福利在线看| 亚洲av免费在线观看| 国产精品国产三级国产av玫瑰| 听说在线观看完整版免费高清| 久久午夜亚洲精品久久| 国产精品久久电影中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 黄色一级大片看看| 日本五十路高清| 亚洲自偷自拍三级| 日韩欧美精品免费久久| 99热这里只有精品一区| 在线播放无遮挡| 国产精品一区二区性色av| 在线观看一区二区三区| 免费看美女性在线毛片视频| 亚洲av免费高清在线观看| 一卡2卡三卡四卡精品乱码亚洲| 一级毛片aaaaaa免费看小| av福利片在线观看| 婷婷色综合大香蕉| 在线观看美女被高潮喷水网站| 99久久精品国产国产毛片| 麻豆乱淫一区二区| 真实男女啪啪啪动态图| 欧美日韩综合久久久久久| av中文乱码字幕在线| 亚洲精品色激情综合| 亚洲av熟女| 在线观看午夜福利视频| 亚洲成人久久爱视频| 丝袜喷水一区| 亚洲成人av在线免费| 午夜影院日韩av| 长腿黑丝高跟| 一本一本综合久久| 啦啦啦观看免费观看视频高清| 伊人久久精品亚洲午夜| 精华霜和精华液先用哪个| 色综合站精品国产| 乱系列少妇在线播放| 亚洲第一电影网av| .国产精品久久| 国产精品无大码| 国产一区二区三区在线臀色熟女| 晚上一个人看的免费电影| 国产精品国产高清国产av| 精品国产三级普通话版| 日韩高清综合在线| 国产在线男女| 日本五十路高清| 欧美一区二区亚洲| 直男gayav资源| 欧美日韩综合久久久久久| 黑人高潮一二区| 最近中文字幕高清免费大全6| 欧美性猛交黑人性爽| 国产探花极品一区二区| 久久久久久久久中文| 又爽又黄a免费视频| 一本精品99久久精品77| 日韩大尺度精品在线看网址| 日韩一区二区视频免费看| 成人永久免费在线观看视频| 欧美日韩精品成人综合77777| 欧美一区二区亚洲| 中文字幕精品亚洲无线码一区| 99热精品在线国产| 99国产极品粉嫩在线观看| a级毛片免费高清观看在线播放| av女优亚洲男人天堂| 国产老妇女一区| 日本与韩国留学比较| 淫秽高清视频在线观看| 狂野欧美白嫩少妇大欣赏| 看片在线看免费视频| 人妻夜夜爽99麻豆av| 长腿黑丝高跟| 三级毛片av免费| 亚洲av中文字字幕乱码综合| 国产av在哪里看| or卡值多少钱| 久久久国产成人精品二区| 国产伦在线观看视频一区| 日韩av不卡免费在线播放| 亚洲熟妇中文字幕五十中出| 最近手机中文字幕大全| 在线看三级毛片| 久99久视频精品免费| 成人毛片a级毛片在线播放| 老熟妇乱子伦视频在线观看| 日韩成人伦理影院| 精品久久久久久久人妻蜜臀av| 国产伦一二天堂av在线观看| 你懂的网址亚洲精品在线观看 | 免费电影在线观看免费观看| 精品午夜福利在线看| 亚洲欧美精品综合久久99| 一级av片app| 欧美日韩乱码在线| 亚洲真实伦在线观看| 国产 一区精品| 亚洲18禁久久av| 亚洲av第一区精品v没综合| 别揉我奶头~嗯~啊~动态视频| 91精品国产九色| 亚洲av中文字字幕乱码综合| h日本视频在线播放| 亚洲av中文av极速乱| 亚洲经典国产精华液单| 日本-黄色视频高清免费观看| 亚洲激情五月婷婷啪啪| 九九久久精品国产亚洲av麻豆| 国产精品一及| 一级毛片电影观看 | 午夜免费男女啪啪视频观看 | 亚洲国产日韩欧美精品在线观看| 亚洲欧美成人精品一区二区| 日本一本二区三区精品| 国产在线精品亚洲第一网站| 亚洲人成网站高清观看| 俄罗斯特黄特色一大片| 深夜a级毛片| 亚洲自拍偷在线| 久久精品国产自在天天线| 国产亚洲91精品色在线| 噜噜噜噜噜久久久久久91| 麻豆乱淫一区二区| 亚洲精华国产精华液的使用体验 | 久久久精品大字幕| 国产乱人偷精品视频| 在线观看av片永久免费下载| 亚洲精品一区av在线观看| 日本a在线网址| 最近最新中文字幕大全电影3| 中文字幕av成人在线电影| 卡戴珊不雅视频在线播放| 天堂网av新在线| 国产 一区精品| 高清毛片免费观看视频网站| 不卡视频在线观看欧美| 在线免费观看的www视频| 麻豆精品久久久久久蜜桃| .国产精品久久| 九九热线精品视视频播放| 精品99又大又爽又粗少妇毛片| 亚洲成人久久性| 日韩成人av中文字幕在线观看 | 久久99热这里只有精品18| 成人性生交大片免费视频hd| 日韩精品中文字幕看吧| 久久久久久大精品| 十八禁国产超污无遮挡网站| 亚洲真实伦在线观看| 亚洲va在线va天堂va国产| 国产精品人妻久久久久久| 久久这里只有精品中国| 性色avwww在线观看| 中文在线观看免费www的网站| 成人亚洲精品av一区二区| 精品一区二区三区视频在线| 国产精品久久电影中文字幕| 免费一级毛片在线播放高清视频| 免费观看在线日韩| 日韩三级伦理在线观看| 国产成人影院久久av| 欧美国产日韩亚洲一区| 欧美激情国产日韩精品一区| 亚洲精品粉嫩美女一区| 国产aⅴ精品一区二区三区波| 久久久午夜欧美精品| 中国美女看黄片| 18+在线观看网站| 丰满的人妻完整版| 一级av片app| 两个人的视频大全免费| 18禁裸乳无遮挡免费网站照片| 亚洲欧美成人精品一区二区| 一进一出好大好爽视频| 久久久国产成人免费| 国产精品永久免费网站| 97人妻精品一区二区三区麻豆| 国产成人影院久久av| 成人永久免费在线观看视频| 男女边吃奶边做爰视频| 最近最新中文字幕大全电影3| 亚洲乱码一区二区免费版| 一级毛片我不卡| 在线播放无遮挡| 99久久中文字幕三级久久日本| 97超级碰碰碰精品色视频在线观看| 国产欧美日韩精品一区二区| 国产爱豆传媒在线观看| 亚洲精品国产成人久久av| 18禁裸乳无遮挡免费网站照片| 亚洲av免费在线观看| 亚洲内射少妇av| 禁无遮挡网站| 成人二区视频| 人妻制服诱惑在线中文字幕| 国产高清激情床上av| 一个人观看的视频www高清免费观看| 日韩欧美国产在线观看| 我的老师免费观看完整版| 免费看美女性在线毛片视频| 欧美丝袜亚洲另类| 成人高潮视频无遮挡免费网站| 成年女人永久免费观看视频| 老女人水多毛片| 3wmmmm亚洲av在线观看| 国产日本99.免费观看| 永久网站在线| 亚洲精品久久国产高清桃花| 国产精品一区二区三区四区免费观看 | 精品久久久久久久久亚洲| 国产精品一区www在线观看| 一级黄色大片毛片| 国产高清有码在线观看视频| 看黄色毛片网站| 丰满人妻一区二区三区视频av| 又爽又黄无遮挡网站| 身体一侧抽搐| 九九热线精品视视频播放| 精品欧美国产一区二区三| 国产精品久久久久久精品电影| 狠狠狠狠99中文字幕| 99热6这里只有精品| 国产在线男女| 久久欧美精品欧美久久欧美| 欧美一区二区亚洲| 国产精品久久久久久久久免| 亚洲色图av天堂| www.色视频.com| 一边摸一边抽搐一进一小说| 中文字幕久久专区| 亚洲乱码一区二区免费版| 日本欧美国产在线视频| 一个人看视频在线观看www免费| 婷婷色综合大香蕉| 免费人成视频x8x8入口观看| 国产精品人妻久久久久久| 久久久久久伊人网av| 精品欧美国产一区二区三| 日韩欧美国产在线观看| 午夜精品在线福利| 一本精品99久久精品77| 欧美日韩综合久久久久久| 五月玫瑰六月丁香| 久久精品国产亚洲网站| 两性午夜刺激爽爽歪歪视频在线观看| 看非洲黑人一级黄片| 免费观看的影片在线观看| 99久久九九国产精品国产免费| 国产精品精品国产色婷婷| 免费一级毛片在线播放高清视频| 亚洲自偷自拍三级| 久久久精品大字幕| 国产高清视频在线观看网站| 亚洲欧美日韩高清在线视频| 亚州av有码| 久久精品国产鲁丝片午夜精品| 午夜影院日韩av| 可以在线观看的亚洲视频| 亚洲人成网站在线播放欧美日韩| 亚洲va在线va天堂va国产| 国产成人freesex在线 | 91在线观看av| 色综合站精品国产| 亚洲在线观看片| 婷婷六月久久综合丁香| 国产久久久一区二区三区| 亚洲精品在线观看二区| a级毛色黄片| 久久精品人妻少妇| 一进一出抽搐动态| 国产精品久久久久久亚洲av鲁大| 可以在线观看的亚洲视频| 国产免费一级a男人的天堂| 最近手机中文字幕大全| 成年女人看的毛片在线观看| 亚洲最大成人手机在线| 国产亚洲精品久久久久久毛片| 精品久久久久久久末码| 欧美最新免费一区二区三区| 性色avwww在线观看| 成人亚洲欧美一区二区av| 色播亚洲综合网| 日韩精品中文字幕看吧| av卡一久久| 99久久九九国产精品国产免费| 国产高清有码在线观看视频| 伦理电影大哥的女人| 国产高清有码在线观看视频| 免费无遮挡裸体视频| 最近中文字幕高清免费大全6| 国产伦一二天堂av在线观看| 日本爱情动作片www.在线观看 | 性色avwww在线观看| 三级男女做爰猛烈吃奶摸视频| 男女视频在线观看网站免费| 人人妻人人澡人人爽人人夜夜 | 91狼人影院| 最近视频中文字幕2019在线8| 国产av麻豆久久久久久久| 国产黄a三级三级三级人| 精品久久久久久久久久免费视频| 国产真实伦视频高清在线观看| 淫秽高清视频在线观看| www.色视频.com| 精品无人区乱码1区二区| 成人永久免费在线观看视频| 99久久精品热视频| 乱系列少妇在线播放| 成人永久免费在线观看视频| av免费在线看不卡| 99热这里只有是精品在线观看| 插逼视频在线观看| 黄色视频,在线免费观看| av黄色大香蕉| 日本五十路高清| 国产精品嫩草影院av在线观看| 全区人妻精品视频| 国产片特级美女逼逼视频| 国产一级毛片七仙女欲春2| 给我免费播放毛片高清在线观看| 一区二区三区高清视频在线| 国产黄色视频一区二区在线观看 | 97超碰精品成人国产| 黄色欧美视频在线观看| 精品午夜福利在线看| 青春草视频在线免费观看| 亚洲熟妇熟女久久| 赤兔流量卡办理| 欧美一区二区国产精品久久精品| 久久久久免费精品人妻一区二区| 岛国在线免费视频观看| 国产白丝娇喘喷水9色精品| av卡一久久| 成人亚洲欧美一区二区av| 国产成人影院久久av| 亚洲精品一卡2卡三卡4卡5卡| 久久天躁狠狠躁夜夜2o2o| 婷婷精品国产亚洲av| 在线观看午夜福利视频| av在线蜜桃| 最近2019中文字幕mv第一页| 亚洲精品一区av在线观看| 成人二区视频| 九九久久精品国产亚洲av麻豆| 中文字幕人妻熟人妻熟丝袜美| 色吧在线观看| 天堂影院成人在线观看| 亚洲国产精品sss在线观看| 国产成人a∨麻豆精品| 岛国在线免费视频观看| 联通29元200g的流量卡| 亚洲欧美日韩无卡精品| 亚洲五月天丁香| 免费人成在线观看视频色| avwww免费| 国产成人aa在线观看| 国产精品亚洲一级av第二区| 精品免费久久久久久久清纯| 99精品在免费线老司机午夜| 亚洲精品成人久久久久久| 亚洲精品456在线播放app| 少妇丰满av| 久久精品国产亚洲av天美| 国产精品一及| 联通29元200g的流量卡| 欧美性猛交╳xxx乱大交人| 国产精品乱码一区二三区的特点| 欧美成人a在线观看| 夜夜看夜夜爽夜夜摸| 国产真实乱freesex| 婷婷精品国产亚洲av在线| 国产伦在线观看视频一区| 男女之事视频高清在线观看| 国产高清不卡午夜福利| 最近在线观看免费完整版| 天天躁夜夜躁狠狠久久av| 国产亚洲欧美98| 亚洲成人中文字幕在线播放| 我要看日韩黄色一级片| 午夜视频国产福利| 日本免费a在线| 少妇熟女aⅴ在线视频| videossex国产| 永久网站在线| 97超级碰碰碰精品色视频在线观看| 美女免费视频网站| 最近最新中文字幕大全电影3| 变态另类丝袜制服| 熟妇人妻久久中文字幕3abv| 欧美xxxx黑人xx丫x性爽| 久久久久国产网址| 一级毛片电影观看 | 国产美女午夜福利| 欧美+日韩+精品| 国产亚洲91精品色在线| 中文字幕人妻熟人妻熟丝袜美| 看非洲黑人一级黄片| 免费看av在线观看网站| 国产三级中文精品| 好男人在线观看高清免费视频| 在线天堂最新版资源| 亚洲五月天丁香| 寂寞人妻少妇视频99o| 狂野欧美白嫩少妇大欣赏| 精品人妻视频免费看| 高清毛片免费看| 亚洲18禁久久av| 91在线观看av| 午夜福利在线观看吧| 免费在线观看影片大全网站| 日本黄色片子视频| 99热网站在线观看| 国产伦精品一区二区三区四那| 偷拍熟女少妇极品色| 亚洲av二区三区四区| 麻豆国产av国片精品| 村上凉子中文字幕在线| 国产精品永久免费网站| 久久久久久国产a免费观看| 国产精品亚洲美女久久久| 久久午夜福利片| av在线蜜桃| 欧美丝袜亚洲另类| www.色视频.com| 可以在线观看毛片的网站| 一级毛片久久久久久久久女| 插逼视频在线观看| 秋霞在线观看毛片| 久久99热这里只有精品18| 美女被艹到高潮喷水动态| 日本免费a在线| 国产熟女欧美一区二区| 麻豆乱淫一区二区| 丰满的人妻完整版| 午夜免费男女啪啪视频观看 | 亚洲一区二区三区色噜噜| 亚洲成a人片在线一区二区| 国产蜜桃级精品一区二区三区| 国产精品电影一区二区三区| 岛国在线免费视频观看| 国产免费一级a男人的天堂| 欧美中文日本在线观看视频| 高清日韩中文字幕在线| 91在线观看av| 性色avwww在线观看| 欧美又色又爽又黄视频| 久久精品国产鲁丝片午夜精品| 成年女人永久免费观看视频| 色综合色国产| 可以在线观看的亚洲视频| 看非洲黑人一级黄片| 国产色婷婷99| 精品免费久久久久久久清纯| 亚洲中文字幕一区二区三区有码在线看| 亚洲成a人片在线一区二区| 国产精品久久久久久精品电影| 波多野结衣巨乳人妻| 一个人观看的视频www高清免费观看| 亚洲成人久久性| 如何舔出高潮| 欧美精品国产亚洲| 特级一级黄色大片| 国产亚洲精品久久久com| 日日啪夜夜撸| av黄色大香蕉| 18禁在线播放成人免费| 亚洲电影在线观看av| 成人鲁丝片一二三区免费| 日韩欧美三级三区| 搞女人的毛片| 国产精品嫩草影院av在线观看| 美女大奶头视频| 国内精品久久久久精免费| 校园人妻丝袜中文字幕| 亚洲欧美精品自产自拍| 如何舔出高潮| 国产成人福利小说| 老熟妇乱子伦视频在线观看| 亚洲人与动物交配视频| 国产成人91sexporn| 在线播放无遮挡| 国产成人影院久久av| 日本与韩国留学比较| 十八禁国产超污无遮挡网站| 在线观看美女被高潮喷水网站| 日本-黄色视频高清免费观看| 久久精品国产99精品国产亚洲性色| 亚洲av.av天堂| 在线国产一区二区在线| 高清毛片免费观看视频网站| 欧美日韩在线观看h| 天堂网av新在线| 亚洲av熟女| 天天躁夜夜躁狠狠久久av| 久久精品国产亚洲av天美| 久久人人爽人人爽人人片va| 亚洲av中文字字幕乱码综合| 在线观看美女被高潮喷水网站| 国产精品国产高清国产av| 97热精品久久久久久| 亚洲欧美精品自产自拍| 最近2019中文字幕mv第一页| eeuss影院久久| 看片在线看免费视频| 国模一区二区三区四区视频| 午夜福利18| 国内精品久久久久精免费| 日日摸夜夜添夜夜爱| 亚洲激情五月婷婷啪啪| 国产乱人偷精品视频| 国产精品女同一区二区软件| 色哟哟哟哟哟哟| 99热这里只有精品一区| or卡值多少钱| 亚洲第一区二区三区不卡| 特大巨黑吊av在线直播| АⅤ资源中文在线天堂| 日本-黄色视频高清免费观看| 国产单亲对白刺激| 麻豆国产97在线/欧美| 在线观看66精品国产| 久久99热6这里只有精品| 国产高清视频在线观看网站| 欧美不卡视频在线免费观看| 韩国av在线不卡| 国产精品,欧美在线| 熟妇人妻久久中文字幕3abv| 国产人妻一区二区三区在| 丰满的人妻完整版| 国产免费男女视频| 亚洲成人久久爱视频| 国产私拍福利视频在线观看| 精品少妇黑人巨大在线播放 | 久久午夜福利片| 无遮挡黄片免费观看| 美女被艹到高潮喷水动态| 日韩欧美精品免费久久| 搡老岳熟女国产| 亚洲中文日韩欧美视频| 毛片女人毛片| 亚洲欧美成人综合另类久久久 | 亚洲欧美日韩高清在线视频| 免费搜索国产男女视频| 最好的美女福利视频网| 国产探花在线观看一区二区| 一区二区三区免费毛片| 日本五十路高清| 99热精品在线国产| 久久久久国内视频| 婷婷色综合大香蕉| 日韩欧美在线乱码| 1024手机看黄色片|