• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Insight into band alignment of Zn(O,S)/CZTSe solar cell by simulation?

    2019-04-13 01:14:54ZhenWuJiang姜振武ShouShuaiGao高守帥SiYuWang王思宇DongXiaoWang王東瀟PengGao高鵬QiangSun孫強ZhiQiangZhou周志強WeiLiu劉瑋YunSun孫云andYiZhang張毅
    Chinese Physics B 2019年4期
    關(guān)鍵詞:孫強高鵬張毅

    Zhen-Wu Jiang(姜振武),Shou-Shuai Gao(高守帥),Si-Yu Wang(王思宇),Dong-Xiao Wang(王東瀟),Peng Gao(高鵬),Qiang Sun(孫強),Zhi-Qiang Zhou(周志強),Wei Liu(劉瑋),Yun Sun(孫云),and Yi Zhang(張毅),?

    1Institute of Photoelectronic Thin Film Devices and Technology,Tianjin Key Laboratory of Photoelectronic Thin Film Devices and Technology,Tianjin 300071,China

    2Tianjin Institute of Power Source,Tianjin 300384,China

    1.Introduction

    Kesterite structured Cu2ZnSnS4(CZTS) and Cu2ZnSnSe4(CZTSe)materials have received extensive attention due to their non-toxicity,large absorption coefficient(>104cm2),and earth abundant component elements in earth.[1–7]Up to now,the champion efficiency of Cu2ZnSn(S,Se)4(CZTSSe)solar cell with CdS buffer has reached to 12.6%.[8]For pure selenide CZTSe device,the device performance has been improved to 11.6%with CdS serving as a buffer layer.[9]However,the CdS buffer layer is a potential risk for CIGS and CZTS(e)solar cells[10–12]since the cadmium in CdS is toxic and the band gap of CdS is low(2.4 eV),which will cause the absorption to lose in a short-wavelength region.

    Owing to these disadvantages,alternative buffer materials are used to replace the CdS buffer layer. Among them,Zn(O,S)is a promising alternative material due to its non-toxicity and large band gap which can be modified from 2.6 eV to 3.8 eV,depending on the S/(S+O)ratio in Zn(O,S).[13,14]Many groups have reported the kesterite structure-based device with Zn(O,S)serving as a buffer layer.Among them,Grenet et al.have reported that the barrier at the CZTSSe/Zn(O,S)interface decreased after light soaking treatment,and the device efficiency was increased to 5.8%.[15]Neuschitzer et al.optimized the band alignment between CZTSe absorber layer and Zn(O,S)buffer layer by changing the thiourea concentration in the CBD process.The device efficiency was increased up to 6.5%which was close to that of CdS reference device.[16]Recently,our group eliminated the secondary phases existing in the as-grown Zn(O,S)by sequential concentrated ammonium solution etching and low temperature annealing treatment.Finally,the Zn(O,S)/CZTSe efficiency was increased to 7.2%by our group recently.[17]However,we found that the band offset between Zn(O,S)and CZTSe is higher than 1 eV,which is very difficult for the carrier transport.After the temperature-dependent I–V study,we deduce that the carrier transport in such a system should be realized by a defect energy level close to Fermi level which acts as a shortcut for the carrier transport.

    The performance of the Zn(O,S)/CZTSe device also suffers the low conductivity.[18,19]The efficiency of the device is seriously deteriorated with low buffer carrier concentration.The most commonly used method to enhance the carrier concentration is element doping.Many groups have improved the carrier concentration of the TCO by doping the group III elements like indium into ZnO.[20–23]Indium acts as a dopant since it has a similar atomic radius to Zn2+.It can substitute Zn2+in Zn Oto form In+Znsubstitution,which is an n-type dope for ZnO.[24]Recently,Jani et al.have doped different concentrations of indium into Zn(O,S)layer by the spray deposition method.[25]The carrier concentration of Zn(O,S)was significantly enhanced by doping 1 wt%–3 wt%indium.The electrical conductivity was improved due to the formation of In+Znsubstitution and reduction of hydroxyl group in the Zn(O,S)by annealing treatment in argon atmosphere.[25]Later,Mitzi et al.used In2S3/CdS double buffer layer in the traditional CZTSSe solar cells.The indium could diffuse into both CdS buffer layer and CZTSSe absorber layer by rapid thermal annealing treatment.Since the atomic radius of indium was similar to that of cadmium in CdS and that of tin in CZTSSe,indium could substitute cadmium and tin and form InCdand InSnsubstitution.Consequently,the carrier concentration of buffer layer and absorber layer were enhanced due to the formation of n-type doping and p-type doping,respectively.[26]Ikeda et al.used the In2S3as a buffer layer and they also reported that the CZTS carrier concentration was increased after rapid post-heat treatment.[27]

    Kesterite structured solar cells with Zn(O,S)have made considerable progress.However,the study of detailed understanding of the CZTSe/Zn(O,S)is still rare.In this study,we investigate the band alignment between Zn(O,S)layer and CZTSe layer.The effect of the carrier concentration variation in the buffer on the performance of CZTSe solar cells is also studied.We find that double buffer layer In2S3/Zn(O,S)mainly increases the carrier concentration.

    2.Numerical modeling

    The devices are simulated by wxAMPS software,which is updated from the original AMPS program.[28]Based on the main physical principles of AMPS,the wxAMPS software induces two new tunneling models and improves the algorithm by combining the Newton method and the Gummel method.Compared with other simulation software,the wxAMPS provides a good stability and running speed,and is very suitable for simulating materials with defect densities,band tails.[29]The device parameters used in the simulation process are listed in Table 1.The temperature and the illumination spectrum are set to be 300 K and AM1.5,respectively.

    Table 1.Device parameters used in simulation.

    3.Results and discussion

    3.1.S/(S+O)ratio in Zn(O,S)

    The band gap of Zn(O,S)can be adjusted from 2.6 eV to 3.8 eV by modifying the S/(S+O)ratio.[13,14]Sharbati S et al.reported that the band gap of the Zn(O,S) first decreases and then increases,and the value of the conduction band and the valence band both change with S fraction variety in the Zn(O,S).[30]The variation of electron affinity(χe)and band gap energy(Eg)with S ratio x=S/(S+O)in Zn(O1?xSx)can be approximately calculated from the following equations:[13,31]

    where x is the S fraction,Egis the band gap,and the band gap value of ZnS and ZnO are 3.6 eV and 3.2 eV,respectively,and b is the bowing factor,which is about 3.Figure 1 shows the corresponding values and variation tendencies of Egand χewith different S/(S+O)ratios.Obviously,the minimum band gap appears in the region where the S and O fraction are almost equal.The value of Egincreases no matter whether the S fraction is higher or lower than 0.5.

    Fig.1. Electron affinity and band gap energy of Zn(O,S)versus S/(S+O)ratio.

    As the band gap and the electron affinity of Zn(O,S)vary with the S fraction,[32]the S/(S+O)ratio becomes a key factor to affect the conduction band offset(CBO)at the interface between CZTSe absorber layer and Zn(O,S)buffer layer.[31]The Zn(O,S)electron affinity tends to slide downward as the S fraction increases(Fig.1).So the CBO between CZTSe and Zn(O,S)is negative when the buffer layer has a lower S content(x≤0.5)which is named the cliff-like band alignment.In this case,the CZTSe conduction band edge is higher than that of Zn(O,S),the recombination in the CZTSe/Zn(O,S)interface increases.[33,34]As a result,the FF andVocbecome undesirable,and the performance of the device will deteriorate.In contrast,the CBO in the CZTSe/Zn(O,S)interface is spikelike alignment when the S fraction is higher than 0.5(x>0.5).Too large a CBO will induce a barrier that hinders the photogenerated electrons from transferring across the interface,resulting in Jscdecreasing.However,when the value of CBO is set to be in a range from 0 eV to 0.4 eV,the negative effect of the spike-like CBO is negligible.[33,34]

    Fig.2.Band alignments of Zn(O,S)/CZTSe devices with different S fractions.

    Fig.3.J–V curves of Zn(O,S)/CZT Sedevices with different S fractions.

    Figure 2 shows the band structures of the CZTSe/Zn(O,S)device with different S/(S+O)ratios(x=0.2,0.7,0.9).The thickness of the Zn(O,S)used in simulation is 20 nm.The value of CBO at CZTSe/Zn(O,S)interface changes from negative to positive with the increase of S content.As the S fraction increases in Zn(O,S),the barrier induced by large CBO becomes higher.[31]From Fig.3,when x is 0.9,the CBO is far beyond 0.4 eV,which is considered to be difficult for electron to flow across the interface.We can see that when the S content is higher than 0.7,the J–V characteristic curve of device is damaged due to the large barrier for photogenerated electrons.In our simulation process,the optimal S content appears at 0.7,and in this case,the CBO between CZTSe and Zn(O,S)is about+0.2 eV,which is in a reasonable range(0 eV–0.4 eV).[33,34]The performance of the device is improved due to the small CBO value at the interface and high light absorption.

    3.2.Thickness of Zn(O,S)

    The optimal band gap of Zn(O,S)simulation(2.8 eV)is larger than that of CdS(2.4 eV).Consequently,the absorption loss in the short-wavelength region of the visible spectrum is reduced by using the Zn(O,S) film to replace the traditional CdS buffer material,thus improving the short circuit current of the device.The EQE responses of the devices with different buffer layers(CdS layer and Zn(O,S)layer)are showed in Fig.4.The short wavelength response of device is obviously improved by replacing the CdS layer with Zn(O,S)layer.Figure 5 shows the band structures of solar cells with different Zn(O,S)thickness values for the S/(S+O)=0.7.Neuschitzer et al.have fabricated a 6.5%efficient CBD-Zn(O,S)/CZTSe device after light soaking treatment,[16]while their CBDZn(O,S)was less than 10 nm in thickness.According to the results reported previously,too thin a buffer layer can induce pinholes and shunt channels which deteriorate the device parameters.Meanwhile,as the carrier concentration of the untreated CBD-Zn(O,S)is usually low,[18,19]the barrier of the carrier transport will become higher with the thickness of the Zn(O,S)increasing.

    Fig.4.EQE responses to wave of devices with different buffer layers.

    Fig.5.Energy band structure diagram of Zn(O,S)/CZTSe devices for various Zn(O,S)layer thickness.

    Figure 6 shows the variation of the short circuit current density(Jsc)and fill factor(FF)with the Zn(O,S)thickness increase.This demonstrates that the Jscand FF dramatically collapse as the Zn(O,S)thickness increases when the carrier concentration of Zn(O,S)is low(5×1017cm?3).However,the performance of the device is almost constant when the carrier concentration is adequately high(5×1018cm?3).This phenomenon is due to the low buffer carrier concentration,leading to the undesirable conductivity in Zn(O,S)layer.[19]However,it will become serious when Zn(O,S) film is thicker.This indicates that the effect of thickness is dependent on the Zn(O,S)carrier concentration.

    Fig.6.Curves of(a)Jscand(b)FF of Zn(O,S)/CZTSe solar cells versus Zn(O,S)layer thickness with different Zn(O,S)carrier concentrations.

    Similarly,we can see from Fig.7(a)that the poor conductivity makes the photo-generated electrons hard to collect by the buffer layer in the case of constant Zn(O,S)layer thickness when the carrier concentration of Zn(O,S)layer is low.The recombination rate increases in the absorber region as thickness increases.Thus the Jscand FF are deteriorated seriously respectively as the thickness reaches to 100 nm.From Fig.7(b),when the carrier concentration is as high as 5×1018cm?3,the recombination rate in absorber layer is low and unchanged with the thickness of Zn(O,S)layer.As the photo-generated carrier is mainly generated at CZTSe absorber layer,the recombination rate at the buffer layer has almost no effect on the device performance,so the variation of Jscand FF caused by the variable thickness are negligible.To reduce the light absorption in the buffer layer,the thickness of Zn(O,S)should not be too thick.To ensure that the absorber layer is completely covered,the optimum Zn(O,S)thickness is 20 nm in our simulation,which accords with our previous experiment result.[17]Besides,we find that the effect of buffer thickness depends on carrier concentration of the buffer.The high carrier concentration is propitious to the device performance.

    Fig.7.Recombination rates of Zn(O,S)/CZTSe devices with different Zn(O,S)thickness and carrier concentrations of Zn(O,S)of(a)5×1017cm?3,(b)5×1018cm?3.

    3.3.Double buffer layer

    TheIn2S3/Zn(O,S)double buffer layer is selected for simulation.Obviously,In3+ions will diffuse into Zn(O,S)buffer layer.As a consequence,the carrier concentration of Zn(O,S)is improved due to the dopant of the n-type In+Zn.Thus,we first try to disclose the effect of In2S3/Zn(O,S)double buffer layer on carrier concentration On the assumption that the In2S3layer is ultrathin,it diffuses into Zn(O,S)layer completely.Figure 8 shows the conduction band alignment of Zn(O,S)/CZTSe heterojunction with different Zn(O,S)carrier concentrations.According to the simulation results and our previous experimental result,[17]the thickness of Zn(O,S)is set to be 20 nm.,The distance from Fermi level to the conduction band minimum when carrier concentration is high(5×1018cm?3)is greater than that when the carrier concentration of Zn(O,S)is as low as 1×1016cm?3.Relatively,the barrier at the interface of Zn(O,S)/CZTSe is high without doping,which impedes the photo-generated electrons flowing across the interface.With the increase of the carrier concentration,the barrier height be-comes lower.The parameters of Zn(O,S)/CZTSe solar cells with different Zn(O,S)carrier concentrations are listed in Table 2,demonstrating that the performance of the device is observed to improve as the carrier concentration increases due to the forming of the In+Znsubstitutions in Zn(O,S)layer.

    Fig.8.Conduction band alignments of Zn(O,S)/CZTSe devices with different Zn(O,S)carrier concentrations.

    Table 2.Performances of Zn(O,S)/CZTSe cells with different Zn(O,S)carrier concentrations.

    Some In2S3layers ineluctably remain on the surface of Zn(O,S)/CZTSe solar cell in experiment.The effect of residual In2S3layers should be further considered.The band gap of In2S3is tunable from 2.1 eV to 2.9 eV,which should be attributed to the variation of the temperature and the oxygen content doped into the In2S3layer.[35–37]Furthermore,the electron affinity of In2S3will change with the variation of band gap.[38]The relationship between the band gap and electron affinity is shown below.[38]

    The optimal band gap(2.83 eV)and electron affinity(4.16 eV)of Zn(O,S)are fixed.The properties of Zn(O,S)layer and CZTSe absorber layer keep constant in this simulation.The χerange of In2S3varies from 3.85 eV to 4.65 eV.The band gap of In2S3layer is larger(2.8 eV–2.9 eV)or smaller(2.1 eV–2.8 eV)than that of Zn(O,S)layer.To make clear the effect of In2S3/Zn(O,S)double buffer layer and ensure that the incident light is fully absorbed by CZTSe solar cell,the In2S3layer with a band gap of 2.9 eV should be deposited on the absorber layer and the In2S3layer with a band gap of 2.1 eV–2.8 eV should be deposited between the absorber layer and Zn(O,S)layer. And the thickness of the remaining In2S3layer is set to be 5 nm.Figure 9 shows the J–V curve of Zn(O,S)/CZTSe device with and without 2.9-eV In2S3layer,to compare with those of the device without remaining In2S3layer,and it can be seen that the Vocof the device with 5-nm-thick remaining In2S3layer decreases.The efficiency decreases from 16.18%to 15.48%.Figure 10 shows the J–V curves of Zn(O,S)/In2S3/CZTSe devices with different band gaps of In2S3layer band gap.To make the value of CBO between CZTSe layer and In2S3layer varied in a range from 0 eV to+0.4 eV,the value of In2S3layer band gap is changed from 2.4 eV to 2.8 eV.The performance parameters of the solar cells are almost unchanged at this time.However,the performance of the device deteriorates when the In2S3layer band gap is below 2.4 eV due to the fact that the band alignment between CZTSe layer and In2S3layer is cliff-like.So the optimal efficiency is 15.71%when the In2S3band gap is 2.7 eV.And the parameters are listed in Table 3.

    Fig.9.The J–V curve of devices with and without 5-nm In2S3layer.

    Fig.10.The J–V curves of devices combined with In2S3layer with different band gaps.

    Table 3.Performances of Zn(O,S)/In2S3/CZTSe devices with 2.7-eV band gap In2S3layer.

    Figure 11 shows J–V curves of CZTSe devices in different buffer conditions,which are,respectively,for the following cases:ND=5×1017cm?3without In2S3layer,ND=5×1018cm?3with In2S3diffusing into the Zn(O,S)layer completely by annealing treatment,and ND=5×1018cm?3with 5-nm-thick In2S3layer remaining on the top of Zn(O,S)layer or CZTSe layer.The detailed parameters are listed in Table 4,indicating that the device efficiency increases to 16.18%when the NDis improved by In2S3doping.The device performance becomes slightly worse when ultrathin In2S3layer remains on the top of Zn(O,S)layer or CZTSe layer,while the parameters are still better than those without In2S3layer due to the lower NDin Zn(O,S)layer.Therefore,to achieve optimal device performance,the thickness of In2S3layer should be very thin.

    In summary,we have analyzed the performance of Zn(O,S)/CZTSe device from the perspective of band structure and carrier concentration by numerical simulation.The band alignment between Zn(O,S)layer and CZTSe layer is+0.2 eV and the carrier concentration of Zn(O,S)layer is improved by In2S3doping.The efficiency of Zn(O,S)/CZTSe device is improved to 16.18%,when no In2S3layer remains on CZTSe layer.

    Fig.11.J–V curves of devices for ND=5×1017cm?3,ND=5×1018cm?3without In2S3layer,ND=5×1018cm?3with 5-nm-thick In2S3layer remaining on Zn(O,S)layer,ND=5×1018cm?3with 5-nm-thick In2S3layer remaining on CZTSe layer.

    Table 4.Performances of devices for ND=5×1017cm?3,ND=5×1018cm?3without remaining In2S3layer,ND=5×1018cm?3 with 5-nm-thick In2S3layer remaining on Zn(O,S)layer,ND=5×1018cm?3with 5-nm-thick In2S3layer remaining on CZTSe layer.

    4.Conclusions

    In this study,the Zn(O,S)/CZTSe solar cell performance is simulated and studied by using the wxAMPS software.To achieve the optimal performance,the S/(S+O)ratio in Zn(O,S),Zn(O,S)thickness,and carrier concentration are discussed.By numerical simulation,the optimum S fraction is about 0.7,here the value of CBO in the Zn(O,S)/CZTSe interface is about+0.2 eV.The CBO is in a range of 0 eV–0.4 eV as S/(S+O)=0.6–0.8 in Zn(O,S).Meanwhile,the In2S3/Zn(O,S)double buffer layer is innovatively induced into the CZTSe device.The carrier concentration of the Zn(O,S)layer is improved by employing the In2S3/Zn(O,S)double buffer layer on CZTSe absorber layer upon annealing treatment.The device efficiency increases to 16.18%when the carrier concentration of Zn(O,S) layer is improved without any remaining In2S3.The efficiency of Zn(O,S)/5 nm-In2S3/CZTSe and 5 nm-In2S3/Zn(O,S)/CZTSe devices decrease to 15.71%and 15.48%,respectively.However,they are still higher than that of device without In2S3layer(14.93%).These promising results indicate that the performance of Zn(O,S)/CZTSe device has great potential improvement and they provide guidance for further study of CZTSe solar cells.

    [1]Li J,Kim S,Nam D,Liu X,Kim J,Cheong H,Liu W,Li H,Sun Y and Zhang Y 2017 Sol.Energy Mater.Sol.Cells 159 447

    [2]Polizzotti A,Repins I L,Noufi R,Wei S H and Mitzi D B 2013 Energy Environ.Sci.6 3171

    [3]Mitzi D B,Gunawan O,Todorov T K,Wang K and Guha S 2011 Sol.Energy Mater.Sol.Cells 95 1421

    [4]Walsh A,Chen S,Wei S H and Gong X G 2012 Adv.Energy Mater.2 400

    [5]Barkhouse D,Aaron R,Gunawan O,Gokmen T,Todorov T K and Mitzi D B 2012 Prog.Photovoltaics Res.Appl.20 6

    [6]Bag S,Gunawan O,Gokmen T,Zhu Y,Todorov T K and Mitzi D B 2012 Energy Environ.Sci.5 7060

    [7]Gao S,Jiang Z,Wu L,Ao J,Zeng Y,Sun Y and Zhang Y 2018 Chin.Phys.B 27 018803

    [8]Wang W,Winkler M T,Gunawan O,Gokmen T,Todorov T K,Zhu Y and Mitzi D B 2014 Adv.Energy Mater.4 1301465

    [9]Lee Y S,Gershon T,Gunawan O,Todorov T K,Gokmen T,Virgus Y and Guha S 2015 Adv.Energy Mater.5 1401372

    [10]Klenk R,Steigert A,Rissom T,Greiner D,Kaufmann C A,Unold T and Lux-Steiner M C 2014 Prog.Photovoltaics Res.Appl.22 161

    [11]Gautron E,Buf fi`ere M,Harel S,Assmann L,Arzel L,Brohan L,Kessler J and Barreau N 2013 Thin Solid Films 535 175

    [12]Yagioka T and Nakada T 2009 Appl.Phys.Express 2 072201

    [13]Meyer B K,Polity A,Farangis B,He Y,Hasselkamp D and Wang C 2004 Appl.Phys.Lett.85 4929

    [14]Chua R H,Li X,Walter T,The L K,Hahn T,Hergert F and Wong L H 2016 Appl.Phys.Lett.108 043505

    [15]Grenet L,Grondin P,Coumert K,Karst N,Emieux F,Roux F,Fillon R,Altamura G,Fournier H,Faucher,P and Perraud S 2014 Thin Solid Films 564 375

    [16]Neuschitzer M,Lienau K,Guc M,Barrio L C,Haass S,Prieto J M and Izquierdo-Roca 2016 J.Phys.D:Appl.Phys.49 125602

    [17]Li J,Liu X,Liu W,Wu L,Ge B,Lin S,Gao S,Zhou Z,Liu F,Sun Y,Ao J,Zhu H,Mai Y and Zhang Y 2017 Sol.RRL.1 1700075

    [18]Hsieh T M,Lue S J,Ao J,Sun Y,Feng W S and Chang L B 2014 J.Power Sources 246 443

    [19]Steirer K X,Garris R L,Li J V,Dzara M J,Ndione P F,Ramanathan K,Repins I,Teeter G and Perkins C L 2015 Phys.Chem.Chem.Phys.17 15355

    [20]Palimar S,Bangera K V and Shivakumar G K 2013 Appl.Nanosci.3 549

    [21]Llican S,Caglar Y,Caglar M and Demirci B 2008 J.Optoelectron.Adv.Mater.10 2592

    [22]Pham A T T,Ta H K T,Liu Y R,Aminzare M,Wong D P,Nguyen T H,Pham N K,Le T B N,Seetawan T,Ju H,Cho S,Chen K H,Tran V C and Phan T B 2018 J.Alloys Compd.747 156

    [23]Benramache S,Benhaoua B and Bentrah H 2013 Nanostrut.Chem.3 54

    [24]Gonc?alves G,Elangovan E,Barquinha P,Pereira L,Martins R and Fortunato E 2007 Thin Solid Films 515 8562

    [25]Jani M,Raval D,Pati R K,Mukhopadhyay I and Ray A 2018 Bull.Mater.Sci.41 22

    [26]Kim J,Hiroi H,Todorov T K,Gunawan O,Kuwahara M,Gokmen T,Nair D,Hopstaken M,Shin B,Lee Y S,Wang W,Sugimoto H and Mitzi D B 2014 Adv.Mater.26 7427

    [27]Jiang F,Ozaki C,Guna wan,Harada T,Tang Z,Minemoto T,Nose Y and Ikeda S 2016 Chem.Mater.28 3283

    [28]Liu Y,Sun Y and Rockett A 2012 Sol.Energy Mater.Sol.Cells 98 124

    [29]Omer and Mohamed B 2015 Chin.Phys.Lett.32 088801

    [30]Sharbati S,Keshmiri S H,McGoffin J T and Geisthardt R 2015 Appl.Phys.A 118 1259

    [31]Persson C,Platzer-Bjorkman C,Malmstrom J,Torndahl T and Edoff M 2006 Phys.Rev.Lett.97 46403

    [32]Grimm A,Kieven D,Klenk R,Lauermann I,Neisser A,Niesen T and Palm J 2011 Thin Solid Films 520 1330

    [33]Huang T J,Yin X,Qi G and Gong H 2014 Phys.Status Solidi RRL.08 735

    [34]Minemoto T,Matsui T,Takakura H,Hamakawa Y,Negami T,Hashimoto Y and Kitagawa M 2001 Sol.Energy Mater.Sol.Cells 67 83

    [35]Barreau N,Bernede J C,Marsillac S and Mokrani A 2002 J.Crystal Growth 235 439

    [36]Revathi N,Prathap P,Subbaiah Y P V and Ramakrishna Reddy K T 2008 J.Phys.D:Appl.Phys.41 155404

    [37]Saadallah F,Jebbari N,Kammoun N and Yacoubi N 2011 Int.J.Photoenergy 1–4

    [38]Khoshsirat N and Md Yunus N A 2016 J.Electron.Mater.45 5721

    猜你喜歡
    孫強高鵬張毅
    Special breathing structures induced by bright solitons collision in a binary dipolar Bose–Einstein condensates
    高鵬
    高鵬副教授
    Merging and splitting dynamics between two bright solitons in dipolar Bose–Einstein condensates?
    Three-dimensional non-equilibrium modeling of a DC multi-cathode arc plasma torch
    孫強作品
    《秋水共長天一色》
    青年生活(2019年6期)2019-09-10 17:55:38
    Generalized Hybrid Nanofluid Model with the Application of Fully Developed Mixed Convection Flow in a Vertical Microchannel?
    Noether Symmetry and Conserved Quantities of Fractional Birkhoffian System in Terms of Herglotz Variational Problem?
    A scheme for improving computational efficiency of quasi-two-dimensional model*
    h日本视频在线播放| 插逼视频在线观看| 午夜福利在线在线| 久久久久久大精品| 麻豆成人午夜福利视频| 日本一本二区三区精品| 国产精品1区2区在线观看.| 久久精品人妻少妇| 少妇的逼好多水| 日韩欧美精品免费久久| 国产一级毛片在线| 国产精品99久久久久久久久| 神马国产精品三级电影在线观看| 国产亚洲午夜精品一区二区久久 | 国产成人91sexporn| 长腿黑丝高跟| 禁无遮挡网站| 国产大屁股一区二区在线视频| 在线播放无遮挡| 日韩欧美 国产精品| 国产精品,欧美在线| 丝袜美腿在线中文| 国产精品久久电影中文字幕| 看免费成人av毛片| 日本午夜av视频| 激情 狠狠 欧美| 国产片特级美女逼逼视频| 久久精品国产亚洲av天美| 伦精品一区二区三区| 欧美精品一区二区大全| 亚洲熟妇中文字幕五十中出| 99在线视频只有这里精品首页| av黄色大香蕉| 插逼视频在线观看| av免费在线看不卡| 久久久久九九精品影院| 午夜激情福利司机影院| 狂野欧美白嫩少妇大欣赏| 永久免费av网站大全| 精品熟女少妇av免费看| 免费观看人在逋| 国产精品久久久久久精品电影| av免费在线看不卡| 国产一区亚洲一区在线观看| av免费观看日本| 色吧在线观看| 美女黄网站色视频| 五月玫瑰六月丁香| 亚洲欧美成人综合另类久久久 | 偷拍熟女少妇极品色| 色综合站精品国产| 18禁在线播放成人免费| 欧美成人一区二区免费高清观看| 午夜免费激情av| 色播亚洲综合网| 女人十人毛片免费观看3o分钟| 观看美女的网站| 国产欧美另类精品又又久久亚洲欧美| 在线免费观看的www视频| 日日干狠狠操夜夜爽| 一本久久精品| 又爽又黄无遮挡网站| 国产成人精品一,二区| 精品酒店卫生间| 永久免费av网站大全| 久久婷婷人人爽人人干人人爱| 久久久精品欧美日韩精品| 亚洲aⅴ乱码一区二区在线播放| 乱系列少妇在线播放| 国产精品蜜桃在线观看| 赤兔流量卡办理| 高清午夜精品一区二区三区| 一级黄色大片毛片| 亚洲成人av在线免费| 日韩av不卡免费在线播放| 中文天堂在线官网| 亚洲自拍偷在线| 少妇的逼好多水| 免费大片18禁| 国产精品久久视频播放| 99在线视频只有这里精品首页| 51国产日韩欧美| 狂野欧美白嫩少妇大欣赏| 成人鲁丝片一二三区免费| 午夜激情福利司机影院| 午夜福利在线观看吧| 观看美女的网站| 成人无遮挡网站| 久久精品夜色国产| 男人狂女人下面高潮的视频| 寂寞人妻少妇视频99o| 一个人看视频在线观看www免费| 亚洲成色77777| 亚洲色图av天堂| 狂野欧美白嫩少妇大欣赏| 男人和女人高潮做爰伦理| 国产精品久久久久久精品电影小说 | 日本午夜av视频| 又粗又硬又长又爽又黄的视频| 狠狠狠狠99中文字幕| 好男人在线观看高清免费视频| 91精品国产九色| 一级爰片在线观看| 亚洲无线观看免费| 日本免费在线观看一区| av免费观看日本| 国产一区二区亚洲精品在线观看| 亚洲av免费在线观看| 亚洲18禁久久av| 久久人人爽人人爽人人片va| 精品午夜福利在线看| 久久久成人免费电影| 国产亚洲91精品色在线| 亚洲欧洲日产国产| 亚洲五月天丁香| 少妇熟女欧美另类| videos熟女内射| 91狼人影院| 亚洲电影在线观看av| 免费观看a级毛片全部| 亚洲内射少妇av| 91精品伊人久久大香线蕉| 一级黄片播放器| 国产一区有黄有色的免费视频 | 久久久久久久国产电影| 在线播放无遮挡| 欧美三级亚洲精品| 色尼玛亚洲综合影院| 久久久久网色| 99热6这里只有精品| av线在线观看网站| 久久亚洲国产成人精品v| 亚洲欧美日韩东京热| 国语自产精品视频在线第100页| 亚洲中文字幕日韩| 国产三级在线视频| 精品久久国产蜜桃| 久久午夜福利片| 韩国高清视频一区二区三区| 精品久久久噜噜| 国产白丝娇喘喷水9色精品| 国产免费男女视频| 国产极品精品免费视频能看的| 黄片wwwwww| 国产成人免费观看mmmm| 搡老妇女老女人老熟妇| 亚洲图色成人| 两个人的视频大全免费| 亚洲欧美日韩卡通动漫| 欧美另类亚洲清纯唯美| av福利片在线观看| 色综合站精品国产| 欧美另类亚洲清纯唯美| 永久免费av网站大全| 色综合站精品国产| 成人亚洲精品av一区二区| 伦理电影大哥的女人| 精品一区二区免费观看| 亚洲成人久久爱视频| 亚洲精华国产精华液的使用体验| 日本午夜av视频| 18禁在线无遮挡免费观看视频| 国产又黄又爽又无遮挡在线| 欧美日本亚洲视频在线播放| 插阴视频在线观看视频| 国产精品人妻久久久久久| 男女下面进入的视频免费午夜| 亚洲va在线va天堂va国产| 99热精品在线国产| 国产一区二区在线观看日韩| av女优亚洲男人天堂| 18+在线观看网站| 国产精品无大码| 99国产精品一区二区蜜桃av| videos熟女内射| 男的添女的下面高潮视频| 欧美性感艳星| 男女那种视频在线观看| 国产一区二区三区av在线| 精品久久久久久久末码| 亚洲三级黄色毛片| 久久久久精品久久久久真实原创| 能在线免费观看的黄片| 看十八女毛片水多多多| a级毛片免费高清观看在线播放| 国产亚洲精品久久久com| 狂野欧美白嫩少妇大欣赏| 亚洲综合色惰| 亚洲国产精品专区欧美| 国产国拍精品亚洲av在线观看| 久久精品久久精品一区二区三区| 熟女人妻精品中文字幕| 久久久a久久爽久久v久久| 黄色配什么色好看| 亚洲av中文av极速乱| 国产精品一区二区三区四区久久| 色播亚洲综合网| 久久99热6这里只有精品| 成人一区二区视频在线观看| 小说图片视频综合网站| 黄片无遮挡物在线观看| 色哟哟·www| 午夜福利视频1000在线观看| 高清在线视频一区二区三区 | 高清午夜精品一区二区三区| 国产午夜福利久久久久久| 日本三级黄在线观看| 亚洲国产精品国产精品| 国产淫语在线视频| 黄色配什么色好看| 亚洲精品久久久久久婷婷小说 | 国产精品女同一区二区软件| 1024手机看黄色片| 蜜桃久久精品国产亚洲av| 国产亚洲精品av在线| 九九在线视频观看精品| 久久久久精品久久久久真实原创| 国产精品人妻久久久影院| 久久久久久国产a免费观看| 精品国产一区二区三区久久久樱花 | 男女视频在线观看网站免费| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久久久久久久| 女人久久www免费人成看片 | 熟女人妻精品中文字幕| 天堂网av新在线| 亚洲成人av在线免费| 3wmmmm亚洲av在线观看| 校园人妻丝袜中文字幕| 又爽又黄无遮挡网站| 搞女人的毛片| 亚洲精品日韩在线中文字幕| 国产高清国产精品国产三级 | 免费播放大片免费观看视频在线观看 | 美女高潮的动态| 黄色配什么色好看| 久久久久久大精品| 久久久久久久亚洲中文字幕| 蜜臀久久99精品久久宅男| 精品免费久久久久久久清纯| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区性色av| 日韩强制内射视频| 午夜精品国产一区二区电影 | 久久久久久久亚洲中文字幕| 亚洲精品久久久久久婷婷小说 | 国产成人一区二区在线| 亚洲av.av天堂| 国产美女午夜福利| 一级黄色大片毛片| 一级毛片电影观看 | 只有这里有精品99| 亚洲精品国产av成人精品| 免费观看精品视频网站| 久久99热这里只有精品18| 最近的中文字幕免费完整| 99久久九九国产精品国产免费| 日本猛色少妇xxxxx猛交久久| 国产69精品久久久久777片| 国产精品乱码一区二三区的特点| 亚洲伊人久久精品综合 | 夫妻性生交免费视频一级片| 成人二区视频| 国产成人a区在线观看| 不卡视频在线观看欧美| 日日撸夜夜添| 欧美3d第一页| av在线蜜桃| 亚洲欧美日韩卡通动漫| 欧美日韩国产亚洲二区| 国产精品日韩av在线免费观看| 在线播放国产精品三级| 日产精品乱码卡一卡2卡三| 国产在视频线精品| 久久久久久久久久成人| 五月玫瑰六月丁香| av黄色大香蕉| 日本午夜av视频| 乱系列少妇在线播放| av福利片在线观看| 99国产精品一区二区蜜桃av| 国产精品99久久久久久久久| 激情 狠狠 欧美| av在线老鸭窝| 国产精品久久久久久精品电影| 国产69精品久久久久777片| 国内精品美女久久久久久| 99国产精品一区二区蜜桃av| 国产探花极品一区二区| or卡值多少钱| 免费人成在线观看视频色| 搡女人真爽免费视频火全软件| 久久99热6这里只有精品| av在线蜜桃| 亚洲精品影视一区二区三区av| 日日摸夜夜添夜夜添av毛片| 男女边吃奶边做爰视频| 国产精品麻豆人妻色哟哟久久 | 2022亚洲国产成人精品| 青春草亚洲视频在线观看| 老女人水多毛片| 精品久久久久久久人妻蜜臀av| 久久久欧美国产精品| 欧美激情久久久久久爽电影| 久久欧美精品欧美久久欧美| 国产亚洲91精品色在线| 欧美激情在线99| 亚洲精品一区蜜桃| 国产免费福利视频在线观看| 久久久久久国产a免费观看| 成年免费大片在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 黄片wwwwww| 一级毛片我不卡| 日韩视频在线欧美| 日韩人妻高清精品专区| 国产精品精品国产色婷婷| 天堂网av新在线| 久久久成人免费电影| 久热久热在线精品观看| 欧美又色又爽又黄视频| 国产乱来视频区| 中文天堂在线官网| 久久久国产成人免费| 九九在线视频观看精品| 美女黄网站色视频| 亚洲av免费高清在线观看| 久久久精品94久久精品| 欧美性感艳星| 女的被弄到高潮叫床怎么办| 免费看光身美女| 久久精品久久久久久噜噜老黄 | 久久久a久久爽久久v久久| 国产成人精品久久久久久| 久久久精品94久久精品| 中文字幕制服av| 亚洲中文字幕一区二区三区有码在线看| 久久精品综合一区二区三区| 亚洲av不卡在线观看| 国产一级毛片七仙女欲春2| 深爱激情五月婷婷| 久久精品国产鲁丝片午夜精品| 亚洲激情五月婷婷啪啪| 亚洲五月天丁香| 18+在线观看网站| 亚洲欧美成人综合另类久久久 | 免费无遮挡裸体视频| 亚洲国产欧洲综合997久久,| 久久久国产成人免费| 国产精品熟女久久久久浪| 亚洲av中文字字幕乱码综合| 亚洲欧美日韩无卡精品| 欧美激情在线99| 午夜久久久久精精品| 日日啪夜夜撸| 美女内射精品一级片tv| 色尼玛亚洲综合影院| 亚洲精品,欧美精品| 亚洲高清免费不卡视频| 色5月婷婷丁香| 99久久中文字幕三级久久日本| 非洲黑人性xxxx精品又粗又长| 夫妻性生交免费视频一级片| 最近视频中文字幕2019在线8| 亚洲av不卡在线观看| 国产黄片美女视频| 久久久久久久久大av| 99久国产av精品国产电影| 久久久久久久久中文| 欧美日韩精品成人综合77777| 丰满少妇做爰视频| 精品国内亚洲2022精品成人| 国产精品国产三级专区第一集| 亚洲精品影视一区二区三区av| 国产午夜精品一二区理论片| 亚洲精品日韩av片在线观看| 男人的好看免费观看在线视频| 免费人成在线观看视频色| 亚洲av中文av极速乱| 97热精品久久久久久| 亚洲丝袜综合中文字幕| 亚洲av成人精品一二三区| 亚洲国产色片| 亚洲国产最新在线播放| 18禁在线播放成人免费| 国产单亲对白刺激| 免费观看在线日韩| 欧美性猛交╳xxx乱大交人| 能在线免费观看的黄片| 午夜爱爱视频在线播放| 丝袜喷水一区| 国产极品精品免费视频能看的| 日韩制服骚丝袜av| 欧美色视频一区免费| 又黄又爽又刺激的免费视频.| 我的老师免费观看完整版| 久久久精品欧美日韩精品| 全区人妻精品视频| 有码 亚洲区| 三级国产精品片| 熟女电影av网| 国产一区二区在线av高清观看| 麻豆精品久久久久久蜜桃| 人体艺术视频欧美日本| 长腿黑丝高跟| 久热久热在线精品观看| 伊人久久精品亚洲午夜| 五月伊人婷婷丁香| 嫩草影院入口| 秋霞在线观看毛片| 国产伦精品一区二区三区四那| 欧美三级亚洲精品| 欧美性猛交黑人性爽| videos熟女内射| 自拍偷自拍亚洲精品老妇| 日韩欧美精品免费久久| 久久久久久久久中文| 日日撸夜夜添| 国产精品一二三区在线看| 亚洲av日韩在线播放| 久久久久久大精品| 晚上一个人看的免费电影| 免费无遮挡裸体视频| 亚洲精品色激情综合| 一级黄片播放器| 青春草视频在线免费观看| 最近中文字幕2019免费版| 国产av不卡久久| 欧美xxxx性猛交bbbb| 国产探花极品一区二区| 色噜噜av男人的天堂激情| 最近手机中文字幕大全| 久久精品国产鲁丝片午夜精品| 男人舔奶头视频| 听说在线观看完整版免费高清| 亚洲一区高清亚洲精品| 全区人妻精品视频| 一区二区三区四区激情视频| 中文字幕免费在线视频6| 黄色一级大片看看| 久久精品影院6| 亚洲成人久久爱视频| 天天一区二区日本电影三级| 免费不卡的大黄色大毛片视频在线观看 | 久久久久免费精品人妻一区二区| 91aial.com中文字幕在线观看| 亚洲国产最新在线播放| 又黄又爽又刺激的免费视频.| 精品久久久久久久久亚洲| 精品欧美国产一区二区三| 高清视频免费观看一区二区 | 国产亚洲91精品色在线| 免费看日本二区| 成人毛片a级毛片在线播放| 久久99热这里只频精品6学生 | 国内精品美女久久久久久| 国产精品精品国产色婷婷| 青春草视频在线免费观看| 日韩中字成人| 少妇熟女欧美另类| 精品不卡国产一区二区三区| 狂野欧美激情性xxxx在线观看| 最近最新中文字幕大全电影3| av线在线观看网站| 国产精品不卡视频一区二区| 精品国产三级普通话版| 成人二区视频| 欧美日韩一区二区视频在线观看视频在线 | 天堂√8在线中文| 超碰97精品在线观看| 日韩av在线免费看完整版不卡| 卡戴珊不雅视频在线播放| 久久久久免费精品人妻一区二区| 国产精品一及| 国产精品久久电影中文字幕| 国产极品天堂在线| 午夜爱爱视频在线播放| 亚洲av二区三区四区| 一级毛片电影观看 | 白带黄色成豆腐渣| 久久精品影院6| 观看免费一级毛片| 91av网一区二区| 三级国产精品片| 亚洲欧美精品自产自拍| 午夜福利在线观看吧| 亚洲无线观看免费| a级毛片免费高清观看在线播放| 中文字幕人妻熟人妻熟丝袜美| 最新中文字幕久久久久| 国产乱来视频区| 男人舔奶头视频| 日本欧美国产在线视频| 国产老妇女一区| 午夜亚洲福利在线播放| 国产成人午夜福利电影在线观看| 美女黄网站色视频| 女人被狂操c到高潮| 欧美日本亚洲视频在线播放| 日本欧美国产在线视频| 免费观看在线日韩| 一二三四中文在线观看免费高清| 高清视频免费观看一区二区 | 日本爱情动作片www.在线观看| 一级黄色大片毛片| 毛片一级片免费看久久久久| 永久免费av网站大全| 91精品国产九色| 最新中文字幕久久久久| 美女被艹到高潮喷水动态| 一个人免费在线观看电影| 九草在线视频观看| 麻豆成人午夜福利视频| 国产一区二区在线观看日韩| 久久精品国产鲁丝片午夜精品| 久久久久久久午夜电影| 亚洲成av人片在线播放无| 卡戴珊不雅视频在线播放| 一区二区三区高清视频在线| 国产黄色视频一区二区在线观看 | 久久99精品国语久久久| 观看美女的网站| 国产探花在线观看一区二区| av又黄又爽大尺度在线免费看 | 国产在线男女| 国产精品综合久久久久久久免费| 国产精华一区二区三区| 亚洲中文字幕日韩| 一本久久精品| h日本视频在线播放| 嫩草影院入口| www.av在线官网国产| 久久精品久久精品一区二区三区| 中文字幕av在线有码专区| 亚洲国产欧美人成| 国产色爽女视频免费观看| 亚洲av男天堂| 午夜精品国产一区二区电影 | 偷拍熟女少妇极品色| 亚洲无线观看免费| 国产亚洲午夜精品一区二区久久 | 日本wwww免费看| av线在线观看网站| 91av网一区二区| 日韩一区二区三区影片| 边亲边吃奶的免费视频| 一区二区三区乱码不卡18| 精品国产一区二区三区久久久樱花 | 免费看光身美女| 欧美性猛交黑人性爽| 精品久久久久久久人妻蜜臀av| 亚洲18禁久久av| 一级毛片aaaaaa免费看小| 免费av毛片视频| 99久久成人亚洲精品观看| 哪个播放器可以免费观看大片| 久久草成人影院| 国产av在哪里看| 一区二区三区乱码不卡18| 亚洲最大成人中文| 精品免费久久久久久久清纯| 免费av观看视频| 国产高清国产精品国产三级 | 好男人在线观看高清免费视频| 美女脱内裤让男人舔精品视频| 一夜夜www| 高清视频免费观看一区二区 | 亚洲怡红院男人天堂| 亚洲美女搞黄在线观看| 色吧在线观看| 伊人久久精品亚洲午夜| videossex国产| av播播在线观看一区| 国产成人a区在线观看| 亚洲国产欧美人成| 色网站视频免费| 欧美zozozo另类| 男人舔奶头视频| av在线老鸭窝| 日韩强制内射视频| 欧美三级亚洲精品| 欧美极品一区二区三区四区| av免费在线看不卡| 日本熟妇午夜| 精品人妻熟女av久视频| 精品久久久久久久久亚洲| a级一级毛片免费在线观看| 少妇猛男粗大的猛烈进出视频 | 又黄又爽又刺激的免费视频.| 观看美女的网站| av天堂中文字幕网| 能在线免费观看的黄片| 国产精品国产三级专区第一集| 热99re8久久精品国产| 亚洲精品日韩在线中文字幕| 热99re8久久精品国产| 国产真实伦视频高清在线观看| a级毛色黄片| eeuss影院久久| 老司机福利观看| 亚洲综合色惰| 亚洲精品一区蜜桃| av又黄又爽大尺度在线免费看 | 熟妇人妻久久中文字幕3abv| 一个人观看的视频www高清免费观看| 亚洲在久久综合| 91精品伊人久久大香线蕉| 女人久久www免费人成看片 | 欧美丝袜亚洲另类| 欧美一区二区精品小视频在线| a级毛色黄片| av播播在线观看一区| 亚洲美女搞黄在线观看| 国产成人91sexporn| 日韩视频在线欧美|