• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology*

    2021-01-21 02:11:00YuanYuan袁園MinYuanSun孫敏遠(yuǎn)YongBi畢勇WeiNanGao高偉男ShuoZhang張碩andWenPingZhang張文平
    Chinese Physics B 2021年1期
    關(guān)鍵詞:高偉

    Yuan Yuan(袁園), Min-Yuan Sun(孫敏遠(yuǎn)), Yong Bi(畢勇),?, Wei-Nan Gao(高偉男),Shuo Zhang(張碩),2, and Wen-Ping Zhang(張文平)

    1Center of Applied Laser,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    2University of Chinese Academy of Sciences,Beijing 100190,China

    Keywords: optical transmission matrix, direct digital frequency synthesis technology, phase modulation,wavefront optimization

    1. Introduction

    Since the invention of the optical lens, the field of optics has not only had an impact on daily life but also in almost all areas of science and technology. With a conventional lens, typically made of transparent refractive materials, one can easily manipulate light with a large degree of freedom.However, it is difficult to control the optical near field after turbid media, where conventional optical components fail to access. The propagation of waves in the multiple-scattering regime is a very fundamental problem of physics with numerous applications ranging from solid-state physics and optics,to acoustics and electromagnetism.[1]

    A deeper approach to the study of complex media lies in the transmission matrix (TM) retrieval. This matrix is a subpart of the usual scattering matrix as defined in Ref. [2] for instance. The knowledge of the TM brings more fundamental insight into the medium. One can for instance extract from the TM the single and the multiple-scattering components,[3]the backscattering cone,and the field–field correlations.[4]Experimentally,the TM can encapsulate the experimental imperfections induced by optical misalignment,surface curvature,lens aberrations, and non-uniform laser illumination. Measuring the TM of a turbid medium has shown potential in focusing,delivering images, controlling transmitted energy, subwavelength imaging,[5–18]and customizing speckle statistics.[19–21]Especially, the optimized wavefront of an illumination beam calibrated by the TM method generates a focus through random scattering media.If this technology is utilized in the laser TV, the light efficiency from the diffuser into the optical engine will be largely improved.

    In the literature of measuring the TM, iterative approaches, like successive displays of Hadamard patterns or canonical patterns on a spatial light modulation (SLM), are usually adopted. The frequency-based focus optimization technique is one of the methods using canonical patterns,where each SLM phase element is modulated at a unique angular frequency and all the phase elements go through a 2π phase variation. By this method, different high-quality foci are obtained through a scattering medium. However, how to precisely generate successive phase patterns on a SLM with predefined frequency (i.e., the process of phase modulation)to fit the characteristics of the SLM device has not been illustrated in detail. An effective phase modulation technology is important for obtaining a correct result. As known, the SLM is an 8-bit digital device, and the gray values have a range from 0 to 255. The minimum increment of the phase both in each pixel and in adjacent pixels is 1 graylevel. Different from Hadamard patterns and four phases method,[5,22,23]the frequency-based focus optimization technique makes the increment of each phase element be decimals, varying with the frequency on each SLM element, and the phase values increase with an iterative process. If these decimals are not properly truncated with non-fitting values cropped,the deviation will gradually accumulate with the iterative process and finally fail to obtain the correct result. To avoid cumbersome truncation rules for huge phase values in the experiment, we introduce the direct digital frequency synthesis (DDS) technology to modulate each SLM phase element.

    In this paper,we illustrate the principle of the DDS technology and its application in SLM phase modulation. Based on full-field interference and the DDS technology, we determine the required wavefront through a Fourier transform of the detected signal and obtain a high-quality focus of coherent light through a 2 mm thick 120 grit diffuser. We expect this wavefront shaping method alongside the DDS technology to reduce speckle and power consumption in laser TV or laser holographic display in our further study.

    2. Method

    2.1. Procedure to measure a transmission matrix

    where smis the complex amplitude of the optical field used as a reference in the mthoutput mode. The phase φnis modulated at an angular frequency ωnand goes through a 2π phase variation, resulting in Imvarying. When one phase pattern is loaded onto the SLM,then projected onto the scattering sample, the corresponding output of the sample is imaged by the CCD. When a series of output intensity Imat the target position is recorded and Fourier transformed, the third term in Eq. (2) can be decoupled from the others and the optimized phase pattern is determined. Then we address the optimized phase pattern onto the SLM,a clear focus can be obtained.

    We divide the procedure of measuring the TM into three steps. Assuming the SLM consists of a K×L array of pixels,the SLM pixels are divided into two groups, one group modulates the impinging wavefront (signal beam) with the DDS technology,while the other part remains fixed in order to provide controlled reference beams.

    In step 1, each SLM phase element corresponding to the signal beam is modulated at a unique frequency,ω1,ω2,ω3,...,ωn,...,ωN, resulting in each SLM phaseshifted by φ1,φ2,φ3,...,φn,...,φN. The SLM frame is successively updated and loaded onto the SLM constantly, and finally,4N speckle patterns are recorded by the CCD.The detected target signal is Fourier transformed,and the phase values at the corresponding frequencies are determined.In step 2,after the phase corresponding to the first group is determined,the other group is modulated while the first group is maintained at the newly determined phase values. In the same way,we obtain 4(K×L-N)speckle patterns by the CCD.The detected target signal is Fourier transformed,and the phase value at the corresponding frequencies in the second group is determined. In step 3, with the measured phase profile in the first two steps loaded onto the SLM, a bright round focus will be observed on the CCD at the target position.

    2.2. Direct digital frequency synthesis technology

    We exploit the DDS technology to modulate the SLM phase element.[24]The frequency obtained by DDS technology is expressed as

    where k ranges from 1 to L (L=4N). Different frequency control word Mnwill cause different phase increments of the SLM pixel(i.e.,having different modulation frequency fn). It should be noted that φnkis cropped into the range of[0, 255]before it is shown on the SLM. Figure 2 simulates the phase modulation result using the DDS technology.Figure 2(a)illustrates the phase modulation on the first pixel of 4N successive SLM patterns. Figure 2(b)shows the magnification of the first 10 periods. With the DDS technology,the SLM phase is accurately and fully modulated in the range of[0,255].

    Fig.1. The basic principle diagram of the DDS applicate to the SLM.

    Fig.2. Simulation of phase modulation with the DDS technology.

    3. Experimental setup and results

    3.1. Experimental setup

    In our experimental setup,illustrated in Fig.3,a linearly polarized monochromatic laser beam with a wavelength of λ =632.8 nm is expanded and uniformly illuminates a phaseonly reflective SLM(Holoeye Pluto-2). The modulated beam from the SLM goes through a 4-f system and is projected onto a surface of a diffuser via an objective lens(100×,NA=0.85,Nikon, Japan). A 2 mm thick 120 grit ground glass diffuser(Thorlabs, DG10-120) is used to randomly scatter the light before it reaches the focal plane. The diffusing surface faces the 0.45 NA objective lens. The light-transmitting through the diffuser is collected using an objective lens(20×,NA=0.45,Nikon,Japan)and then projected on a camera(Manta G201B).Experimentally, we record the speckle pattern well above the Nyquist limit per speckle grain along each axis.

    To avoid cross-talk between neighboring SLM pixels,20×20 pixels are grouped to form one macropixel. We use a square array of 30×30 macropixels in the central part of the phase modulating region of the SLM. We vary, with a z-axis translation base,the position of the first objective to obtain the highest intensity enhancement, with respect to the 0.45 NA objective kept at a fixed position. The calculated phase by Fourier transform of the detected signal on the CCD is feedback to the SLM by programming instructions. In addition,owing to imperfections in the pixels of the SLM,a correction pattern is superimposed onto the optimized wavefront to allow pixel shifting.

    Fig. 3. Schematic of the apparatus. BS: beam splitter; P: polarizer;L1–L4: lens;obj1,obj2: objective len.

    3.2. Results and discussion

    Firstly, some of the varying intensity values on the first CCD pixel are tracked in Fig. 4, which helps to identify the response of the SLM device. When the effective oscillating intensity is Fourier transformed, the optimum wavefront can be obtained. Figure 5(a) is the pattern that is transmitted when a plane wave is focused onto the sample, a 2 mm thick 120 grit ground glass diffuser. The light forms a typical random speckle pattern. Based on the optical setup and the algorithm described above, we measure the TM of the sample. The row and column of the conjugated TM are the output and input channels, which correspond to the pixel indexes of the CCD and SLM. Figure 5(b) shows the reshaped 2-D optimized phase map of the 4950throw of the conjugated TM,i.e., compensating for the random phase through the sample to focus the transmitted light at (50, 50) on CCD, as shown in Fig. 5(d). Subsequently, we retrieve the phase map from the 1920thand 7980throws of the conjugated TM. Then we measure a clear focus at (20, 20) and (80, 80) on the CCD plane, separately, in Figs.5(c)and 5(d). In fact, by adjusting the target optimal phase map used as feedback, it is possible to observe a bright round focus at any target position.

    Fig.4. Varying intensity on the first pixel recorded by the CCD.

    We estimate the experimental SNR defined by the ratio of the intensity at the focus to the mean intensity of the speckle outside. In Figs.5(c)–5(e),the result of focusing on the single spot shows SNR=51, 48, and 51. From a theoretical point of view, monochromatic phase conjugation focusing through a multiple-scattering medium has been studied in Ref. [22].The general formulation for the enhancement of the focus is SNR ≈Ngrains, the total number of “information grains”, or degrees of freedom. In our experiment, Ngrainsis the number of pixels characterized by modulation frequency in the central region of the SLM,i.e., Ngrains=450. Using the theoretical formalism developed in Refs. [5,24], the effective SNR,caused by the effect of the reference beam,can be written as

    where the dominating ratio γ is 50%,denoting that the fraction of the SLM used to be modulated. (1-γ)/γ is the effect of the reference beam which contributes as the noise at the focal spot. The experimental SNR of the focus in Figs.4(c)–4(e)is 28%, 27%, and 28% of SNRref. We attribute this difference to the inhomogeneous voltage-phase response function of the SLM pixels,phase digitization due to the 8-bit depth of SLM,and the intensity nonuniform.

    Fig.5. (a)Random speckle with a flat phase profile displayed on the SLM,(b-d) focus profile with the measured phase pattern displayed on SLM,(e)Fourier transform determined phase pattern.

    Figure 6 illustrates that the full width at half maximum(FWHM) of the focus at (50, 50) is ~10 pixels of the CCD,or 44 μm, no matter on the horizontal X-axis or the vertical Y-axis. We also demonstrate that the size of the focus is independent of the number of the SLM pixels in use. In addition,although the SNR is significantly high,the sidelobes appear beside the central peak.These results from an incomplete control of the light. The number of the SLM pixels used is much lower than the number of modes that propagate through a scattering media. The uncontrolled modes generate a speckled background.

    Fig.6. The FWHM of the focus at the center on the horizontal X-axis and the vertical Y-axis.

    4. Conclusion and perspectives

    To conclude,a DDS technology alongside a full-field interferometric method is demonstrated to have the excellent ability to focus the transmitted light through a 2 mm thick diffuser. It is the first time that the DDS technology is applied to modulating the SLM phase element,which skillfully modulates the SLM phase,minimizes the experimental error/noise,and finally makes the procedure of the TM simple time-saving and accurate. Using this algorithm, a relatively accurate TM is measured, resulting in the SNR of the focus nearly 50 and the FWHM about 44 μm. The total time for reconstructing the focus is 800 s. The results show that the proposed method has the potential in improving the light efficiency and compensation for the phase of speckle-noise on image or video in laser display and holographic display,where similar diffusers were inserted in Refs.[25,26]. In addition, this method can be applied in ghost imaging, customizing statistics of speckle, and biomedical adaptive optics.

    Acknowledgment

    The authors thank Jinhai Bai for valuable discussions and insightful suggestions.

    猜你喜歡
    高偉
    Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas
    Current sensor based on diamond nitrogen-vacancy color center
    Effect of a static pedestrian as an exit obstacle on evacuation
    High-fidelity resonant tunneling passage in three-waveguide system
    我是“隱形人”
    江蘇教育(2021年59期)2021-12-02 18:35:17
    我是“隱形人”
    Analysis of asymmetry of the Dα emission spectra under the Zeeman effect in boundary region for D–D experiment on EAST tokamak?
    運(yùn)動(dòng)達(dá)人傾情環(huán)保5 年撿40000 余個(gè)廢瓶子
    北廣人物(2020年46期)2020-12-11 07:09:40
    秋天的風(fēng)
    金山(2020年3期)2020-04-15 03:56:36
    爬山虎
    丰满乱子伦码专区| 亚洲,欧美,日韩| 大话2 男鬼变身卡| 最近最新中文字幕免费大全7| 国精品久久久久久国模美| 日韩一区二区三区影片| 97超碰精品成人国产| 国产成人精品久久久久久| 色婷婷av一区二区三区视频| 好男人视频免费观看在线| 久久久久久久大尺度免费视频| kizo精华| 亚洲欧美精品专区久久| 久久99热这里只频精品6学生| 日韩一区二区三区影片| 精品少妇黑人巨大在线播放| 最黄视频免费看| 免费大片18禁| 国产亚洲一区二区精品| 国产在线视频一区二区| 自拍偷自拍亚洲精品老妇| 国产精品免费大片| 久久精品夜色国产| 国产成人一区二区在线| av免费观看日本| 亚洲情色 制服丝袜| 亚洲精品第二区| 婷婷色综合www| 亚洲精品一区蜜桃| 亚洲电影在线观看av| 日韩精品有码人妻一区| 一区二区三区免费毛片| 欧美精品高潮呻吟av久久| av天堂中文字幕网| 亚洲精品色激情综合| 国产精品久久久久久av不卡| 国产深夜福利视频在线观看| 插逼视频在线观看| 国产精品国产三级国产av玫瑰| 亚洲婷婷狠狠爱综合网| 观看免费一级毛片| 永久免费av网站大全| 亚洲国产欧美在线一区| 水蜜桃什么品种好| 久久亚洲国产成人精品v| 亚洲精品日韩在线中文字幕| 日韩成人av中文字幕在线观看| 麻豆精品久久久久久蜜桃| 少妇被粗大的猛进出69影院 | 一本一本综合久久| 久热久热在线精品观看| 久久久久国产网址| 边亲边吃奶的免费视频| 五月玫瑰六月丁香| 水蜜桃什么品种好| 欧美人与善性xxx| 深夜a级毛片| 在线观看美女被高潮喷水网站| 久久99热6这里只有精品| 国产精品不卡视频一区二区| 免费观看a级毛片全部| 黄色怎么调成土黄色| 超碰97精品在线观看| 欧美激情国产日韩精品一区| 国产伦精品一区二区三区视频9| 在线观看免费高清a一片| 欧美日韩亚洲高清精品| 精品国产露脸久久av麻豆| 最近最新中文字幕免费大全7| 亚洲精品国产av成人精品| 乱码一卡2卡4卡精品| 国产精品久久久久久久电影| 国产男女内射视频| 国产亚洲一区二区精品| 成人亚洲精品一区在线观看| 爱豆传媒免费全集在线观看| 免费观看的影片在线观看| 午夜影院在线不卡| 日韩一本色道免费dvd| 免费av中文字幕在线| 久久精品夜色国产| 国产一区二区三区综合在线观看 | 在线观看av片永久免费下载| 99九九线精品视频在线观看视频| 纯流量卡能插随身wifi吗| 国产在线视频一区二区| 久久免费观看电影| 九九在线视频观看精品| 亚洲三级黄色毛片| 黄色欧美视频在线观看| av专区在线播放| kizo精华| 伦理电影大哥的女人| 国产高清不卡午夜福利| 国产精品一区二区性色av| 汤姆久久久久久久影院中文字幕| 最黄视频免费看| 国产国拍精品亚洲av在线观看| 亚洲色图综合在线观看| 久热久热在线精品观看| 亚洲成人av在线免费| 丰满人妻一区二区三区视频av| 99久久精品国产国产毛片| 美女中出高潮动态图| 男女啪啪激烈高潮av片| 啦啦啦视频在线资源免费观看| 高清毛片免费看| 大陆偷拍与自拍| 国产精品人妻久久久影院| 国产亚洲精品久久久com| h视频一区二区三区| 亚洲av国产av综合av卡| 在线观看免费高清a一片| 国产日韩欧美亚洲二区| 男女边摸边吃奶| 一级二级三级毛片免费看| 亚洲精品中文字幕在线视频 | 久久久久久久久大av| 一本大道久久a久久精品| 美女中出高潮动态图| 汤姆久久久久久久影院中文字幕| 美女内射精品一级片tv| 午夜免费观看性视频| 蜜臀久久99精品久久宅男| 色视频在线一区二区三区| 亚洲不卡免费看| 在线天堂最新版资源| 日韩av免费高清视频| 久久精品国产亚洲网站| 人体艺术视频欧美日本| av一本久久久久| 欧美丝袜亚洲另类| 最近中文字幕2019免费版| 国产精品人妻久久久影院| 欧美xxxx性猛交bbbb| 亚洲,欧美,日韩| 少妇人妻 视频| 国产精品久久久久成人av| 久久这里有精品视频免费| 亚洲美女黄色视频免费看| 啦啦啦视频在线资源免费观看| 丁香六月天网| 免费人妻精品一区二区三区视频| 一级毛片我不卡| 精品一品国产午夜福利视频| 国产一区二区在线观看日韩| 麻豆成人午夜福利视频| 久久久久国产网址| 男女边吃奶边做爰视频| 老熟女久久久| 国产精品国产三级专区第一集| 黄色怎么调成土黄色| 十八禁高潮呻吟视频 | 性色av一级| 国产精品一区二区三区四区免费观看| 国产亚洲欧美精品永久| 在线观看www视频免费| 亚洲经典国产精华液单| 国产精品久久久久久精品古装| 黄色配什么色好看| 亚洲精品乱久久久久久| 国产精品伦人一区二区| 精品熟女少妇av免费看| 亚洲欧洲精品一区二区精品久久久 | 2021少妇久久久久久久久久久| 欧美变态另类bdsm刘玥| 亚洲国产精品专区欧美| 一级黄片播放器| 成年人免费黄色播放视频 | 高清毛片免费看| 国产免费一级a男人的天堂| 亚洲av电影在线观看一区二区三区| 中文字幕制服av| 日本免费在线观看一区| 久久精品久久精品一区二区三区| 成年女人在线观看亚洲视频| 免费播放大片免费观看视频在线观看| 51国产日韩欧美| 看免费成人av毛片| 国产亚洲午夜精品一区二区久久| 在线亚洲精品国产二区图片欧美 | 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲av男天堂| 超碰97精品在线观看| 亚洲成人av在线免费| 黑人猛操日本美女一级片| 国产精品蜜桃在线观看| 男女啪啪激烈高潮av片| 高清欧美精品videossex| 蜜桃在线观看..| 草草在线视频免费看| 丝袜脚勾引网站| 久久鲁丝午夜福利片| 黑人高潮一二区| 天堂俺去俺来也www色官网| 老司机影院毛片| 欧美国产精品一级二级三级 | 大片电影免费在线观看免费| 99久久人妻综合| 在线观看av片永久免费下载| 夜夜骑夜夜射夜夜干| 亚洲无线观看免费| 自拍欧美九色日韩亚洲蝌蚪91 | 亚州av有码| 国产视频内射| 国产免费一级a男人的天堂| 免费观看性生交大片5| 亚洲第一av免费看| 亚洲美女视频黄频| 99热6这里只有精品| 国产精品一区二区在线观看99| 国产精品免费大片| 国产亚洲av片在线观看秒播厂| 最新的欧美精品一区二区| 18禁在线无遮挡免费观看视频| 亚洲人成网站在线观看播放| 777米奇影视久久| 丝袜在线中文字幕| 纵有疾风起免费观看全集完整版| 国产成人a∨麻豆精品| h视频一区二区三区| 成人国产麻豆网| 少妇人妻精品综合一区二区| 在线看a的网站| 久久97久久精品| 又黄又爽又刺激的免费视频.| 日本免费在线观看一区| 99久久中文字幕三级久久日本| 亚洲高清免费不卡视频| 亚洲国产成人一精品久久久| 久久毛片免费看一区二区三区| 国产精品久久久久久久电影| 日韩伦理黄色片| 国产日韩一区二区三区精品不卡 | 国模一区二区三区四区视频| 另类精品久久| 国产精品人妻久久久久久| 日韩av不卡免费在线播放| 日本vs欧美在线观看视频 | 男人添女人高潮全过程视频| 欧美最新免费一区二区三区| 美女国产视频在线观看| 国产一级毛片在线| 日日啪夜夜撸| 成年人午夜在线观看视频| 国产欧美亚洲国产| 夫妻午夜视频| 国产高清三级在线| 菩萨蛮人人尽说江南好唐韦庄| 国产乱来视频区| 日本免费在线观看一区| 18禁在线无遮挡免费观看视频| 日韩成人伦理影院| 国国产精品蜜臀av免费| 国产成人精品一,二区| 美女主播在线视频| 国产乱来视频区| 天堂中文最新版在线下载| 啦啦啦中文免费视频观看日本| 国产淫语在线视频| 国产精品人妻久久久影院| 狠狠精品人妻久久久久久综合| 男女边摸边吃奶| 高清欧美精品videossex| 看免费成人av毛片| 午夜免费鲁丝| 国产精品人妻久久久久久| 各种免费的搞黄视频| 纯流量卡能插随身wifi吗| 亚洲av中文av极速乱| 亚洲欧美清纯卡通| 99精国产麻豆久久婷婷| 最近中文字幕高清免费大全6| 日韩一区二区视频免费看| 国产成人91sexporn| 超碰97精品在线观看| 久久久久久久久久久久大奶| 日韩亚洲欧美综合| 最近中文字幕2019免费版| 久久青草综合色| 另类亚洲欧美激情| 精品久久国产蜜桃| 国产高清三级在线| 成人国产av品久久久| 久热这里只有精品99| 日日撸夜夜添| 成年av动漫网址| 街头女战士在线观看网站| 精品一区二区三区视频在线| 亚洲欧美精品自产自拍| 久久国内精品自在自线图片| 一级毛片黄色毛片免费观看视频| 久久6这里有精品| 日韩成人伦理影院| 亚洲av电影在线观看一区二区三区| 男人添女人高潮全过程视频| 亚洲av福利一区| 精品亚洲乱码少妇综合久久| 搡女人真爽免费视频火全软件| 国产69精品久久久久777片| 交换朋友夫妻互换小说| 中文乱码字字幕精品一区二区三区| 大陆偷拍与自拍| 黄色毛片三级朝国网站 | 一区二区三区乱码不卡18| 成年人免费黄色播放视频 | 亚洲av.av天堂| 国产精品蜜桃在线观看| 欧美日韩精品成人综合77777| av女优亚洲男人天堂| 成人亚洲欧美一区二区av| 国产黄片视频在线免费观看| 内射极品少妇av片p| 亚洲精品国产色婷婷电影| 亚洲第一av免费看| 又粗又硬又长又爽又黄的视频| 精品亚洲乱码少妇综合久久| 日本vs欧美在线观看视频 | 2018国产大陆天天弄谢| 黄色欧美视频在线观看| 亚洲av男天堂| 老女人水多毛片| 精品国产一区二区久久| 成年av动漫网址| av免费观看日本| 妹子高潮喷水视频| 日本av免费视频播放| 少妇 在线观看| 男的添女的下面高潮视频| 婷婷色综合www| 色网站视频免费| 国产精品久久久久久av不卡| 久久鲁丝午夜福利片| 观看美女的网站| 久久亚洲国产成人精品v| 久久久精品94久久精品| 久久毛片免费看一区二区三区| 日本猛色少妇xxxxx猛交久久| 黄色欧美视频在线观看| 九色成人免费人妻av| 少妇精品久久久久久久| 亚洲国产欧美在线一区| 免费人成在线观看视频色| 在线观看三级黄色| 久久婷婷青草| 成人特级av手机在线观看| 亚洲丝袜综合中文字幕| 欧美国产精品一级二级三级 | 亚洲欧美日韩卡通动漫| 精品酒店卫生间| 久久久久久久精品精品| 人妻制服诱惑在线中文字幕| 国产黄片视频在线免费观看| 黄色欧美视频在线观看| 国产一区二区在线观看av| 午夜精品国产一区二区电影| 亚洲av中文av极速乱| 美女内射精品一级片tv| 国产男女超爽视频在线观看| 性色avwww在线观看| 欧美日韩综合久久久久久| 精品国产国语对白av| 国产白丝娇喘喷水9色精品| 啦啦啦视频在线资源免费观看| 久久久久国产网址| 六月丁香七月| 国产av精品麻豆| 亚洲高清免费不卡视频| 一级毛片黄色毛片免费观看视频| 老司机亚洲免费影院| 精品熟女少妇av免费看| 国产淫片久久久久久久久| 国产成人精品无人区| 国产淫片久久久久久久久| 纵有疾风起免费观看全集完整版| 亚洲人与动物交配视频| 欧美亚洲 丝袜 人妻 在线| 午夜激情福利司机影院| 国产精品无大码| 欧美丝袜亚洲另类| 精品国产乱码久久久久久小说| 在线亚洲精品国产二区图片欧美 | 国产成人a∨麻豆精品| 成人亚洲精品一区在线观看| 亚洲综合精品二区| 亚洲精品aⅴ在线观看| av女优亚洲男人天堂| 欧美精品人与动牲交sv欧美| 午夜激情福利司机影院| 欧美日韩视频精品一区| 国产深夜福利视频在线观看| 亚州av有码| 亚洲三级黄色毛片| 国产亚洲最大av| 欧美高清成人免费视频www| 99九九线精品视频在线观看视频| 看免费成人av毛片| 午夜91福利影院| 99精国产麻豆久久婷婷| 国产老妇伦熟女老妇高清| 美女大奶头黄色视频| 熟女人妻精品中文字幕| 自拍偷自拍亚洲精品老妇| 一级av片app| 国产熟女午夜一区二区三区 | 国产高清不卡午夜福利| 在现免费观看毛片| 亚洲av中文av极速乱| 丰满饥渴人妻一区二区三| 成人黄色视频免费在线看| 91精品国产九色| 国内揄拍国产精品人妻在线| av在线老鸭窝| 免费av中文字幕在线| a级片在线免费高清观看视频| 亚洲国产精品一区三区| av有码第一页| 一区二区三区乱码不卡18| 亚洲欧美一区二区三区黑人 | 最新中文字幕久久久久| 观看免费一级毛片| √禁漫天堂资源中文www| 少妇的逼水好多| 青青草视频在线视频观看| 黄色一级大片看看| 中文字幕精品免费在线观看视频 | 国产av码专区亚洲av| 在现免费观看毛片| 国产黄色免费在线视频| 久热久热在线精品观看| 久久久久久伊人网av| 欧美一级a爱片免费观看看| 免费久久久久久久精品成人欧美视频 | 美女xxoo啪啪120秒动态图| 国产一区二区三区综合在线观看 | 久久99热这里只频精品6学生| 成人免费观看视频高清| 热99国产精品久久久久久7| 成年美女黄网站色视频大全免费 | 人人妻人人看人人澡| 欧美日韩视频高清一区二区三区二| 少妇高潮的动态图| 99久国产av精品国产电影| 欧美精品人与动牲交sv欧美| 国产精品久久久久久精品古装| 成人国产麻豆网| 又黄又爽又刺激的免费视频.| 九色成人免费人妻av| 91精品一卡2卡3卡4卡| 能在线免费看毛片的网站| 国产av码专区亚洲av| 精品一区二区三区视频在线| 黄片无遮挡物在线观看| av线在线观看网站| 日本猛色少妇xxxxx猛交久久| 日韩成人伦理影院| 精品卡一卡二卡四卡免费| 日本黄大片高清| 在线免费观看不下载黄p国产| 亚洲天堂av无毛| 亚洲图色成人| 亚洲欧洲日产国产| 国产一区二区三区综合在线观看 | 啦啦啦视频在线资源免费观看| 欧美日韩综合久久久久久| 国产精品久久久久久精品电影小说| 男人舔奶头视频| 国产精品伦人一区二区| 丰满人妻一区二区三区视频av| 两个人免费观看高清视频 | 国产成人精品久久久久久| 99热6这里只有精品| 69精品国产乱码久久久| 91成人精品电影| 夫妻午夜视频| 欧美激情极品国产一区二区三区 | 亚洲成人手机| 成人毛片a级毛片在线播放| 99热这里只有是精品在线观看| 又大又黄又爽视频免费| 日韩电影二区| 日本av手机在线免费观看| 黑丝袜美女国产一区| 人妻少妇偷人精品九色| 免费观看a级毛片全部| 国产亚洲av片在线观看秒播厂| 免费av中文字幕在线| 日韩,欧美,国产一区二区三区| 亚洲精品国产av成人精品| 亚洲一区二区三区欧美精品| 久久久久久久大尺度免费视频| 国产黄频视频在线观看| 国产乱人偷精品视频| 高清av免费在线| 欧美人与善性xxx| 性色avwww在线观看| 日韩av在线免费看完整版不卡| 国产精品蜜桃在线观看| 在线观看三级黄色| 亚洲在久久综合| 夜夜骑夜夜射夜夜干| 国内少妇人妻偷人精品xxx网站| 91精品国产九色| 亚州av有码| 亚洲国产精品999| 午夜91福利影院| 亚洲精品亚洲一区二区| 99久久人妻综合| 多毛熟女@视频| 国产成人精品福利久久| 精品一区二区三区视频在线| 婷婷色综合大香蕉| 成人美女网站在线观看视频| 色视频在线一区二区三区| 日本免费在线观看一区| 热re99久久精品国产66热6| 国产成人免费观看mmmm| 久久亚洲国产成人精品v| 成人无遮挡网站| 这个男人来自地球电影免费观看 | 夫妻性生交免费视频一级片| 亚洲人与动物交配视频| 日本wwww免费看| 久热这里只有精品99| 国产成人免费无遮挡视频| 亚洲精品aⅴ在线观看| 18禁动态无遮挡网站| 777米奇影视久久| 国产探花极品一区二区| 男人和女人高潮做爰伦理| 国产精品无大码| 午夜影院在线不卡| 免费观看性生交大片5| 日本黄大片高清| 香蕉精品网在线| 中文精品一卡2卡3卡4更新| 伊人久久精品亚洲午夜| 国产精品熟女久久久久浪| 亚洲天堂av无毛| 夜夜爽夜夜爽视频| 激情五月婷婷亚洲| 伦精品一区二区三区| 91精品国产国语对白视频| 男的添女的下面高潮视频| 嘟嘟电影网在线观看| 亚洲欧美成人综合另类久久久| 又爽又黄a免费视频| 黑人猛操日本美女一级片| 黄色日韩在线| 麻豆精品久久久久久蜜桃| 99久久中文字幕三级久久日本| 色5月婷婷丁香| 美女cb高潮喷水在线观看| 日本av免费视频播放| 欧美一级a爱片免费观看看| 91在线精品国自产拍蜜月| 交换朋友夫妻互换小说| 亚洲不卡免费看| 久久ye,这里只有精品| 九九在线视频观看精品| 亚洲精品中文字幕在线视频 | 精品亚洲成a人片在线观看| 亚洲av电影在线观看一区二区三区| 在线天堂最新版资源| 男人狂女人下面高潮的视频| 少妇的逼好多水| 国产黄片美女视频| a级毛色黄片| 日韩中文字幕视频在线看片| 欧美日本中文国产一区发布| 精品人妻熟女av久视频| 色婷婷av一区二区三区视频| 色5月婷婷丁香| 老司机影院成人| 视频区图区小说| 国产又色又爽无遮挡免| 中文字幕精品免费在线观看视频 | 久久99精品国语久久久| 少妇精品久久久久久久| 国产av国产精品国产| 在线观看av片永久免费下载| av在线app专区| 人人澡人人妻人| 天天操日日干夜夜撸| 亚洲精品一区蜜桃| 青青草视频在线视频观看| 两个人的视频大全免费| 99久久人妻综合| 欧美日韩视频高清一区二区三区二| 我的老师免费观看完整版| 国产深夜福利视频在线观看| 9色porny在线观看| 亚洲精品aⅴ在线观看| 亚洲精品一区蜜桃| 日韩成人av中文字幕在线观看| av网站免费在线观看视频| 极品少妇高潮喷水抽搐| 天美传媒精品一区二区| 久久免费观看电影| 丝袜喷水一区| 久久国产亚洲av麻豆专区| 亚洲av国产av综合av卡| 亚洲av成人精品一区久久| 卡戴珊不雅视频在线播放| 汤姆久久久久久久影院中文字幕| 国产成人精品一,二区| 男男h啪啪无遮挡| 国产精品成人在线| 亚洲丝袜综合中文字幕| 人妻人人澡人人爽人人| av福利片在线| 97超碰精品成人国产| 一本一本综合久久| 国产一区二区在线观看av| 久久精品国产亚洲av涩爱|