• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High efficiency,small size,and large bandwidth vertical interlayer waveguide coupler

    2022-02-24 09:39:44ShaoYangLi李紹洋LiangLiangWang王亮亮DanWu吳丹JinYou游金YueWang王玥JiaShunZhang張家順XiaoJieYin尹小杰JunMingAn安俊明andYuanDaWu吳遠(yuǎn)大
    Chinese Physics B 2022年2期
    關(guān)鍵詞:張家

    Shao-Yang Li(李紹洋), Liang-Liang Wang(王亮亮), Dan Wu(吳丹), Jin You(游金), Yue Wang(王玥),Jia-Shun Zhang(張家順), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明),2,3, and Yuan-Da Wu(吳遠(yuǎn)大),2,3

    1State Key Laboratory of Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    3College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China

    Since the advent of three-dimensional photonic integrated circuits, the realization of efficient and compact optical interconnection between layers has become an important development direction.A vertical interlayer coupler between two silicon layers is presented in this paper.The coupling principle of the directional coupler is analyzed, and the traditional method of using a pair of vertically overlapping inverse taper structures is improved.For the coupling of two rectangular waveguide layers,a pair of nonlinear tapers with offset along the transmission direction is demonstrated.For the coupling of two ridge waveguide layers,a nonlinear taper in each layer is used to achieve high coupling efficiency.The simulation results show that the coupling efficiency of the two structures can reach more than 90% in a wavelength range from 1500 nm to 1650 nm.Moreover,the crosstalk is reduced to less than ?50 dB by using multimode waveguides at intersections.The vertical interlayer coupler with a nonlinear taper is expected to realize the miniaturization and dense integration of photonic integrated chips.

    Keywords: silicon photonics,vertical coupling,nonlinear tapers,three-dimensional integration

    1.Introduction

    Owing to optoelectronic integration technology approaching to the theoretical limit of Moore’s law, optoelectronic integration technology with the advantages of high band width,low loss and small size has become an important way of implementing the future development.[1–3]Silicon photonics technology has been able to realize various optical devices on the silicon-on-insulator(SOI)platforms,such as low loss optical waveguides,variable optical attenuators(VOA),multiplexers,high-speed modulators and photodetectors.[4–7]It plays an important role in the designing of integrated optical chip to realize the transmission of optical signal among different devices without interference.The designing of high-efficiency interlayer coupler can develop the traditional planar technology into three-dimensional compact integration.[8]It breaks the layout limitation of waveguide crossing between devices on a single waveguide layer,thus greatly increasing the number of devices on the chip and promoting the development of multilayer photonic integrated circuits.

    Currently, the research on interlayer coupling is based mainly on two methods: grating couplers[9–11]and adiabatic taper couplers.[12–15]In the first way, the light can be transmitted between different layers in a large distance of several microns, but it needs to add metal mirrors on both sides to achieve high coupling efficiency.Kanget al.proposed a pair of grating couplers with a coupling efficiency of 22% at an interlayer spacing of 1μm.[9]And then they used Au as the material for the metal mirrors, which can increase the coupling efficiency to 83%.[10]The technological process is relatively complex,and the coupling efficiency is difficult to further improve.In the second way,the high coupling efficiency can be achieved,which can reach 100% in theory,but it is limited to a small interlayer distance, which will increase the crosstalk in other places where coupling is not expected to exist.In the coupling structure a long and gradual linear taper is adopted mostly, thereby increasing the size and cost of the chip.Sunet al.achieved a low coupling loss of 0.20±0.05 dB by using a pair of vertically overlapping inverse tapers when the interlayer spacing between the two silicon layers is only 200 nm and the coupling length is longer than 30μm.[12]Huanget al.fabricated Si3N4on SOI platform and achieved a less than 0.2-dB transition loss spanning a 70-nm bandwidth.The thickness of silicon dioxide between Si and Si3N4is only 100 nm, and the overlap length between two tapers is just 50μm.[13]Liet al.reported a coupler consisting of a pair of vertically overlapping inverse taper structures made of Ge23Sb7S70glass,and in the middle was a 550-nm-thick spin-coating epoxy(SU-8)layer.The average insertion loss was 1.1 dB(single coupler)and 2.0 dB (double coupler) when the coupling length was 40μm.[14]Sacheret al.focused on trilayer platform consisting of two SiN waveguide levels integrated atop an Si waveguide level.Two interlayer transitions create a large overall interlayer separation between the topmost and bottommost waveguides.The coupling lengths of Si–SiN1 and SiN1–SiN2 are both not less than 70μm.[15]

    In this paper, we design a vertical interlayer coupling structure with nonlinear tapers based on two silicon layers.By adjusting the shape of the tapers, the effective index of upper taper and lower taper change slowly near the intersection point,so that high coupling efficiency can be obtained in small size.For the coupling between rectangular waveguides,using a pair of nonlinear tapers with an offset along the transmission direction,high coupling efficiency can be achieved,while for the ridge coupling structure, two nonlinear gradually broadened nonlinear tapers are used in each layer.The results of the finite-difference time-domain(FDTD)method show that when the layer spacing is 300 nm and the coupling length is only 10μm,the coupling efficiency of the two structures can reach more than 90% in a bandwidth range from 100 nm to nearly 1550 nm.Table 1 shows a comparison of performance between the reported interlayer couplers fabricated on SOI platform and the structures we will simulate.It can be seen that the nonlinear taper structure is beneficial to making the taper length shorter while keeping high coupling efficiency.In addition, we reduce the crosstalk by increasing the width at the intersection of waveguides of different layers where coupling is not expected to exist.

    Table 1.Comparison of performance between reported interlayer couplers fabricated on SOI platform and our simulated structures.

    2.Design principles

    Optical transmission modes are coupled between two waveguides close to each other, which is the characteristic of directional coupler.The interlayer coupling structure can be regarded as a vertical directional coupler.We can use the theory of mode coupling to analyze the coupling process.Figure 1 shows the schematic diagram of the rectangular waveguide directional coupler.The refractive index of the core isn1,the refractive index of the cladding isn2,the width and height of the waveguide areaandbrespectively,and the spacing isd.The optical wave fields with propagation constantkin perfect waveguides 1 and 2 can be expressed as

    Assuming that the light wave is input from waveguide 1,when the transmission mode is coupled between two identical waveguides(k1=k2),it can be deduced from the coupled mode theory that the coupling efficiency depends on the coupling coefficient κ:[18]

    in which[19]

    wherekxis the propagation constant of the waveguide mode along thexdirection,pxis the attenuation coefficient along thexdirection, andkzis the propagation constant along thezdirection.

    Fig.1.Schematic diagram of rectangular waveguide directional coupler.

    It can be seen that optical wave oscillates in two waveguides and the coupling coefficient decreases exponentially by increasingd.Other factors in the formula are related to the width and height of the waveguide.From the derivation in Ref.[19]it can be seen that the decrease ofaandbwill lead the value of κ to increase.The minimum coupling lengthLnecessary for complete transfer of power from one to the other is expressed as

    The schematic diagram of the common interlayer coupling structure with a pair of linear tapers is shown in Fig.2.Compared with the traditional directional coupler with two adjacent parallel waveguides, this method provides a greater tolerance for the effective index matching between two layers.However,in order to achieve high coupling efficiency,the taper structure should satisfy two conditions: the coupling length needs to be long to ensure that the light wave can be coupled adiabatically between layers;and the appropriate tip width needs to be selected to reduce the scattering loss.[12]When the coupling structure is applied to three-dimensional photonic integrated circuits,the distance between layers needs to be controlled to reduce unnecessary crosstalk,and the length of taper needs to be longer,which undoubtedly increases the difficulty in miniaturizing the design of coupling structure.

    Fig.2.Schematic diagram of common interlayer coupling structure with a pair of linear tapers.

    In order to reduce the size of the coupling structure,taper is designed to be nonlinear.The tip of the taper has a small slope, which is designed to reduce the effective refractive index mismatch in the coupling region.The change from the narrow width to wide width can be expressed as a function given below:

    whereW1andW2are the starting width and the ending width of the taper, respectively.The functionF(z) is used to describe the change of width with positionz,which is illustrated in Fig.3(a).

    Fig.3.(a) Description of shape function F(z), and (b) shape of taper for m=1,2,and 3.

    The width of the taper tip isWt,and then we use the power function

    to control the shape of taper, so that the width near the intersection changes slowly.The shapes of taper with different values ofmare shown in Fig.3(b).

    3.Simulation and analysis

    We have improved the coupling structure for the TE mode of rectangular waveguide and ridge waveguide respectively,which will greatly shorten the length of taper and reduce the size of chip.The proposed interlayer coupling structure is fabricated on an SOI substrate.The material of the upper waveguide and the lower waveguide are both Si(n1≈3.47),and an SiO2(n2≈1.45) layer is grown in the middle.Owing to the high refractive index of Si,the light wave can be limited within the waveguide with a very small width,which will also reduce the size of the whole chip.

    3.1.Rectangular waveguide vertical coupler

    Figure 4 shows the coupling structure between two layers of rectangular waveguide.The thickness of the two Si layers isH1=H2=220 nm, and the width of the rectangular waveguide is 400 nm.The gap between the SiO2interlayers is 300 nm,thereby reducing the crosstalk.The curve of effective indexversusrectangular waveguide width is shown in Fig.5.The topxaxis and the bottomxaxis correspond to the width of the upper waveguide and the lower waveguide,respectively.Because the matching condition of coupling can be satisfied only at the intersection point, the effective index near the intersection point is required to change very slowly, so that the light wave has enough time to couple from the lower waveguide to the upper waveguide.For a linear taper, this requires a very long length.If the change rate of the width away from the intersection is increased appropriately in the case of small scattering loss,the length of the whole taper can be reduced.In addition,the width of the waveguide near the tip changes more slowly,which is more conducive to coupling,so we introduce an offset to make the intersection closer to the tip.

    Fig.5.Effective index versus width of lower waveguide (black line) and effective index versus width of upper waveguide (red line) of rectangular taper.

    Fig.6.(a)Variations of coupling efficiency with wavelength for three values of m,and(b)coupling efficiency versus width Wt(blank line),and transmission loss versus width Wt of taper(red line)with tip width being 1550 nm.

    Fig.7.Simulated intensity distribution of TE0 mode transferring into rectangular coupler.

    Figure 6(a) shows the variations of coupling efficiency with wavelength for three values ofm.As mentioned before,with the increase ofm,the width of the intersection attachment changes more gently and the coupling efficiency is higher.Figure 6(b)shows the coupling efficiency and transmission loss of taperversustip width.If the tip widthWtis too narrow,more energy is radiated to the cladding, resulting in large radiation loss.If it is too wide,the coupling structure tends to be a directional coupler,which requires no deviation from the effective index of the waveguides,resulting in the difficulty in fabricating.According to the simulation results,we finally determine that the value ofm,Wt, and offset are 3, 0.24 μm, and 1 μm respectively,and the maximum coupling efficiency is 99.2% at 1590 nm.The intensity distribution of TE0 mode transferring into the coupler,simulated by the FDTD method,is shown in Fig.7.It can be seen that the optical power is transferred from one waveguide to another through a very short length.

    Fig.8.Influence of(a)width of waveguide;(b)height of the upper silicon layer; (c) gap width; (d) relative position error on coupling efficiency of rectangular coupling structure.

    3.2.Ridge waveguide vertical coupler

    Owing to the large effective index of ridge waveguide,the constraint of optical mode is stronger.If the above structure is still used in the ridge waveguide coupling, its high coupling efficiency cannot be achieved.The diagram of the coupling structure by using two nonlinear tapers of 5 μm in length is shown in Fig.9.

    Fig.9.Diagram of ridge coupling structure composed of two nonlinear tapers, showing (a) three-dimensional view, with inset exhibiting waveguide geometry,and(b)top view and side view.

    Fig.10.(a)Curve of coupling efficiency(black line)and transmission loss(red line)versus Wt,and(b)curve of coupling efficiency versus Wr.

    The width of the ridge waveguide with a 70-nm-thick slab is 500 nm.Themvalues of the two tapers are 2 and 3 respectively, in order to prevent the optical power from oscillating between the two layers due to their similarity in structure.The coupling efficiency and transmission loss of the first taper(the width of which changes fromWtoWt) vary with tip widthWtare shown in Fig.10(a).It can be seen that the maximum coupling efficiency is obtained whenWtis 0.22 μm and the transmission loss of the first taper is less than 1%.When the light starts to enter into the second taper (the width of which changes fromWttoWr),the power is only half of the original value,and the change of width is smaller than the counterpart of the first taper,so the loss of this part can be ignored.Then we need to determine the widthWrof the second taper after having been widened.As shown in Fig.10(b), the coupling efficiency increases with the value ofWrincreasing, because the effective indices of two layers get closer.WhenWrapproaches to the width of the waveguide, the coupled optical modes may come back to the situation similar to the directional coupler, which is unconducive to providing processing tolerance.Finally, we determineWrto be 0.38 μm after having been compromised,and the maximum coupling efficiency is 98.32% at a wavelength of 1580 nm.Figure 11 shows the simulation results of the coupling process.

    Fig.11.Simulated intensity distribution of TE0 mode transferring into the ridge coupler.

    We also analyze the tolerance of this structure.It can be seen from Fig.12(a)that the influence of waveguide width error on coupling efficiency is smaller than that of rectangular waveguide.It is worth noting that the etching depth should be adjusted according to the thickness of the upper silicon layer to keep the thickness of the slab unchanged.Figure 12(b)shows that the change of the thickness of the slab will seriously affect the coupling efficiency,because it has a great influence on the effective index of the ridge waveguide, resulting in the mismatch between the propagation constants of the upper layer and the lower layer.As simulated in Fig.12(c),the ridge coupler is very sensitive to the gap between two layers, and the coupling efficiency will decrease rapidly with the increasing of the gap.When the interlayer spacing increases to 350 nm,the coupling efficiency at a wavelength of 1550 nm is only about 75%.Owing to the strong constraint of ridge waveguide,more amounts of power travel in the waveguide,leading thepxto become larger, which makes the effect ofDmore obvious.Figure 12(d) shows that the effect on the coupling efficiency can be ignored,when there is a 50-nm error in thexorydirection.

    Fig.12.Influence of (a) width of waveguide, (b) height of the upper silicon layer, (c) the gap, and (d) relative position error on coupling efficiency of ridge coupling structure.

    3.3.Crossing design

    In three-dimensional integrated circuits, it is necessary to consider how to reduce the crosstalk at the intersection of waveguides distributed in different layers.Increasing the distance between layers is a most effective method, but it will lead to large coupling size.As shown in Fig.13, we use the taper with a length ofLtto extend the waveguide widthWm,thereby increasing the optical confinement.However,the coupling length at the intersection increases with the width of the waveguide increasing, which results in more crosstalks.The optimal width needs to be investigated through the simulation to reduce crosstalk.

    Fig.13.Schematic diagram of cross structure with multimode waveguides.

    It can be seen from Fig.14(a)that the crosstalk between rectangular waveguides decreases with the value ofWmincreasing.When the value ofWmincreases from 800 nm to 1000 nm,the crosstalk does not decrease significantly.At the same time, in order to reduce the scattering loss, the larger value ofLtis required.Finally, we determine the width of the multimode waveguide to be 1 μm.The crosstalk is reduced by at least 10 dB compared with that of the single mode waveguides.Because the ridge waveguides are more difficult to couple,even if the intersection is not widened,the crosstalk is very small as shown in Fig.14(a).WhenWmis 0.8μm,the crosstalk at 1550 nm is less than ?55 dB,and the bandwidth below ?50 dB is greater than 100 nm.

    Fig.14.Crosstalks of(a)rectangular waveguides and(b)ridge waveguides with different widths at intersections.

    4.Conclusions

    According to the influence parameters of the coupling coefficient of the directional coupler,the rectangular waveguide vertical coupler and ridge waveguide vertical coupler between two silicon layers are designed and optimized.Nonlinear tapers are used to reduce the length of the coupling structure.The simulation results show that when the layer spacing is 300 nm and the coupling length is only 10 μm, the coupling efficiency of the two structures can reach more than 90% in the bandwidth of 100 nm at a wavelength of nearly 1550 nm.The crosstalk is less than ?50 dB by using multimode waveguide at intersection.With high efficiency and small size,the vertical interlayer coupler with nonlinear tapers is expected to be used in compact three-dimensional integrated photonic circuits.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2019YFB2203001),the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB43000000), and the National Natural Science Foundation of China (Grant No.61805232).

    猜你喜歡
    張家
    說(shuō)話算話的我
    “霸王”不在家
    筍和張先生的故事
    等腰三角形的對(duì)稱(chēng)性
    張家邊涌泵站建設(shè)難點(diǎn)及技術(shù)創(chuàng)新實(shí)踐
    張家塬村村歌
    張家坤
    張家貴 藏石欣賞
    寶藏(2018年12期)2019-01-29 01:51:10
    給張家源的信
    攝影家張家讓眼中的錦屏
    亚洲av不卡在线观看| 欧美性感艳星| 国产精品偷伦视频观看了| 黑丝袜美女国产一区| 亚洲中文av在线| 在线精品无人区一区二区三 | 国产成人a区在线观看| 在线天堂最新版资源| 另类亚洲欧美激情| 成年av动漫网址| 久久久久久久久久久丰满| 涩涩av久久男人的天堂| 中文字幕人妻熟人妻熟丝袜美| 国产在线男女| 亚洲精华国产精华液的使用体验| av在线老鸭窝| 免费看不卡的av| 成人美女网站在线观看视频| 欧美激情国产日韩精品一区| 夜夜看夜夜爽夜夜摸| 波野结衣二区三区在线| 寂寞人妻少妇视频99o| 一区二区三区精品91| 亚洲综合色惰| 偷拍熟女少妇极品色| 能在线免费看毛片的网站| 亚洲av免费高清在线观看| 久热久热在线精品观看| 亚洲av成人精品一区久久| 久久久精品免费免费高清| 亚洲在久久综合| 精品国产一区二区三区久久久樱花 | 精品久久久久久久末码| 在线观看三级黄色| av国产免费在线观看| 国产一区有黄有色的免费视频| 成年免费大片在线观看| 国产亚洲精品久久久com| 日本爱情动作片www.在线观看| 亚洲欧洲国产日韩| 国产精品人妻久久久久久| 春色校园在线视频观看| 能在线免费看毛片的网站| 啦啦啦中文免费视频观看日本| 久久6这里有精品| 嫩草影院入口| 麻豆国产97在线/欧美| .国产精品久久| 全区人妻精品视频| 欧美xxⅹ黑人| 日本色播在线视频| 亚洲美女黄色视频免费看| av黄色大香蕉| 中文乱码字字幕精品一区二区三区| 女人十人毛片免费观看3o分钟| 91久久精品国产一区二区成人| 国产片特级美女逼逼视频| 少妇熟女欧美另类| 久久精品国产亚洲网站| 妹子高潮喷水视频| 国产在线一区二区三区精| 小蜜桃在线观看免费完整版高清| a级一级毛片免费在线观看| 日韩国内少妇激情av| 老司机影院毛片| 最近中文字幕2019免费版| 男的添女的下面高潮视频| 亚洲国产精品国产精品| 99热这里只有精品一区| 国产淫语在线视频| 欧美变态另类bdsm刘玥| 久久精品国产亚洲av涩爱| 熟女电影av网| 午夜福利网站1000一区二区三区| 91午夜精品亚洲一区二区三区| 欧美日韩在线观看h| 18禁裸乳无遮挡动漫免费视频| 久久99热这里只有精品18| 中文精品一卡2卡3卡4更新| 大片电影免费在线观看免费| 夫妻午夜视频| 深爱激情五月婷婷| 高清不卡的av网站| 久久 成人 亚洲| 亚洲高清免费不卡视频| 亚洲欧美清纯卡通| 久久人人爽人人片av| 国产无遮挡羞羞视频在线观看| 日本黄色片子视频| 精品一区二区三区视频在线| 久久久久网色| 欧美xxxx性猛交bbbb| 成年人午夜在线观看视频| 免费在线观看成人毛片| 一个人免费看片子| 少妇的逼水好多| 亚洲av二区三区四区| 中文天堂在线官网| 最新中文字幕久久久久| 亚洲精品乱久久久久久| 九色成人免费人妻av| 高清不卡的av网站| 久久午夜福利片| 熟女人妻精品中文字幕| 超碰97精品在线观看| 九九爱精品视频在线观看| 精品一区二区三卡| 国产在线男女| 人人妻人人看人人澡| 黄色一级大片看看| 亚洲av日韩在线播放| 国产精品国产三级专区第一集| 国产午夜精品久久久久久一区二区三区| 亚洲欧洲国产日韩| 亚洲精品乱久久久久久| 精品少妇久久久久久888优播| 最近手机中文字幕大全| 在线免费十八禁| 亚洲国产成人一精品久久久| 在线观看人妻少妇| 免费黄频网站在线观看国产| 亚洲成人av在线免费| 久久精品久久久久久噜噜老黄| 美女xxoo啪啪120秒动态图| 日本黄色片子视频| 亚洲欧美日韩东京热| 欧美bdsm另类| 能在线免费看毛片的网站| 少妇精品久久久久久久| 91午夜精品亚洲一区二区三区| 精品一区在线观看国产| 久久精品国产亚洲网站| av福利片在线观看| 久久久国产一区二区| 最近2019中文字幕mv第一页| 亚洲在久久综合| 日韩欧美 国产精品| 五月玫瑰六月丁香| 久久精品久久久久久久性| 国产成人一区二区在线| 国产精品秋霞免费鲁丝片| 日韩欧美精品免费久久| 成人一区二区视频在线观看| 亚洲精品,欧美精品| 嫩草影院新地址| 欧美xxxx性猛交bbbb| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩一区二区视频在线观看视频在线| 欧美少妇被猛烈插入视频| 亚洲欧美一区二区三区国产| 联通29元200g的流量卡| 国产精品.久久久| 亚洲av国产av综合av卡| 成人二区视频| 黑人高潮一二区| 18禁裸乳无遮挡免费网站照片| 最近的中文字幕免费完整| 亚洲色图综合在线观看| 成年免费大片在线观看| 日韩电影二区| 秋霞伦理黄片| 国产毛片在线视频| 男女免费视频国产| 男女下面进入的视频免费午夜| 精品少妇久久久久久888优播| 国产久久久一区二区三区| 国产熟女欧美一区二区| 丰满乱子伦码专区| 成年av动漫网址| 高清午夜精品一区二区三区| 精品一区在线观看国产| 伊人久久国产一区二区| h日本视频在线播放| 亚洲美女黄色视频免费看| 91精品国产国语对白视频| 国产深夜福利视频在线观看| 亚洲精品aⅴ在线观看| 免费观看a级毛片全部| 色视频在线一区二区三区| 建设人人有责人人尽责人人享有的 | 国产成人精品福利久久| 久久精品人妻少妇| 一区二区av电影网| 久久久久久久久大av| 免费观看无遮挡的男女| 一个人免费看片子| 亚洲av国产av综合av卡| 美女xxoo啪啪120秒动态图| 狠狠精品人妻久久久久久综合| 亚洲国产日韩一区二区| 亚洲av男天堂| 国产 精品1| 精品少妇黑人巨大在线播放| 日本与韩国留学比较| 偷拍熟女少妇极品色| 妹子高潮喷水视频| 国产免费福利视频在线观看| 综合色丁香网| 中文在线观看免费www的网站| 久久精品人妻少妇| 成人无遮挡网站| 久久精品熟女亚洲av麻豆精品| 国产极品天堂在线| 中文字幕精品免费在线观看视频 | 多毛熟女@视频| 蜜桃亚洲精品一区二区三区| 亚洲av二区三区四区| 九九久久精品国产亚洲av麻豆| 简卡轻食公司| 三级经典国产精品| 免费av中文字幕在线| 晚上一个人看的免费电影| 国产精品.久久久| 国产精品三级大全| 欧美日韩亚洲高清精品| 午夜福利网站1000一区二区三区| 国产黄片视频在线免费观看| 日韩一区二区视频免费看| 少妇人妻一区二区三区视频| 亚洲国产最新在线播放| 欧美激情国产日韩精品一区| 一级a做视频免费观看| 中文字幕亚洲精品专区| 国产高潮美女av| 嫩草影院新地址| 精品亚洲成国产av| 日本av免费视频播放| 春色校园在线视频观看| 国产成人精品福利久久| 成人18禁高潮啪啪吃奶动态图 | 毛片一级片免费看久久久久| 91狼人影院| 亚州av有码| 性色av一级| 在线天堂最新版资源| 国产综合精华液| videos熟女内射| 亚洲精品久久久久久婷婷小说| 亚洲成人手机| 久久久久久久久久成人| 成人特级av手机在线观看| 亚洲国产精品国产精品| 3wmmmm亚洲av在线观看| 18禁裸乳无遮挡免费网站照片| 夜夜爽夜夜爽视频| 国产男女超爽视频在线观看| 午夜日本视频在线| 在线观看国产h片| 亚洲va在线va天堂va国产| 国产精品嫩草影院av在线观看| 丝袜脚勾引网站| 精品久久久噜噜| 欧美日韩综合久久久久久| 黄片wwwwww| 精品一区二区三区视频在线| 亚洲久久久国产精品| 中文欧美无线码| 男男h啪啪无遮挡| 内地一区二区视频在线| 国产在线视频一区二区| 久久久午夜欧美精品| 日本猛色少妇xxxxx猛交久久| 日韩 亚洲 欧美在线| 欧美+日韩+精品| 草草在线视频免费看| 午夜福利影视在线免费观看| 干丝袜人妻中文字幕| 91精品一卡2卡3卡4卡| 汤姆久久久久久久影院中文字幕| 国产精品国产三级国产av玫瑰| 插阴视频在线观看视频| 免费黄网站久久成人精品| 久久久欧美国产精品| 美女脱内裤让男人舔精品视频| 日韩电影二区| 午夜福利影视在线免费观看| 美女福利国产在线 | 国产精品精品国产色婷婷| 极品教师在线视频| 国产成人精品福利久久| 亚洲自偷自拍三级| 91精品国产九色| 精品酒店卫生间| 我的女老师完整版在线观看| 国内精品宾馆在线| a级一级毛片免费在线观看| 在线播放无遮挡| 亚洲色图av天堂| 成人毛片a级毛片在线播放| 国产精品秋霞免费鲁丝片| 日本av手机在线免费观看| 中文乱码字字幕精品一区二区三区| 老熟女久久久| 99热这里只有是精品50| 国产熟女欧美一区二区| av国产免费在线观看| 激情 狠狠 欧美| 蜜桃亚洲精品一区二区三区| 日韩欧美一区视频在线观看 | 最近手机中文字幕大全| 欧美xxxx性猛交bbbb| 亚洲国产成人一精品久久久| av视频免费观看在线观看| 欧美人与善性xxx| 蜜臀久久99精品久久宅男| 婷婷色综合大香蕉| 91久久精品国产一区二区成人| 麻豆精品久久久久久蜜桃| 国产成人freesex在线| 亚洲精品久久久久久婷婷小说| av在线播放精品| 建设人人有责人人尽责人人享有的 | 国产亚洲午夜精品一区二区久久| 久久精品国产亚洲网站| 少妇精品久久久久久久| h视频一区二区三区| 自拍偷自拍亚洲精品老妇| 亚洲精品色激情综合| 国产精品免费大片| 欧美成人a在线观看| 简卡轻食公司| 久久精品国产a三级三级三级| 夜夜爽夜夜爽视频| h日本视频在线播放| 精华霜和精华液先用哪个| 又粗又硬又长又爽又黄的视频| 18禁在线无遮挡免费观看视频| 精品人妻熟女av久视频| 联通29元200g的流量卡| 国产成人freesex在线| 欧美三级亚洲精品| 七月丁香在线播放| 精品久久久久久久末码| 欧美 日韩 精品 国产| 小蜜桃在线观看免费完整版高清| 亚洲第一区二区三区不卡| 色婷婷av一区二区三区视频| 国产综合精华液| 国产人妻一区二区三区在| 九九爱精品视频在线观看| 欧美+日韩+精品| 日韩av不卡免费在线播放| 日韩伦理黄色片| 欧美一区二区亚洲| 少妇熟女欧美另类| 亚洲第一av免费看| 五月开心婷婷网| 中文字幕av成人在线电影| 菩萨蛮人人尽说江南好唐韦庄| 久久ye,这里只有精品| 麻豆成人午夜福利视频| 亚洲人成网站高清观看| 欧美日韩综合久久久久久| 日韩伦理黄色片| 日日摸夜夜添夜夜爱| 久久久久性生活片| 美女中出高潮动态图| av天堂中文字幕网| 搡女人真爽免费视频火全软件| 午夜免费鲁丝| 国产精品久久久久久精品电影小说 | 亚洲精品中文字幕在线视频 | 欧美97在线视频| 国产精品国产av在线观看| 久久久久久久久久人人人人人人| 亚洲av福利一区| 国产精品国产三级国产av玫瑰| 大片免费播放器 马上看| 亚洲精品中文字幕在线视频 | 亚洲天堂av无毛| 黑人猛操日本美女一级片| 成人无遮挡网站| 午夜激情福利司机影院| 亚洲,欧美,日韩| 中文欧美无线码| 多毛熟女@视频| 啦啦啦视频在线资源免费观看| 少妇熟女欧美另类| 少妇的逼水好多| 久久久久久九九精品二区国产| 爱豆传媒免费全集在线观看| av国产久精品久网站免费入址| 久久久久久人妻| 一个人看的www免费观看视频| 欧美日韩视频精品一区| 深爱激情五月婷婷| 99热全是精品| 日韩电影二区| 1000部很黄的大片| 国内揄拍国产精品人妻在线| 视频中文字幕在线观看| 一区二区三区免费毛片| 国产精品一二三区在线看| 男人舔奶头视频| 国语对白做爰xxxⅹ性视频网站| 亚洲人成网站在线观看播放| 一区二区av电影网| 一级av片app| 永久免费av网站大全| 久久青草综合色| 国产在线视频一区二区| 日韩强制内射视频| 成人二区视频| 大香蕉久久网| 性色avwww在线观看| 日日摸夜夜添夜夜添av毛片| 视频中文字幕在线观看| 一级毛片aaaaaa免费看小| 日本午夜av视频| 在线 av 中文字幕| 亚洲欧美一区二区三区黑人 | 性色avwww在线观看| 最新中文字幕久久久久| 欧美一区二区亚洲| 中文字幕亚洲精品专区| 亚洲国产精品999| 九九在线视频观看精品| 国产亚洲91精品色在线| 午夜老司机福利剧场| 丝瓜视频免费看黄片| av在线观看视频网站免费| 国产精品欧美亚洲77777| 黄色视频在线播放观看不卡| 亚洲经典国产精华液单| 色吧在线观看| 婷婷色综合www| 天堂俺去俺来也www色官网| 大香蕉久久网| 免费大片18禁| 黄色一级大片看看| 日日摸夜夜添夜夜爱| 97超碰精品成人国产| xxx大片免费视频| 高清毛片免费看| 国产黄频视频在线观看| 久久久久久久大尺度免费视频| av在线观看视频网站免费| 狂野欧美激情性bbbbbb| 日韩av在线免费看完整版不卡| 亚洲va在线va天堂va国产| 欧美一级a爱片免费观看看| 爱豆传媒免费全集在线观看| a级一级毛片免费在线观看| 国产精品爽爽va在线观看网站| 精品亚洲成国产av| 日韩三级伦理在线观看| 国产午夜精品一二区理论片| a级毛片免费高清观看在线播放| 人妻一区二区av| 搡女人真爽免费视频火全软件| 在线观看人妻少妇| 久久久久久九九精品二区国产| 99热这里只有是精品在线观看| 人妻一区二区av| 日本av手机在线免费观看| 成人美女网站在线观看视频| 免费久久久久久久精品成人欧美视频 | 午夜福利网站1000一区二区三区| 亚洲精品国产av成人精品| 永久免费av网站大全| 99久久综合免费| 亚洲性久久影院| 国产成人a∨麻豆精品| 伊人久久国产一区二区| 国产男女超爽视频在线观看| 国产成人a∨麻豆精品| 一个人看视频在线观看www免费| 久久久a久久爽久久v久久| 国产一区二区三区av在线| 春色校园在线视频观看| 婷婷色麻豆天堂久久| 毛片女人毛片| 人人妻人人澡人人爽人人夜夜| 大香蕉97超碰在线| 国产男女超爽视频在线观看| 国产免费视频播放在线视频| 身体一侧抽搐| 亚洲精品国产av成人精品| 国产成人freesex在线| 日韩欧美精品免费久久| 久久女婷五月综合色啪小说| 日韩亚洲欧美综合| 人体艺术视频欧美日本| 2018国产大陆天天弄谢| 日日摸夜夜添夜夜添av毛片| 搡老乐熟女国产| 五月开心婷婷网| 少妇裸体淫交视频免费看高清| 欧美高清成人免费视频www| 欧美zozozo另类| 亚洲性久久影院| 亚洲国产欧美人成| 在线精品无人区一区二区三 | 国产精品伦人一区二区| 午夜福利高清视频| 在现免费观看毛片| 亚洲精华国产精华液的使用体验| 又粗又硬又长又爽又黄的视频| 久久国产精品男人的天堂亚洲 | 色视频www国产| 久久久久性生活片| 老熟女久久久| 亚洲av二区三区四区| 日本猛色少妇xxxxx猛交久久| 晚上一个人看的免费电影| 寂寞人妻少妇视频99o| 亚洲av免费高清在线观看| 久久女婷五月综合色啪小说| 18禁在线无遮挡免费观看视频| 国产欧美日韩精品一区二区| 纵有疾风起免费观看全集完整版| 能在线免费看毛片的网站| 中国美白少妇内射xxxbb| 久久精品久久久久久噜噜老黄| 麻豆乱淫一区二区| 五月开心婷婷网| 成人特级av手机在线观看| 久久婷婷青草| av国产免费在线观看| 午夜福利影视在线免费观看| av福利片在线观看| 亚洲国产欧美人成| 亚洲欧美一区二区三区国产| 亚洲第一区二区三区不卡| 亚洲欧洲日产国产| 亚洲精品乱码久久久v下载方式| 亚洲怡红院男人天堂| a级毛色黄片| 交换朋友夫妻互换小说| 亚洲欧洲日产国产| 国产精品久久久久久久久免| 欧美日韩视频精品一区| 最后的刺客免费高清国语| 黄色配什么色好看| 黑人猛操日本美女一级片| 日韩电影二区| 天堂中文最新版在线下载| 在线观看免费高清a一片| 亚洲欧美中文字幕日韩二区| 赤兔流量卡办理| 久久精品国产亚洲av天美| 亚洲欧美精品自产自拍| 久久国内精品自在自线图片| 你懂的网址亚洲精品在线观看| www.色视频.com| av在线app专区| 街头女战士在线观看网站| 啦啦啦啦在线视频资源| 夫妻性生交免费视频一级片| 丰满迷人的少妇在线观看| 99国产精品免费福利视频| 亚洲内射少妇av| 高清在线视频一区二区三区| 高清日韩中文字幕在线| 国产亚洲一区二区精品| 少妇人妻一区二区三区视频| 国产精品嫩草影院av在线观看| 日本黄大片高清| 一区二区三区乱码不卡18| 一级毛片黄色毛片免费观看视频| 国内精品宾馆在线| 性高湖久久久久久久久免费观看| 美女xxoo啪啪120秒动态图| 老熟女久久久| 久久精品人妻少妇| 美女视频免费永久观看网站| 婷婷色麻豆天堂久久| 夜夜骑夜夜射夜夜干| 国产av码专区亚洲av| 久久久久久久精品精品| 高清毛片免费看| 我的老师免费观看完整版| 久久久久国产精品人妻一区二区| 熟女av电影| 在线观看美女被高潮喷水网站| 精品少妇黑人巨大在线播放| 日韩av免费高清视频| 午夜视频国产福利| 亚洲伊人久久精品综合| videos熟女内射| 黄片wwwwww| 中文字幕人妻熟人妻熟丝袜美| 身体一侧抽搐| 亚洲国产精品成人久久小说| 国产v大片淫在线免费观看| 人妻夜夜爽99麻豆av| 一二三四中文在线观看免费高清| 欧美激情极品国产一区二区三区 | 成人免费观看视频高清| 久久国产亚洲av麻豆专区| 精品一区二区三卡| 成人国产av品久久久| 成年女人在线观看亚洲视频| 亚洲av国产av综合av卡| 日本一二三区视频观看| 制服丝袜香蕉在线| 嫩草影院新地址| 日本黄色日本黄色录像| 狂野欧美激情性xxxx在线观看| 国产伦理片在线播放av一区| 91在线精品国自产拍蜜月| 高清黄色对白视频在线免费看 | 久久精品国产a三级三级三级| 五月伊人婷婷丁香| 国产91av在线免费观看| 亚洲一级一片aⅴ在线观看| 人妻 亚洲 视频| 多毛熟女@视频| 精品国产露脸久久av麻豆| 欧美成人精品欧美一级黄| 久久久久精品久久久久真实原创| 国产av一区二区精品久久 | 亚洲婷婷狠狠爱综合网| 国产日韩欧美亚洲二区| 永久网站在线|