• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-fidelity resonant tunneling passage in three-waveguide system

    2022-02-24 09:39:40RuiQiongMa馬瑞瓊JianShi時堅LinLiu劉琳MengLiang梁猛ZuoLiangDuan段作梁WeiGao高偉andJunDong董軍
    Chinese Physics B 2022年2期
    關鍵詞:高偉劉琳

    Rui-Qiong Ma(馬瑞瓊), Jian Shi(時堅), Lin Liu(劉琳), Meng Liang(梁猛),Zuo-Liang Duan(段作梁), Wei Gao(高偉), and Jun Dong(董軍)

    School of Electronic Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    An N-stage three-waveguide system is proposed to improve the robustness and the fidelity of the resonant tunneling passage.The analytic solutions to the tunneling dynamics at the output are derived.When the number of subsystems increases, tunneling efficiency approaches to 100% in a large range and resonant tunneling is robust against variations in the phase mismatch and peak tunneling rate.

    Keywords: amplitude control,resonant tunneling passage,robustness

    1.Introduction

    High population efficiency and inherent robustness are important for some quantum gates used in quantum information processing(QIP).For a reliable QIP,the population transfer error needs to be reduced below 10?4in order to achieve very high fidelity.

    Adiabatic passage(AP)is a popular technique for manipulating the state of a quantum system.It was used first in nuclear magnetic resonance technique.[1]Then,various AP techniques have been presented, such as Stark-chirped rapid adiabatic passage,[2,3]superadiabatic passage,[4]and stimulated Raman adiabatic passage(STIRAP),[5–7]to name a few.Generally, the population transfer efficiencies of all AP schemes are close to(but less than)unity.The fidelity of 90%–95% suffices the most traditional applications.However,such a fidelity is insufficient for QIP.Therefore several optimized schemes,including Davis–Dykhne–Pechukas(DDP)method,[8–10]parallel adiabatic passage(PLAP)technique,[11,12]piecewise adiabatic passage(PAP)technique,[13,14]shortcuts to adiabaticity(STA),[15,16]non-Hermitian shortcut to adiabatic passage,[17]composite adiabatic passage(CAP),[18,19]composite STIRAP scheme,[20,21]etc.,have been proposed to improve the fidelity and robustness of AP.

    Similarities between adiabatic passage in atomic system and molecular system, and the tunneling dynamics in waveguides systems have attracted a great deal of attention in theoretical and experimental studies.[22]The optimized schemes for quantum systems are robust against small variations in experimental parameters and hence some schemes have been used to design the waveguide coupler.For example, to improve the tunneling efficiency of waveguides systems, STIRAP scheme,[5]DDP technique,[23]STA scheme,[24–26]and non-Hermitian shortcut to AP scheme[27]are extended to the designing of waveguides couplers.It is noted that the optimized techniques mentioned above are all adiabatic.During the population transfer passage,the system follows one or two adiabatic states.[28–30]In this paper,the tunneling dynamics in each subsystem is based on non-eigenstate,and the tunneling passage is nonadiabatic.[31]

    The STIRAP scheme was used to design the waveguide couplers with high tunneling efficiency.[5]No matter whether the amplitudes and widths of the tunneling rates or the distance between two peak tunneling rates changes, the nonadiabatic tunneling exists and the fidelity of the STIRAP is near the benchmark 10?4of QIP.[23]Then non-Hermitian shortcut to AP scheme,an optimization scheme based on STIRAP,introduces a non-Hermitian term to cancel nonadiabatic tunneling.The fidelity of AP is increased, and tunneling distance is shortened.Like the scenario in the STIRAP technique, the adiabatic condition also requires a large tunneling rate area and hence the length of coupler is not shortened.However,the channel width is constant,which makes it easy to fabricate.[27]The DDP optimized technique suppresses the tunneling point by choosing an appropriate tunneling rate distribution.Although the fidelity is further improved,the length of coupler is still long.[23]The STA technique,based on transitionless quantum driving algorithm,introduces an unfeasible relative phase and has been exploited to shorten the length of waveguides coupler.[25]The total length of coupler is about 1/6 of the one designed by traditional schemes,however the disadvantage of STA scheme is that the channel width changes continuously along the coupler, hence such a structure is difficult for practical implementations and stays mainly in the stage of theoretical research.[24–26]We use the amplitude control method,unlike the phase control scheme,to improve the tunneling efficiency and fidelity of the resonant tunneling passage.By adjusting the ratio between the tunneling rate amplitudes of each three-waveguide subsystem, the fidelity of the resonant passage is reduced below the benchmark 10?4without changing the channel width.This structure is easy to fabricate and can be exploited to design robust quantum gates.For instance,the diffused structure with the same channel width has been demonstrated in theory and experiment.[32,33]The STA technique and the STIRAP technique have been used to design single-qubit gates, such as Not- and Hadamard gates.[23,34]Owing to the robustness of the resonant tunneling passage,a train ofN-stage three-waveguide systems has the potential to design a high-fidelity Hadamard gate, which is one of the fundamental gates in QIP.

    Traditional PAP technique usually needs additional phases.Shapiroet al.have developed a particular PAP scheme without considering the additional phases.They used a series of femtosecond pulses turned suddenly on and off repeatedly to execute a robust adiabatic passage.The amplitudes of the femtosecond pulses coincide with those of the counterintuitive pulses in the STIRAP.[13]Rangelov and Vitanov have extended this technique to a three-state quantum system.They used a series ofNpairs of coincident pulses to fulfill complete population transfer,and the envelope of coincident pump and Stokes pulses also match the counterintuitive pulses used in the STIRAP.[35]Inspired by these two schemes,we design anN-stage three-waveguide couplers with the same channel width to improve the fidelity of resonant tunneling transfer.The rest of this paper is organized as follows.In Section 2 the propagator for a single three-waveguide subsystem is presented.In Section 3 are shown the analytic solutions to beam power at the output and the maximum transient beam power trapped in central waveguide for anN-stage three-waveguide system.In Section 4 the fractional tunneling passage is discussed.In Section 5 are presented the similarities and differences between this resonant scheme and the STIRAP and also analyzed the fidelity and robustness of the resonant passage.

    2.Single three-waveguide subsystem

    The light amplitudesCi(z)(i=L,C,R)of a single threewaveguide subsystem are governed by the corresponding STIRAP-like equation[29,32]

    where C(z)=[CL(z),CC(z),CR(z)]Tare the amplitudes of the fundamental modes,L,C,and R are the subscripts that represent the left, middle, and right waveguide, respectively.The Hamiltonian of a single waveguide subsystem takes the form

    where Δ(z)=βC?βn,(n=L,R)is the phase mismatch,βL,βC,and βRare the propagation constants of three channels.In a single three-waveguide subsystem,the tunneling rates ΩL(z)and ΩR(z)sharing the identical distance functionf(z)change with the distance between waveguides L ?C and R ?C,and expressed as

    On the dark–bright basis, the STIRAP-like equation (1) is solved analytically and simply.[36]The corresponding propagator for the nonadiabatic tunneling passage in a single threewaveguide system reads[31]

    where the mixing angle is defined by θ =arctan(ΩL/ΩR)=AL/AR, andA=is the root mean square (RMS) tunneling rate area.In the area integral,zidenotes the initial position.Using the propagator (4), we can obtain the exact analytic solution to the tunneling dynamics for a three-waveguide system.

    A single three-waveguide system discussed in Section 5 includes three 8-mm-long coplanar waveguides as shown in Fig.1(a).We choose the Gaussian distributions ΩL(z) =and ΩR(z) =,where θ1=π/8 and Ω0=√=2 mm is the tunneling rate width,zc=4 mm is the central position of waveguides coupler.In Fig.1(a),

    are the distances between two outer waveguides and the central waveguide, respectively.[31]Ω′=1.789 mm?1, γ =0.7759 μm?1, anda0= 9 μm are determined experimentally.[32]The refractive index profilenw(x,y) of each channel fabricated by ion exchange technique[37]is expressed as follows(see Fig.1(b)):

    whereDx=4.6μm andDy=4.1μm are the diffusion lengths alongxandydirections respectively,2w=5μm is the channel width,ns= 1.522 is the substrate refractive index, and Δn=0.014 is the peak index change.These waveguide structure parameters are selected according to Ref.[32].

    Fig.1.(a)Coupler structure and(b)refractive index distribution nw(x,y)of each channel for single three-waveguide system.

    3.Complete tunneling transfer in a threewaveguide system

    In anN-stage three-waveguide system (Nis the number of three-waveguide subsystems), each subsystem has mixing angle θiand RMS tunneling rate areaAi.In analogy with the beam propagation in cascaded slab system,[38]the total propagator reads Next we consider the two cases.

    Case 1C(zi)=[1,0,0]T,light is introduced from waveguide L,the beam power evolves in three waveguides in which the corresponding power expressions are given by

    Case 2C(zi)=[0,0,1]T,light is introduced from waveguide R, the beam power expressions Scorresponding to the three channels are presented as follows:

    For each of three waveguide subsystems, the tunneling rate takes the same form

    where the two parameters Ω0andBare the same as those used in Section 2.The central positionzciand the mixing angle θifor each of three waveguide subsystems are variable parameters.Particularly, the parameter θiis responsible for beam splitting ratio.

    3.1.An example: two-stage three-waveguide system

    ForN-stage waveguides system,we first consider the simplest coupler systemN=2.Using Eqs.(7)and(8),we obtain the exact solutions to the whole tunneling dynamics for the two cases.

    Case 1

    Case 2

    where

    θ1=π/8,θ2=3π/8,zc1=4 mm,andzc2=12 mm.

    The exact analytic solutions Eqs.(9) and (10) for the whole tunneling dynamics are shown in Fig.2.The maximum beam power in central waveguide decreases when light is injected into waveguide L (Fig.2(b)), this suppression is due to the destructive interference of the consecutive coherent tunneling.As opposed to the previous case,the maximum beam power in central waveguide increases when light is injected into the waveguide R(Fig.2(c)),This enhancement results from the constructive interference.

    For anN-stage waveguide system (N≥3), the analytic solutions to the whole tunneling dynamics are more cumbersome than those to Eqs.(9) and (10), but the exact analytic solutions to the beam power at the output port and the maximum beam power in central channel have simple forms.

    Fig.2.(a)Tunneling rates of two-stage three-waveguide system for complete tunneling transfer scheme and((b),(c))evolutions of beam power trapped in waveguides L,C,and R versus propagation distance z.

    3.2.Exact analytic solution to beam power at output ports

    For a single three-waveguide subsystem,the beam power in channelCvanishes at the output whenAi=π.[31]If we consider anN-stage three-waveguide system and substituteAi=π into Eqs.(4) and (6)–(8), the analytic solutions to the final beam power at the output port read as follows.

    For Case 1

    For Case 2

    where 2n+1 and 2n∈N.The values of mixing angle θifor different three-waveguide subsystems cannot be the same,because the identical angle only increases the total length of the coupler while the tunneling passage in a three-waveguide system is only a simple repetition of the tunneling passage in a subsystem.Solving Eqs.(11) and (12) in the two cases,we find that there are many schemes to choose the mixing angle θi, the simplest angle relation takes the form θi=(2i?1)π/4N, where (i=1,2,3,...,N).For Case 1, the final beam power at the output portsPL-fnial=PCfnial=0 andPR-fnial=1,and for Case 2,PL-fnial=1,PC-fnial=PRfnial=0.

    Equation (11c) is identical to Eq.(12a), indicating that complete tunneling transfer is also achieved in the Case 2.Tunneling efficiency reaches 100%, provided tunneling rate area for each of three waveguide subsystemsAi= π.In a three-state Λ atomic system, the Case 2 should be avoided,because intermediate-state excited in the Case 2 is a radiative state.Decay from the atomic system through intermediatestate results in the transfer loss and the decrease of the efficiency of population transfer.This is a serious defect for preparing coherent quantum state.In a three-waveguide system, beam power also flows into waveguide C in the Case 2,but it will not leak from waveguide C,and the tunneling efficiency still reaches 100%.Therefore the Case 2 can still be used to prepare some useful optical quantum states.

    3.3.Exact analytic solution to maximum beam power in central channel

    The angle relation θi=(2i?1)π/4Nproduces the different values of maximum beam power in central waveguide in different cases as shown in Fig.2.To obtain analytic solution for maximum beam power in the middle of the coupler,first, we analyze a two-stage waveguide system, and then extend the results to anN-stage system.From Fig.2, we find that the maximum value ofPC(z) is small when light is injected into waveguide L.On the contrary,the maximum value ofPC(z)increases if light is injected into waveguide R.Light power in the central waveguide reaches the maxima at the positionszc1=4 mm andzc2=12 mm.To obtain the exact analytic solution to beam power in central waveguide, the simplest scheme is to chooseA1=π/2 andA2=0.According to Fig.3, we obtain the maximal value=sin2(π/8)for Case 1 and=cos2(π/8) for Case 2.For theNstage waveguides system, the maximum beam power values are readily obtained from Eqs.(4)and(6)–(8)as follows.

    For Case 1

    For Case 2

    For the Case 1,equation(13)demonstrates that the maximum beam power in the central waveguide decreases as 1/N2when the number of three-waveguide subsystems,N, turns larger.For the Case 2,whereas,equation(14)indicates that the maximum beam power in central waveguide approaches to unity whenNtends to infinity.These results are in accordance with those of Fig.2.

    Fig.3.Tunneling rate area of each subsystem in a two-stage waveguides system versus propagation distance z,where Ai(z)=(i=1,2).

    4.Fractional tunneling transfer in a threewaveguide system

    Arbitrary fractional tunneling ratio between two outer channels is controlled by changing the mixing angle θi.When θi=(2i?1)π/8N, the analytic solutions (11a), (11c), (12a),and (12c) indicate that final beam power=1/2 for Cases 1 and 2,the equal tunneling transfer is achieved and this device can be used as a beam splitter.For Case 1,the analytic solution to maximum beam power in central waveguide reads=sin2(π/8N).AsNtends to approach to infinity,≈(π/8N)2.For equal tunneling scheme,we find that the maximum value of the beam power in central channel is a quarter of the one for the complete tunneling scheme.

    5.Discussion

    In waveguide optics, the STA technique introduces an unfeasible relative phase.[25]To satisfy this phase condition,the width of waveguide needs to be changed continuously.It is difficult to connect different couplers due to the different waveguide widths.However, the present scheme controls the amplitude ratio of the tunneling rate for each of the three waveguide subsystems.The distance between two adjacent waveguides determines the tunneling rate.The total tunneling rate distribution is governed by the curvature radius of the curved waveguide.It is easier to control a fixed curvature radius than the variable width of each channel.The present scheme is feasible in practical application.

    The main differences between the STIRAP and the resonant tunneling passage in the three-waveguide system are discussed as follows.First, the STIRAP in a waveguide system uses counterintuitive tunneling rate distribution.When light is injected into waveguide L, the ΩRprecedes ΩL.Stimulated Raman passage is adiabatic due to the appropriate counterintuitive tunneling rate.In the present technique, two tunneling rates share the same modulation functionf(z), only the amplitudes (ARandAL) of two tunneling rates are different.Such tunneling rates leads the beam power to depend on the tunneling rate areaAas shown in Eqs.(4)and(6)–(8), therefore the tunneling passage is resonant.Second, the STIRAP is based on dark state which is the eigenstate of Hamiltonian of waveguides system.However, the tunneling transfer discussed in this paper depends on the non-eigenstate analyzed in Ref.[31].In quantum mechanics, if a system evolves on its eigenstates,such an evolution is adiabatic.Hence the tunneling passage in each of three waveguide subsystems is nonadiabatic.Third, in the STIRAP, beam power tunnels into waveguide R if light is injected into waveguide L,only a tiny amount of energy remains in waveguide C.Here,the resonant tunneling passage occurs with the aid of waveguide C.When light is injected into waveguide L, equation (13) shows the maximum beam powerin channel C decreases asNturns bigger, whenN→∞,→0.When light is introduced from waveguide R,equation(14)indicates the maximum beam powerin waveguide C increases asNincreases,whenN→∞,→1.The beam power tunnels into the target channel through waveguide C.In the resonant scheme, waveguide C is an important auxiliary channel and there is no energy loss in channel C.However,in the STIRAP scheme,tiny beam power stays in channel C,this energy loss which is due to the nonadiabatic tunneling reduces the tunneling efficiency.By carefully choosing the counterintuitive tunneling rate,the energy loss can be reduced.

    The final beam power depends only on RMS tunneling rate area according to Eqs.(4) and (6)–(8), therefore different tunneling rate distributions are also practicable.Before designing anN-stage waveguides system, first,we need to carefully determine the total length of onestage three-waveguide subsystem.To achieve 100% tunneling efficiency, only one condition need to be met, namely the integralAi==π, whereziandzfare the positions of input port and output port, respectively.We analyze the length of a single waveguides subsystem designed under two tunneling rate schemes: one is Gaussian shape ΩL(z)=,ΩR(z)=and the other is hyperbolicsecant shape ΩL(z) = (1/B)sinθisech[(z?zc)/B], ΩR(z) =(1/B)cosθisech[(z?zc)/B].For a single three-waveguide subsystem, we choose initial positionzi= 0 mm, final positionzf= 8 mm, the central positionzc= 4 mm, and the parameterB=1 mm that dominates the widths of tunneling rates.The numerical integration for Gaussian shape readsA1= 3.14159, therefore total length 8 mm can satisfy the area conditionA1= π and the tunneling efficiency reaches 100%.Whereas, using the same calculation parameters, the result of the numerical integration for hyperbolic-secant shape isA1=3.06834.Compared with the standard value π,the relative error is about 2.33%.For the hyperbolic-secant shape,if we choosezc=14 mm,zf=28 mm,the RMS tunneling rate areaA1=3.14159,then the area conditionA1=π is met until the total length reaches 28 mm.Under the same width parameter B, the length of coupler designed by hyperbolic-secant shape is longer than the one designed by Gaussian shape.Different tunneling rates lead to different device lengths,and we need to carefully determine the length of coupler in order to guarantee 100% tunneling efficiency.Theoretically,the longer length leads to the better integral area and hence the higher tunneling efficiency,but we need to choose an optimal length from the perspective of device integration.

    The envelope functions of the tunneling rates for complete tunneling transfer take the formAL= Ω0sinθiandAR=Ω0cosθi, where the mixing angle θi=(2i?1)π/4N,(i=1,2,...,N).In the limitN?1,the variation of adjacent angle Δθ =θi+1?θiis so small that θibecomes nearly continuous, the initial angle θ1=π/4N→0 and the final angle θN=(2N?1)π/4N→π/2.When light is injected initially into waveguide L, the resonant tunneling passage resembles the optimized STIRAP in the three-waveguide system.[23]The analyses are described as follows.First, the STIRAP in a waveguide system is realized by using counterintuitive tunneling rate distributions, here, the envelope functionAR(z)dominates overAL(z) at the early stage whileAL(z) dominates in the end, these two envelope functions correspond to counterintuitive tunneling rates as shown in Figs.4(a) and 4(b).Second, the maximum beam power in central waveguide decreases with the increase of the number of the subsystems.“More subsystems” means that the total coupling area is very large and corresponds to the global adiabatic condition in STIRAP.[5]Figures 4(c)and 4(d)indicate that the resonant tunneling transferring from waveguide L to R is similar to adiabatic passage due to the envelope modulation functions.For the equal tunneling passage, more waveguide subsystems reduce the maximum beam power in central channel as shown in Figs.4(e)and 4(f).

    Fig.4.((a), (b)) Tunneling rates and ((c), (d)) evolutions of beam power trapped in waveguides L, C, and R versus propagation distance z for Nstage waveguide system.Left column: N=6,right column: N=9.Light is injected into left channel.Second row: complete tunneling transfer.Third row: equal tunneling transfer.

    We note that the analytic solutions to Eqs.(11) and (12)are satisfied only under the conditionAi=π.Figure 5 shows the curves of final beam powerPRtrapped in waveguide Rversusphase mismatch Δβ and peak tunneling rate Ω0for someN-stage three-waveguide systems (N= 1, 3, 15, and 30).Light is injected into waveguide L.The first row of Fig.5 shows the curve ofPRversusphase mismatch and tunneling rate.ForN=1,PRreaches a maximum value only at the peak tunneling rate Ω0=√(B=1 mm)as shown by Eq.(11).ForN=15 andN=30, the corresponding values ofPRtend to unity in a large region.To indicate the benchmark value 10?4,the values ofPRrange from 0.9990 to 1.The second row shows the curve ofPRversusphase mismatch when Ω0=√.The third row displays the curve ofPRversustunneling rate when phase mismatch Δβ =0.

    Fig.5.Curves of final beam power PR of N-stage three-waveguide system versus phase mismatch Δβ and peak tunneling rate Ω0.

    Fig.6.Fidelity 1?PR of N-stage three-waveguide system versus peak tunneling rate Ω0 when phase mismatch Δβ =0.Horizontal dotted line indicates the benchmark level 10?4 in√ QIP.Resonant tunneling passage occurs at the horizontal coordinate Ω0=,where B=1 mm.

    The present scheme is a resonant technique, therefore we discuss the fidelity and robustness near the resonant point Ω0=√.Figure 6 shows the fidelity of anN-stage threewaveguide systemversuspeak tunneling rate.The fidelity is defined as 1 ?PR.The results show that the fidelity is improved asNincreases.At the resonant tunneling point Ω0=√, the analytic solution (11) indicatesPR=1 when light is injected into waveguide L, hence 1 ?PR= 0 and log10(1?PR) →?∞.Theoretically, as the peak tunneling rate approaches to the resonant point Ω0=√, the fidelity on a logarithmic scale should tend to negative infinity.In Figs.6 and 7, because the step size of numerical calculation is 0.0001,the fidelity on a logarithmic scale only tends to ?8 whenN=30.Near the resonant point Ω0=√, figure 6 indicates that the fidelity can be kept below the benchmark level 10?4asNincreases and the resonant passage is robust against variation of peak tunneling rate in the region from Ω0=1.5 to Ω0=2.The peak tunneling rate depends on the incident wavelength and the distance between two adjacent waveguides,and the variation of temperature changes this distance, therefore the resonant passage is robust with respect to variations of wavelength and temperature.

    Figure 7 indicates that whenN= 30 the fidelity is reduced below 10?4in the region from β = ?0.4 mm?1to β =0.4 mm?1.It indicates that the resonant passage is robust against variation in the phase mismatch.The phase mismatch is dependent on the waveguide width and hence the ambient temperature.Figures 6 and 7 show that the resonant tunneling passage is robust against variations of temperature and incident wavelength asNincreases.For a single threewaveguide systemN=1, the fidelity is below 10?4only at the point Ω0=due to the resonant tunneling transfer.AsNincreases,the envelope of the tunneling rate coincides with the counterintuitive distribution used in STIRAP and the total tunneling rate area becomes larger,the resonant passage in anN-stage three-waveguide system is similar to that in the STIRAP,therefore fidelity and robustness are both improved in a large region.

    Fig.7.Fidelity 1?PR versus phase mismatch Δβ when peak tunneling rate Ω0 ≈1.7725.

    and assumingV(x,y,z)=≈ns?n(x,y,z)for the triple-well potential,we realize the equal light splitting with a 15-stage three-waveguide system as shown in Fig.8,where= λ/2π, λ = 980 nm is the incident wavelength.We designn(x,y,z) =nw(x+aiL(z),y)+nw(x,y)+nw(x?aiR(z),y) for the refractive index distribution, with subscriptidenoting thei-stage waveguide subsystem.The distances

    for each of three waveguide subsystems vary with propagation distancez.For equal tunneling transfer θi=(2i?1)π/8N,other calculation parametersns,a0, γ,B,nw(x,y), and Ω′have been introduced in Section 2.The |ψ|2predicted by a numerical solution of Eq.(15) describes the light transfer in anN-stage three-waveguide system.The simulated results are in good agreement with the exact analytic solutions from Eq.(11).

    For a 15-stage three-waveguide system, Ω1=1.967 mm?1and Ω2=1.578 m?1are the boundaries of the high-fidelity region as shown in Fig.6.The(Ω1?Ω0)/Ω0×100%≈11% and(Ω0?Ω2)/Ω0×100%≈11% are the maximum permissible errors between the boundary and the peak tunneling rate.When fabricating this three-waveguide structure, 0.24-μm deviation between the centers of two adjacent waveguides is allowed.This is beneficial to coupler fabrication.Considering Fig.6 and the length of waveguides coupler,N=15 is recommended for practical application.

    The classical light field evolving in a 15-stage threewaveguide system is shown in Fig.8.Whereas, this coupler can also come into effect at a single-photon level.For the equal tunneling passage, when a single-photon is introduced into waveguide L (R), it encodes a logical 0 (1).At the output of the waveguide system,the initial state|L〉is transformed into a coherent superposition state (|L〉?|R〉)/2 = (|0〉?|1〉)/2 which corresponds to the Hadamard gate.

    Fig.8.Beam intensity evolution|ψ(x,0,z)|2 in a 15-stage three-waveguide system for equal tunneling transfer,with white solid lines denoting waveguides L,C,and R.

    6.Conclusions and perspectives

    Arbitrary splitting ratio of beam power between two outer waveguides is realized by anN-stage three-waveguide system.In each three-waveguide subsystem,the tunneling transfer is a resonant passage.In the limitN?1,the envelopes of tunneling rates coincide with the counterintuitive scheme used in the STIRAP, the resonant tunneling passage resembles the STIRAP.The scheme discussed in this paper connects the resonant tunneling passage with the STIRAP.In atomic physics, resonant excitation is dependent on exact pulse areas, and its robustness is sensitive to the variation of amplitude and duration of the laser field.However,the results show that the resonant tunneling passage in anN-stage three-waveguide system is robust with respect to variation of peak tunneling rate and phase mismatch,and hence the temperature and incident wavelength.The robustness and fidelity of the resonant tunneling passage can be improved by increasing the number of three-waveguide subsystems.Compared with the phase control technique, the present technique is an amplitude control method.By using the structure parameters designed in Ref.[31], this threewaveguide system can be easily realized.Owing to the high fidelity and robustness, the scheme introduced in this paper has the potential in designing one- and two-photon quantum gates.[34,40]

    Acknowledgement

    Project supported by the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No.2018JM6064).

    猜你喜歡
    高偉劉琳
    Effect of a static pedestrian as an exit obstacle on evacuation
    我是“隱形人”
    江蘇教育(2021年59期)2021-12-02 18:35:17
    我是“隱形人”
    Analysis of asymmetry of the Dα emission spectra under the Zeeman effect in boundary region for D–D experiment on EAST tokamak?
    Theoretical analysis and numerical simulation of acoustic waves in gas hydrate-bearing sediments?
    Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology*
    劉琳:中年女演員的自我修養(yǎng)
    東西南北(2020年16期)2020-12-10 06:16:08
    秋天的風
    金山(2020年3期)2020-04-15 03:56:36
    Effect of Different Types of Structural Configuration on Air Distribution in a Compact Purification Device
    Developing Learner Autonomy and Second Language Context
    成人毛片a级毛片在线播放| 在线观看www视频免费| 亚洲精品国产av成人精品| 一区二区三区四区激情视频| 国产亚洲午夜精品一区二区久久| 欧美人与性动交α欧美精品济南到 | 菩萨蛮人人尽说江南好唐韦庄| 日韩伦理黄色片| 波多野结衣一区麻豆| 国产黄色免费在线视频| 亚洲精品乱码久久久久久按摩| 视频在线观看一区二区三区| 汤姆久久久久久久影院中文字幕| 国产一区二区三区av在线| 免费久久久久久久精品成人欧美视频 | 在线亚洲精品国产二区图片欧美| 精品酒店卫生间| 大香蕉久久成人网| 青春草亚洲视频在线观看| 色婷婷久久久亚洲欧美| 久久久a久久爽久久v久久| 成人免费观看视频高清| 菩萨蛮人人尽说江南好唐韦庄| 久久国产亚洲av麻豆专区| 亚洲成人一二三区av| 久久久欧美国产精品| 国产免费一级a男人的天堂| 最近最新中文字幕免费大全7| 国产精品久久久久久av不卡| 日韩制服丝袜自拍偷拍| 夫妻性生交免费视频一级片| 搡女人真爽免费视频火全软件| av在线播放精品| 欧美丝袜亚洲另类| 99国产精品免费福利视频| 在线观看免费日韩欧美大片| 在线观看美女被高潮喷水网站| 秋霞在线观看毛片| 日韩成人伦理影院| 国产一区二区三区av在线| 国产精品女同一区二区软件| 婷婷成人精品国产| 国产一区二区三区综合在线观看 | 伊人久久国产一区二区| 人人妻人人澡人人爽人人夜夜| av福利片在线| 在线观看免费高清a一片| 国产精品久久久久久精品古装| 国产精品不卡视频一区二区| 日产精品乱码卡一卡2卡三| 久久久精品94久久精品| 99热全是精品| 国产成人一区二区在线| 五月伊人婷婷丁香| 国产免费视频播放在线视频| 国产在线一区二区三区精| 免费高清在线观看日韩| 美女国产视频在线观看| 国产精品久久久久成人av| 在线观看人妻少妇| 国产福利在线免费观看视频| 久久人人爽人人爽人人片va| 侵犯人妻中文字幕一二三四区| 一区二区日韩欧美中文字幕 | 欧美日韩国产mv在线观看视频| 乱人伦中国视频| 亚洲经典国产精华液单| 一本—道久久a久久精品蜜桃钙片| 丰满少妇做爰视频| 精品国产一区二区三区四区第35| 91午夜精品亚洲一区二区三区| 日本午夜av视频| 亚洲欧洲日产国产| 一本大道久久a久久精品| 国产精品一二三区在线看| 18禁国产床啪视频网站| 欧美日韩精品成人综合77777| 最近中文字幕高清免费大全6| 国产一级毛片在线| 国产探花极品一区二区| 日韩精品有码人妻一区| 最后的刺客免费高清国语| 亚洲美女搞黄在线观看| 成年动漫av网址| 亚洲国产精品国产精品| 免费大片18禁| 国产亚洲午夜精品一区二区久久| 国产片内射在线| 精品少妇内射三级| av女优亚洲男人天堂| 欧美亚洲日本最大视频资源| 91成人精品电影| 久久精品熟女亚洲av麻豆精品| 99re6热这里在线精品视频| 美女脱内裤让男人舔精品视频| 欧美日韩成人在线一区二区| 最近最新中文字幕免费大全7| 久久午夜综合久久蜜桃| 国产在视频线精品| 国产精品久久久久久久久免| 亚洲人成77777在线视频| www.色视频.com| 一本久久精品| 宅男免费午夜| 看非洲黑人一级黄片| 国产1区2区3区精品| 日韩制服丝袜自拍偷拍| 男的添女的下面高潮视频| av一本久久久久| a级毛色黄片| 欧美人与善性xxx| 国产精品无大码| 一级a做视频免费观看| av福利片在线| 国产欧美亚洲国产| 欧美精品一区二区大全| 男女下面插进去视频免费观看 | 搡老乐熟女国产| 丰满少妇做爰视频| 免费看av在线观看网站| 丁香六月天网| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 又黄又爽又刺激的免费视频.| 亚洲国产精品999| 亚洲成色77777| 一区二区三区精品91| 国产一区亚洲一区在线观看| 亚洲精品国产av成人精品| 成年av动漫网址| 黑丝袜美女国产一区| 亚洲综合色网址| 九色亚洲精品在线播放| 国产在线免费精品| 国产欧美另类精品又又久久亚洲欧美| 啦啦啦啦在线视频资源| 色94色欧美一区二区| 热99国产精品久久久久久7| 国产探花极品一区二区| 九色亚洲精品在线播放| 人人妻人人爽人人添夜夜欢视频| 美国免费a级毛片| 午夜91福利影院| 国产日韩一区二区三区精品不卡| 高清av免费在线| 免费高清在线观看视频在线观看| 亚洲国产成人一精品久久久| 99久国产av精品国产电影| 看免费av毛片| 日本猛色少妇xxxxx猛交久久| 亚洲精品乱久久久久久| 日本猛色少妇xxxxx猛交久久| 一边摸一边做爽爽视频免费| 久久鲁丝午夜福利片| 久久这里只有精品19| 黑人高潮一二区| 国产成人精品婷婷| 国产精品一区二区在线不卡| 国产黄色视频一区二区在线观看| 久久亚洲国产成人精品v| 亚洲精品,欧美精品| 亚洲欧美日韩卡通动漫| 美女中出高潮动态图| 国产黄色免费在线视频| 亚洲婷婷狠狠爱综合网| 赤兔流量卡办理| 一区在线观看完整版| 中文字幕av电影在线播放| 极品少妇高潮喷水抽搐| 1024视频免费在线观看| 国产免费视频播放在线视频| 久久婷婷青草| 亚洲欧洲国产日韩| 国产精品一区www在线观看| 久久亚洲国产成人精品v| 日韩精品有码人妻一区| 51国产日韩欧美| 免费看光身美女| 亚洲国产精品专区欧美| 久久精品夜色国产| videosex国产| 国产激情久久老熟女| 丰满饥渴人妻一区二区三| 五月开心婷婷网| 各种免费的搞黄视频| 狂野欧美激情性bbbbbb| 成人免费观看视频高清| 一级毛片电影观看| 久久精品国产a三级三级三级| 寂寞人妻少妇视频99o| 亚洲欧洲精品一区二区精品久久久 | 精品亚洲乱码少妇综合久久| 91午夜精品亚洲一区二区三区| 观看美女的网站| 国产深夜福利视频在线观看| 天天躁夜夜躁狠狠久久av| 观看美女的网站| 午夜福利视频在线观看免费| 一区二区三区精品91| 丝袜美足系列| 国产精品国产av在线观看| 亚洲色图 男人天堂 中文字幕 | 欧美人与善性xxx| 亚洲国产精品专区欧美| 久久精品久久久久久久性| 国产免费现黄频在线看| 丰满乱子伦码专区| 亚洲少妇的诱惑av| 国产精品无大码| 一区二区三区乱码不卡18| 午夜免费观看性视频| 婷婷色综合大香蕉| 午夜激情av网站| 捣出白浆h1v1| 男女边吃奶边做爰视频| 老熟女久久久| 在线观看免费日韩欧美大片| 免费日韩欧美在线观看| 国产成人一区二区在线| xxx大片免费视频| 亚洲精品中文字幕在线视频| 最近最新中文字幕大全免费视频 | 黑丝袜美女国产一区| 国产精品欧美亚洲77777| 国产爽快片一区二区三区| 满18在线观看网站| 亚洲av.av天堂| 国产成人免费观看mmmm| 久久久国产精品麻豆| 波野结衣二区三区在线| 天天躁夜夜躁狠狠久久av| 日本与韩国留学比较| 日本猛色少妇xxxxx猛交久久| √禁漫天堂资源中文www| 午夜久久久在线观看| 韩国高清视频一区二区三区| 男女免费视频国产| 日本av手机在线免费观看| 免费黄频网站在线观看国产| av免费观看日本| 久久久久网色| 黑丝袜美女国产一区| 中国国产av一级| 精品人妻一区二区三区麻豆| 99香蕉大伊视频| 热99国产精品久久久久久7| 久久久久精品人妻al黑| 欧美国产精品一级二级三级| 国产日韩欧美亚洲二区| 国产极品粉嫩免费观看在线| 三级国产精品片| 国产av精品麻豆| 制服人妻中文乱码| 久久人人爽人人片av| 99久国产av精品国产电影| 久久青草综合色| 久久久久精品久久久久真实原创| 丰满迷人的少妇在线观看| 男人爽女人下面视频在线观看| 美女国产高潮福利片在线看| 香蕉精品网在线| 精品视频人人做人人爽| 亚洲成色77777| 永久免费av网站大全| 菩萨蛮人人尽说江南好唐韦庄| 日韩欧美精品免费久久| 欧美 亚洲 国产 日韩一| 九色亚洲精品在线播放| 久久久精品区二区三区| 国产精品久久久久久久久免| 自线自在国产av| 热99久久久久精品小说推荐| 一级毛片黄色毛片免费观看视频| 国产 一区精品| 亚洲av电影在线观看一区二区三区| 欧美日韩视频精品一区| 全区人妻精品视频| 日韩一本色道免费dvd| 青春草亚洲视频在线观看| 亚洲五月色婷婷综合| 欧美人与善性xxx| 哪个播放器可以免费观看大片| 校园人妻丝袜中文字幕| 国产乱人偷精品视频| 大陆偷拍与自拍| 七月丁香在线播放| 曰老女人黄片| 欧美人与善性xxx| www.色视频.com| 热99国产精品久久久久久7| 考比视频在线观看| 欧美精品一区二区大全| 亚洲国产精品一区三区| 九九爱精品视频在线观看| 欧美日韩综合久久久久久| 国产激情久久老熟女| 超碰97精品在线观看| 精品少妇黑人巨大在线播放| 精品国产乱码久久久久久小说| 最近中文字幕高清免费大全6| 国产无遮挡羞羞视频在线观看| 久久久久久久久久成人| 观看av在线不卡| 日韩成人av中文字幕在线观看| 一二三四在线观看免费中文在 | 国产在线视频一区二区| 两性夫妻黄色片 | 欧美 日韩 精品 国产| 欧美激情极品国产一区二区三区 | 男女午夜视频在线观看 | 咕卡用的链子| 国产在线一区二区三区精| 99精国产麻豆久久婷婷| xxx大片免费视频| 久久久久精品性色| 日韩熟女老妇一区二区性免费视频| 蜜臀久久99精品久久宅男| 日本爱情动作片www.在线观看| 男女午夜视频在线观看 | 亚洲综合精品二区| 国产又色又爽无遮挡免| 日韩av在线免费看完整版不卡| av在线播放精品| 久久99热6这里只有精品| 国产精品.久久久| 在线观看三级黄色| 性色av一级| 色94色欧美一区二区| 国产成人精品婷婷| 欧美xxxx性猛交bbbb| 久久精品人人爽人人爽视色| 人人妻人人澡人人看| 国内精品宾馆在线| 国产一区二区三区综合在线观看 | 乱码一卡2卡4卡精品| 国产福利在线免费观看视频| 国产精品一区二区在线不卡| 午夜精品国产一区二区电影| 日本黄色日本黄色录像| 26uuu在线亚洲综合色| 人妻人人澡人人爽人人| 免费人成在线观看视频色| 汤姆久久久久久久影院中文字幕| 毛片一级片免费看久久久久| 久久国产精品男人的天堂亚洲 | 9热在线视频观看99| 热99久久久久精品小说推荐| 日产精品乱码卡一卡2卡三| 精品少妇久久久久久888优播| 国产色爽女视频免费观看| 男女啪啪激烈高潮av片| 国产av国产精品国产| 国产淫语在线视频| 欧美精品一区二区免费开放| 最后的刺客免费高清国语| 国产午夜精品一二区理论片| 免费在线观看黄色视频的| 国产1区2区3区精品| 欧美 日韩 精品 国产| 不卡视频在线观看欧美| 成人手机av| 视频中文字幕在线观看| 晚上一个人看的免费电影| 色5月婷婷丁香| 一区二区av电影网| 久久久久网色| 国产毛片在线视频| 免费观看a级毛片全部| 中文字幕av电影在线播放| 久久国产精品男人的天堂亚洲 | 三级国产精品片| 女性生殖器流出的白浆| 精品久久久久久电影网| 亚洲欧美中文字幕日韩二区| 午夜福利乱码中文字幕| 最黄视频免费看| 亚洲高清免费不卡视频| 久久久久久久国产电影| 男女下面插进去视频免费观看 | 成年人免费黄色播放视频| 少妇人妻久久综合中文| 丝袜脚勾引网站| 91精品三级在线观看| 日韩大片免费观看网站| 亚洲精品456在线播放app| 久久久久精品人妻al黑| 国产毛片在线视频| 七月丁香在线播放| 国产亚洲一区二区精品| 亚洲成色77777| 精品第一国产精品| tube8黄色片| 午夜精品国产一区二区电影| 亚洲av电影在线进入| 国产男女内射视频| 最近的中文字幕免费完整| 热99久久久久精品小说推荐| 亚洲欧洲国产日韩| 女性被躁到高潮视频| 精品酒店卫生间| 黑人高潮一二区| 亚洲图色成人| 亚洲精品自拍成人| 校园人妻丝袜中文字幕| 亚洲国产毛片av蜜桃av| 亚洲精品aⅴ在线观看| 日日摸夜夜添夜夜爱| 国产日韩欧美亚洲二区| 91国产中文字幕| 国产精品熟女久久久久浪| 赤兔流量卡办理| 国产精品一国产av| 亚洲国产最新在线播放| 高清视频免费观看一区二区| 免费不卡的大黄色大毛片视频在线观看| 老司机影院成人| 熟女人妻精品中文字幕| 97超碰精品成人国产| 精品一区二区免费观看| 少妇人妻精品综合一区二区| 久久国产精品大桥未久av| 日韩欧美一区视频在线观看| 91国产中文字幕| 婷婷色综合www| 男女无遮挡免费网站观看| 国产又色又爽无遮挡免| 国产精品秋霞免费鲁丝片| 亚洲欧美日韩另类电影网站| 免费大片黄手机在线观看| av又黄又爽大尺度在线免费看| 三级国产精品片| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产精品一区三区| 国产色爽女视频免费观看| av在线观看视频网站免费| 国产精品熟女久久久久浪| 岛国毛片在线播放| 成人国产av品久久久| 91精品伊人久久大香线蕉| 国国产精品蜜臀av免费| 国产精品久久久久久精品古装| 国产精品 国内视频| 日韩欧美精品免费久久| 国产毛片在线视频| 七月丁香在线播放| 蜜桃国产av成人99| 中文字幕另类日韩欧美亚洲嫩草| 成人漫画全彩无遮挡| 日韩精品免费视频一区二区三区 | 在线观看国产h片| 日韩电影二区| 中文字幕人妻丝袜制服| 如日韩欧美国产精品一区二区三区| 最近2019中文字幕mv第一页| 日韩人妻精品一区2区三区| 少妇 在线观看| 22中文网久久字幕| 国产1区2区3区精品| 国产成人午夜福利电影在线观看| 亚洲国产av影院在线观看| 久久精品久久久久久久性| 午夜日本视频在线| 国产综合精华液| 性色avwww在线观看| 在线精品无人区一区二区三| www.熟女人妻精品国产 | 亚洲熟女精品中文字幕| 一二三四在线观看免费中文在 | 久久人人爽人人爽人人片va| 国产亚洲av片在线观看秒播厂| 视频区图区小说| 在线观看人妻少妇| 国产精品一区二区在线不卡| 国产成人精品在线电影| 男人爽女人下面视频在线观看| 一区二区三区精品91| 韩国精品一区二区三区 | 精品人妻熟女毛片av久久网站| 好男人视频免费观看在线| 人成视频在线观看免费观看| 久热久热在线精品观看| 精品久久蜜臀av无| 宅男免费午夜| 国产成人a∨麻豆精品| 亚洲av日韩在线播放| 丰满饥渴人妻一区二区三| 久久这里只有精品19| 免费人成在线观看视频色| 国产成人av激情在线播放| 色网站视频免费| 狂野欧美激情性bbbbbb| 日韩精品有码人妻一区| 成年女人在线观看亚洲视频| 久久99热这里只频精品6学生| 全区人妻精品视频| 麻豆精品久久久久久蜜桃| 日韩制服骚丝袜av| 亚洲人成网站在线观看播放| 美女福利国产在线| 国产免费一级a男人的天堂| 国产亚洲一区二区精品| 一级毛片 在线播放| 国产不卡av网站在线观看| av卡一久久| 美女大奶头黄色视频| 成人二区视频| 国产精品人妻久久久影院| 欧美老熟妇乱子伦牲交| videossex国产| 亚洲一区二区三区欧美精品| 国产爽快片一区二区三区| 亚洲国产av影院在线观看| 极品少妇高潮喷水抽搐| 欧美xxⅹ黑人| 久久精品久久久久久噜噜老黄| 国产精品国产三级国产专区5o| 视频在线观看一区二区三区| 人妻系列 视频| 午夜av观看不卡| 香蕉精品网在线| 大香蕉久久成人网| 久久久精品区二区三区| av福利片在线| av在线app专区| 99久久中文字幕三级久久日本| 黄网站色视频无遮挡免费观看| 国产女主播在线喷水免费视频网站| 亚洲精品av麻豆狂野| 99国产精品免费福利视频| 黑人欧美特级aaaaaa片| 亚洲精品一二三| 中国国产av一级| 高清视频免费观看一区二区| 欧美日韩视频高清一区二区三区二| 亚洲精品美女久久av网站| 精品卡一卡二卡四卡免费| 久久人妻熟女aⅴ| 青春草国产在线视频| 精品国产一区二区久久| 午夜免费男女啪啪视频观看| www.熟女人妻精品国产 | 精品国产乱码久久久久久小说| 欧美成人午夜免费资源| 久久狼人影院| 亚洲国产精品专区欧美| 精品亚洲成a人片在线观看| 18禁裸乳无遮挡动漫免费视频| 国产免费又黄又爽又色| √禁漫天堂资源中文www| 久久这里有精品视频免费| 国产男女内射视频| 久久久精品免费免费高清| 夫妻午夜视频| 欧美xxxx性猛交bbbb| 最新的欧美精品一区二区| 人妻系列 视频| 免费高清在线观看视频在线观看| 高清毛片免费看| 国产视频首页在线观看| 香蕉丝袜av| 亚洲av综合色区一区| 又粗又硬又长又爽又黄的视频| 岛国毛片在线播放| 51国产日韩欧美| 亚洲av.av天堂| 久久久久久久久久成人| 男人爽女人下面视频在线观看| 男人操女人黄网站| 男女无遮挡免费网站观看| 少妇猛男粗大的猛烈进出视频| 精品人妻偷拍中文字幕| 国产日韩欧美亚洲二区| 色视频在线一区二区三区| 制服丝袜香蕉在线| 男人舔女人的私密视频| 狂野欧美激情性xxxx在线观看| 国产有黄有色有爽视频| 性色av一级| 又粗又硬又长又爽又黄的视频| 五月开心婷婷网| 欧美成人午夜精品| 亚洲国产欧美在线一区| 九草在线视频观看| 秋霞在线观看毛片| 精品久久蜜臀av无| 女性生殖器流出的白浆| 人妻系列 视频| xxx大片免费视频| 伦理电影大哥的女人| 99热全是精品| xxx大片免费视频| 久久久国产精品麻豆| 久久99热6这里只有精品| 国产成人精品婷婷| 夫妻性生交免费视频一级片| 丰满饥渴人妻一区二区三| 国产亚洲欧美精品永久| 岛国毛片在线播放| 一边摸一边做爽爽视频免费| 精品午夜福利在线看| 久久精品人人爽人人爽视色| 天堂俺去俺来也www色官网| 国产国拍精品亚洲av在线观看| 亚洲人成77777在线视频| 国产精品久久久久久精品古装| √禁漫天堂资源中文www| 国产精品久久久久久久电影| 纯流量卡能插随身wifi吗| 青春草亚洲视频在线观看| 男女下面插进去视频免费观看 | 亚洲欧洲国产日韩| 国产成人一区二区在线| 国产精品一区www在线观看| 99久久中文字幕三级久久日本| 黄色配什么色好看| 三级国产精品片|