• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of magnetic filter field on the radiofrequency negative hydrogen ion source of neutral beam injector for China Fusion Engineering Test Reactor

    2021-11-30 08:29:20YingjieWANG王英杰JiaweiHUANG黃佳偉YuruZHANG張鈺如FeiGAO高飛andYounianWANG王友年
    Plasma Science and Technology 2021年11期
    關(guān)鍵詞:王友英杰

    Yingjie WANG (王英杰), Jiawei HUANG (黃佳偉), Yuru ZHANG (張鈺如),Fei GAO (高飛)and Younian WANG (王友年)

    Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education),School of Physics, Dalian University of Technology, Dalian 116024, People’s Republic of China

    Abstract In the design of negative hydrogen ion sources, a magnetic filter field of tens of Gauss at the expansion region is essential to reduce the electron temperature, which usually results in a magnetic field of around 10 Gauss in the driver region,destabilizing the discharge.The magnetic shield technique is proposed in this work to reduce the magnetic field in the driver region and improve the discharge characteristics.In this paper,a three-dimensional fluid model is developed within COMSOL to study the influence of the magnetic shield on the generation and transport of plasmas in the negative hydrogen ion source.It is found that when the magnetic shield material is applied at the interface of the expansion region and the driver region,the electron density can be effectively increased.For instance,the maximum of the electron density is6.7× 1017 m?3 in the case without the magnetic shield,and the value increases to9.4× 1017 m?3 when the magnetic shield is introduced.

    Keywords: radio-frequency negative hydrogen ion sources, three-dimensional fluid model,neutral beam injection

    1.Introduction

    A neutral beam injection (NBI) prototype is designed for the China Fusion Engineering Test Reactor (CFETR) in the Southwestern Institute of Physics.The neutral beam power of the CFETR NBI prototype is expected to be higher than 4 MW, and the hydrogen ion beam is expected to reach 20 A with an energy of up to 400 keV for 3600 s[1,2].Compared to positive ion sources, the neutralization efficiency of the negative ions is strikingly higher, especially when the ion energy is higher than 100 keV [3, 4].Therefore, the radiofrequency (RF) negative hydrogen ion source (NHIS) was chosen for the CFETR NBI prototype.

    In the NHIS,there are two main mechanisms of negative hydrogen ion production, i.e.surface production and volume production.When energetic hydrogen atoms and positive ions bombard low-work-function surfaces,negative hydrogen ions are formed in the surfaces, and this is the so-called surface production [5, 6].In the volume production process, lowenergy electrons collide with vibrationally excited hydrogen molecules, and dissociative attachment occurs [7]:

    In order to increase the density of negative hydrogen ions,a transverse magnetic field generated by a magnetic filter is applied downstream of the expansion region to create lowenergy electrons.The magnetic field in the expansion region is usually about a few tens of Gauss,and it is about 10 Gauss in the driver region[8].When the magnetic field in front of the electrode was stronger than 24 Gauss,the temperature decreased strikingly to 1 eV, and the plasma homogeneity downstream of the expansion region became much better at the magnetic field of 61 Gauss[9].Although the magnetic field(dozens of Gauss)effectively reduces the electron temperature, especially downstream of the expansion region,the electron density in the driver region also declines, and the plasma distribution becomes asymmetric [8, 10–12].Furthermore, the position of the magnetic filter field in the NHIS has also been proven to affect the plasma characteristics.As the magnetic filter moves towards the driver region,the penetration of the magnetic field into the driver region is enhanced, leading to significant plasma asymmetry[8, 10, 11, 13].

    Although the magnetic filter field is helpful for increasing the extraction probability of negative ions[14]and decreasing the electron temperature, the negative ion density is almost unchanged because of the decreased electron density [15].Furthermore,a higher value of plasma density near the plasma grid is helpful for the surface production[15–17].Hence,it is of significant importance to control the magnetic field topology to increase the plasma density.

    In this work, the distribution of the magnetic field topology is optimized by replacing the driver–expansion region interface of the reactor by magnetic shield materials with high relative permeability.In order to exactly take the magnetic field topology and the reactor geometry into account,a three-dimensional(3D)fluid model is employed to simulate the NHIS prototype for the CFETR NBI system.The work is organized as follows.Section 2 introduces the 3D fluid model.In section 3, we investigate the influence of the magnetic field topology on the plasma parameters, with the optimal solution proposed.Finally, a brief summary is given in section 4.

    2.Model description

    The single-driver NHIS prototype designed for CFETR NBI system is shown in figure 1(a).The NHIS consists of a cylindrical driver region and a cuboid expansion region.A 3D Cartesian coordinate system is employed in the fluid model,with the origin fixed at the driver–expansion interface, as shown in figure 1(a).The driver region has a diameter of 28 cm and height of 14 cm, with five turns of RF coils surrounding.The length, width and height of the expansion region are 60 cm, 50 cm and 25 cm, respectively.When the magnetic field is applied, five permanent magnets, with remanent magnetization of 2.1 T for each, are arranged in a row along the x-axis downstream of each xz-plane of the expansion region.The length, width and height of each magnet are 9 cm, 5 cm and 2 cm, and they are placed 2 cm apart from each other.The RF current is flowing through the coil and the frequency of RF power is 2 MHz.It is worth mentioning that the gas pressure is 0.6 Pa and the absorbed RF power is 40 kW.

    Figure 1.NHIS structures: (a) a single-driver NHIS prototype, (b)a single-driver NHIS prototype with magnetic shield, (c) the structure of the driver–expansion region interface.

    In this work,the magnetic field topology is optimized by the magnetic shield.The magnetic shield is realized by applying high relative permeability materials(i.e.103,such as iron, whose relative permeability is 4× 103) to the reactor walls to reduce the penetration of the magnetic field in the driver region.In order to clearly investigate the influence of the magnetic shield on the plasma generation and transport,a magnetic shield case is performed, i.e.the application of magnetic shield materials in the driver–expansion region interface.The case of the applied magnetic shield materials is shown in figures 1(b) and (c) (i.e.w = 40 cm, l = 48 cm).

    In the simulations,eight different species are considered,i.e.electrons, ground-state moleculesH2,ground-state atoms H,and excited-state atoms H (n= 2) and H (n= 3) ,as well as H+,ions.Although the generation of negative hydrogen ions plays an important role in the NHIS, the corresponding reactions are ignored in this work, as the emphasis has been put on the influence of the magnetic shield on the distribution of the magnetic field and the plasma properties.In our future work,the negative hydrogen ions will be taken into account for more accurate simulations.The reactions considered in the model, as well as the references where the cross-sections are adopted from, are listed in table 1.

    Table 1.Gas-phase reactions considered in this work.

    2.1.Fluid model

    A 3D fluid model for magnetized plasmas is developed within COMSOL Multiphysics.For electrons, the particle balance equation, momentum conservation equation and energy conservation equation are included.

    The particle balance equation for electrons is given by

    whereneand Γeare the electron density and electron flux,andGeandLerepresent the generation and loss due to collisions.

    For the momentum conservation equation, the temperature gradient, inertial and convection terms are omitted:

    Here,E is the electrostatic field,andare the electron mobility tensor and electron diffusion coefficient tensor

    whereμ0andD0are the electron mobility and electron diffusion coefficient without external magnetic field

    The electron energy conservation equation is

    wherePindis the absorbed power density,as will be discussed in subsection 2.2,andSenis the energy loss term.The flux of energy Qeis given by

    The boundary conditions of Γeand Qeat the walls are

    where n is the normal vector of the walls,vthis the thermal velocity of electrons, andθis the electron reflection coefficient [26].

    Since ions and neutral species are often assumed to be at room temperature, only the particle balance equation and momentum conservation equation for ions and neutrals are considered.In future work, the temperature of neutral particles and ions will be calculated self-consistently.

    We assume that ions are not magnetized, then the transport equations can be expressed as

    whereniand Γiare the ion density and ion flux,andGiandLiare the generation and loss terms of ions.The ion mobilityμiand diffusion coefficientDiare adopted from [27].

    For neutral particles, the transport equations are as follows

    wherennand Γnare the density and flux of speciesn,GnandLnare the generation and loss terms, andDnis the diffusion coefficient from gas kinetic theory [28, 29].The boundary conditions of Γiand Γnat the walls are [10]

    where Γi,and Γnare the flux of ions and neutrals,andvi,thandvn,thare the thermal velocity of ions and neutrals.

    The electrostatic field is obtained by solving the Poisson equation

    whereε0is the vacuum permittivity andφis the electric potential.At the walls, the electric potential is set to zero.

    2.2.Electromagnetic model

    In the electromagnetic model, the Maxwell equations are solved in the frequency domain, and then the electric field is described by

    whereJindis the inductive current density,Eindis the inductive electric field, andi andμ0are the imaginary unit and permeability of the vacuum.

    The absorbed power densityPindis given by

    indThe conductivity tensor of the magnetized plasma is

    where

    At the walls, the inductive electric field satisfies ?×Eind=0.

    2.3.Magnetostatic model

    The external transverse magnetic field is calculated by the magnetostatic model.In this model, the electric currents are not included, implying that the magnetic field is generated in a current-free region where ?× H= 0 (H is the magnetic field intensity).By introducing the magnetic scalar potentialVm,the magnetic field intensity is expressed as H = -?Vm.Since it is difficult to set the boundary conditions for the static magnetic field in the plasma region, the simulated region is expanded, i.e.the length, width and height of the region are 300 cm,300 cm and 200 cm.The NHIS is placed at the center of the region to maintain the symmetry of the original magnetic field.In the whole region, the static magnetic field can be obtained by solving -? (μ0?Vm+μ0M) =0,with the boundary conditions of ?Vm=0,whereM is the magnetization intensity.

    3.Results and discussion

    In order to optimize the magnetic field topology to increase the plasma density, the magnetic shield material is applied at the side walls of the expansion region and at the driver–expansion region interface.By comparisons, it is concluded that the plasma density can be enhanced efficiently when the magnetic shield is only applied at part of the driver–expansion region interface (indicated by the dark color in figure 1(c)),i.e.the length and width of the magnetic shield region are 48 cm and 40 cm.In order to illustrate the influence of the magnetic shield, the spatial distributions of the plasma parameters in three different cases are presented; i.e.case I: an NHIS without magnetic filter field and magnetic shield; case II: an NHIS with magnetic filter field and without magnetic shield; case III: an NHIS with magnetic filter field and magnetic shield at part of the driver–expansion region interface (l = 48 cm and w = 40 cm).

    First, the influence of the magnetic field topology is illustrated by comparing the axial distributions of the electron density and the electron temperature along the reactor centerline (i.e.x = 30 cm and y = 25 cm) obtained in cases I, II and III, as shown in figure 2.In case I, the electron density first increases and then decreases along the z-direction, with the maximum appearing at the driver–expansion region interface.When the magnetic filter field is introduced in the NHIS (case II), the maximum of the electron density significantly decreases and shifts towards the driver region.From figure 2(a),it is clear that when the magnetic shield is applied(case III), the axial distribution of the electron density is similar to that of case II,but the absolute value is much higher[9],and is comparable to case I.This is because the magnetic shield reduces the magnetic field in the upper expansion region and in the lower driver region (figure 2(c)).With the application of a weak magnetic field, electrons tend to spiral around the magnetic field lines, which increases the collision probability with neutral particles, and thus the plasma generation is enhanced.Similar results were observed in [9].

    Figure 2.Axial distributions of the electron density (a), the electron temperature (b) and the magnetic field in case I, case II and case III.

    In addition, the electron temperature in case I exhibits a slight increase at the top of the driver region, and then it decreases gradually along the axial direction, whereas the electron temperature in case II reduces monotonically from the driver region to the expansion region.In contrast to case I,the decline of the electron temperature in case II becomes more obvious,i.e.the electron temperature downstream of the expansion region decreases from 4–5 eV in case I to about 1–2 eV in case II [13].Moreover, the electron temperature downstream of the expansion region in case III becomes slightly lower than that in case II, due to the greater energy loss at higher electron density.

    Figure 3 exhibits the distributions of Byand Bxin the 40 cm × 32 cm region of the xy-plane at a distance of 1 cm downstream of the expansion region in case II.By applying the high relative permeability material at the driver–expansion region interface (case III, not shown here), both Byand Bxdownstream of the expansion region are almost the same as those in the case without the magnetic shield (case II).In addition,Byis symmetric with respect to the lines x = 30 cm and y = 25 cm, whereas Bxis symmetric with respect to the center point (i.e.x = 30 cm and y = 25 cm).

    Figure 3.Distributions of By (a) and Bx (b) in the xy-plane at a distance of 1 cm downstream of the expansion region in case II.

    Figure 4.Distributions of the electron density (first column) and the electron temperature (second column) in the xz-plane (y = 25 cm) in case I (first row), case II (second row) and case III (third row).

    The electron density and the electron temperature in the xz-plane (y = 25 cm) in cases I, II and III are presented in figure 4.It can be seen that the electron density in case I is symmetric with respect to x = 30 cm, and the distributions become asymmetric when the magnetic filter field is taken into account (case II and case III).This is because of the E × B drift along the x-direction, i.e.the electric field is mainly in the z-direction and the magnetic field is mainly in the y-direction.The evolution of the electron temperature is similar.For instance, the maximum of the electron temperature in case I appears at the side wall of the driver region,and the value is 13.5 eV (figure 4(b)).In case II, the electron temperature at the right side wall of the driver region is almost unchanged, whereas the value at the left side wall increases dramatically to about 25 eV (figure 4(d)).This is because when the magnetic field is applied, the electron mobility tensor and the electron diffusion coefficient tensor become asymmetric, and this gives rise to asymmetric power deposition [10].When the magnetic shield is considered, the magnetic field at the top of the driver region becomes stronger(see figure 2(c) above), which enhances the asymmetry.Therefore, the maximum of the electron temperature appears at the top left side wall of the driver region, with a much lower value (case III, figure 4(f)).

    Figure 5 illustrates the distribution of the electron density and the electron temperature in the yz-plane (x = 30 cm) in cases I, II and III.It is clear that the electrons drift in the ydirection when the magnetic field is introduced (figures 5(c)and (e)), due to the existence of Bx, and the maximum of the electron density shifts to the driver region, as we mentioned above.In addition, the electron density distribution in the yzplane is always symmetric whether the magnetic filter field is applied or not, which is different from the results in the xzplane.In the case without magnetic field, the electron temperature distribution in the yz-plane is the same as that in the xz-plane, and the minimum value in the expansion region is 3.4 eV(figure 5(b)).When the magnetic field is included,the distribution of the electron temperature becomes strikingly different, and the minimum in the expansion region declines to 1.65 eV (figure 5(d)).In case III, the application of the magnetic shield decreases the minimum of the electron temperature, but the spatial distribution is almost the same.

    Figure 5.Distributions of the electron density (first column) and the electron temperature (second column) in the yz-plane (x = 30 cm) in case I (first row), case II (second row) and case III (third row).

    Figures 6(a), (c) and (e) represent the distribution of the electron density in the xy-plane (z = 24 cm).Again, the electron density is asymmetric with respect to x = 30 cm in case II and case III,but it is always symmetric with respect to y = 25 cm in the three cases.Compared with case I, the maximum of the electron density moves to the negative x-direction when the magnetic field is applied, again because of the drift caused by By.The influence of the magnetic field on the spatial distribution of the electron temperature in the xy-plane is more obvious.For instance, when the magnetic field is applied,the electron temperature at the center declines significantly (i.e.from 3.8 eV to 2 eV), and the maximum moves from the center to y = 0 cm and y = 50 cm(figure 6(d)).This may be because the magnetic field Byis weaker at the center (i.e.y = 25 cm, see figure 3(a) above),thus only the low-energy electrons can be constrained to rotate around the magnetic field lines there.When the magnetic shield is introduced, the electron temperature exhibits a similar distribution, but the value drops, i.e.the maximum varies from 3.7 eV to 3 eV (figure 6(f)).

    Figure 6.Distributions of the electron density (first column) and the electron temperature (second column) in the xy-plane (z = 24 cm) in case I (first row), case II (second row) and case III (third row).

    4.Conclusions

    In this work,a 3D fluid model is developed to investigate the effect of the magnetic field topology on the plasma properties.The magnetic field topology varies by introducing the magnetic shield, which is realized by applying magnetic shield material to the driver–expansion region interface.

    The results indicate that when the magnetic field is applied,both the electron temperature in the expansion region and the electron density decrease rapidly.By introducing the magnetic shield at the driver–expansion region interface, the magnetic field topology is affected, and thus the plasma properties are modulated.Although the electron temperature downstream of the expansion region stays low, the plasma generation is enhanced effectively.For instance, the maximum of the electron density downstream of the expansion region rises from4.3× 1016m?3in case II to7.4× 1016m?3in case III.It is concluded that by applying the magnetic shield at the driver–expansion region interface, the electron temperature remains low and the plasma density increases significantly,which is important for enhancing the generation of negative hydrogen ions in the NHIS.

    Acknowledgments

    This work was supported by the National Key R&D Program of China (No.2017YFE0300106), National Natural Science Foundation of China (No.12075049) and the Fundamental Research Funds for the Central Universities (Nos.DUT20LAB201 and DUT21LAB110).

    猜你喜歡
    王友英杰
    Conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled plasmas
    High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma
    急性子的媽媽
    Multi-layer structure formation of relativistic electron beams in plasmas
    Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature*
    Experimental investigation of the electromagnetic effect and improvement of the plasma radial uniformity in a large-area,very-high frequency capacitive argondischarge
    Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge?
    Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma?
    Observe modern design works and taste traditional Chinese culture
    Special Property of Group Velocity for Temporal Dark Soliton?
    国产免费福利视频在线观看| 久久97久久精品| 成人特级av手机在线观看| 国产国拍精品亚洲av在线观看| 午夜激情久久久久久久| 国产男人的电影天堂91| 中文精品一卡2卡3卡4更新| 中文精品一卡2卡3卡4更新| 欧美另类一区| 国产精品一区二区在线不卡| 日韩av免费高清视频| 国产男人的电影天堂91| 曰老女人黄片| 国产日韩欧美在线精品| 天堂中文最新版在线下载| 日韩伦理黄色片| 搡老乐熟女国产| 人妻少妇偷人精品九色| 在线观看一区二区三区激情| 精品国产露脸久久av麻豆| 26uuu在线亚洲综合色| 99九九线精品视频在线观看视频| 亚洲精品成人av观看孕妇| 日韩精品免费视频一区二区三区 | 这个男人来自地球电影免费观看 | 国产成人aa在线观看| 夜夜爽夜夜爽视频| 免费观看av网站的网址| 又粗又硬又长又爽又黄的视频| 亚洲精品国产av成人精品| 免费看日本二区| 国产成人一区二区在线| 69精品国产乱码久久久| 国产成人a∨麻豆精品| 中文字幕亚洲精品专区| 亚洲中文av在线| 亚洲熟女精品中文字幕| 啦啦啦中文免费视频观看日本| 欧美3d第一页| 五月开心婷婷网| 婷婷色综合大香蕉| av在线播放精品| 丝袜在线中文字幕| 久久久久久久久久人人人人人人| 波野结衣二区三区在线| 色婷婷av一区二区三区视频| 春色校园在线视频观看| 久久国产精品男人的天堂亚洲 | 一个人看视频在线观看www免费| 亚洲一区二区三区欧美精品| 日韩强制内射视频| 另类精品久久| 精品人妻熟女毛片av久久网站| 日产精品乱码卡一卡2卡三| 丰满乱子伦码专区| 欧美丝袜亚洲另类| av专区在线播放| 日韩欧美 国产精品| 777米奇影视久久| 老司机亚洲免费影院| 丝袜喷水一区| 在线看a的网站| 免费不卡的大黄色大毛片视频在线观看| 国产免费一区二区三区四区乱码| 91成人精品电影| 99精国产麻豆久久婷婷| 国产精品三级大全| 亚洲欧美日韩另类电影网站| 精品少妇黑人巨大在线播放| 亚洲怡红院男人天堂| av卡一久久| 亚洲图色成人| 久久99一区二区三区| 国产男女内射视频| 久久精品国产亚洲网站| 九草在线视频观看| 亚洲一级一片aⅴ在线观看| 久久国内精品自在自线图片| 夜夜爽夜夜爽视频| 交换朋友夫妻互换小说| 一级毛片电影观看| 91精品国产九色| 日韩,欧美,国产一区二区三区| 免费观看a级毛片全部| 久久99热这里只频精品6学生| 国产精品久久久久久久久免| 美女脱内裤让男人舔精品视频| 最近最新中文字幕免费大全7| 夜夜骑夜夜射夜夜干| 免费少妇av软件| 伊人亚洲综合成人网| 日韩av免费高清视频| 国产黄色视频一区二区在线观看| 国产精品99久久久久久久久| 亚洲综合色惰| 男人和女人高潮做爰伦理| 成人综合一区亚洲| 亚洲真实伦在线观看| 人人妻人人添人人爽欧美一区卜| 高清在线视频一区二区三区| 男女啪啪激烈高潮av片| 午夜免费鲁丝| 欧美成人精品欧美一级黄| 91精品一卡2卡3卡4卡| 欧美区成人在线视频| 天天操日日干夜夜撸| 69精品国产乱码久久久| 中国三级夫妇交换| 欧美另类一区| av卡一久久| 99热全是精品| tube8黄色片| 伊人久久精品亚洲午夜| 你懂的网址亚洲精品在线观看| 少妇丰满av| 久久久久久久久大av| kizo精华| 久久久久久久久久久久大奶| 两个人的视频大全免费| 爱豆传媒免费全集在线观看| 性色avwww在线观看| 亚洲精品456在线播放app| 一级毛片我不卡| 亚洲国产精品一区二区三区在线| 精品午夜福利在线看| 日韩亚洲欧美综合| 国产亚洲av片在线观看秒播厂| .国产精品久久| 男女边摸边吃奶| 国产精品免费大片| 国产精品久久久久成人av| 蜜桃久久精品国产亚洲av| 久久亚洲国产成人精品v| 在线看a的网站| 国产成人免费观看mmmm| 亚洲,一卡二卡三卡| 国产视频内射| 两个人免费观看高清视频 | 久久ye,这里只有精品| 中文乱码字字幕精品一区二区三区| 国产在线一区二区三区精| 99国产精品免费福利视频| 男人舔奶头视频| 午夜激情久久久久久久| 中文字幕精品免费在线观看视频 | 91精品伊人久久大香线蕉| 亚洲国产成人一精品久久久| 欧美最新免费一区二区三区| 国产精品秋霞免费鲁丝片| 精品少妇久久久久久888优播| 最近2019中文字幕mv第一页| 亚洲国产毛片av蜜桃av| 人人妻人人澡人人爽人人夜夜| 日韩伦理黄色片| 精品少妇内射三级| 欧美精品亚洲一区二区| 嘟嘟电影网在线观看| 成人综合一区亚洲| 国产白丝娇喘喷水9色精品| 亚洲精品久久久久久婷婷小说| 男女边摸边吃奶| 亚洲国产欧美在线一区| 一本色道久久久久久精品综合| 人人妻人人添人人爽欧美一区卜| 免费在线观看成人毛片| 久久婷婷青草| 制服丝袜香蕉在线| 亚洲国产精品专区欧美| 久久韩国三级中文字幕| 国产成人精品婷婷| 水蜜桃什么品种好| av专区在线播放| 亚洲电影在线观看av| 精品久久久久久电影网| 毛片一级片免费看久久久久| 一个人免费看片子| 一区在线观看完整版| 美女cb高潮喷水在线观看| 国产亚洲av片在线观看秒播厂| 亚洲在久久综合| 黄色日韩在线| 欧美日韩精品成人综合77777| 亚洲,一卡二卡三卡| 国产成人aa在线观看| 久久毛片免费看一区二区三区| 国产精品福利在线免费观看| 黄色毛片三级朝国网站 | 精品国产一区二区久久| videossex国产| 欧美97在线视频| 交换朋友夫妻互换小说| 丰满迷人的少妇在线观看| 三级国产精品片| 国产成人一区二区在线| 只有这里有精品99| 欧美国产精品一级二级三级 | 亚洲成色77777| 久久久久久伊人网av| 最近手机中文字幕大全| av黄色大香蕉| av福利片在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 天天操日日干夜夜撸| 亚洲精品国产成人久久av| 高清欧美精品videossex| 亚洲丝袜综合中文字幕| 最新的欧美精品一区二区| www.色视频.com| 国内精品宾馆在线| 国产又色又爽无遮挡免| 3wmmmm亚洲av在线观看| 国产高清有码在线观看视频| 美女视频免费永久观看网站| 国产淫语在线视频| 欧美亚洲 丝袜 人妻 在线| 国产日韩一区二区三区精品不卡 | 亚洲天堂av无毛| 天美传媒精品一区二区| 色视频www国产| 国产成人freesex在线| 精华霜和精华液先用哪个| 久久精品久久精品一区二区三区| 高清毛片免费看| 国产在线免费精品| 亚洲国产精品一区二区三区在线| 日韩三级伦理在线观看| 亚洲精品日本国产第一区| 成人美女网站在线观看视频| 成人毛片60女人毛片免费| 一边亲一边摸免费视频| 人妻少妇偷人精品九色| 国产av一区二区精品久久| 国产极品天堂在线| 国产日韩一区二区三区精品不卡 | 精品午夜福利在线看| 男人爽女人下面视频在线观看| 久久婷婷青草| 欧美精品人与动牲交sv欧美| 亚洲精品色激情综合| 精品一区二区三区视频在线| 赤兔流量卡办理| 久久99精品国语久久久| 综合色丁香网| 久久久久久久国产电影| 国产高清不卡午夜福利| 成人国产av品久久久| 在线播放无遮挡| av播播在线观看一区| 国产综合精华液| 18禁动态无遮挡网站| 欧美激情极品国产一区二区三区 | 久久精品国产亚洲av涩爱| 久久精品久久久久久噜噜老黄| 六月丁香七月| 国产日韩欧美在线精品| 国产永久视频网站| 久久人人爽av亚洲精品天堂| 嘟嘟电影网在线观看| 人妻一区二区av| 成人国产麻豆网| 嫩草影院入口| 亚洲第一av免费看| 22中文网久久字幕| 国产欧美另类精品又又久久亚洲欧美| 亚洲成人手机| 又黄又爽又刺激的免费视频.| 人妻夜夜爽99麻豆av| 国产亚洲最大av| 超碰97精品在线观看| 国产成人freesex在线| 亚洲av.av天堂| 国产精品久久久久久精品电影小说| 80岁老熟妇乱子伦牲交| 一区二区三区精品91| 日日爽夜夜爽网站| 99热这里只有精品一区| 午夜福利在线观看免费完整高清在| 国产亚洲欧美精品永久| 久久精品久久久久久久性| 成年人免费黄色播放视频 | 亚洲高清免费不卡视频| av在线老鸭窝| 日韩人妻高清精品专区| 黄色怎么调成土黄色| 日本91视频免费播放| 人妻夜夜爽99麻豆av| 99九九线精品视频在线观看视频| 熟妇人妻不卡中文字幕| 亚洲第一区二区三区不卡| 国产男女内射视频| 99热这里只有是精品在线观看| 国产成人精品福利久久| 日韩大片免费观看网站| 午夜久久久在线观看| 久久久久久久大尺度免费视频| 99精国产麻豆久久婷婷| 国产精品三级大全| 免费看日本二区| 人体艺术视频欧美日本| 亚洲欧洲日产国产| 一级黄片播放器| 久久久久国产网址| av又黄又爽大尺度在线免费看| 秋霞在线观看毛片| www.av在线官网国产| 97超视频在线观看视频| 麻豆乱淫一区二区| 亚洲欧美日韩东京热| 大码成人一级视频| 婷婷色av中文字幕| 欧美区成人在线视频| 国产亚洲最大av| av线在线观看网站| 亚洲av欧美aⅴ国产| 观看美女的网站| 乱人伦中国视频| 亚洲av日韩在线播放| 国产综合精华液| 国产深夜福利视频在线观看| 国产av码专区亚洲av| 精品一区在线观看国产| 亚洲国产欧美日韩在线播放 | 欧美日韩视频高清一区二区三区二| 国产精品蜜桃在线观看| h日本视频在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | freevideosex欧美| 嫩草影院新地址| av在线app专区| 91午夜精品亚洲一区二区三区| 嫩草影院新地址| 国产成人精品一,二区| 在线观看免费日韩欧美大片 | 男人爽女人下面视频在线观看| 精品少妇黑人巨大在线播放| 国产精品国产三级国产av玫瑰| 秋霞在线观看毛片| 欧美最新免费一区二区三区| 国产亚洲91精品色在线| a 毛片基地| 伦理电影大哥的女人| 97在线视频观看| 亚洲美女搞黄在线观看| 日本av免费视频播放| 国产乱来视频区| 亚洲av国产av综合av卡| 麻豆精品久久久久久蜜桃| 国内少妇人妻偷人精品xxx网站| 久久久久网色| 久久久久久久久久久久大奶| 在线免费观看不下载黄p国产| 国内少妇人妻偷人精品xxx网站| 女性被躁到高潮视频| 日本黄大片高清| 国内精品宾馆在线| 中文天堂在线官网| 亚洲精品第二区| 国产免费一级a男人的天堂| 99久国产av精品国产电影| 99视频精品全部免费 在线| 成人无遮挡网站| h日本视频在线播放| 美女福利国产在线| 成人亚洲欧美一区二区av| videossex国产| 成人亚洲欧美一区二区av| 久久午夜福利片| 少妇高潮的动态图| 亚洲成人手机| 欧美日韩一区二区视频在线观看视频在线| 日本欧美国产在线视频| 美女大奶头黄色视频| 熟女人妻精品中文字幕| 最新的欧美精品一区二区| 国产日韩欧美视频二区| 国产一区二区三区av在线| 妹子高潮喷水视频| 日韩伦理黄色片| 成年av动漫网址| 国内揄拍国产精品人妻在线| 日日啪夜夜爽| 十分钟在线观看高清视频www | 亚洲熟女精品中文字幕| 久久久久久久国产电影| 日本vs欧美在线观看视频 | 狂野欧美激情性xxxx在线观看| 国产精品人妻久久久久久| 久久久久人妻精品一区果冻| 在线精品无人区一区二区三| 91久久精品国产一区二区成人| 国产白丝娇喘喷水9色精品| 精品卡一卡二卡四卡免费| 色网站视频免费| 亚洲精品国产av成人精品| 成年美女黄网站色视频大全免费 | 亚洲丝袜综合中文字幕| 有码 亚洲区| 国产精品国产av在线观看| 我要看日韩黄色一级片| 国产探花极品一区二区| 久久影院123| 尾随美女入室| 久久精品久久精品一区二区三区| 欧美日本中文国产一区发布| 王馨瑶露胸无遮挡在线观看| 国产免费福利视频在线观看| 少妇 在线观看| 日产精品乱码卡一卡2卡三| 欧美3d第一页| 日本wwww免费看| 日日啪夜夜爽| 又粗又硬又长又爽又黄的视频| 国产欧美日韩精品一区二区| 日韩强制内射视频| 欧美日本中文国产一区发布| 成人无遮挡网站| 亚洲欧美精品自产自拍| 最近的中文字幕免费完整| 日产精品乱码卡一卡2卡三| 国产精品久久久久久精品古装| 日韩伦理黄色片| 亚洲精品乱码久久久v下载方式| 美女主播在线视频| 乱码一卡2卡4卡精品| 久久人人爽人人爽人人片va| 国产成人午夜福利电影在线观看| 久久青草综合色| 少妇高潮的动态图| 久久国内精品自在自线图片| 亚洲精品自拍成人| 欧美 日韩 精品 国产| 九九久久精品国产亚洲av麻豆| 丝袜喷水一区| 亚洲精品国产成人久久av| 亚洲性久久影院| 国产免费视频播放在线视频| 日本-黄色视频高清免费观看| 精品一区二区三区视频在线| 日本与韩国留学比较| 国产精品蜜桃在线观看| 日韩大片免费观看网站| 赤兔流量卡办理| 观看美女的网站| 色94色欧美一区二区| 亚洲精品国产av成人精品| 欧美精品一区二区大全| 成人二区视频| 亚洲国产av新网站| 大又大粗又爽又黄少妇毛片口| 成人影院久久| 少妇高潮的动态图| 热99国产精品久久久久久7| 日韩一本色道免费dvd| 男人狂女人下面高潮的视频| 国产成人免费观看mmmm| 80岁老熟妇乱子伦牲交| 亚洲色图综合在线观看| 精品熟女少妇av免费看| 人妻系列 视频| 国产极品粉嫩免费观看在线 | 久久毛片免费看一区二区三区| 人人妻人人添人人爽欧美一区卜| 最近中文字幕2019免费版| 国产片特级美女逼逼视频| 国产av码专区亚洲av| 国语对白做爰xxxⅹ性视频网站| 两个人的视频大全免费| 亚洲av综合色区一区| 日本wwww免费看| 成人综合一区亚洲| 少妇裸体淫交视频免费看高清| 亚洲成色77777| 久久久久网色| 日本av免费视频播放| 香蕉精品网在线| 观看av在线不卡| 超碰97精品在线观看| 欧美亚洲 丝袜 人妻 在线| 麻豆成人午夜福利视频| 黄色日韩在线| 久久韩国三级中文字幕| 久久鲁丝午夜福利片| 青青草视频在线视频观看| 欧美高清成人免费视频www| 欧美少妇被猛烈插入视频| 秋霞伦理黄片| 啦啦啦在线观看免费高清www| 久久久久久久亚洲中文字幕| 黑人高潮一二区| 在线观看人妻少妇| 七月丁香在线播放| 亚洲精品一区蜜桃| 成人国产麻豆网| 99热这里只有精品一区| 免费播放大片免费观看视频在线观看| 特大巨黑吊av在线直播| 欧美日韩精品成人综合77777| 欧美日韩亚洲高清精品| 婷婷色综合大香蕉| 女的被弄到高潮叫床怎么办| 婷婷色综合大香蕉| 女的被弄到高潮叫床怎么办| 69精品国产乱码久久久| 狠狠精品人妻久久久久久综合| 精品国产乱码久久久久久小说| 国产亚洲av片在线观看秒播厂| 日韩强制内射视频| 黑丝袜美女国产一区| 五月天丁香电影| 亚洲熟女精品中文字幕| 日本欧美视频一区| 国产黄片视频在线免费观看| 三级国产精品欧美在线观看| 日本黄色片子视频| 女人精品久久久久毛片| 国产又色又爽无遮挡免| videossex国产| 亚洲精品视频女| 特大巨黑吊av在线直播| 国产亚洲欧美精品永久| 黄色一级大片看看| 国产 精品1| 精品久久久久久久久亚洲| 99热这里只有是精品50| 黄色怎么调成土黄色| 亚洲欧美一区二区三区黑人 | 日韩伦理黄色片| 亚洲三级黄色毛片| 国产av国产精品国产| 我的老师免费观看完整版| 国产一级毛片在线| 亚洲精品色激情综合| 99re6热这里在线精品视频| 最近手机中文字幕大全| 如日韩欧美国产精品一区二区三区 | 国产亚洲最大av| 久久国产精品大桥未久av | 亚洲av成人精品一二三区| 午夜免费观看性视频| 91久久精品国产一区二区成人| 欧美精品人与动牲交sv欧美| 亚洲精品国产av蜜桃| 国产亚洲午夜精品一区二区久久| 女人久久www免费人成看片| 国产成人aa在线观看| 日本wwww免费看| 国产欧美日韩精品一区二区| 热re99久久国产66热| 男人舔奶头视频| av黄色大香蕉| 免费大片18禁| 在线看a的网站| 纯流量卡能插随身wifi吗| 色哟哟·www| 黄色日韩在线| 韩国高清视频一区二区三区| 99久久中文字幕三级久久日本| 色5月婷婷丁香| 大香蕉97超碰在线| 最黄视频免费看| 国产av一区二区精品久久| 精品国产国语对白av| 只有这里有精品99| 精品久久久噜噜| 黄色毛片三级朝国网站 | 国产91av在线免费观看| 丰满乱子伦码专区| 插逼视频在线观看| 国产一级毛片在线| 国产亚洲午夜精品一区二区久久| av福利片在线观看| 久久精品久久久久久久性| 在线观看三级黄色| 性高湖久久久久久久久免费观看| 国产黄色视频一区二区在线观看| 日本vs欧美在线观看视频 | 最近手机中文字幕大全| av免费观看日本| 久久久精品免费免费高清| 最后的刺客免费高清国语| 如日韩欧美国产精品一区二区三区 | 久久久久久久国产电影| av一本久久久久| 国产av码专区亚洲av| 美女视频免费永久观看网站| 国产精品三级大全| 99视频精品全部免费 在线| 国产精品伦人一区二区| 男女边吃奶边做爰视频| 欧美区成人在线视频| 亚洲成人一二三区av| 有码 亚洲区| 精品国产一区二区三区久久久樱花| 国产无遮挡羞羞视频在线观看| 高清av免费在线| 黑丝袜美女国产一区| 国产精品伦人一区二区| 国国产精品蜜臀av免费| 色网站视频免费| 久热久热在线精品观看| 97在线视频观看| 亚洲电影在线观看av| 久久久久久久国产电影| 我要看日韩黄色一级片| 人妻夜夜爽99麻豆av| 国产在线一区二区三区精| 综合色丁香网| 日韩一本色道免费dvd| 国产深夜福利视频在线观看| 国产亚洲午夜精品一区二区久久| 人妻制服诱惑在线中文字幕| 国产精品一区www在线观看| 99久久中文字幕三级久久日本| 欧美激情极品国产一区二区三区 | 美女cb高潮喷水在线观看|