• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A scheme for improving computational efficiency of quasi-two-dimensional model*

    2017-04-26 06:00:53TaeUkJangYuebinWu伍悅濱YingXu徐瑩QiangSun孫強(qiáng)
    關(guān)鍵詞:孫強(qiáng)

    Tae Uk Jang, Yue-bin Wu (伍悅濱), Ying Xu (徐瑩), Qiang Sun (孫強(qiáng))

    1.Department of Mechanics, Kim Il Sung University, Pyong Yang, D. P. R. Korea

    2.School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China,

    E-mail: jtu_rns @163.com

    3.State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China

    4.School of Energy and Architecture, Harbin University of Commerce, Harbin 150028, China

    A scheme for improving computational efficiency of quasi-two-dimensional model*

    Tae Uk Jang1,2, Yue-bin Wu (伍悅濱)2,3, Ying Xu (徐瑩)4, Qiang Sun (孫強(qiáng))2

    1.Department of Mechanics, Kim Il Sung University, Pyong Yang, D. P. R. Korea

    2.School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China,

    E-mail: jtu_rns @163.com

    3.State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China

    4.School of Energy and Architecture, Harbin University of Commerce, Harbin 150028, China

    The quasi-2D model, taking into account the axial velocity profile in the cross section and neglecting the convective term in the 2-D equation, can more accurately simulate the water hammer than the 1-D model using the cross-sectional mean velocity. However, as compared with the 1-D model, the quasi-2D model bears a higher computational burden. In order to improve the computational efficiency, the 1-D method is proposed to be used to solve directly the pressure head and the discharge in the quasi-2D model in this paper, based on the fact that the pressure head obtained as the solution of the two-dimensional characteristic equation is identical to that solved by the 1-D characteristic equations. The proposed scheme solves directly the 1-D characteristic equations for the pressure head and the discharge using the MOC and solves the 2-D characteristic equation for the axial velocities in order to calculate the wall shear stress. If the radial velocity is needed, it can be evaluated easily by an explicit equation derived from the explicit 2-D characteristic equation. In the numerical test, the accuracy and the efficiency of the proposed scheme are compared with two existing quasi-two-dimensional models using the MOC. It is shown that the proposed scheme has the same accuracy as the two quasi-2D models, but requires less computational time. Therefore, it is efficient to use the proposed scheme to simulate the 2-D water hammer flows.

    Water hammer, method of characteristics, numerical scheme, pipe, quasi-2D model

    Introduction

    The water hammer is a widespread phenomenon in water supply pipeline systems, which often poses a threat to the safety of the pipeline systems, so it is important to simulate the water hammer at the design stage as well as during the operation of the water supply networks[1-3]. Due to easy programming and high computational efficiency, the 1-D model is widely used for the analysis of water hammer problems[4]. However, the 1-D model underestimates the frictional resistances by using a steady or quasi-steady friction term[5-7]. In fact, the velocity gradients at the wall of the pipe are greater in the unsteady flows and thus, the wall shear stresses are larger than the corresponding values in the steady flows[8]. In order to simulate the water hammer flows accurately, a 2-D model or a quasi-2D model should be used. The quasi-2D model[9,10], based on the assumption that the flow is axially symmetric and the convective terms are negligible, associates the 1-D pressure distribution with the 2-D velocity distribution. Because the velocity profiles are taken account of in the cross section, the quasi-2D model simulates the water hammer more accurately than the 1-D model. However, it bears a higher com-putational burden. Therefore, it is necessary to improve the computational efficiency of the quasi-2D model.

    Several numerical schemes were applied to quasi-2D models for analysis of water hammer problems. Vardy and Hwang[11]solved the hyperbolic part of 2-D governing equations by the method of characteristics (MOC) and the parabolic part by finite difference (FD). The model of Vardy and Hwang is known to be accurate and stable[12,13], however, it involves the inversion of a large matrix. Silva-Araya and Chaudhry[14]proposed a scheme to solve the governing equations in the 1-D framework by MOC and the 2-D momentum equation by FD. Pezzinga[5,15]used the explicit FD scheme to solve the 1-D continuity equation and the implicit FD scheme to solve the 2-D momentum equation. The model is efficient due to the decoupling between the 1-D continuity and 2-D momentum equations, through ignoring the radial velocity in the calculation process and evaluating the discharge by numerical integration. Zhao and Ghidaoui[16]proposed an efficient quasi-2D model to improve the numerical efficiency in the model of Vardy and Hwang, which requires the calculation of two smaller tri-diagonal matrices. The model of Zhao and Ghidaoui, with the consideration of the effect of the radial velocity component, is a stable implicit scheme. Wahba[17]proposed a scheme to solve the 1-D continuity equation and the 2-D momentum equation by FD for analysis of water hammer flows in the low Reynolds number range. Korbar et al.[18,19]proposed an efficient scheme to improve the numerical efficiency of the Zhao and Ghidaoui model. In this model, the axial velocity was evaluated using the 2-D characteristic equation and the pressure head was calculated using the 1-D characteristic equation.

    This paper proposes to solve directly the pressure head and the discharge in the 1-D form and the wall shear stress in the 2-D form by MOC, based on the fact that the pressure head obtained by the 2-D characteristic equation is identical to that by the 1-D characteristic equations. The accuracy and the efficiency of the proposed scheme are shown by comparing with the two quasi-2D models (i.e., the model of Zhao and Ghidaoui and the model of Korbar et al.) in a numerical test.

    1. Governing equations and numerical scheme

    1.1Governing equations of quasi-2D model

    Assuming that the flow is axially symmetric and the convective terms are negligible, the 2-D governing equations for water hammer flows in a pipe are expressed as follows[16]:

    1.2Quasi-2D models

    The computational domain for the discretization of Eq.(5) is shown in Fig.1. The pipe length,, is divided intoreaches with a constant lengthin the axial direction. Each computational point in the axial direction of the pipe is discretized intocylinders with varying thickness in the radial direction. In Fig.1(a),are the coordinates of theboundary and middle points of reaches in the radial direction, respectively. The axial velocity,u, is located at the middle of each radial reach, whereas the radial velocityand the turbulent viscosityare located at the boundaries of each radial reach. The time stepThe subscriptsandare the indexes of grid points in the axial and radial directions, respectively. The superscriptindicates the time level.

    Fig.1 Radial and MOC grid systems

    Integrating Eq.(5) over the characteristic lines betweenthe discretized forms of Eq.(5) become

    where the weight coefficientsare for the temporal discretization of the viscous and radial velocity terms in Eq.(5), respectively. Using the central difference scheme for both the viscous and radial flux terms in the above equations, the resulting equations are expressed as[16]

    1.3Proposed numerical scheme

    In the proposed scheme, the axial velocities are evaluated by Eq.(11) as the quasi-2D model of Zhao and Ghidaoui, but both the pressure head and the radial flux are obtained from the explicit equations instead of using Eq.(12). In fact, it is proved mathematically that the pressure head obtained as the solution of Eq.(12) is identical to that obtained by using the 1-D characteristic equation. Eq.(12) for the pressure head and the radial flux may be rewritten as

    Therefore, the pressure head from Eq.(17) may be written as

    Using the expression of the coefficient, the denominator term on the right side of Eq.(18) may be expressed as

    If the number of radial reaches is sufficiently large, the cross-sectional area of the pipe,and the discharge,calculated by numerical integration are given by

    Therefore, Eq.(22) leads to the following equation

    Equation (22) is identical to the equation for the pressure head obtained by using the 1-D characteristic equation (i.e., Eq.(6)). Therefore, the pressure head in the proposed scheme is solved by the 1-D characteristic equation. The discharge is also solved by the 1-D characteristic equation and may be expressed as

    The wall shear stress at each point at each time may be evaluated by the following equation

    Once the pressure head is determined, if needed, the radial flux may be easily calculated by using Eq.(13).

    Therefore, it is shown that, for the quasi-2D model, the pressure and the discharge can be solved by the 1-D equation and the shear stress is obtained by the 2-D equation. In this paper, the 1-D and 2-D governing equations are solved by using MOC in the scheme.

    2. Numerical test

    The proposed scheme and the two quasi-2D models (i.e., the Model (I) refers to the model of Zhao and Ghidaoui and the Model (II) refers to the model of Korbar et al.) are applied to a numerical test. The water hammer is caused by an instantaneous downstream valve closure in a reservoir-pipe-valve system. The following geometric and flow parameters are used for the numerical test: the length of the pipe,is 900 m, the diameter of the pipe,is 0.5 m, the wave speed,is 900 m/s, the steady discharge,, is 0.5 m3/s, the steady head of the reservoir,, is 67.7 m, the kinetic viscosity,and the Reynolds number,

    2.1Comparison of accuracies

    The accuracy of the proposed scheme is evaluated by comparing the results with the Models (I) and (II). Figure 2 shows the pressure head traces at the midpoint of the pipe calculated by the proposed scheme, the Model (I) and the Model (II), using the weight coefficientson the gridAs is expected, the results obtained by the proposed scheme are almost the same as those of the two models.

    Fig.2 Pressure head traces at mid-point of pipe calculated by proposed scheme and two models

    Fig.3 Maximal error between both pressure heads calculated by proposed scheme and Model (I)

    Figure 3 shows the maximal errors between the pressure heads calculated by the proposed scheme and the Model (I), using the weight coefficientson different grids. The maximal error between both pressure heads is evaluated by the following equation

    Figure 4 shows the discharge changes at the upstream reservoir calculated by the proposed scheme and the Model (II). As is expected, the discharge obtained by the proposed scheme is almost identical to that calculated by the Model (II).

    Fig.4 Discharge traces at upstream reservoir calculated by proposed scheme and Model (II)

    Fig.5 Maximal error between both discharges calculated by proposed scheme and Model (II)

    Figure 5 shows the maximal errors between discharges calculated by both the present scheme and the Model (II), using the weight coefficientson different grids. The maximal error between both discharges is calculated by the following equation

    Figure 6 shows the wall shear stress traces at the mid-point of the pipe obtained by the proposed scheme and two models. Obviously, the wall shear stress calculated by the present scheme is almost identical to that of the two models.

    Fig.6 Wall shear stress traces at mid-point of pipe calculated by proposed scheme and two models

    Fig.7 Maximal error between both wall shear stresses calculated by proposed scheme and Model (I)

    Figure 7 shows the maximal errors between the wall shear stresses calculated by both the present scheme and the Model (I), using the weight coefficientson different grids. The maximal error between both wall shear stresses is evaluated by

    Figure 8 shows the velocity profiles at the midpoint of the pipe at the specified time calculated by the proposed scheme and the two models. Obviously, the velocity profiles obtained by the proposed schemeare almost identical to those obtained by the Models (I) and (II).

    Fig.8 Velocity profiles at mid-point of pipe calculated by proposed scheme and two models

    Fig.9 CPU time ratio between the proposed scheme to the Model (I) on different grids

    Fig.10 CPU time ratios between the proposed scheme to the Model (II) on different grids

    2.2Comparison of computational efficiencies

    The computational efficiency of the proposed scheme is compared with the Models (I) and (II), using the same weight coefficients on the same grid. Figure 9 shows the CPU time ratio of the proposed scheme to the Model (I) on the different grids. For two different weight coefficients, the results show that, regardless of the grid size, the proposed scheme takes less computational time than the Model (I). In all cases, the required CPU time for the proposed scheme is approximately 93% of that for the Model (I). Figure10 shows the CPU time ratio between the proposed scheme to the Model (II). In Fig.10, the proposed scheme generally takes less computational time than the Model (II) using the same weight coefficients. In all cases, the proposed scheme takes about 66% of the CPU time required for the Model (II).

    The present scheme generally takes less computational time than the Models (I) and (II), regardless of the grid size. Because in the proposed scheme, explicit equations are used to calculate the pressure head and the radial flux, the computational time is reduced with respect to the matrix calculation in the Model (I). In addition, the use of explicit equations for the discharge also reduces the computational time with respect to the discharge calculation by numerical integration of the axial velocity profile in the Model (II). However, the velocity profiles are still calculated by a tri-diagonal matrix (i.e., Eq.(11)) and thus, the proposed scheme still takes longer computational time than the 1-D model. If the velocity profiles are obtained by a simpler way, the proposed scheme will be more efficient for simulating 2-D water hammer flows.

    3. Conclusion

    This paper proposes to use the 1-D method to directly solve the pressure head and the discharge in the quasi-2D model, based on the fact that the pressure head obtained by solving the 2-D characteristic equation is identical to that obtained by solving 1-D characteristic equation. The proposed scheme is used to solve directly the 1-D characteristic equation for the pressure head and the discharge using the MOC, while the 2-D characteristic equation is only used for the axial velocities in order to calculate the wall shear stress. If the radial velocity is needed, it can be evaluated easily by an explicit equation derived from the 2-D characteristic equation. The numerical test shows that, for the same weighting coefficients and grids, the proposed scheme gives the same results as the quasi-2D models in the numerical tests. The present scheme generally requires less computational time than the quasi-2D models, regardless of the grid size. In all cases, the proposed scheme takes about 93% and 66% of the required CPU times for the model of Zhao and Ghidaoui and the model of Korbar et al., respectively. Therefore, the proposed scheme is an efficient scheme for analyzing the 2-D water hammer flows.

    [1] Yu K., Cheng Y. G., Zhang X. X. Hydraulic characteristics of a siphon-shaped overflow tower in a long water conveyance system: CFD simulation and analysis [J].Journal of Hydrodynamics, 2016, 28(4): 564-575.

    [2] Sun Q., Wu Y. B., Xu Y. et al. Optimal sizing of an air vessel in a long-distance water-supply pumping system using the SQP method [J].Journal of Pipeline Systems Engineering and Practice, 2016, 7(3): 05016001.

    [3] Sun Q., Wu Y. B., Xu Y. et al. Flux vector splitting schemes for water hammer flows in pumping supply systems with air vessels [J].Journal of Harbin Institute of Technology (New Series), 2015, 22(3): 69-74.

    [4] Chaudhry M. H. Applied hydraulic transients [M]. 3rd Edition, New York, USA: Van Nostrand Reinhold, 2014.

    [5] Pezzinga G. Evaluation of unsteady flow resistances by quasi-2D or 1D models [J].Journal of Hydraulic Engineering, ASCE, 2000, 126(10): 778-785.

    [6] Shimada M., Vardy A. E. Nonlinear interaction of friction and interpolation errors in unsteady flow analyses [J].Journal of Hydraulic Engineering, ASCE, 2013, 139(4): 397-409.

    [7] Vitkovsky J. P., Bergant A., Simpson A. R. et al. Systematic evaluation of one-dimensional unsteady friction models in simple pipelines [J].Journal of Hydraulic Engineering, ASCE, 2006, 132(7): 696-708.

    [8] Vardy A. E., Brown J. M. B. Approximation of turbulent wall shear stresses in highly transient pipe flows [J].Journal of Hydraulic Engineering, ASCE, 2007, 133(11): 1219-1228.

    [9] Jang T. U., Wu Y. B., Xu Y. et al. Efficient quasi-twodimensional water hammer model on a characteristic grid [J].Journal of Hydraulic Engineering, ASCE, 2016, 142(12): 06016019.

    [10] Tazraei P., Riasi A. Quasi-two-dimensional numerical analysis of fast transient flows considering non-Newtonian effects [J].Journal of Fluids Engineering, 2016, 138(1): 011203.

    [11] Vardy A. E., Hwang K. L. A characteristics model of transient friction in pipes [J].Journal of Hydraulic Research, 1991, 29(5): 669-684.

    [12] Jang T. U., Wu Y. B., Xu Y. et al. Numerical simulation for two-phase water hammer flows in pipe by quasi-twodimensional model [J].Journal of Harbin Institute of Technology (New Series), 2016, 23(2): 9-15.

    [13] Zhao M. Numerical solutions of quasi-two-dimensional models for laminar water hammer problems [J].Journal of Hydraulic Research, 2016, 54(3): 360-368.

    [14] Silva-Araya W. E., Chaudhry M. H. Computation of energy dissipation in transient flow [J].Journal of Hydraulic Engineering, ASCE, 1997, 123(2): 108-115.

    [15] Pezzinga G., Brunone B., Meniconi S. Relevance of pipe period on kelvin-voigt viscoelastic parameters: 1D and 2D inverse transient analysis [J].Journal of Hydraulic Engineering,ASCE, 2016, 142(12): 04016063.

    [16] Zhao M., Ghidaoui M. S. Efficient quasi-two-dimensional model for water hammer problems [J].Journal of Hydraulic Engineering, ASCE, 2003, 129(12): 1007-1013.

    [17] Wahba E. M. Turbulence modeling for two-dimensional water hammer simulations in the low Reynolds number range [J].Computers and Fluids, 2009, 38(9): 1763-1770.

    [18] Korbar R., Virag Z., Savar M. Efficient solution method for quasi two-dimensional model of water hammer [J].Journal of Hydraulic Research, 2014, 52(4): 575-579.

    [19] Korbar R., Virag Z., Savar M. Truncated method of characteristics for quasi-two-dimensional water hammer model [J].Journal of Hydraulic Engineering, ASCE, 2014, 140(6): 04014013.

    (Received January 7, 2015, Revised November 2, 2015)

    * Project supported by the National Natural Science Fund in China (Grant No. 51208160), the Foundation for Distinguished Young Talents in Higher Education of Heilongjiang Province (Grant No. UNPYSCT-2015072) and the Harbin Science and Technology Project.

    Biography: Tae Uk Jang (1962-), Male, Ph. D.,

    Associate Professor

    Yue-bin Wu,

    E-mail: ybwu@hit.edu.cn

    猜你喜歡
    孫強(qiáng)
    Oscillator strength and cross section study of the valence-shell excitations of NO2 by fast electron scattering
    Two-dimensional self-consistent numerical simulation of the whole discharge region in an atmospheric argon arc
    Three-dimensional non-equilibrium modeling of a DC multi-cathode arc plasma torch
    Effects of W6+occupying Sc3+on the structure,vibration,and thermal expansion properties of scandium tungstate?
    求解線性規(guī)劃問題的常規(guī)思路
    孫強(qiáng)作品
    Generalized Hybrid Nanofluid Model with the Application of Fully Developed Mixed Convection Flow in a Vertical Microchannel?
    我送男友3600萬,他卻拿錢悅前妻
    老公愛車勝過愛我
    婦女生活(2017年9期)2017-09-13 20:09:03
    偷來的靠山
    成人永久免费在线观看视频| 国产69精品久久久久777片| 精品人妻熟女av久视频| 日韩亚洲欧美综合| 亚洲国产精品成人久久小说 | 久久午夜福利片| 国产精品久久视频播放| 一区二区三区免费毛片| 非洲黑人性xxxx精品又粗又长| 免费看日本二区| 精品久久久久久久久久久久久| 在线播放国产精品三级| 国产精品久久电影中文字幕| 国产精品一二三区在线看| 毛片女人毛片| 一本一本综合久久| 99热6这里只有精品| 亚洲精品456在线播放app| 日本在线视频免费播放| 欧美极品一区二区三区四区| 高清毛片免费看| 欧美一级a爱片免费观看看| 人人妻人人看人人澡| 国产伦在线观看视频一区| 国产黄片美女视频| 麻豆久久精品国产亚洲av| 日产精品乱码卡一卡2卡三| 五月玫瑰六月丁香| 一区二区三区免费毛片| 日本在线视频免费播放| 国产精品1区2区在线观看.| 久久国产乱子免费精品| 噜噜噜噜噜久久久久久91| 一级毛片我不卡| 成年av动漫网址| 我的女老师完整版在线观看| 一个人观看的视频www高清免费观看| 免费看日本二区| 搞女人的毛片| 国产一区二区三区av在线 | 一边摸一边抽搐一进一小说| 欧美另类亚洲清纯唯美| 一个人看视频在线观看www免费| 国产精品福利在线免费观看| 成人漫画全彩无遮挡| 少妇熟女欧美另类| 18+在线观看网站| 欧美+亚洲+日韩+国产| 麻豆国产97在线/欧美| 日韩高清综合在线| 乱码一卡2卡4卡精品| 国产熟女欧美一区二区| 国产伦精品一区二区三区视频9| 69av精品久久久久久| 人妻久久中文字幕网| 久久久久国产网址| 欧美bdsm另类| 亚洲aⅴ乱码一区二区在线播放| 亚洲av不卡在线观看| 国产免费男女视频| 国产 一区精品| 观看美女的网站| 国产日本99.免费观看| 日日摸夜夜添夜夜添av毛片| 久久久久久九九精品二区国产| 亚洲av成人av| 成人性生交大片免费视频hd| 免费观看精品视频网站| 成人av一区二区三区在线看| 色哟哟·www| 在线免费观看不下载黄p国产| 波多野结衣巨乳人妻| 欧美又色又爽又黄视频| 黄色视频,在线免费观看| 久久久久性生活片| 色5月婷婷丁香| 色在线成人网| 欧美一区二区亚洲| 露出奶头的视频| 欧美激情国产日韩精品一区| 天堂av国产一区二区熟女人妻| av在线亚洲专区| 免费看光身美女| 亚洲成av人片在线播放无| 国产毛片a区久久久久| 国产高清视频在线播放一区| 91av网一区二区| 99久久中文字幕三级久久日本| 激情 狠狠 欧美| 卡戴珊不雅视频在线播放| 亚洲人与动物交配视频| 精品人妻一区二区三区麻豆 | 欧美三级亚洲精品| 美女免费视频网站| 哪里可以看免费的av片| 欧美精品国产亚洲| 国产精品,欧美在线| 波多野结衣高清作品| 亚洲精品国产成人久久av| 亚洲aⅴ乱码一区二区在线播放| av女优亚洲男人天堂| 女的被弄到高潮叫床怎么办| 波多野结衣巨乳人妻| 欧美最新免费一区二区三区| 嫩草影视91久久| 日韩欧美一区二区三区在线观看| 欧美性猛交黑人性爽| 午夜福利在线观看吧| 在线看三级毛片| 天堂网av新在线| 久久久久国产网址| 在线a可以看的网站| 蜜臀久久99精品久久宅男| av国产免费在线观看| www.色视频.com| 国产精品精品国产色婷婷| 久久久久九九精品影院| 国产精品伦人一区二区| 亚洲人成网站高清观看| 国产探花极品一区二区| 国产高清视频在线播放一区| 菩萨蛮人人尽说江南好唐韦庄 | 尤物成人国产欧美一区二区三区| 国产伦在线观看视频一区| 99久久久亚洲精品蜜臀av| 九九久久精品国产亚洲av麻豆| 欧美日韩乱码在线| 国产片特级美女逼逼视频| 99久久成人亚洲精品观看| 日本在线视频免费播放| 国产精品一及| 深爱激情五月婷婷| 狠狠狠狠99中文字幕| 亚洲欧美日韩高清专用| 色视频www国产| 99热这里只有是精品50| 99热6这里只有精品| 精品久久久久久久久av| 亚洲精品粉嫩美女一区| 少妇裸体淫交视频免费看高清| 国产亚洲av嫩草精品影院| 国产91av在线免费观看| 日韩欧美在线乱码| 寂寞人妻少妇视频99o| 亚洲国产精品sss在线观看| 亚洲av成人av| 最后的刺客免费高清国语| 蜜桃亚洲精品一区二区三区| 久久国产乱子免费精品| 亚洲熟妇中文字幕五十中出| 一个人观看的视频www高清免费观看| 成人亚洲精品av一区二区| 99视频精品全部免费 在线| 久久人人爽人人爽人人片va| 秋霞在线观看毛片| 欧美不卡视频在线免费观看| 日本精品一区二区三区蜜桃| 国产中年淑女户外野战色| 日韩国内少妇激情av| 菩萨蛮人人尽说江南好唐韦庄 | avwww免费| 禁无遮挡网站| 中国美白少妇内射xxxbb| 在线观看一区二区三区| 99久国产av精品国产电影| 欧美高清成人免费视频www| 欧美日韩精品成人综合77777| 日韩高清综合在线| 小蜜桃在线观看免费完整版高清| 美女免费视频网站| 男人的好看免费观看在线视频| 午夜视频国产福利| 婷婷色综合大香蕉| 午夜精品在线福利| 欧美日韩国产亚洲二区| 久久久久久伊人网av| 国产麻豆成人av免费视频| 成人永久免费在线观看视频| 国产精品,欧美在线| 非洲黑人性xxxx精品又粗又长| 婷婷亚洲欧美| 国产精品人妻久久久影院| 麻豆精品久久久久久蜜桃| 亚洲经典国产精华液单| 精品久久久久久久久av| 精品午夜福利视频在线观看一区| 亚洲中文字幕日韩| 欧美性猛交╳xxx乱大交人| 别揉我奶头 嗯啊视频| 成人av一区二区三区在线看| av在线播放精品| 亚洲av成人精品一区久久| 最好的美女福利视频网| 久久久久国内视频| 中文字幕av在线有码专区| 少妇被粗大猛烈的视频| 国产人妻一区二区三区在| 国产成人freesex在线 | 亚洲精华国产精华液的使用体验 | 久久精品91蜜桃| 精品日产1卡2卡| 99riav亚洲国产免费| 两个人的视频大全免费| 久久久久久伊人网av| 噜噜噜噜噜久久久久久91| 欧美又色又爽又黄视频| 99热只有精品国产| 亚洲无线在线观看| 两个人视频免费观看高清| 久久久久九九精品影院| 99久国产av精品| 久久久精品大字幕| 国产亚洲精品av在线| 99久久久亚洲精品蜜臀av| 黄片wwwwww| 久久综合国产亚洲精品| av女优亚洲男人天堂| 国产色爽女视频免费观看| 婷婷亚洲欧美| 亚洲自拍偷在线| 亚洲精品粉嫩美女一区| 午夜老司机福利剧场| 国产精品久久电影中文字幕| 欧美人与善性xxx| 欧美+亚洲+日韩+国产| 国产高清视频在线观看网站| 一区二区三区免费毛片| 国产又黄又爽又无遮挡在线| 国产高潮美女av| 日本a在线网址| 国产aⅴ精品一区二区三区波| 国内精品美女久久久久久| 国产精品精品国产色婷婷| 一本精品99久久精品77| 国内少妇人妻偷人精品xxx网站| 搡老妇女老女人老熟妇| 国产精品永久免费网站| 大型黄色视频在线免费观看| 亚洲国产精品成人综合色| 啦啦啦观看免费观看视频高清| 色在线成人网| 午夜福利视频1000在线观看| 欧美+日韩+精品| www.色视频.com| 精品欧美国产一区二区三| 高清毛片免费观看视频网站| 国产伦精品一区二区三区视频9| 日本精品一区二区三区蜜桃| 超碰av人人做人人爽久久| 午夜福利在线观看吧| 日韩 亚洲 欧美在线| 亚洲国产精品久久男人天堂| 一个人看视频在线观看www免费| 久久欧美精品欧美久久欧美| 一级毛片电影观看 | 99riav亚洲国产免费| 99热这里只有精品一区| 内射极品少妇av片p| 深夜a级毛片| 露出奶头的视频| 麻豆精品久久久久久蜜桃| 欧美日韩国产亚洲二区| 一级a爱片免费观看的视频| 深爱激情五月婷婷| 能在线免费观看的黄片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产日韩欧美精品在线观看| 亚洲色图av天堂| 午夜影院日韩av| 丰满乱子伦码专区| 国产成人aa在线观看| 精品国内亚洲2022精品成人| 亚洲中文字幕一区二区三区有码在线看| 国产av不卡久久| av卡一久久| 97超级碰碰碰精品色视频在线观看| 女的被弄到高潮叫床怎么办| 国产亚洲精品av在线| 亚洲精品一区av在线观看| 综合色av麻豆| 美女高潮的动态| 久久久久免费精品人妻一区二区| 久久热精品热| 综合色av麻豆| 午夜激情福利司机影院| 久久亚洲国产成人精品v| 男人舔奶头视频| 国产国拍精品亚洲av在线观看| 国产成人aa在线观看| 天堂av国产一区二区熟女人妻| 久久精品人妻少妇| a级毛片免费高清观看在线播放| 麻豆乱淫一区二区| 欧美激情国产日韩精品一区| 热99在线观看视频| 99久国产av精品国产电影| 日韩欧美在线乱码| 日本色播在线视频| 性色avwww在线观看| 99精品在免费线老司机午夜| 国产三级在线视频| videossex国产| 精品久久久噜噜| 大型黄色视频在线免费观看| 国产高清有码在线观看视频| 国产av一区在线观看免费| 国产成人精品久久久久久| a级毛片a级免费在线| 久久精品国产99精品国产亚洲性色| 国产白丝娇喘喷水9色精品| 亚州av有码| a级毛色黄片| 亚洲色图av天堂| 十八禁网站免费在线| a级毛色黄片| h日本视频在线播放| 久久精品影院6| 干丝袜人妻中文字幕| .国产精品久久| 麻豆国产97在线/欧美| 亚洲精品456在线播放app| 亚洲人成网站在线播放欧美日韩| 国产一区二区亚洲精品在线观看| 成年免费大片在线观看| 欧美最新免费一区二区三区| 床上黄色一级片| 免费看日本二区| 国产成人精品久久久久久| 俄罗斯特黄特色一大片| 亚洲精品乱码久久久v下载方式| 我的老师免费观看完整版| 亚洲av一区综合| 亚洲精品乱码久久久v下载方式| 12—13女人毛片做爰片一| 校园人妻丝袜中文字幕| 国产综合懂色| 男人舔奶头视频| 在线观看午夜福利视频| 免费av观看视频| 午夜a级毛片| 精品一区二区三区视频在线| 国产免费男女视频| 深夜精品福利| 丝袜美腿在线中文| 一本精品99久久精品77| 此物有八面人人有两片| 99久久无色码亚洲精品果冻| 免费观看精品视频网站| 18禁黄网站禁片免费观看直播| 国产亚洲av嫩草精品影院| 91狼人影院| 99热只有精品国产| 麻豆av噜噜一区二区三区| 在线a可以看的网站| 露出奶头的视频| 精品人妻一区二区三区麻豆 | 国内揄拍国产精品人妻在线| 国产真实乱freesex| 欧美激情久久久久久爽电影| 精品午夜福利在线看| 91精品国产九色| 寂寞人妻少妇视频99o| 天美传媒精品一区二区| 99热这里只有是精品50| 美女大奶头视频| 亚洲精品国产av成人精品 | 日韩成人av中文字幕在线观看 | 日本色播在线视频| 在现免费观看毛片| 免费看光身美女| 亚洲内射少妇av| 亚洲图色成人| 2021天堂中文幕一二区在线观| 男人的好看免费观看在线视频| 搞女人的毛片| 亚洲精品粉嫩美女一区| 直男gayav资源| 自拍偷自拍亚洲精品老妇| 久久国内精品自在自线图片| 内射极品少妇av片p| 床上黄色一级片| 欧美国产日韩亚洲一区| 神马国产精品三级电影在线观看| 中国美女看黄片| 熟妇人妻久久中文字幕3abv| 久久精品影院6| 国产精品永久免费网站| 自拍偷自拍亚洲精品老妇| 日韩亚洲欧美综合| 国产黄片美女视频| 成人漫画全彩无遮挡| 国产成人a区在线观看| 日韩制服骚丝袜av| 桃色一区二区三区在线观看| 亚洲电影在线观看av| 亚洲av熟女| 在线国产一区二区在线| 丰满人妻一区二区三区视频av| 欧美3d第一页| 12—13女人毛片做爰片一| 亚洲高清免费不卡视频| 国产成人一区二区在线| 国产国拍精品亚洲av在线观看| 久久久a久久爽久久v久久| 日韩中字成人| 午夜激情福利司机影院| 悠悠久久av| 国产精品久久视频播放| 久久久久久久久久成人| 免费高清视频大片| 亚洲图色成人| 亚洲自拍偷在线| 一进一出抽搐动态| 亚洲一区二区三区色噜噜| 亚洲精品影视一区二区三区av| 淫妇啪啪啪对白视频| 久久久久久久久中文| 日日撸夜夜添| 成人二区视频| 又黄又爽又免费观看的视频| 精品久久久久久久久av| 高清毛片免费看| 久久久久久久久久久丰满| 亚洲美女黄片视频| 亚洲精品456在线播放app| 日本-黄色视频高清免费观看| 免费人成视频x8x8入口观看| 久久亚洲国产成人精品v| 天堂√8在线中文| 国产在视频线在精品| av国产免费在线观看| 精品无人区乱码1区二区| 亚洲国产高清在线一区二区三| 99久久无色码亚洲精品果冻| 欧美高清成人免费视频www| 变态另类丝袜制服| 国产aⅴ精品一区二区三区波| 村上凉子中文字幕在线| 日韩亚洲欧美综合| 欧美日韩国产亚洲二区| 搞女人的毛片| 日韩三级伦理在线观看| 女人被狂操c到高潮| 亚洲第一区二区三区不卡| 91久久精品国产一区二区成人| 男人和女人高潮做爰伦理| 伊人久久精品亚洲午夜| 成人一区二区视频在线观看| 一区二区三区高清视频在线| 久久久久久大精品| 亚洲av不卡在线观看| 在线a可以看的网站| 久久久久久大精品| 一本精品99久久精品77| 午夜福利18| av女优亚洲男人天堂| 亚洲国产日韩欧美精品在线观看| 你懂的网址亚洲精品在线观看 | 国产高清三级在线| 18禁黄网站禁片免费观看直播| 午夜免费激情av| 国产在线男女| 精品乱码久久久久久99久播| 三级毛片av免费| 精品熟女少妇av免费看| 深爱激情五月婷婷| 中文字幕人妻熟人妻熟丝袜美| 大型黄色视频在线免费观看| 99热这里只有精品一区| 亚洲在线自拍视频| 91麻豆精品激情在线观看国产| 亚洲久久久久久中文字幕| 国产一区二区三区av在线 | 国产黄a三级三级三级人| 真实男女啪啪啪动态图| 久久久久久伊人网av| 欧美极品一区二区三区四区| 又粗又爽又猛毛片免费看| 日韩高清综合在线| 日韩国内少妇激情av| 欧美性猛交黑人性爽| 国产aⅴ精品一区二区三区波| 美女免费视频网站| 久久精品国产99精品国产亚洲性色| 永久网站在线| 久久久久久国产a免费观看| 99热这里只有精品一区| 成人三级黄色视频| 午夜爱爱视频在线播放| av天堂中文字幕网| 观看美女的网站| 欧美最黄视频在线播放免费| 国产精品一及| 欧美成人免费av一区二区三区| 蜜臀久久99精品久久宅男| 国产片特级美女逼逼视频| 三级经典国产精品| 欧美一区二区亚洲| 国产精品电影一区二区三区| 日本 av在线| 久久精品国产99精品国产亚洲性色| 国产爱豆传媒在线观看| 午夜福利在线观看吧| 久久久久免费精品人妻一区二区| АⅤ资源中文在线天堂| 精品人妻一区二区三区麻豆 | 美女黄网站色视频| 日本三级黄在线观看| 看非洲黑人一级黄片| 女的被弄到高潮叫床怎么办| 最好的美女福利视频网| 午夜激情福利司机影院| av.在线天堂| 嫩草影院入口| 麻豆一二三区av精品| 91精品国产九色| 联通29元200g的流量卡| www日本黄色视频网| 好男人在线观看高清免费视频| 熟妇人妻久久中文字幕3abv| 黑人高潮一二区| 国产精品一二三区在线看| 亚州av有码| 三级毛片av免费| 人妻夜夜爽99麻豆av| 日本一二三区视频观看| 欧美人与善性xxx| 国产一区二区激情短视频| 国产大屁股一区二区在线视频| 午夜福利18| 日本撒尿小便嘘嘘汇集6| 1000部很黄的大片| 一级毛片我不卡| 看免费成人av毛片| 国产一区二区三区在线臀色熟女| 亚洲国产精品久久男人天堂| 欧美日韩在线观看h| 三级毛片av免费| 国产免费一级a男人的天堂| 亚洲婷婷狠狠爱综合网| 国产成人freesex在线 | 性欧美人与动物交配| 日韩一本色道免费dvd| 欧美色视频一区免费| 国产精品久久久久久久电影| 亚洲婷婷狠狠爱综合网| 色综合色国产| av视频在线观看入口| 亚洲欧美成人精品一区二区| 国产精品日韩av在线免费观看| 99热这里只有是精品50| 亚洲av美国av| 淫妇啪啪啪对白视频| 日日撸夜夜添| 乱码一卡2卡4卡精品| 久久久久久久久久黄片| 老女人水多毛片| 国产成年人精品一区二区| 淫妇啪啪啪对白视频| 国产黄a三级三级三级人| 啦啦啦韩国在线观看视频| 长腿黑丝高跟| 国产伦精品一区二区三区四那| 嫩草影院精品99| 日韩在线高清观看一区二区三区| 国产淫片久久久久久久久| 变态另类成人亚洲欧美熟女| 99国产精品一区二区蜜桃av| 亚洲最大成人中文| av在线播放精品| 久久久久久久久久成人| 久久久精品欧美日韩精品| 亚洲精华国产精华液的使用体验 | 搡女人真爽免费视频火全软件 | 特级一级黄色大片| 美女xxoo啪啪120秒动态图| 亚洲精华国产精华液的使用体验 | 十八禁网站免费在线| 国产 一区 欧美 日韩| 搡女人真爽免费视频火全软件 | 日日摸夜夜添夜夜添av毛片| 免费黄网站久久成人精品| 欧美日韩一区二区视频在线观看视频在线 | 在线观看免费视频日本深夜| 欧美zozozo另类| 久久久久国产精品人妻aⅴ院| 69av精品久久久久久| 老熟妇乱子伦视频在线观看| 毛片一级片免费看久久久久| 成人高潮视频无遮挡免费网站| av在线天堂中文字幕| 亚洲无线观看免费| 听说在线观看完整版免费高清| 人人妻人人看人人澡| 国产一区二区激情短视频| a级一级毛片免费在线观看| 一级毛片电影观看 | 美女免费视频网站| 高清毛片免费看| 亚洲18禁久久av| 联通29元200g的流量卡| 国产精品三级大全| 波多野结衣巨乳人妻| 成人漫画全彩无遮挡| 久久久久久久久久成人| 日本a在线网址| 国产毛片a区久久久久| 国模一区二区三区四区视频| av卡一久久| 国产精品1区2区在线观看.| 在线观看午夜福利视频| 全区人妻精品视频| 国产精品一区www在线观看| 亚洲精品日韩在线中文字幕 | 久久九九热精品免费|