• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Insight into band alignment of Zn(O,S)/CZTSe solar cell by simulation?

    2019-04-13 01:14:54ZhenWuJiang姜振武ShouShuaiGao高守帥SiYuWang王思宇DongXiaoWang王東瀟PengGao高鵬QiangSun孫強ZhiQiangZhou周志強WeiLiu劉瑋YunSun孫云andYiZhang張毅
    Chinese Physics B 2019年4期
    關(guān)鍵詞:孫強高鵬張毅

    Zhen-Wu Jiang(姜振武),Shou-Shuai Gao(高守帥),Si-Yu Wang(王思宇),Dong-Xiao Wang(王東瀟),Peng Gao(高鵬),Qiang Sun(孫強),Zhi-Qiang Zhou(周志強),Wei Liu(劉瑋),Yun Sun(孫云),and Yi Zhang(張毅),?

    1Institute of Photoelectronic Thin Film Devices and Technology,Tianjin Key Laboratory of Photoelectronic Thin Film Devices and Technology,Tianjin 300071,China

    2Tianjin Institute of Power Source,Tianjin 300384,China

    1.Introduction

    Kesterite structured Cu2ZnSnS4(CZTS) and Cu2ZnSnSe4(CZTSe)materials have received extensive attention due to their non-toxicity,large absorption coefficient(>104cm2),and earth abundant component elements in earth.[1–7]Up to now,the champion efficiency of Cu2ZnSn(S,Se)4(CZTSSe)solar cell with CdS buffer has reached to 12.6%.[8]For pure selenide CZTSe device,the device performance has been improved to 11.6%with CdS serving as a buffer layer.[9]However,the CdS buffer layer is a potential risk for CIGS and CZTS(e)solar cells[10–12]since the cadmium in CdS is toxic and the band gap of CdS is low(2.4 eV),which will cause the absorption to lose in a short-wavelength region.

    Owing to these disadvantages,alternative buffer materials are used to replace the CdS buffer layer. Among them,Zn(O,S)is a promising alternative material due to its non-toxicity and large band gap which can be modified from 2.6 eV to 3.8 eV,depending on the S/(S+O)ratio in Zn(O,S).[13,14]Many groups have reported the kesterite structure-based device with Zn(O,S)serving as a buffer layer.Among them,Grenet et al.have reported that the barrier at the CZTSSe/Zn(O,S)interface decreased after light soaking treatment,and the device efficiency was increased to 5.8%.[15]Neuschitzer et al.optimized the band alignment between CZTSe absorber layer and Zn(O,S)buffer layer by changing the thiourea concentration in the CBD process.The device efficiency was increased up to 6.5%which was close to that of CdS reference device.[16]Recently,our group eliminated the secondary phases existing in the as-grown Zn(O,S)by sequential concentrated ammonium solution etching and low temperature annealing treatment.Finally,the Zn(O,S)/CZTSe efficiency was increased to 7.2%by our group recently.[17]However,we found that the band offset between Zn(O,S)and CZTSe is higher than 1 eV,which is very difficult for the carrier transport.After the temperature-dependent I–V study,we deduce that the carrier transport in such a system should be realized by a defect energy level close to Fermi level which acts as a shortcut for the carrier transport.

    The performance of the Zn(O,S)/CZTSe device also suffers the low conductivity.[18,19]The efficiency of the device is seriously deteriorated with low buffer carrier concentration.The most commonly used method to enhance the carrier concentration is element doping.Many groups have improved the carrier concentration of the TCO by doping the group III elements like indium into ZnO.[20–23]Indium acts as a dopant since it has a similar atomic radius to Zn2+.It can substitute Zn2+in Zn Oto form In+Znsubstitution,which is an n-type dope for ZnO.[24]Recently,Jani et al.have doped different concentrations of indium into Zn(O,S)layer by the spray deposition method.[25]The carrier concentration of Zn(O,S)was significantly enhanced by doping 1 wt%–3 wt%indium.The electrical conductivity was improved due to the formation of In+Znsubstitution and reduction of hydroxyl group in the Zn(O,S)by annealing treatment in argon atmosphere.[25]Later,Mitzi et al.used In2S3/CdS double buffer layer in the traditional CZTSSe solar cells.The indium could diffuse into both CdS buffer layer and CZTSSe absorber layer by rapid thermal annealing treatment.Since the atomic radius of indium was similar to that of cadmium in CdS and that of tin in CZTSSe,indium could substitute cadmium and tin and form InCdand InSnsubstitution.Consequently,the carrier concentration of buffer layer and absorber layer were enhanced due to the formation of n-type doping and p-type doping,respectively.[26]Ikeda et al.used the In2S3as a buffer layer and they also reported that the CZTS carrier concentration was increased after rapid post-heat treatment.[27]

    Kesterite structured solar cells with Zn(O,S)have made considerable progress.However,the study of detailed understanding of the CZTSe/Zn(O,S)is still rare.In this study,we investigate the band alignment between Zn(O,S)layer and CZTSe layer.The effect of the carrier concentration variation in the buffer on the performance of CZTSe solar cells is also studied.We find that double buffer layer In2S3/Zn(O,S)mainly increases the carrier concentration.

    2.Numerical modeling

    The devices are simulated by wxAMPS software,which is updated from the original AMPS program.[28]Based on the main physical principles of AMPS,the wxAMPS software induces two new tunneling models and improves the algorithm by combining the Newton method and the Gummel method.Compared with other simulation software,the wxAMPS provides a good stability and running speed,and is very suitable for simulating materials with defect densities,band tails.[29]The device parameters used in the simulation process are listed in Table 1.The temperature and the illumination spectrum are set to be 300 K and AM1.5,respectively.

    Table 1.Device parameters used in simulation.

    3.Results and discussion

    3.1.S/(S+O)ratio in Zn(O,S)

    The band gap of Zn(O,S)can be adjusted from 2.6 eV to 3.8 eV by modifying the S/(S+O)ratio.[13,14]Sharbati S et al.reported that the band gap of the Zn(O,S) first decreases and then increases,and the value of the conduction band and the valence band both change with S fraction variety in the Zn(O,S).[30]The variation of electron affinity(χe)and band gap energy(Eg)with S ratio x=S/(S+O)in Zn(O1?xSx)can be approximately calculated from the following equations:[13,31]

    where x is the S fraction,Egis the band gap,and the band gap value of ZnS and ZnO are 3.6 eV and 3.2 eV,respectively,and b is the bowing factor,which is about 3.Figure 1 shows the corresponding values and variation tendencies of Egand χewith different S/(S+O)ratios.Obviously,the minimum band gap appears in the region where the S and O fraction are almost equal.The value of Egincreases no matter whether the S fraction is higher or lower than 0.5.

    Fig.1. Electron affinity and band gap energy of Zn(O,S)versus S/(S+O)ratio.

    As the band gap and the electron affinity of Zn(O,S)vary with the S fraction,[32]the S/(S+O)ratio becomes a key factor to affect the conduction band offset(CBO)at the interface between CZTSe absorber layer and Zn(O,S)buffer layer.[31]The Zn(O,S)electron affinity tends to slide downward as the S fraction increases(Fig.1).So the CBO between CZTSe and Zn(O,S)is negative when the buffer layer has a lower S content(x≤0.5)which is named the cliff-like band alignment.In this case,the CZTSe conduction band edge is higher than that of Zn(O,S),the recombination in the CZTSe/Zn(O,S)interface increases.[33,34]As a result,the FF andVocbecome undesirable,and the performance of the device will deteriorate.In contrast,the CBO in the CZTSe/Zn(O,S)interface is spikelike alignment when the S fraction is higher than 0.5(x>0.5).Too large a CBO will induce a barrier that hinders the photogenerated electrons from transferring across the interface,resulting in Jscdecreasing.However,when the value of CBO is set to be in a range from 0 eV to 0.4 eV,the negative effect of the spike-like CBO is negligible.[33,34]

    Fig.2.Band alignments of Zn(O,S)/CZTSe devices with different S fractions.

    Fig.3.J–V curves of Zn(O,S)/CZT Sedevices with different S fractions.

    Figure 2 shows the band structures of the CZTSe/Zn(O,S)device with different S/(S+O)ratios(x=0.2,0.7,0.9).The thickness of the Zn(O,S)used in simulation is 20 nm.The value of CBO at CZTSe/Zn(O,S)interface changes from negative to positive with the increase of S content.As the S fraction increases in Zn(O,S),the barrier induced by large CBO becomes higher.[31]From Fig.3,when x is 0.9,the CBO is far beyond 0.4 eV,which is considered to be difficult for electron to flow across the interface.We can see that when the S content is higher than 0.7,the J–V characteristic curve of device is damaged due to the large barrier for photogenerated electrons.In our simulation process,the optimal S content appears at 0.7,and in this case,the CBO between CZTSe and Zn(O,S)is about+0.2 eV,which is in a reasonable range(0 eV–0.4 eV).[33,34]The performance of the device is improved due to the small CBO value at the interface and high light absorption.

    3.2.Thickness of Zn(O,S)

    The optimal band gap of Zn(O,S)simulation(2.8 eV)is larger than that of CdS(2.4 eV).Consequently,the absorption loss in the short-wavelength region of the visible spectrum is reduced by using the Zn(O,S) film to replace the traditional CdS buffer material,thus improving the short circuit current of the device.The EQE responses of the devices with different buffer layers(CdS layer and Zn(O,S)layer)are showed in Fig.4.The short wavelength response of device is obviously improved by replacing the CdS layer with Zn(O,S)layer.Figure 5 shows the band structures of solar cells with different Zn(O,S)thickness values for the S/(S+O)=0.7.Neuschitzer et al.have fabricated a 6.5%efficient CBD-Zn(O,S)/CZTSe device after light soaking treatment,[16]while their CBDZn(O,S)was less than 10 nm in thickness.According to the results reported previously,too thin a buffer layer can induce pinholes and shunt channels which deteriorate the device parameters.Meanwhile,as the carrier concentration of the untreated CBD-Zn(O,S)is usually low,[18,19]the barrier of the carrier transport will become higher with the thickness of the Zn(O,S)increasing.

    Fig.4.EQE responses to wave of devices with different buffer layers.

    Fig.5.Energy band structure diagram of Zn(O,S)/CZTSe devices for various Zn(O,S)layer thickness.

    Figure 6 shows the variation of the short circuit current density(Jsc)and fill factor(FF)with the Zn(O,S)thickness increase.This demonstrates that the Jscand FF dramatically collapse as the Zn(O,S)thickness increases when the carrier concentration of Zn(O,S)is low(5×1017cm?3).However,the performance of the device is almost constant when the carrier concentration is adequately high(5×1018cm?3).This phenomenon is due to the low buffer carrier concentration,leading to the undesirable conductivity in Zn(O,S)layer.[19]However,it will become serious when Zn(O,S) film is thicker.This indicates that the effect of thickness is dependent on the Zn(O,S)carrier concentration.

    Fig.6.Curves of(a)Jscand(b)FF of Zn(O,S)/CZTSe solar cells versus Zn(O,S)layer thickness with different Zn(O,S)carrier concentrations.

    Similarly,we can see from Fig.7(a)that the poor conductivity makes the photo-generated electrons hard to collect by the buffer layer in the case of constant Zn(O,S)layer thickness when the carrier concentration of Zn(O,S)layer is low.The recombination rate increases in the absorber region as thickness increases.Thus the Jscand FF are deteriorated seriously respectively as the thickness reaches to 100 nm.From Fig.7(b),when the carrier concentration is as high as 5×1018cm?3,the recombination rate in absorber layer is low and unchanged with the thickness of Zn(O,S)layer.As the photo-generated carrier is mainly generated at CZTSe absorber layer,the recombination rate at the buffer layer has almost no effect on the device performance,so the variation of Jscand FF caused by the variable thickness are negligible.To reduce the light absorption in the buffer layer,the thickness of Zn(O,S)should not be too thick.To ensure that the absorber layer is completely covered,the optimum Zn(O,S)thickness is 20 nm in our simulation,which accords with our previous experiment result.[17]Besides,we find that the effect of buffer thickness depends on carrier concentration of the buffer.The high carrier concentration is propitious to the device performance.

    Fig.7.Recombination rates of Zn(O,S)/CZTSe devices with different Zn(O,S)thickness and carrier concentrations of Zn(O,S)of(a)5×1017cm?3,(b)5×1018cm?3.

    3.3.Double buffer layer

    TheIn2S3/Zn(O,S)double buffer layer is selected for simulation.Obviously,In3+ions will diffuse into Zn(O,S)buffer layer.As a consequence,the carrier concentration of Zn(O,S)is improved due to the dopant of the n-type In+Zn.Thus,we first try to disclose the effect of In2S3/Zn(O,S)double buffer layer on carrier concentration On the assumption that the In2S3layer is ultrathin,it diffuses into Zn(O,S)layer completely.Figure 8 shows the conduction band alignment of Zn(O,S)/CZTSe heterojunction with different Zn(O,S)carrier concentrations.According to the simulation results and our previous experimental result,[17]the thickness of Zn(O,S)is set to be 20 nm.,The distance from Fermi level to the conduction band minimum when carrier concentration is high(5×1018cm?3)is greater than that when the carrier concentration of Zn(O,S)is as low as 1×1016cm?3.Relatively,the barrier at the interface of Zn(O,S)/CZTSe is high without doping,which impedes the photo-generated electrons flowing across the interface.With the increase of the carrier concentration,the barrier height be-comes lower.The parameters of Zn(O,S)/CZTSe solar cells with different Zn(O,S)carrier concentrations are listed in Table 2,demonstrating that the performance of the device is observed to improve as the carrier concentration increases due to the forming of the In+Znsubstitutions in Zn(O,S)layer.

    Fig.8.Conduction band alignments of Zn(O,S)/CZTSe devices with different Zn(O,S)carrier concentrations.

    Table 2.Performances of Zn(O,S)/CZTSe cells with different Zn(O,S)carrier concentrations.

    Some In2S3layers ineluctably remain on the surface of Zn(O,S)/CZTSe solar cell in experiment.The effect of residual In2S3layers should be further considered.The band gap of In2S3is tunable from 2.1 eV to 2.9 eV,which should be attributed to the variation of the temperature and the oxygen content doped into the In2S3layer.[35–37]Furthermore,the electron affinity of In2S3will change with the variation of band gap.[38]The relationship between the band gap and electron affinity is shown below.[38]

    The optimal band gap(2.83 eV)and electron affinity(4.16 eV)of Zn(O,S)are fixed.The properties of Zn(O,S)layer and CZTSe absorber layer keep constant in this simulation.The χerange of In2S3varies from 3.85 eV to 4.65 eV.The band gap of In2S3layer is larger(2.8 eV–2.9 eV)or smaller(2.1 eV–2.8 eV)than that of Zn(O,S)layer.To make clear the effect of In2S3/Zn(O,S)double buffer layer and ensure that the incident light is fully absorbed by CZTSe solar cell,the In2S3layer with a band gap of 2.9 eV should be deposited on the absorber layer and the In2S3layer with a band gap of 2.1 eV–2.8 eV should be deposited between the absorber layer and Zn(O,S)layer. And the thickness of the remaining In2S3layer is set to be 5 nm.Figure 9 shows the J–V curve of Zn(O,S)/CZTSe device with and without 2.9-eV In2S3layer,to compare with those of the device without remaining In2S3layer,and it can be seen that the Vocof the device with 5-nm-thick remaining In2S3layer decreases.The efficiency decreases from 16.18%to 15.48%.Figure 10 shows the J–V curves of Zn(O,S)/In2S3/CZTSe devices with different band gaps of In2S3layer band gap.To make the value of CBO between CZTSe layer and In2S3layer varied in a range from 0 eV to+0.4 eV,the value of In2S3layer band gap is changed from 2.4 eV to 2.8 eV.The performance parameters of the solar cells are almost unchanged at this time.However,the performance of the device deteriorates when the In2S3layer band gap is below 2.4 eV due to the fact that the band alignment between CZTSe layer and In2S3layer is cliff-like.So the optimal efficiency is 15.71%when the In2S3band gap is 2.7 eV.And the parameters are listed in Table 3.

    Fig.9.The J–V curve of devices with and without 5-nm In2S3layer.

    Fig.10.The J–V curves of devices combined with In2S3layer with different band gaps.

    Table 3.Performances of Zn(O,S)/In2S3/CZTSe devices with 2.7-eV band gap In2S3layer.

    Figure 11 shows J–V curves of CZTSe devices in different buffer conditions,which are,respectively,for the following cases:ND=5×1017cm?3without In2S3layer,ND=5×1018cm?3with In2S3diffusing into the Zn(O,S)layer completely by annealing treatment,and ND=5×1018cm?3with 5-nm-thick In2S3layer remaining on the top of Zn(O,S)layer or CZTSe layer.The detailed parameters are listed in Table 4,indicating that the device efficiency increases to 16.18%when the NDis improved by In2S3doping.The device performance becomes slightly worse when ultrathin In2S3layer remains on the top of Zn(O,S)layer or CZTSe layer,while the parameters are still better than those without In2S3layer due to the lower NDin Zn(O,S)layer.Therefore,to achieve optimal device performance,the thickness of In2S3layer should be very thin.

    In summary,we have analyzed the performance of Zn(O,S)/CZTSe device from the perspective of band structure and carrier concentration by numerical simulation.The band alignment between Zn(O,S)layer and CZTSe layer is+0.2 eV and the carrier concentration of Zn(O,S)layer is improved by In2S3doping.The efficiency of Zn(O,S)/CZTSe device is improved to 16.18%,when no In2S3layer remains on CZTSe layer.

    Fig.11.J–V curves of devices for ND=5×1017cm?3,ND=5×1018cm?3without In2S3layer,ND=5×1018cm?3with 5-nm-thick In2S3layer remaining on Zn(O,S)layer,ND=5×1018cm?3with 5-nm-thick In2S3layer remaining on CZTSe layer.

    Table 4.Performances of devices for ND=5×1017cm?3,ND=5×1018cm?3without remaining In2S3layer,ND=5×1018cm?3 with 5-nm-thick In2S3layer remaining on Zn(O,S)layer,ND=5×1018cm?3with 5-nm-thick In2S3layer remaining on CZTSe layer.

    4.Conclusions

    In this study,the Zn(O,S)/CZTSe solar cell performance is simulated and studied by using the wxAMPS software.To achieve the optimal performance,the S/(S+O)ratio in Zn(O,S),Zn(O,S)thickness,and carrier concentration are discussed.By numerical simulation,the optimum S fraction is about 0.7,here the value of CBO in the Zn(O,S)/CZTSe interface is about+0.2 eV.The CBO is in a range of 0 eV–0.4 eV as S/(S+O)=0.6–0.8 in Zn(O,S).Meanwhile,the In2S3/Zn(O,S)double buffer layer is innovatively induced into the CZTSe device.The carrier concentration of the Zn(O,S)layer is improved by employing the In2S3/Zn(O,S)double buffer layer on CZTSe absorber layer upon annealing treatment.The device efficiency increases to 16.18%when the carrier concentration of Zn(O,S) layer is improved without any remaining In2S3.The efficiency of Zn(O,S)/5 nm-In2S3/CZTSe and 5 nm-In2S3/Zn(O,S)/CZTSe devices decrease to 15.71%and 15.48%,respectively.However,they are still higher than that of device without In2S3layer(14.93%).These promising results indicate that the performance of Zn(O,S)/CZTSe device has great potential improvement and they provide guidance for further study of CZTSe solar cells.

    [1]Li J,Kim S,Nam D,Liu X,Kim J,Cheong H,Liu W,Li H,Sun Y and Zhang Y 2017 Sol.Energy Mater.Sol.Cells 159 447

    [2]Polizzotti A,Repins I L,Noufi R,Wei S H and Mitzi D B 2013 Energy Environ.Sci.6 3171

    [3]Mitzi D B,Gunawan O,Todorov T K,Wang K and Guha S 2011 Sol.Energy Mater.Sol.Cells 95 1421

    [4]Walsh A,Chen S,Wei S H and Gong X G 2012 Adv.Energy Mater.2 400

    [5]Barkhouse D,Aaron R,Gunawan O,Gokmen T,Todorov T K and Mitzi D B 2012 Prog.Photovoltaics Res.Appl.20 6

    [6]Bag S,Gunawan O,Gokmen T,Zhu Y,Todorov T K and Mitzi D B 2012 Energy Environ.Sci.5 7060

    [7]Gao S,Jiang Z,Wu L,Ao J,Zeng Y,Sun Y and Zhang Y 2018 Chin.Phys.B 27 018803

    [8]Wang W,Winkler M T,Gunawan O,Gokmen T,Todorov T K,Zhu Y and Mitzi D B 2014 Adv.Energy Mater.4 1301465

    [9]Lee Y S,Gershon T,Gunawan O,Todorov T K,Gokmen T,Virgus Y and Guha S 2015 Adv.Energy Mater.5 1401372

    [10]Klenk R,Steigert A,Rissom T,Greiner D,Kaufmann C A,Unold T and Lux-Steiner M C 2014 Prog.Photovoltaics Res.Appl.22 161

    [11]Gautron E,Buf fi`ere M,Harel S,Assmann L,Arzel L,Brohan L,Kessler J and Barreau N 2013 Thin Solid Films 535 175

    [12]Yagioka T and Nakada T 2009 Appl.Phys.Express 2 072201

    [13]Meyer B K,Polity A,Farangis B,He Y,Hasselkamp D and Wang C 2004 Appl.Phys.Lett.85 4929

    [14]Chua R H,Li X,Walter T,The L K,Hahn T,Hergert F and Wong L H 2016 Appl.Phys.Lett.108 043505

    [15]Grenet L,Grondin P,Coumert K,Karst N,Emieux F,Roux F,Fillon R,Altamura G,Fournier H,Faucher,P and Perraud S 2014 Thin Solid Films 564 375

    [16]Neuschitzer M,Lienau K,Guc M,Barrio L C,Haass S,Prieto J M and Izquierdo-Roca 2016 J.Phys.D:Appl.Phys.49 125602

    [17]Li J,Liu X,Liu W,Wu L,Ge B,Lin S,Gao S,Zhou Z,Liu F,Sun Y,Ao J,Zhu H,Mai Y and Zhang Y 2017 Sol.RRL.1 1700075

    [18]Hsieh T M,Lue S J,Ao J,Sun Y,Feng W S and Chang L B 2014 J.Power Sources 246 443

    [19]Steirer K X,Garris R L,Li J V,Dzara M J,Ndione P F,Ramanathan K,Repins I,Teeter G and Perkins C L 2015 Phys.Chem.Chem.Phys.17 15355

    [20]Palimar S,Bangera K V and Shivakumar G K 2013 Appl.Nanosci.3 549

    [21]Llican S,Caglar Y,Caglar M and Demirci B 2008 J.Optoelectron.Adv.Mater.10 2592

    [22]Pham A T T,Ta H K T,Liu Y R,Aminzare M,Wong D P,Nguyen T H,Pham N K,Le T B N,Seetawan T,Ju H,Cho S,Chen K H,Tran V C and Phan T B 2018 J.Alloys Compd.747 156

    [23]Benramache S,Benhaoua B and Bentrah H 2013 Nanostrut.Chem.3 54

    [24]Gonc?alves G,Elangovan E,Barquinha P,Pereira L,Martins R and Fortunato E 2007 Thin Solid Films 515 8562

    [25]Jani M,Raval D,Pati R K,Mukhopadhyay I and Ray A 2018 Bull.Mater.Sci.41 22

    [26]Kim J,Hiroi H,Todorov T K,Gunawan O,Kuwahara M,Gokmen T,Nair D,Hopstaken M,Shin B,Lee Y S,Wang W,Sugimoto H and Mitzi D B 2014 Adv.Mater.26 7427

    [27]Jiang F,Ozaki C,Guna wan,Harada T,Tang Z,Minemoto T,Nose Y and Ikeda S 2016 Chem.Mater.28 3283

    [28]Liu Y,Sun Y and Rockett A 2012 Sol.Energy Mater.Sol.Cells 98 124

    [29]Omer and Mohamed B 2015 Chin.Phys.Lett.32 088801

    [30]Sharbati S,Keshmiri S H,McGoffin J T and Geisthardt R 2015 Appl.Phys.A 118 1259

    [31]Persson C,Platzer-Bjorkman C,Malmstrom J,Torndahl T and Edoff M 2006 Phys.Rev.Lett.97 46403

    [32]Grimm A,Kieven D,Klenk R,Lauermann I,Neisser A,Niesen T and Palm J 2011 Thin Solid Films 520 1330

    [33]Huang T J,Yin X,Qi G and Gong H 2014 Phys.Status Solidi RRL.08 735

    [34]Minemoto T,Matsui T,Takakura H,Hamakawa Y,Negami T,Hashimoto Y and Kitagawa M 2001 Sol.Energy Mater.Sol.Cells 67 83

    [35]Barreau N,Bernede J C,Marsillac S and Mokrani A 2002 J.Crystal Growth 235 439

    [36]Revathi N,Prathap P,Subbaiah Y P V and Ramakrishna Reddy K T 2008 J.Phys.D:Appl.Phys.41 155404

    [37]Saadallah F,Jebbari N,Kammoun N and Yacoubi N 2011 Int.J.Photoenergy 1–4

    [38]Khoshsirat N and Md Yunus N A 2016 J.Electron.Mater.45 5721

    猜你喜歡
    孫強高鵬張毅
    Special breathing structures induced by bright solitons collision in a binary dipolar Bose–Einstein condensates
    高鵬
    高鵬副教授
    Merging and splitting dynamics between two bright solitons in dipolar Bose–Einstein condensates?
    Three-dimensional non-equilibrium modeling of a DC multi-cathode arc plasma torch
    孫強作品
    《秋水共長天一色》
    青年生活(2019年6期)2019-09-10 17:55:38
    Generalized Hybrid Nanofluid Model with the Application of Fully Developed Mixed Convection Flow in a Vertical Microchannel?
    Noether Symmetry and Conserved Quantities of Fractional Birkhoffian System in Terms of Herglotz Variational Problem?
    A scheme for improving computational efficiency of quasi-two-dimensional model*
    1024视频免费在线观看| av天堂久久9| 日韩熟女老妇一区二区性免费视频| 精品少妇一区二区三区视频日本电影| 日韩一区二区三区影片| 99久久人妻综合| 免费少妇av软件| 国产成人欧美| 国产精品久久久av美女十八| 久久久精品免费免费高清| 欧美黑人欧美精品刺激| 国产av精品麻豆| 18禁美女被吸乳视频| 国产黄色免费在线视频| 亚洲国产av影院在线观看| 如日韩欧美国产精品一区二区三区| 18禁黄网站禁片午夜丰满| 亚洲伊人久久精品综合| av天堂久久9| 黄色怎么调成土黄色| 麻豆国产av国片精品| 视频区图区小说| 色综合欧美亚洲国产小说| 9色porny在线观看| 久久久久网色| 黑人巨大精品欧美一区二区蜜桃| 1024香蕉在线观看| 性色av乱码一区二区三区2| a在线观看视频网站| 这个男人来自地球电影免费观看| 无人区码免费观看不卡 | 久久午夜综合久久蜜桃| 欧美日韩国产mv在线观看视频| 日本av手机在线免费观看| 99国产精品一区二区三区| 一区二区三区激情视频| 午夜免费成人在线视频| 亚洲久久久国产精品| 国产三级黄色录像| 老鸭窝网址在线观看| 这个男人来自地球电影免费观看| 亚洲国产中文字幕在线视频| 脱女人内裤的视频| 国产成人啪精品午夜网站| 免费人妻精品一区二区三区视频| 美女高潮到喷水免费观看| 久久久久久久国产电影| 午夜日韩欧美国产| 国产片内射在线| 极品人妻少妇av视频| 超色免费av| 免费高清在线观看日韩| av视频免费观看在线观看| 久久精品国产a三级三级三级| 成年版毛片免费区| 久久热在线av| av又黄又爽大尺度在线免费看| 亚洲精品粉嫩美女一区| 久久精品国产亚洲av香蕉五月 | 国产男靠女视频免费网站| 精品卡一卡二卡四卡免费| 亚洲成a人片在线一区二区| 天堂中文最新版在线下载| 久久狼人影院| 午夜视频精品福利| 免费日韩欧美在线观看| 国产成人免费无遮挡视频| 久久久精品94久久精品| 99热国产这里只有精品6| 久久精品亚洲av国产电影网| 日本一区二区免费在线视频| 国产激情久久老熟女| 亚洲avbb在线观看| 啦啦啦视频在线资源免费观看| 亚洲精品久久午夜乱码| 亚洲av片天天在线观看| 久久久精品区二区三区| 精品一品国产午夜福利视频| 极品教师在线免费播放| 国产欧美日韩一区二区精品| 国产精品欧美亚洲77777| 99精品在免费线老司机午夜| 日本黄色视频三级网站网址 | 无人区码免费观看不卡 | 天天躁狠狠躁夜夜躁狠狠躁| 91麻豆精品激情在线观看国产 | 欧美精品av麻豆av| 亚洲欧美一区二区三区久久| 999久久久精品免费观看国产| 精品人妻1区二区| 欧美黄色片欧美黄色片| 天天躁狠狠躁夜夜躁狠狠躁| 母亲3免费完整高清在线观看| 人妻一区二区av| 国产av精品麻豆| 中国美女看黄片| aaaaa片日本免费| 黄色怎么调成土黄色| 岛国在线观看网站| 嫩草影视91久久| 国产精品国产av在线观看| 99在线人妻在线中文字幕 | 国产主播在线观看一区二区| 久久久国产精品麻豆| 电影成人av| 18禁裸乳无遮挡动漫免费视频| 精品一区二区三区av网在线观看 | 在线av久久热| xxxhd国产人妻xxx| 黄网站色视频无遮挡免费观看| 精品亚洲成a人片在线观看| 欧美激情 高清一区二区三区| 男女之事视频高清在线观看| 视频区图区小说| 午夜福利影视在线免费观看| 在线永久观看黄色视频| 操出白浆在线播放| 午夜福利影视在线免费观看| 久久久欧美国产精品| 国产黄频视频在线观看| 亚洲av成人一区二区三| 三上悠亚av全集在线观看| 国产欧美日韩一区二区三| 亚洲九九香蕉| 一区二区av电影网| 91精品国产国语对白视频| 又紧又爽又黄一区二区| 国产xxxxx性猛交| 国产91精品成人一区二区三区 | 精品国产乱子伦一区二区三区| 色老头精品视频在线观看| 大型黄色视频在线免费观看| 午夜福利免费观看在线| 国产成人av教育| 中文字幕最新亚洲高清| 美女国产高潮福利片在线看| 国产成人系列免费观看| 久久国产精品男人的天堂亚洲| 丁香六月欧美| 亚洲精品粉嫩美女一区| 搡老岳熟女国产| 999久久久国产精品视频| 亚洲五月色婷婷综合| 老司机亚洲免费影院| 一区二区三区乱码不卡18| 精品卡一卡二卡四卡免费| 国产男女内射视频| 精品熟女少妇八av免费久了| 高清毛片免费观看视频网站 | 欧美一级毛片孕妇| 99热国产这里只有精品6| 日本a在线网址| 成人黄色视频免费在线看| 91精品三级在线观看| 欧美黄色片欧美黄色片| 蜜桃在线观看..| 丰满饥渴人妻一区二区三| 久久久久久免费高清国产稀缺| 黄网站色视频无遮挡免费观看| 18禁观看日本| 在线观看人妻少妇| 天天躁夜夜躁狠狠躁躁| 亚洲 国产 在线| 久久久国产欧美日韩av| 欧美日韩亚洲高清精品| 欧美日韩av久久| 国产亚洲av高清不卡| 精品国产亚洲在线| 日韩一区二区三区影片| 12—13女人毛片做爰片一| 一区二区三区激情视频| 国产日韩欧美在线精品| av线在线观看网站| 婷婷成人精品国产| 欧美 日韩 精品 国产| 欧美日韩亚洲高清精品| 日本五十路高清| 欧美黑人精品巨大| 日韩欧美一区二区三区在线观看 | 丁香欧美五月| 国产xxxxx性猛交| 久久国产精品男人的天堂亚洲| 欧美黑人精品巨大| 精品亚洲成a人片在线观看| 一区二区三区激情视频| 悠悠久久av| 免费在线观看影片大全网站| 国产无遮挡羞羞视频在线观看| 国产精品1区2区在线观看. | 纵有疾风起免费观看全集完整版| 久久人妻av系列| 91九色精品人成在线观看| 国产成人欧美| 国产精品九九99| 免费人妻精品一区二区三区视频| 国产精品秋霞免费鲁丝片| 淫妇啪啪啪对白视频| 老司机在亚洲福利影院| 日本欧美视频一区| 一级,二级,三级黄色视频| 777米奇影视久久| 香蕉久久夜色| 黑人巨大精品欧美一区二区蜜桃| 精品久久久久久久毛片微露脸| 汤姆久久久久久久影院中文字幕| 国产亚洲午夜精品一区二区久久| 免费日韩欧美在线观看| 乱人伦中国视频| 捣出白浆h1v1| 三级毛片av免费| 亚洲精品av麻豆狂野| 久久久久久免费高清国产稀缺| 亚洲,欧美精品.| 免费女性裸体啪啪无遮挡网站| 一级片'在线观看视频| 成人永久免费在线观看视频 | 欧美激情 高清一区二区三区| 久久精品成人免费网站| 大码成人一级视频| 香蕉久久夜色| 97在线人人人人妻| 久久人妻熟女aⅴ| 国产成人av教育| 99九九在线精品视频| 亚洲成人免费av在线播放| 性色av乱码一区二区三区2| 精品久久蜜臀av无| 脱女人内裤的视频| 日本五十路高清| 免费观看av网站的网址| 国产亚洲午夜精品一区二区久久| 黑人巨大精品欧美一区二区mp4| 久久人人97超碰香蕉20202| 啦啦啦 在线观看视频| 法律面前人人平等表现在哪些方面| 人人妻,人人澡人人爽秒播| 精品乱码久久久久久99久播| 午夜成年电影在线免费观看| 国产一区有黄有色的免费视频| 成年人黄色毛片网站| 老司机深夜福利视频在线观看| 欧美黑人欧美精品刺激| 国产高清videossex| 老熟女久久久| 波多野结衣一区麻豆| 精品卡一卡二卡四卡免费| 欧美老熟妇乱子伦牲交| 777米奇影视久久| 亚洲专区中文字幕在线| 久久性视频一级片| 久久国产精品影院| 纵有疾风起免费观看全集完整版| 无限看片的www在线观看| 高清视频免费观看一区二区| 亚洲欧洲精品一区二区精品久久久| 午夜免费成人在线视频| 国产国语露脸激情在线看| 国产精品99久久99久久久不卡| 国产av精品麻豆| 亚洲精品久久午夜乱码| 久久av网站| 亚洲国产欧美在线一区| 精品亚洲乱码少妇综合久久| 美女主播在线视频| 国产精品久久久久久精品古装| 在线看a的网站| 成人精品一区二区免费| 在线天堂中文资源库| 午夜成年电影在线免费观看| 国产精品久久久av美女十八| 久久久久久亚洲精品国产蜜桃av| 亚洲专区中文字幕在线| 美女主播在线视频| 美女视频免费永久观看网站| 欧美日韩成人在线一区二区| 亚洲精品一卡2卡三卡4卡5卡| 国产男女超爽视频在线观看| 窝窝影院91人妻| 在线永久观看黄色视频| 国产成人啪精品午夜网站| 国产亚洲精品第一综合不卡| 午夜老司机福利片| 亚洲国产欧美日韩在线播放| 香蕉国产在线看| 亚洲色图av天堂| 中文字幕另类日韩欧美亚洲嫩草| 欧美乱码精品一区二区三区| 老司机影院毛片| 淫妇啪啪啪对白视频| 国产av一区二区精品久久| 欧美黄色淫秽网站| 国产亚洲精品第一综合不卡| 99热网站在线观看| 97在线人人人人妻| 日韩一卡2卡3卡4卡2021年| 久久久久久免费高清国产稀缺| 亚洲国产欧美一区二区综合| www日本在线高清视频| 老司机影院毛片| 国精品久久久久久国模美| 精品乱码久久久久久99久播| 久久影院123| 日韩 欧美 亚洲 中文字幕| 操美女的视频在线观看| 国产伦理片在线播放av一区| 色尼玛亚洲综合影院| tube8黄色片| 视频区图区小说| 国产一区二区三区视频了| 日韩人妻精品一区2区三区| 久久精品亚洲熟妇少妇任你| 亚洲七黄色美女视频| 亚洲av片天天在线观看| 免费高清在线观看日韩| netflix在线观看网站| 美女高潮到喷水免费观看| 淫妇啪啪啪对白视频| 91麻豆精品激情在线观看国产 | 国产欧美日韩一区二区精品| 久久婷婷成人综合色麻豆| 丝袜人妻中文字幕| 中文亚洲av片在线观看爽 | 多毛熟女@视频| 国产真人三级小视频在线观看| 国产区一区二久久| 自线自在国产av| 欧美日韩视频精品一区| 动漫黄色视频在线观看| 日本av免费视频播放| 在线观看66精品国产| 欧美精品一区二区大全| 亚洲一区中文字幕在线| 国产精品久久久久久人妻精品电影 | 亚洲精品在线美女| 黄片大片在线免费观看| 麻豆成人av在线观看| 一级片免费观看大全| 两性夫妻黄色片| 色老头精品视频在线观看| 性色av乱码一区二区三区2| 国产亚洲精品一区二区www | 亚洲精品乱久久久久久| 国产日韩欧美在线精品| 高清av免费在线| 久久国产精品男人的天堂亚洲| 18禁裸乳无遮挡动漫免费视频| 女人高潮潮喷娇喘18禁视频| 操美女的视频在线观看| 无遮挡黄片免费观看| 亚洲人成伊人成综合网2020| 亚洲精品在线观看二区| 色婷婷av一区二区三区视频| 免费黄频网站在线观看国产| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成人免费av在线播放| 日本vs欧美在线观看视频| 男人舔女人的私密视频| 一区二区av电影网| 涩涩av久久男人的天堂| 日韩中文字幕视频在线看片| 日韩精品免费视频一区二区三区| 一级毛片电影观看| 巨乳人妻的诱惑在线观看| 首页视频小说图片口味搜索| 日韩成人在线观看一区二区三区| 狂野欧美激情性xxxx| 国产精品麻豆人妻色哟哟久久| 两人在一起打扑克的视频| 男人舔女人的私密视频| 日韩有码中文字幕| 99国产极品粉嫩在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲精品在线观看二区| 一本色道久久久久久精品综合| 99国产极品粉嫩在线观看| 日本vs欧美在线观看视频| 男女午夜视频在线观看| 亚洲天堂av无毛| 成人av一区二区三区在线看| 精品国产乱码久久久久久小说| 成人特级黄色片久久久久久久 | 亚洲精品一卡2卡三卡4卡5卡| av超薄肉色丝袜交足视频| 久久久久网色| 亚洲av国产av综合av卡| 亚洲精品中文字幕在线视频| 99香蕉大伊视频| 飞空精品影院首页| 菩萨蛮人人尽说江南好唐韦庄| 丝瓜视频免费看黄片| 性少妇av在线| 女人高潮潮喷娇喘18禁视频| 欧美一级毛片孕妇| 国产精品久久久人人做人人爽| 多毛熟女@视频| 国产免费av片在线观看野外av| 亚洲欧洲精品一区二区精品久久久| 1024香蕉在线观看| 脱女人内裤的视频| 久久国产精品大桥未久av| 亚洲午夜理论影院| 免费观看人在逋| 在线 av 中文字幕| 国产成人影院久久av| 久久久久久免费高清国产稀缺| 欧美成狂野欧美在线观看| 不卡一级毛片| 女警被强在线播放| 久久久国产欧美日韩av| 国产亚洲午夜精品一区二区久久| 久久av网站| 啦啦啦中文免费视频观看日本| 欧美日本中文国产一区发布| 久久精品国产综合久久久| 欧美日韩亚洲综合一区二区三区_| av电影中文网址| 亚洲av日韩在线播放| 777久久人妻少妇嫩草av网站| 色精品久久人妻99蜜桃| 久久久精品区二区三区| 人人妻人人澡人人看| 日韩欧美国产一区二区入口| 亚洲国产欧美在线一区| 国产不卡av网站在线观看| 国产成人av激情在线播放| 国产欧美日韩精品亚洲av| 一级毛片精品| 俄罗斯特黄特色一大片| 欧美日韩av久久| 欧美亚洲 丝袜 人妻 在线| 美女视频免费永久观看网站| 日本撒尿小便嘘嘘汇集6| 亚洲欧美色中文字幕在线| 午夜成年电影在线免费观看| 亚洲成av片中文字幕在线观看| 日日爽夜夜爽网站| 久久中文字幕人妻熟女| 一边摸一边抽搐一进一出视频| 这个男人来自地球电影免费观看| 午夜视频精品福利| 18禁裸乳无遮挡动漫免费视频| 日韩精品免费视频一区二区三区| 国产精品一区二区免费欧美| 岛国毛片在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩欧美国产一区二区入口| 亚洲精品中文字幕在线视频| 精品福利永久在线观看| 亚洲欧美激情在线| 精品熟女少妇八av免费久了| videos熟女内射| 婷婷丁香在线五月| 久久天堂一区二区三区四区| 国产aⅴ精品一区二区三区波| 19禁男女啪啪无遮挡网站| 香蕉久久夜色| 中国美女看黄片| 悠悠久久av| 桃花免费在线播放| 国产主播在线观看一区二区| 久久99热这里只频精品6学生| 日韩视频一区二区在线观看| 亚洲色图av天堂| 两性夫妻黄色片| 黑人巨大精品欧美一区二区蜜桃| 老司机福利观看| 亚洲,欧美精品.| 91精品国产国语对白视频| 俄罗斯特黄特色一大片| 少妇 在线观看| 别揉我奶头~嗯~啊~动态视频| 乱人伦中国视频| 亚洲avbb在线观看| 老汉色av国产亚洲站长工具| 中文字幕高清在线视频| 精品福利永久在线观看| 亚洲国产欧美日韩在线播放| 一本色道久久久久久精品综合| 久久狼人影院| 看免费av毛片| 精品免费久久久久久久清纯 | 宅男免费午夜| 亚洲国产欧美网| 交换朋友夫妻互换小说| 999久久久精品免费观看国产| 极品人妻少妇av视频| 成年动漫av网址| 怎么达到女性高潮| 男女之事视频高清在线观看| 久久久精品区二区三区| e午夜精品久久久久久久| 两个人免费观看高清视频| av国产精品久久久久影院| 国产av精品麻豆| 黄色成人免费大全| 视频区图区小说| 男女无遮挡免费网站观看| 50天的宝宝边吃奶边哭怎么回事| 91av网站免费观看| 国产精品亚洲一级av第二区| 极品人妻少妇av视频| 精品人妻在线不人妻| 啦啦啦在线免费观看视频4| 中文字幕人妻丝袜制服| 侵犯人妻中文字幕一二三四区| 国产欧美日韩一区二区精品| av线在线观看网站| aaaaa片日本免费| 亚洲少妇的诱惑av| 中文字幕最新亚洲高清| 视频区欧美日本亚洲| 免费一级毛片在线播放高清视频 | 欧美人与性动交α欧美软件| 国产精品偷伦视频观看了| 亚洲少妇的诱惑av| 欧美大码av| 亚洲性夜色夜夜综合| 变态另类成人亚洲欧美熟女 | av欧美777| 日日夜夜操网爽| 满18在线观看网站| 欧美日韩亚洲高清精品| 高清av免费在线| 久久久水蜜桃国产精品网| 在线十欧美十亚洲十日本专区| tocl精华| 国产精品麻豆人妻色哟哟久久| 久久国产精品人妻蜜桃| 久久人妻福利社区极品人妻图片| 黄网站色视频无遮挡免费观看| 日本撒尿小便嘘嘘汇集6| 日韩欧美一区二区三区在线观看 | 亚洲av国产av综合av卡| av天堂在线播放| 欧美国产精品一级二级三级| 国产成人精品在线电影| 亚洲五月色婷婷综合| 亚洲伊人久久精品综合| 宅男免费午夜| 亚洲专区字幕在线| 后天国语完整版免费观看| 国产日韩欧美在线精品| 国产99久久九九免费精品| 18禁美女被吸乳视频| 老汉色∧v一级毛片| av又黄又爽大尺度在线免费看| 十八禁网站免费在线| 老司机亚洲免费影院| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品熟女亚洲av麻豆精品| 久久青草综合色| 亚洲七黄色美女视频| 欧美日韩亚洲高清精品| 国产成人啪精品午夜网站| 视频区欧美日本亚洲| 亚洲欧美日韩另类电影网站| e午夜精品久久久久久久| 亚洲,欧美精品.| 亚洲自偷自拍图片 自拍| 波多野结衣一区麻豆| 精品视频人人做人人爽| 亚洲中文日韩欧美视频| 18在线观看网站| 国产日韩欧美亚洲二区| 国产日韩一区二区三区精品不卡| 叶爱在线成人免费视频播放| 国产一区二区三区视频了| av片东京热男人的天堂| 国产精品免费一区二区三区在线 | 麻豆成人av在线观看| 女人精品久久久久毛片| 一二三四社区在线视频社区8| 美女国产高潮福利片在线看| 国产成人一区二区三区免费视频网站| 国产欧美日韩一区二区三| 成人永久免费在线观看视频 | 国产精品久久久av美女十八| 啦啦啦中文免费视频观看日本| 电影成人av| 极品少妇高潮喷水抽搐| 色视频在线一区二区三区| cao死你这个sao货| 99久久人妻综合| 亚洲情色 制服丝袜| 精品免费久久久久久久清纯 | 成人亚洲精品一区在线观看| 久久国产精品影院| 一本色道久久久久久精品综合| 在线天堂中文资源库| 亚洲专区国产一区二区| 国产精品亚洲av一区麻豆| 在线天堂中文资源库| 亚洲专区国产一区二区| 亚洲精品乱久久久久久| 19禁男女啪啪无遮挡网站| 黄色视频在线播放观看不卡| 精品熟女少妇八av免费久了| 啦啦啦免费观看视频1| 一级毛片精品| 高清毛片免费观看视频网站 | 国产亚洲精品一区二区www | 中文字幕高清在线视频| 一区二区三区精品91| 国产精品久久久av美女十八| 成人影院久久| 免费女性裸体啪啪无遮挡网站| 国产成人欧美| 在线播放国产精品三级| 俄罗斯特黄特色一大片| 欧美日韩亚洲高清精品| 中文字幕最新亚洲高清| 最近最新中文字幕大全免费视频| 国产欧美日韩一区二区三区在线| 国产精品一区二区在线不卡| 久久99一区二区三区|