• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of magnetic filter field on the radiofrequency negative hydrogen ion source of neutral beam injector for China Fusion Engineering Test Reactor

    2021-11-30 08:29:20YingjieWANG王英杰JiaweiHUANG黃佳偉YuruZHANG張鈺如FeiGAO高飛andYounianWANG王友年
    Plasma Science and Technology 2021年11期
    關(guān)鍵詞:王友英杰

    Yingjie WANG (王英杰), Jiawei HUANG (黃佳偉), Yuru ZHANG (張鈺如),Fei GAO (高飛)and Younian WANG (王友年)

    Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education),School of Physics, Dalian University of Technology, Dalian 116024, People’s Republic of China

    Abstract In the design of negative hydrogen ion sources, a magnetic filter field of tens of Gauss at the expansion region is essential to reduce the electron temperature, which usually results in a magnetic field of around 10 Gauss in the driver region,destabilizing the discharge.The magnetic shield technique is proposed in this work to reduce the magnetic field in the driver region and improve the discharge characteristics.In this paper,a three-dimensional fluid model is developed within COMSOL to study the influence of the magnetic shield on the generation and transport of plasmas in the negative hydrogen ion source.It is found that when the magnetic shield material is applied at the interface of the expansion region and the driver region,the electron density can be effectively increased.For instance,the maximum of the electron density is6.7× 1017 m?3 in the case without the magnetic shield,and the value increases to9.4× 1017 m?3 when the magnetic shield is introduced.

    Keywords: radio-frequency negative hydrogen ion sources, three-dimensional fluid model,neutral beam injection

    1.Introduction

    A neutral beam injection (NBI) prototype is designed for the China Fusion Engineering Test Reactor (CFETR) in the Southwestern Institute of Physics.The neutral beam power of the CFETR NBI prototype is expected to be higher than 4 MW, and the hydrogen ion beam is expected to reach 20 A with an energy of up to 400 keV for 3600 s[1,2].Compared to positive ion sources, the neutralization efficiency of the negative ions is strikingly higher, especially when the ion energy is higher than 100 keV [3, 4].Therefore, the radiofrequency (RF) negative hydrogen ion source (NHIS) was chosen for the CFETR NBI prototype.

    In the NHIS,there are two main mechanisms of negative hydrogen ion production, i.e.surface production and volume production.When energetic hydrogen atoms and positive ions bombard low-work-function surfaces,negative hydrogen ions are formed in the surfaces, and this is the so-called surface production [5, 6].In the volume production process, lowenergy electrons collide with vibrationally excited hydrogen molecules, and dissociative attachment occurs [7]:

    In order to increase the density of negative hydrogen ions,a transverse magnetic field generated by a magnetic filter is applied downstream of the expansion region to create lowenergy electrons.The magnetic field in the expansion region is usually about a few tens of Gauss,and it is about 10 Gauss in the driver region[8].When the magnetic field in front of the electrode was stronger than 24 Gauss,the temperature decreased strikingly to 1 eV, and the plasma homogeneity downstream of the expansion region became much better at the magnetic field of 61 Gauss[9].Although the magnetic field(dozens of Gauss)effectively reduces the electron temperature, especially downstream of the expansion region,the electron density in the driver region also declines, and the plasma distribution becomes asymmetric [8, 10–12].Furthermore, the position of the magnetic filter field in the NHIS has also been proven to affect the plasma characteristics.As the magnetic filter moves towards the driver region,the penetration of the magnetic field into the driver region is enhanced, leading to significant plasma asymmetry[8, 10, 11, 13].

    Although the magnetic filter field is helpful for increasing the extraction probability of negative ions[14]and decreasing the electron temperature, the negative ion density is almost unchanged because of the decreased electron density [15].Furthermore,a higher value of plasma density near the plasma grid is helpful for the surface production[15–17].Hence,it is of significant importance to control the magnetic field topology to increase the plasma density.

    In this work, the distribution of the magnetic field topology is optimized by replacing the driver–expansion region interface of the reactor by magnetic shield materials with high relative permeability.In order to exactly take the magnetic field topology and the reactor geometry into account,a three-dimensional(3D)fluid model is employed to simulate the NHIS prototype for the CFETR NBI system.The work is organized as follows.Section 2 introduces the 3D fluid model.In section 3, we investigate the influence of the magnetic field topology on the plasma parameters, with the optimal solution proposed.Finally, a brief summary is given in section 4.

    2.Model description

    The single-driver NHIS prototype designed for CFETR NBI system is shown in figure 1(a).The NHIS consists of a cylindrical driver region and a cuboid expansion region.A 3D Cartesian coordinate system is employed in the fluid model,with the origin fixed at the driver–expansion interface, as shown in figure 1(a).The driver region has a diameter of 28 cm and height of 14 cm, with five turns of RF coils surrounding.The length, width and height of the expansion region are 60 cm, 50 cm and 25 cm, respectively.When the magnetic field is applied, five permanent magnets, with remanent magnetization of 2.1 T for each, are arranged in a row along the x-axis downstream of each xz-plane of the expansion region.The length, width and height of each magnet are 9 cm, 5 cm and 2 cm, and they are placed 2 cm apart from each other.The RF current is flowing through the coil and the frequency of RF power is 2 MHz.It is worth mentioning that the gas pressure is 0.6 Pa and the absorbed RF power is 40 kW.

    Figure 1.NHIS structures: (a) a single-driver NHIS prototype, (b)a single-driver NHIS prototype with magnetic shield, (c) the structure of the driver–expansion region interface.

    In this work,the magnetic field topology is optimized by the magnetic shield.The magnetic shield is realized by applying high relative permeability materials(i.e.103,such as iron, whose relative permeability is 4× 103) to the reactor walls to reduce the penetration of the magnetic field in the driver region.In order to clearly investigate the influence of the magnetic shield on the plasma generation and transport,a magnetic shield case is performed, i.e.the application of magnetic shield materials in the driver–expansion region interface.The case of the applied magnetic shield materials is shown in figures 1(b) and (c) (i.e.w = 40 cm, l = 48 cm).

    In the simulations,eight different species are considered,i.e.electrons, ground-state moleculesH2,ground-state atoms H,and excited-state atoms H (n= 2) and H (n= 3) ,as well as H+,ions.Although the generation of negative hydrogen ions plays an important role in the NHIS, the corresponding reactions are ignored in this work, as the emphasis has been put on the influence of the magnetic shield on the distribution of the magnetic field and the plasma properties.In our future work,the negative hydrogen ions will be taken into account for more accurate simulations.The reactions considered in the model, as well as the references where the cross-sections are adopted from, are listed in table 1.

    Table 1.Gas-phase reactions considered in this work.

    2.1.Fluid model

    A 3D fluid model for magnetized plasmas is developed within COMSOL Multiphysics.For electrons, the particle balance equation, momentum conservation equation and energy conservation equation are included.

    The particle balance equation for electrons is given by

    whereneand Γeare the electron density and electron flux,andGeandLerepresent the generation and loss due to collisions.

    For the momentum conservation equation, the temperature gradient, inertial and convection terms are omitted:

    Here,E is the electrostatic field,andare the electron mobility tensor and electron diffusion coefficient tensor

    whereμ0andD0are the electron mobility and electron diffusion coefficient without external magnetic field

    The electron energy conservation equation is

    wherePindis the absorbed power density,as will be discussed in subsection 2.2,andSenis the energy loss term.The flux of energy Qeis given by

    The boundary conditions of Γeand Qeat the walls are

    where n is the normal vector of the walls,vthis the thermal velocity of electrons, andθis the electron reflection coefficient [26].

    Since ions and neutral species are often assumed to be at room temperature, only the particle balance equation and momentum conservation equation for ions and neutrals are considered.In future work, the temperature of neutral particles and ions will be calculated self-consistently.

    We assume that ions are not magnetized, then the transport equations can be expressed as

    whereniand Γiare the ion density and ion flux,andGiandLiare the generation and loss terms of ions.The ion mobilityμiand diffusion coefficientDiare adopted from [27].

    For neutral particles, the transport equations are as follows

    wherennand Γnare the density and flux of speciesn,GnandLnare the generation and loss terms, andDnis the diffusion coefficient from gas kinetic theory [28, 29].The boundary conditions of Γiand Γnat the walls are [10]

    where Γi,and Γnare the flux of ions and neutrals,andvi,thandvn,thare the thermal velocity of ions and neutrals.

    The electrostatic field is obtained by solving the Poisson equation

    whereε0is the vacuum permittivity andφis the electric potential.At the walls, the electric potential is set to zero.

    2.2.Electromagnetic model

    In the electromagnetic model, the Maxwell equations are solved in the frequency domain, and then the electric field is described by

    whereJindis the inductive current density,Eindis the inductive electric field, andi andμ0are the imaginary unit and permeability of the vacuum.

    The absorbed power densityPindis given by

    indThe conductivity tensor of the magnetized plasma is

    where

    At the walls, the inductive electric field satisfies ?×Eind=0.

    2.3.Magnetostatic model

    The external transverse magnetic field is calculated by the magnetostatic model.In this model, the electric currents are not included, implying that the magnetic field is generated in a current-free region where ?× H= 0 (H is the magnetic field intensity).By introducing the magnetic scalar potentialVm,the magnetic field intensity is expressed as H = -?Vm.Since it is difficult to set the boundary conditions for the static magnetic field in the plasma region, the simulated region is expanded, i.e.the length, width and height of the region are 300 cm,300 cm and 200 cm.The NHIS is placed at the center of the region to maintain the symmetry of the original magnetic field.In the whole region, the static magnetic field can be obtained by solving -? (μ0?Vm+μ0M) =0,with the boundary conditions of ?Vm=0,whereM is the magnetization intensity.

    3.Results and discussion

    In order to optimize the magnetic field topology to increase the plasma density, the magnetic shield material is applied at the side walls of the expansion region and at the driver–expansion region interface.By comparisons, it is concluded that the plasma density can be enhanced efficiently when the magnetic shield is only applied at part of the driver–expansion region interface (indicated by the dark color in figure 1(c)),i.e.the length and width of the magnetic shield region are 48 cm and 40 cm.In order to illustrate the influence of the magnetic shield, the spatial distributions of the plasma parameters in three different cases are presented; i.e.case I: an NHIS without magnetic filter field and magnetic shield; case II: an NHIS with magnetic filter field and without magnetic shield; case III: an NHIS with magnetic filter field and magnetic shield at part of the driver–expansion region interface (l = 48 cm and w = 40 cm).

    First, the influence of the magnetic field topology is illustrated by comparing the axial distributions of the electron density and the electron temperature along the reactor centerline (i.e.x = 30 cm and y = 25 cm) obtained in cases I, II and III, as shown in figure 2.In case I, the electron density first increases and then decreases along the z-direction, with the maximum appearing at the driver–expansion region interface.When the magnetic filter field is introduced in the NHIS (case II), the maximum of the electron density significantly decreases and shifts towards the driver region.From figure 2(a),it is clear that when the magnetic shield is applied(case III), the axial distribution of the electron density is similar to that of case II,but the absolute value is much higher[9],and is comparable to case I.This is because the magnetic shield reduces the magnetic field in the upper expansion region and in the lower driver region (figure 2(c)).With the application of a weak magnetic field, electrons tend to spiral around the magnetic field lines, which increases the collision probability with neutral particles, and thus the plasma generation is enhanced.Similar results were observed in [9].

    Figure 2.Axial distributions of the electron density (a), the electron temperature (b) and the magnetic field in case I, case II and case III.

    In addition, the electron temperature in case I exhibits a slight increase at the top of the driver region, and then it decreases gradually along the axial direction, whereas the electron temperature in case II reduces monotonically from the driver region to the expansion region.In contrast to case I,the decline of the electron temperature in case II becomes more obvious,i.e.the electron temperature downstream of the expansion region decreases from 4–5 eV in case I to about 1–2 eV in case II [13].Moreover, the electron temperature downstream of the expansion region in case III becomes slightly lower than that in case II, due to the greater energy loss at higher electron density.

    Figure 3 exhibits the distributions of Byand Bxin the 40 cm × 32 cm region of the xy-plane at a distance of 1 cm downstream of the expansion region in case II.By applying the high relative permeability material at the driver–expansion region interface (case III, not shown here), both Byand Bxdownstream of the expansion region are almost the same as those in the case without the magnetic shield (case II).In addition,Byis symmetric with respect to the lines x = 30 cm and y = 25 cm, whereas Bxis symmetric with respect to the center point (i.e.x = 30 cm and y = 25 cm).

    Figure 3.Distributions of By (a) and Bx (b) in the xy-plane at a distance of 1 cm downstream of the expansion region in case II.

    Figure 4.Distributions of the electron density (first column) and the electron temperature (second column) in the xz-plane (y = 25 cm) in case I (first row), case II (second row) and case III (third row).

    The electron density and the electron temperature in the xz-plane (y = 25 cm) in cases I, II and III are presented in figure 4.It can be seen that the electron density in case I is symmetric with respect to x = 30 cm, and the distributions become asymmetric when the magnetic filter field is taken into account (case II and case III).This is because of the E × B drift along the x-direction, i.e.the electric field is mainly in the z-direction and the magnetic field is mainly in the y-direction.The evolution of the electron temperature is similar.For instance, the maximum of the electron temperature in case I appears at the side wall of the driver region,and the value is 13.5 eV (figure 4(b)).In case II, the electron temperature at the right side wall of the driver region is almost unchanged, whereas the value at the left side wall increases dramatically to about 25 eV (figure 4(d)).This is because when the magnetic field is applied, the electron mobility tensor and the electron diffusion coefficient tensor become asymmetric, and this gives rise to asymmetric power deposition [10].When the magnetic shield is considered, the magnetic field at the top of the driver region becomes stronger(see figure 2(c) above), which enhances the asymmetry.Therefore, the maximum of the electron temperature appears at the top left side wall of the driver region, with a much lower value (case III, figure 4(f)).

    Figure 5 illustrates the distribution of the electron density and the electron temperature in the yz-plane (x = 30 cm) in cases I, II and III.It is clear that the electrons drift in the ydirection when the magnetic field is introduced (figures 5(c)and (e)), due to the existence of Bx, and the maximum of the electron density shifts to the driver region, as we mentioned above.In addition, the electron density distribution in the yzplane is always symmetric whether the magnetic filter field is applied or not, which is different from the results in the xzplane.In the case without magnetic field, the electron temperature distribution in the yz-plane is the same as that in the xz-plane, and the minimum value in the expansion region is 3.4 eV(figure 5(b)).When the magnetic field is included,the distribution of the electron temperature becomes strikingly different, and the minimum in the expansion region declines to 1.65 eV (figure 5(d)).In case III, the application of the magnetic shield decreases the minimum of the electron temperature, but the spatial distribution is almost the same.

    Figure 5.Distributions of the electron density (first column) and the electron temperature (second column) in the yz-plane (x = 30 cm) in case I (first row), case II (second row) and case III (third row).

    Figures 6(a), (c) and (e) represent the distribution of the electron density in the xy-plane (z = 24 cm).Again, the electron density is asymmetric with respect to x = 30 cm in case II and case III,but it is always symmetric with respect to y = 25 cm in the three cases.Compared with case I, the maximum of the electron density moves to the negative x-direction when the magnetic field is applied, again because of the drift caused by By.The influence of the magnetic field on the spatial distribution of the electron temperature in the xy-plane is more obvious.For instance, when the magnetic field is applied,the electron temperature at the center declines significantly (i.e.from 3.8 eV to 2 eV), and the maximum moves from the center to y = 0 cm and y = 50 cm(figure 6(d)).This may be because the magnetic field Byis weaker at the center (i.e.y = 25 cm, see figure 3(a) above),thus only the low-energy electrons can be constrained to rotate around the magnetic field lines there.When the magnetic shield is introduced, the electron temperature exhibits a similar distribution, but the value drops, i.e.the maximum varies from 3.7 eV to 3 eV (figure 6(f)).

    Figure 6.Distributions of the electron density (first column) and the electron temperature (second column) in the xy-plane (z = 24 cm) in case I (first row), case II (second row) and case III (third row).

    4.Conclusions

    In this work,a 3D fluid model is developed to investigate the effect of the magnetic field topology on the plasma properties.The magnetic field topology varies by introducing the magnetic shield, which is realized by applying magnetic shield material to the driver–expansion region interface.

    The results indicate that when the magnetic field is applied,both the electron temperature in the expansion region and the electron density decrease rapidly.By introducing the magnetic shield at the driver–expansion region interface, the magnetic field topology is affected, and thus the plasma properties are modulated.Although the electron temperature downstream of the expansion region stays low, the plasma generation is enhanced effectively.For instance, the maximum of the electron density downstream of the expansion region rises from4.3× 1016m?3in case II to7.4× 1016m?3in case III.It is concluded that by applying the magnetic shield at the driver–expansion region interface, the electron temperature remains low and the plasma density increases significantly,which is important for enhancing the generation of negative hydrogen ions in the NHIS.

    Acknowledgments

    This work was supported by the National Key R&D Program of China (No.2017YFE0300106), National Natural Science Foundation of China (No.12075049) and the Fundamental Research Funds for the Central Universities (Nos.DUT20LAB201 and DUT21LAB110).

    猜你喜歡
    王友英杰
    Conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled plasmas
    High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma
    急性子的媽媽
    Multi-layer structure formation of relativistic electron beams in plasmas
    Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature*
    Experimental investigation of the electromagnetic effect and improvement of the plasma radial uniformity in a large-area,very-high frequency capacitive argondischarge
    Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge?
    Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma?
    Observe modern design works and taste traditional Chinese culture
    Special Property of Group Velocity for Temporal Dark Soliton?
    亚洲精品成人久久久久久| 欧美黄色淫秽网站| 又黄又爽又刺激的免费视频.| 在线十欧美十亚洲十日本专区| 亚洲av成人不卡在线观看播放网| 国产黄a三级三级三级人| 久久久久国内视频| 亚洲国产精品久久男人天堂| 三级男女做爰猛烈吃奶摸视频| 无遮挡黄片免费观看| www.999成人在线观看| 男女视频在线观看网站免费| 特大巨黑吊av在线直播| 久久精品国产亚洲av涩爱 | 久久久久国内视频| av黄色大香蕉| 欧美日韩综合久久久久久 | 亚洲18禁久久av| 午夜老司机福利剧场| 午夜福利成人在线免费观看| 黄色日韩在线| 国产精品久久久久久精品电影| 久久6这里有精品| 成人鲁丝片一二三区免费| 真人做人爱边吃奶动态| 精品人妻偷拍中文字幕| 琪琪午夜伦伦电影理论片6080| 1024手机看黄色片| 看免费av毛片| 午夜福利高清视频| 国产精品日韩av在线免费观看| 久久午夜亚洲精品久久| 亚洲三级黄色毛片| 色哟哟哟哟哟哟| 亚州av有码| a在线观看视频网站| 国内久久婷婷六月综合欲色啪| 欧美不卡视频在线免费观看| 一进一出好大好爽视频| 国模一区二区三区四区视频| 中文在线观看免费www的网站| 亚洲av二区三区四区| avwww免费| 亚洲aⅴ乱码一区二区在线播放| 国产v大片淫在线免费观看| 久久久久久久久久成人| 日韩欧美精品v在线| 美女xxoo啪啪120秒动态图 | 美女高潮喷水抽搐中文字幕| 日韩有码中文字幕| 人人妻人人看人人澡| 亚洲专区中文字幕在线| 国产亚洲欧美在线一区二区| 女人被狂操c到高潮| 亚洲一区二区三区不卡视频| 美女免费视频网站| 最近中文字幕高清免费大全6 | 国产色爽女视频免费观看| 全区人妻精品视频| 欧美精品国产亚洲| 可以在线观看的亚洲视频| 成人一区二区视频在线观看| ponron亚洲| 精品久久国产蜜桃| 午夜激情福利司机影院| 色综合婷婷激情| 日韩精品青青久久久久久| 成人特级av手机在线观看| 欧美xxxx性猛交bbbb| 日韩大尺度精品在线看网址| 欧美又色又爽又黄视频| 免费观看人在逋| 久久精品国产99精品国产亚洲性色| 国产成+人综合+亚洲专区| 午夜福利18| 亚洲av一区综合| 又爽又黄无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看| 少妇丰满av| 老鸭窝网址在线观看| 亚洲不卡免费看| av天堂中文字幕网| 在线免费观看的www视频| 免费观看人在逋| 在线免费观看不下载黄p国产 | 欧美日本亚洲视频在线播放| 久久亚洲真实| 欧美一级a爱片免费观看看| 国产精品久久久久久久电影| 亚洲av成人av| 桃色一区二区三区在线观看| 看十八女毛片水多多多| www.色视频.com| 99riav亚洲国产免费| 又黄又爽又刺激的免费视频.| 麻豆久久精品国产亚洲av| 国产成人福利小说| 一级作爱视频免费观看| 免费av观看视频| 亚洲自拍偷在线| 欧美成人性av电影在线观看| 中文在线观看免费www的网站| 国产午夜福利久久久久久| 亚洲av成人av| 老司机午夜福利在线观看视频| 成人国产综合亚洲| 精品乱码久久久久久99久播| 99热6这里只有精品| 久久久久久久久中文| 999久久久精品免费观看国产| 99久久久亚洲精品蜜臀av| 午夜福利高清视频| 亚洲无线在线观看| 亚洲欧美精品综合久久99| 成年版毛片免费区| 深夜精品福利| 免费在线观看成人毛片| 黄色一级大片看看| 日本精品一区二区三区蜜桃| 午夜激情福利司机影院| 欧美激情国产日韩精品一区| 久久精品国产亚洲av香蕉五月| 青草久久国产| 人人妻人人看人人澡| 少妇人妻一区二区三区视频| 久久天躁狠狠躁夜夜2o2o| 九色国产91popny在线| 99久久久亚洲精品蜜臀av| 乱人视频在线观看| 成年女人毛片免费观看观看9| 真人做人爱边吃奶动态| 亚洲欧美日韩东京热| 村上凉子中文字幕在线| 69av精品久久久久久| 亚洲天堂国产精品一区在线| 成人国产一区最新在线观看| 久久亚洲真实| 少妇的逼水好多| 一级a爱片免费观看的视频| 亚洲精华国产精华精| 亚洲人成网站高清观看| av天堂在线播放| 极品教师在线免费播放| 欧美日韩福利视频一区二区| 国产综合懂色| 亚洲美女黄片视频| 日韩欧美精品免费久久 | or卡值多少钱| 国产av一区在线观看免费| 身体一侧抽搐| 午夜亚洲福利在线播放| 国产精品一区二区免费欧美| 国产午夜精品久久久久久一区二区三区 | 久久久久免费精品人妻一区二区| 丰满的人妻完整版| 欧美xxxx性猛交bbbb| 亚洲最大成人中文| 五月玫瑰六月丁香| 色视频www国产| 黄色配什么色好看| 免费高清视频大片| 成年女人毛片免费观看观看9| 精品不卡国产一区二区三区| 欧美性感艳星| 国产 一区 欧美 日韩| 欧美一区二区精品小视频在线| 美女xxoo啪啪120秒动态图 | 成人特级av手机在线观看| 国产精品久久久久久久久免 | 欧美激情在线99| 十八禁国产超污无遮挡网站| 午夜福利18| 日韩欧美精品免费久久 | 久久久久久久精品吃奶| 欧美潮喷喷水| www.色视频.com| 欧美日韩福利视频一区二区| 在线a可以看的网站| 亚洲av日韩精品久久久久久密| 成人亚洲精品av一区二区| 精品一区二区三区视频在线观看免费| 天美传媒精品一区二区| 亚洲欧美日韩高清在线视频| 一区福利在线观看| 三级毛片av免费| 国产精品一区二区三区四区免费观看 | 全区人妻精品视频| 国产伦人伦偷精品视频| 中文字幕久久专区| 少妇被粗大猛烈的视频| 简卡轻食公司| 精品福利观看| 黄色视频,在线免费观看| www.熟女人妻精品国产| 最好的美女福利视频网| 亚洲av免费高清在线观看| 好看av亚洲va欧美ⅴa在| 亚洲激情在线av| 非洲黑人性xxxx精品又粗又长| 日韩精品中文字幕看吧| a级毛片免费高清观看在线播放| 亚洲久久久久久中文字幕| 国产精品一区二区性色av| 天美传媒精品一区二区| 成人欧美大片| 我的女老师完整版在线观看| 精品午夜福利视频在线观看一区| 国产乱人视频| 久久久久九九精品影院| 国产探花极品一区二区| 亚洲av成人av| 级片在线观看| 国产淫片久久久久久久久 | 国产视频一区二区在线看| 精品国产三级普通话版| 亚洲av熟女| 久久99热6这里只有精品| 国产亚洲精品综合一区在线观看| 欧美一区二区精品小视频在线| 免费av毛片视频| 毛片一级片免费看久久久久 | 国产欧美日韩一区二区精品| 欧美高清性xxxxhd video| 两性午夜刺激爽爽歪歪视频在线观看| 99国产极品粉嫩在线观看| 久久人人爽人人爽人人片va | 午夜日韩欧美国产| 一区福利在线观看| 最新在线观看一区二区三区| 国内少妇人妻偷人精品xxx网站| 一个人观看的视频www高清免费观看| 脱女人内裤的视频| 国产高清激情床上av| 无人区码免费观看不卡| 99视频精品全部免费 在线| 日韩欧美免费精品| 成人欧美大片| 精品午夜福利在线看| 91麻豆av在线| 亚洲精品一区av在线观看| 国产成人影院久久av| 成人永久免费在线观看视频| 九色成人免费人妻av| 婷婷丁香在线五月| 人人妻,人人澡人人爽秒播| 久久久久九九精品影院| 精品福利观看| 在线免费观看的www视频| av女优亚洲男人天堂| 最新在线观看一区二区三区| 高潮久久久久久久久久久不卡| 亚洲中文字幕日韩| 丰满人妻一区二区三区视频av| 一边摸一边抽搐一进一小说| av黄色大香蕉| 一区二区三区激情视频| 五月玫瑰六月丁香| 99精品久久久久人妻精品| 国产精品野战在线观看| 日本免费一区二区三区高清不卡| АⅤ资源中文在线天堂| 精品人妻熟女av久视频| 午夜免费男女啪啪视频观看 | 国产精品一区二区免费欧美| 大型黄色视频在线免费观看| 欧美色视频一区免费| 国产毛片a区久久久久| 淫秽高清视频在线观看| 99精品在免费线老司机午夜| 美女高潮喷水抽搐中文字幕| 日韩欧美国产在线观看| 男女做爰动态图高潮gif福利片| 精品无人区乱码1区二区| 永久网站在线| www.www免费av| 欧美精品啪啪一区二区三区| 少妇裸体淫交视频免费看高清| 国产精品电影一区二区三区| 一二三四社区在线视频社区8| 国产精品永久免费网站| 少妇丰满av| 两人在一起打扑克的视频| 麻豆久久精品国产亚洲av| 色精品久久人妻99蜜桃| 国产精品99久久久久久久久| 国产精品女同一区二区软件 | 99久久久亚洲精品蜜臀av| 18美女黄网站色大片免费观看| 熟妇人妻久久中文字幕3abv| 九九热线精品视视频播放| 精品一区二区三区av网在线观看| 国产精品av视频在线免费观看| 国产精品亚洲av一区麻豆| 日韩人妻高清精品专区| 精品欧美国产一区二区三| 亚洲经典国产精华液单 | 日本成人三级电影网站| 精品久久久久久久末码| 成人国产综合亚洲| 久久6这里有精品| 91狼人影院| 久久久久久国产a免费观看| 国产在线精品亚洲第一网站| 91麻豆精品激情在线观看国产| 精品午夜福利视频在线观看一区| 美女免费视频网站| 免费看日本二区| 此物有八面人人有两片| 国产美女午夜福利| 亚洲专区中文字幕在线| 一进一出抽搐动态| 亚洲专区中文字幕在线| 欧美xxxx性猛交bbbb| 国产免费一级a男人的天堂| a在线观看视频网站| h日本视频在线播放| 狠狠狠狠99中文字幕| 国产熟女xx| 久久精品影院6| 国产高清三级在线| 黄片小视频在线播放| 蜜桃久久精品国产亚洲av| 深夜a级毛片| x7x7x7水蜜桃| 婷婷精品国产亚洲av在线| 亚洲人成电影免费在线| 精品人妻偷拍中文字幕| 欧美xxxx性猛交bbbb| 99久久久亚洲精品蜜臀av| 国产亚洲精品久久久com| 精品不卡国产一区二区三区| 久久久久国内视频| 国产视频一区二区在线看| 亚洲精品影视一区二区三区av| 欧美精品啪啪一区二区三区| 69av精品久久久久久| 天天一区二区日本电影三级| 男女之事视频高清在线观看| 国内精品一区二区在线观看| 91在线精品国自产拍蜜月| 特级一级黄色大片| 美女xxoo啪啪120秒动态图 | a在线观看视频网站| av天堂中文字幕网| 十八禁人妻一区二区| av福利片在线观看| 嫩草影院入口| 在线a可以看的网站| 精品久久久久久久末码| 熟女电影av网| 男人和女人高潮做爰伦理| 国产视频一区二区在线看| 欧美成人a在线观看| 国产乱人伦免费视频| 色播亚洲综合网| 亚洲欧美日韩东京热| 搡老妇女老女人老熟妇| 欧美精品啪啪一区二区三区| 夜夜爽天天搞| 小说图片视频综合网站| 18禁裸乳无遮挡免费网站照片| 麻豆成人av在线观看| 亚洲av熟女| 国产毛片a区久久久久| 国产伦人伦偷精品视频| 日本熟妇午夜| 91久久精品国产一区二区成人| 亚洲最大成人中文| 69av精品久久久久久| 在线十欧美十亚洲十日本专区| 69人妻影院| 国产成+人综合+亚洲专区| 我要搜黄色片| 激情在线观看视频在线高清| 欧美成人一区二区免费高清观看| 久久香蕉精品热| 欧美成人一区二区免费高清观看| 日本成人三级电影网站| 欧美乱妇无乱码| 久久精品91蜜桃| 亚洲av免费高清在线观看| 变态另类成人亚洲欧美熟女| 一区二区三区免费毛片| 亚洲电影在线观看av| www.www免费av| 欧美最新免费一区二区三区 | 人人妻人人看人人澡| 国产一区二区三区在线臀色熟女| 国产伦一二天堂av在线观看| 岛国在线免费视频观看| h日本视频在线播放| 性插视频无遮挡在线免费观看| 欧美日韩综合久久久久久 | 99在线视频只有这里精品首页| 亚洲一区二区三区色噜噜| 好男人在线观看高清免费视频| 身体一侧抽搐| 一级作爱视频免费观看| 日韩欧美国产一区二区入口| 久久精品国产99精品国产亚洲性色| 无遮挡黄片免费观看| 中出人妻视频一区二区| 草草在线视频免费看| 色尼玛亚洲综合影院| 色综合亚洲欧美另类图片| 又爽又黄a免费视频| 久久久久久久久大av| 国产 一区 欧美 日韩| 天堂动漫精品| 少妇的逼水好多| 听说在线观看完整版免费高清| 一本综合久久免费| 男女视频在线观看网站免费| 动漫黄色视频在线观看| 久99久视频精品免费| 亚洲av成人不卡在线观看播放网| 免费看日本二区| 精品国产三级普通话版| 亚洲人成网站高清观看| 欧美一区二区国产精品久久精品| 特级一级黄色大片| 一区二区三区免费毛片| 悠悠久久av| 国产中年淑女户外野战色| av中文乱码字幕在线| 男人狂女人下面高潮的视频| 丰满的人妻完整版| 99精品在免费线老司机午夜| 偷拍熟女少妇极品色| 国产精品国产高清国产av| 久久久久久久精品吃奶| 欧美激情国产日韩精品一区| 久久久精品欧美日韩精品| 亚洲欧美日韩高清在线视频| 亚洲成人中文字幕在线播放| x7x7x7水蜜桃| 不卡一级毛片| 亚洲精品久久国产高清桃花| 国产亚洲精品av在线| 精品午夜福利在线看| 成人亚洲精品av一区二区| 91字幕亚洲| 国产亚洲av嫩草精品影院| 日本熟妇午夜| 久久久精品欧美日韩精品| 脱女人内裤的视频| 久久精品国产清高在天天线| 老司机福利观看| 日本五十路高清| 精品欧美国产一区二区三| 国产乱人伦免费视频| 欧美性感艳星| a级一级毛片免费在线观看| 欧美黄色片欧美黄色片| 内地一区二区视频在线| 2021天堂中文幕一二区在线观| 麻豆国产av国片精品| АⅤ资源中文在线天堂| 日韩欧美在线乱码| 狠狠狠狠99中文字幕| 在线观看免费视频日本深夜| 成人性生交大片免费视频hd| 午夜福利18| 亚洲不卡免费看| www.999成人在线观看| 人人妻人人看人人澡| 性色av乱码一区二区三区2| 波野结衣二区三区在线| av女优亚洲男人天堂| 国产三级在线视频| 色尼玛亚洲综合影院| 国产av不卡久久| 国产亚洲精品av在线| 男女视频在线观看网站免费| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品456在线播放app | 久久亚洲真实| 成人毛片a级毛片在线播放| 在线看三级毛片| 久久亚洲精品不卡| 啦啦啦韩国在线观看视频| 美女xxoo啪啪120秒动态图 | x7x7x7水蜜桃| 国产高清激情床上av| 免费在线观看日本一区| 观看美女的网站| 在线观看免费视频日本深夜| 午夜激情福利司机影院| 国产高清激情床上av| 99热精品在线国产| а√天堂www在线а√下载| 夜夜看夜夜爽夜夜摸| 三级毛片av免费| 少妇丰满av| 午夜精品一区二区三区免费看| 18禁在线播放成人免费| 在线观看免费视频日本深夜| 很黄的视频免费| 一区福利在线观看| 美女被艹到高潮喷水动态| 最近中文字幕高清免费大全6 | 国产三级在线视频| 亚洲天堂国产精品一区在线| 舔av片在线| 黄色日韩在线| 少妇人妻精品综合一区二区 | 欧美3d第一页| 亚洲av.av天堂| 久久久久久久久中文| 一个人观看的视频www高清免费观看| 色哟哟哟哟哟哟| 久久精品国产99精品国产亚洲性色| 国产私拍福利视频在线观看| 中文资源天堂在线| 久久久久九九精品影院| 日本与韩国留学比较| 级片在线观看| 极品教师在线免费播放| 国产亚洲精品久久久久久毛片| 国产美女午夜福利| 国产高清激情床上av| 国产激情偷乱视频一区二区| 欧美zozozo另类| 免费在线观看影片大全网站| 精品日产1卡2卡| 国产高清视频在线观看网站| 日本熟妇午夜| 亚洲国产色片| 一区福利在线观看| 美女被艹到高潮喷水动态| 99国产精品一区二区蜜桃av| 日韩欧美 国产精品| 午夜福利成人在线免费观看| 精品久久久久久久久av| 看十八女毛片水多多多| 成人av在线播放网站| 婷婷色综合大香蕉| 窝窝影院91人妻| 欧美成人性av电影在线观看| 国产精品综合久久久久久久免费| 中文字幕免费在线视频6| 亚洲熟妇熟女久久| 国内精品一区二区在线观看| 成人性生交大片免费视频hd| 久久亚洲精品不卡| 中文字幕av在线有码专区| 老鸭窝网址在线观看| 亚洲精品亚洲一区二区| 高清在线国产一区| 99国产综合亚洲精品| 麻豆成人av在线观看| 精品无人区乱码1区二区| 色噜噜av男人的天堂激情| 国产精品一区二区免费欧美| 亚洲av第一区精品v没综合| 亚洲精品在线美女| 国产单亲对白刺激| 九色成人免费人妻av| 网址你懂的国产日韩在线| 午夜激情福利司机影院| www.色视频.com| 色5月婷婷丁香| 成年人黄色毛片网站| 亚洲国产精品sss在线观看| 精品久久久久久久久久免费视频| 国产黄色小视频在线观看| 一级黄色大片毛片| 国产美女午夜福利| 久久久久久久久大av| 欧美日本视频| 男人的好看免费观看在线视频| 欧美日本亚洲视频在线播放| 九色国产91popny在线| 最近视频中文字幕2019在线8| 一区二区三区激情视频| 亚洲欧美精品综合久久99| 国产三级黄色录像| 女同久久另类99精品国产91| 很黄的视频免费| 国产精品免费一区二区三区在线| netflix在线观看网站| 美女cb高潮喷水在线观看| 婷婷色综合大香蕉| 国产伦精品一区二区三区四那| 色精品久久人妻99蜜桃| 久久人人精品亚洲av| 国产在线精品亚洲第一网站| 嫩草影院新地址| 日本免费一区二区三区高清不卡| 精品久久久久久久久久久久久| 免费观看人在逋| 久久香蕉精品热| 国产v大片淫在线免费观看| 国产一区二区亚洲精品在线观看| 在线a可以看的网站| 免费看日本二区| 欧美日韩中文字幕国产精品一区二区三区| 免费av不卡在线播放| 在现免费观看毛片| 国产精品av视频在线免费观看| 日日摸夜夜添夜夜添av毛片 | 免费在线观看日本一区| 色精品久久人妻99蜜桃| 色在线成人网| 国产伦精品一区二区三区四那| 性色avwww在线观看| 欧美在线黄色| 人人妻人人看人人澡| 久久午夜亚洲精品久久| 草草在线视频免费看| 国产精品99久久久久久久久| 国产美女午夜福利| 亚洲av美国av| 激情在线观看视频在线高清| 国产高清三级在线|