• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oscillator strength and cross section study of the valence-shell excitations of NO2 by fast electron scattering

    2023-12-02 09:28:52QiangSun孫強(qiáng)JinFengChen陳錦峰ZhiWeiNie聶智偉JianHuiZhu朱劍輝andLinFanZhu朱林繁
    Chinese Physics B 2023年11期
    關(guān)鍵詞:孫強(qiáng)

    Qiang Sun(孫強(qiáng)), Jin-Feng Chen(陳錦峰), Zhi-Wei Nie(聶智偉), Jian-Hui Zhu(朱劍輝), and Lin-Fan Zhu(朱林繁)

    Department of Modern Physics,University of Science and Technology of China,Hefei 230026,China

    Keywords: nitrogen dioxide,oscillator strength,integral cross section,electron scattering

    1.Introduction

    Nitrogen dioxide(NO2)is one of the most important pollutants in the atmosphere,[1]which is difficult to remove chemically.Meanwhile, NO2has a non-negligible indirect impact on the greenhouse effect,[2,3]although it is not a greenhouse gas itself.More seriously, NO2is an important intermediate product involved in the cyclic catalytic decomposition of atmosphere ozone,thus posing a threat to the ozone shield.[4,5]In addition,NO2has attracted the attention of many theorists for its open shell structure.[6]Therefore, accurate knowledge of the oscillator strength and cross section data of NO2is vital for the fundamental research and understanding of its evolution in the earth’s atmosphere.

    NO2is a paramagnetic and bent molecule belonging toC2vpoint group,and the ground state can be represented as

    The electronic structure of NO2has been extensively studied, although it is very difficult to handle its dimer N2O4experimentally.Hall and Blacet[7]measured the photoabsorption spectra of NO2–N2O4mixtures in the energy range of 2.5–5.2 eV at three different pressures,and separated the contribution of NO2and N2O4using the equilibrium constant expression.[8]Nakayamaet al.[9]obtained the photoabsorption curves of NO2in the range of 4.6–11.5 eV and corrected the effects of underlying N2O4by extrapolating to zero pressure.Johnston and Graham[10]obtained the photoabsorption spectrum of NO2between 3.0 eV and 6.7 eV at low pressures (0.4–4 Pa), where the contribution of N2O4could be negligible.Similarly, the photoabsorption spectra of NO2and N2O4were measured in the energy range of 3.0–6.7 eV,and the effect of temperature on the NO2photoabsorption was reported.[11]Similar to the processing method of Hall and Blacet, Schneideret al.[12]obtained the photoabsorption cross-sections of NO2in the energy range of 1.8–6.2 eV using the equilibrium constant and compared their results with the previously published data.The photoabsorption cross sections of NO2in the 2.5–6.2 eV region were successively measured by Merienneet al.[13–16]at low pressures with a higher resolution,at ambient and low temperatures.Bogumilet al.[17]measured the photoabsorption spectrum of NO2in the 1.4–5.4 eV region,and the influence of N2O4was corrected from the measurements at three different partial pressures of NO2/N2O4.In addition to the photoabsorption method, the optical oscillator strengths densities(OOSDs),which are equivalent to the photoabsorption cross sections,were determined by the dipole(e,e)method at an incident electron energy of 3 keV.[18]Moreover,the electronic structures and spectrum of NO2were studied theoretically based on the semiempirical method[19]and the equilibrium geometry,[20]respectively.

    Although the electronic structures and photoabsorption cross sections of NO2have been comprehensively studied,there remain significant differences amongst the published data,particularly between 5.2 eV and 6.3 eV.Meanwhile,the momentum transfer dependence behaviors of the valence-shell excitations of NO2, i.e., the generalized oscillator strengths(GOSs),have not been studied so far.Moreover,there are no reported differential or integral cross sections(DCSs or ICSs)of the valence-shell excitations of NO2as well.

    In this work,the GOSs,DCSs and ICSs of the electronic transitions of NO2have been comprehensively studied by the high-resolution electron energy loss(EEL)spectroscopy.With the aid of the relative flow and crossed-beam techniques, the absolute GOSs can be obtained as a function related to the momentum transfer.Using the Lassettre formula,[21,22]we can obtain the analytical expressions of the measured GOSs by fitting the experimental data and the optical oscillator strengths(OOSs)correspond to the analytical GOSs at zero momentum transfer,which can cross-check the previous experimental results.The fitted curves can be further used to obtain the Born ICSs by the integration over momentum transfers.It should be noted that the Born ICSs are more reliable when the Born approximation is satisfied at high incident electron energies.[23]In contrast, the Born ICSs are usually overestimated at low incident energies, so the BE-scaling method is introduced to obtain accurate ICS data for the dipole-allowed transitions.

    2.Experiment and data analysis

    The high-resolution fast electron energy loss spectrometer used in this work has been introduced in detail in our previous works,[24–26]so only a brief overview is given here.The spectrometer was operated at an incident electron energy of 1.5 keV and an energy resolution of about 70 meV.In order to simplify the normalization processes and improve the accuracy of the experimental results, the premixed gas with a ratio of 1:2 of NO2and He was used in this experiment with an estimated error of less than 2%, to implement the relative flow technique.[27–30]During the experiment, the premixed gas flowed into the interaction chamber simultaneously and continuously, crossing with the incident electron beam at an angle of 90?.The background pressure before the measurements was about 5×10-5Pa and the real-time pressure during the experiment was about 10-3Pa.The gas pressure at the collision point was estimated to be around a few Pa, where the contribution of N2O4could be negligible according to the calculations based on the equilibrium constant expression.[8]The rotatable hemispherical energy analyzer collected the scattered electrons at a range of scattering angles from 1.5?to 8?.Then the energy-analyzed electrons were counted by the position-sensitive detectors based on the microchannel plates.The real 0?scattering angle was calibrated by checking the symmetry distribution of the inelastic scattering signals of 1s21S0→1s2p1P1transition in helium around the geometric 0?angle.The pressure effect was safely neglected,since the absolute GOSs measured at different flow rates were found in coincidence within the experimental uncertainties at several selected angles.[30,31]

    On the basis of the first Born approximation (FBA), the GOS can be derived from the experimental DCS as[23,32]

    Here,f(K,En) is the momentum transfer dependent GOS,whileKandEnare the momentum transfer and excitation energy,respectively.Ψ0andΨnare theN-electron wave functions for the initial and final states.rjis the position vector of thej-th electron.p0andpaare the incident and scattered electron momenta,respectively.dσn/d?represents the DCS of the corresponding transition.

    To obtain the intensities for specific transitions,the measured EEL spectra were unfolded using a least-squares fitting.The absolute GOSs of the valence-shell excitations of NO2were determined by normalizing them to the GOS of the 1s21S0→1s2p1P1transition of helium,[25,33–35]which has been determined with a high accuracy both experimentally and theoretically.The experimental errors of the GOSs measured in this work mainly come from the limited angular resolution,the angle determination, the statistical counts, the normalization procedure and the least-squares fitting.The total uncertainties are estimated to be about 8%–12% and are shown in Table A1.

    Within the Bethe–Born theory,[23,32,36]the OOSs can be obtained from the extrapolated GOSs at the zero limit ofK2based on the Lassettre formula[21,22]

    Here,x=K2/α2is the scaled momentum transfer square with a fitted scale factorα2.The coefficientsfmare the parameters to be determined in the least-squares fitting,in whichf0is equivalent to the OOS for a dipole-allowed transition.

    Based on the accurate and reliable fitted results,the Born cross sections at an incident electron energy ofE0can be determined by

    whereK2minandK2maxstand for the minimum and maximum squared momentum transfers, respectively.As mentioned above, the Born ICSs show clear gap between high-energy and low-energy electron scattering.Therefore,the BE-scaling method[37,38]was proposed to obtain accurate ICSs:

    whereBrepresents the binding energy.It should be mentioned that the scaling method is applicable for the dipole-allowed transitions and has been used to provide reliable ICSs for many atoms and molecules.[22,39–41]

    3.Results and discussion

    A typical EEL spectrum of NO2at 2.5?is shown in Fig.1(a)and a 2D GOS density(GOSD)map vs.the energy loss and the squared momentum transfer is shown in Fig.1(b).In the least-squares fitting, the first broad band was fitted by a Pearson IV function, corresponding to the 6a1←4b2and 2b1←6a1transitions,while the transitions between 4.8 eV and 9.4 eV were simulated by several Gauss functions,and the excitation energies were fixed to the experimental data reported by Ref.[18].Here, an extra peak at 9.22 eV was introduced to reproduce the experimental data well since a shoulder can be clearly observed.The line widths for these transitions were set as free parameters in the initial fitting,and fixed at the average values of 1.5?–3?in the final fitting,so as to determine the transition intensities.The spectrum above 9.4 eV is characterized by the overlapping vibronic transitions of many Rydberg series, so several Gaussian peaks were used to reproduce the spectrum and the line widths were shared in each spectral fitting,and the sum GOS was given in this region.

    Fig.1.(a) A typical EEL spectrum of the valence-shell excitations of NO2 at an incident electron energy of 1.5 keV and a scattering angle of 2.5?.The solid lines are the fitted curves.(b)A 2D map of the GOSDs of NO2 vs.the energy loss and squared momentum transfer.

    The first broad band can be attributed to the 6a1←4b2and 2b1←6a1transitions based on the calculations of McEwen[19]and Gangi.[20]The next band can be attributed to the 7a1←4b2and 2b1←1a2transitions based on the energy-level diagram of Mulliken and Robert.[42]Note that the limited energy resolution of 70 meV is not sufficient to separate the transitions of 5b2←6a1and 3sσ←6a1, so their sum GOS is given in Fig.2(c), to avoid the error in random allocation of intensities during the fitting process.It is clear that all the GOSs in Figs.2(a)–2(d)exhibit the typical behavior of a dipole-allowed transition,i.e.,the GOS decreases with the increase ofK2and has a maximum atK2=0.The unknown nature of the unassigned salient feature at 9.22 eV shown in Fig.2(e) requires further detailed investigation,and the current GOS profile implies that the underlying transition is more likely to be dipoleallowed.The GOS of the feature at 9.38–10.38 eV is shown in Fig.2(f), which also exhibits the typical momentum transfer dependence behavior of a dipole-allowed transition.

    Fig.2.Present GOSs for the excited states of(a)(6a1←4b2)+(2b1←6a1),(b) (7a1←4b2) + (2b1←1a2), (c) (5b2←6a1) + (3sσ←6a1), (d) (3pσ,3pπ)←6a1, (e) added peak (9.22 eV) and (f) 9.38–10.38 eV.The dots are the experimental data while the solid lines are their fitted curves.

    Fig.3.Optical oscillator strength densities of the valence-shell excitations of NO2,along with the previous dipole(e,e)and photoabsorption results.

    The OOSD of NO2at the scattering angle of 0?was reconstructed using the extrapolated OOSs with the excitation energies and the peak profiles determined in our fitting processes,which is shown in Fig.3,along with the previous data.It is clear that the present results in the 2–4.8 eV region are in good agreement with the results of Refs.[10,12,13,17],but evidently lower than the results of Refs.[7,18] for some unknown reason.At the same time, the present cross sections in the 4.8–6.5 eV region are generally in line with the data of Refs.[9–12,15], but significantly lower than the results of Ref.[18], especially in the energy region of 5.6–6.5 eV.This phenomenon can be attributed to the effect of NO2’s dimer N2O4, since the photoabsorption cross sections of N2O4are tens or hundreds of times higher than that of NO2in this region,[11,16]resulting in that even very trace amounts of N2O4can lead to significant increase in the photoabsorption cross sections of the impure NO2.The conjecture is reasonable in view of the fact that the experiment of Auet al.[18]was done in a gas chamber,where the gas pressure at the collision point may not be low enough to ignore the effect of N2O4.For the spectrum above 6.5 eV,the present result is consistent with the results of Refs.[9,18] considering the large difference in energy resolution,indicating that the effect of N2O4may become weak in this region.

    The extrapolated OOSs for the valence-shell excitations of NO2are compared with the previous experimental data quantitatively in Table 1, along with the operating pressures at which the experiments were carried out.Consistent with the OOSD results mentioned above, the present extrapolated OOS for the (6a1←4b2) + (2b1←6a1) state is in good agreement with the result of Bogumilet al.,[17]but lower than the dipole(e,e)result by about 24%[18]for unknown reason.Although the present OOS for the(7a1←4b2)+(2b1←1a2)state is slightly lower than the results in Refs.[10,11,13,15], they are still within the mutual experimental uncertainties, which demonstrates that the results obtained at low pressures are consistent with each other.Meanwhile, the data of Nakayamaet al.[9]and Schneideret al.[12]are larger than the present OOS by approximately 42%and 27%for this state, indicating that the extrapolation process to correct the contributions of N2O4based on the equilibrium constant will lead to higher values.The particularly large deviation of the OOS for this state between the dipole(e, e)measurement[18]and the other experimental results can be attributed to the effect of its dimer N2O4,as mentioned above.For the bands including (5b2←6a1) +(3sσ←6a1), (3pσ, 3pπ)←6a1, the added peak (9.22 eV) and 9.38–10.38 eV, the present extrapolated OOSs are in good agreement with the dipole(e,e)and the photoabsorption measurements within the mutual experimental uncertainties.and shown in Fig.4.Unfortunately,to the best of our knowledge,there are no other theoretical calculations or experimental measurements reported,so we strongly recommend further investigations for the ICSs of the valence-shell excitations of NO2.

    Table 1.Present OOSs of the valence-shell excitations of NO2, along with the previous experimental results.The data are multiplied by a factor of 100.

    Fig.4.Integral cross sections for electron impact excitations into(6a1←4b2)+ (2b1←6a1), (7a1←4b2) + (2b1←1a2), (5b2←6a1) + (3sσ←6a1), (3pσ,3pπ)←6a1,added peak(9.22 eV)and 9.38–10.38 eV.

    To facilitate users, the measured GOSs and the corresponding extrapolated OOSs are tabulated in Table A1.Meanwhile, the BE-scaled ICSs are given in Table A2.All the datasets presented in this paper, including the GOSs, OOSs and ICSs,are compiled in the supplementary materials in PDF format.

    Given the fact that our extrapolations are compatible with the photoabsorption and the dipole (e, e) results, the present experimental data are reliable and the fitted curves are suitable to deduce the Born or BE-scaled ICSs using Eqs.(4)and(5).Thus, the BE-scaled ICSs for the valence-shell excitations of NO2from the excitation thresholds to 5000 eV are determined

    4.Summary

    In this work,the low-lying electronic excitations of NO2have been studied at an incident electron energy of 1.5 keV and an energy resolution of about 70 meV.By means of the crossed-beam and relative flow techniques,absolute GOSs as a function ofK2for the excitations of(6a1←4b2)+(2b1←6a1),(7a1←4b2) + (2b1←1a2), (5b2←6a1) + (3sσ←6a1), (3pσ,3pπ)←6a1, added peak (9.22 eV) and 9.38–10.38 eV have been determined.The GOS profiles imply that the EEL spectra are dominated by dipole-allowed transitions.Thanks to the low target’s gas pressure of the cross-beam technique,the present measurement is not affected by the dimer N2O4.The origin of an unassigned state at around 9.22 eV remains unknown and requires further analyses.By extrapolating the measured GOSs with the Lassettre formula,the corresponding OOSs can be determined atK2=0 and the derived OOSs are consistent with most previous experimental results.Furthermore,the BE-scaled ICSs of the corresponding excitations of NO2have been systematically derived based on the BE-scaling method.The present oscillator strengths and ICSs can not only supplement the fundamental database for NO2but also have important applications in the fundamental research.

    Appendix A:Data tables

    The GOSs for the valence-shell excitations of NO2are tabulated in Table A1, along with the corresponding extrapolated OOSs,which are amplified by a factor of 103.In the first row of the table, the related scattering angles are also listed.The BE-scaled ICSs listed in Table A2 are magnified by a factor of 102.

    Table A1.Generalized and optical oscillator strengths of the valence-shell excitations of NO2.

    Table A2.BE-scaled ICSs for the electron impact excitations to the features F1–F6,which have been identified detailedly in Table A1.The unit of the ICSs is a.u.

    Data availability statement

    The data that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00156.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China (Grant No.2022YFA1602500)and the National Natural Science Foundation of China(Grant Nos.12334010 and U1932207).

    猜你喜歡
    孫強(qiáng)
    Two-dimensional self-consistent numerical simulation of the whole discharge region in an atmospheric argon arc
    Three-dimensional non-equilibrium modeling of a DC multi-cathode arc plasma torch
    求解線性規(guī)劃問(wèn)題的常規(guī)思路
    孫強(qiáng)作品
    Comparison of Reynolds average Navier-Stokes turbulence models in numerical simulations of the DC arc plasma torch
    Generalized Hybrid Nanofluid Model with the Application of Fully Developed Mixed Convection Flow in a Vertical Microchannel?
    我送男友3600萬(wàn),他卻拿錢(qián)悅前妻
    老公愛(ài)車(chē)勝過(guò)愛(ài)我
    婦女生活(2017年9期)2017-09-13 20:09:03
    A scheme for improving computational efficiency of quasi-two-dimensional model*
    偷來(lái)的靠山
    伊人久久国产一区二区| 一区二区日韩欧美中文字幕 | 男女边吃奶边做爰视频| 十分钟在线观看高清视频www| 一二三四中文在线观看免费高清| 久久久久久久大尺度免费视频| 999精品在线视频| 少妇被粗大的猛进出69影院 | 伊人久久精品亚洲午夜| 日本黄大片高清| 久久久久久久久久人人人人人人| 亚洲国产av影院在线观看| 最近中文字幕高清免费大全6| 丰满饥渴人妻一区二区三| 欧美3d第一页| 国产深夜福利视频在线观看| 国产熟女欧美一区二区| 一本—道久久a久久精品蜜桃钙片| 一二三四中文在线观看免费高清| 欧美成人午夜免费资源| 老司机影院毛片| 国产一区二区在线观看日韩| 91精品伊人久久大香线蕉| 婷婷成人精品国产| www.av在线官网国产| 一级,二级,三级黄色视频| 亚洲av福利一区| 最后的刺客免费高清国语| 99久久人妻综合| www.av在线官网国产| 亚洲天堂av无毛| av免费观看日本| 一级a做视频免费观看| 啦啦啦视频在线资源免费观看| 国产无遮挡羞羞视频在线观看| 国产午夜精品一二区理论片| 男的添女的下面高潮视频| 亚州av有码| 午夜91福利影院| 中文字幕制服av| 国产成人一区二区在线| 成人手机av| 丰满乱子伦码专区| 少妇熟女欧美另类| 秋霞伦理黄片| 亚洲精品乱码久久久久久按摩| 亚洲精品乱久久久久久| 男人爽女人下面视频在线观看| 国产欧美日韩一区二区三区在线 | 久久午夜福利片| 午夜精品国产一区二区电影| 不卡视频在线观看欧美| 亚洲av欧美aⅴ国产| 97超视频在线观看视频| 免费日韩欧美在线观看| 亚洲人成网站在线观看播放| 最新的欧美精品一区二区| av天堂久久9| 国产视频内射| 亚洲精品久久成人aⅴ小说 | 一边亲一边摸免费视频| 国产精品99久久99久久久不卡 | 黄片播放在线免费| 亚洲国产成人一精品久久久| 你懂的网址亚洲精品在线观看| 少妇人妻久久综合中文| 春色校园在线视频观看| 日韩精品免费视频一区二区三区 | av播播在线观看一区| 丰满乱子伦码专区| 亚洲av不卡在线观看| 99国产精品免费福利视频| 免费日韩欧美在线观看| 在线播放无遮挡| 亚洲精品亚洲一区二区| 色视频在线一区二区三区| 亚洲国产欧美日韩在线播放| 黑丝袜美女国产一区| 少妇人妻久久综合中文| 九色亚洲精品在线播放| av专区在线播放| 人妻夜夜爽99麻豆av| 亚洲综合色网址| av女优亚洲男人天堂| 亚洲三级黄色毛片| 亚洲一区二区三区欧美精品| 中文字幕最新亚洲高清| 三上悠亚av全集在线观看| 免费大片黄手机在线观看| 一区在线观看完整版| 欧美日韩视频高清一区二区三区二| 国产亚洲一区二区精品| 色94色欧美一区二区| 亚洲天堂av无毛| 久久韩国三级中文字幕| 亚洲av在线观看美女高潮| 国产男女超爽视频在线观看| 日韩三级伦理在线观看| 建设人人有责人人尽责人人享有的| a级片在线免费高清观看视频| a级毛片在线看网站| 国产亚洲欧美精品永久| 51国产日韩欧美| 一区二区日韩欧美中文字幕 | 日本vs欧美在线观看视频| 精品卡一卡二卡四卡免费| 老女人水多毛片| 全区人妻精品视频| 一边亲一边摸免费视频| 人妻系列 视频| 午夜福利,免费看| 成人黄色视频免费在线看| 日本爱情动作片www.在线观看| 亚洲人成网站在线播| 国产精品.久久久| 九九久久精品国产亚洲av麻豆| av卡一久久| 又黄又爽又刺激的免费视频.| av网站免费在线观看视频| 青春草亚洲视频在线观看| 特大巨黑吊av在线直播| 成人亚洲精品一区在线观看| 大片电影免费在线观看免费| 久久精品国产亚洲网站| 女性生殖器流出的白浆| 成人国语在线视频| 国产精品99久久99久久久不卡 | 精品国产国语对白av| 乱码一卡2卡4卡精品| 中文字幕人妻丝袜制服| 欧美国产精品一级二级三级| 青春草国产在线视频| 99re6热这里在线精品视频| 黄片无遮挡物在线观看| 亚洲成人手机| 久热这里只有精品99| 大香蕉久久成人网| 精品国产国语对白av| 大又大粗又爽又黄少妇毛片口| 美女大奶头黄色视频| 搡老乐熟女国产| 丝袜在线中文字幕| 免费观看av网站的网址| 丰满迷人的少妇在线观看| 欧美 日韩 精品 国产| 色94色欧美一区二区| 亚洲精品乱久久久久久| 婷婷成人精品国产| 交换朋友夫妻互换小说| 久久精品久久精品一区二区三区| 高清在线视频一区二区三区| 午夜日本视频在线| 一级毛片我不卡| 日韩精品免费视频一区二区三区 | 亚洲国产精品专区欧美| 夜夜骑夜夜射夜夜干| 国产淫语在线视频| 母亲3免费完整高清在线观看 | 欧美人与性动交α欧美精品济南到 | 春色校园在线视频观看| av在线老鸭窝| 久久国产精品大桥未久av| 国产深夜福利视频在线观看| 少妇人妻精品综合一区二区| 国产日韩欧美视频二区| 高清毛片免费看| 亚洲人成网站在线观看播放| 免费少妇av软件| 熟女av电影| 亚洲成人av在线免费| 一区在线观看完整版| 观看美女的网站| 久久99热6这里只有精品| 日韩欧美一区视频在线观看| 欧美三级亚洲精品| 女人精品久久久久毛片| 热re99久久国产66热| 国产一级毛片在线| 老女人水多毛片| 色网站视频免费| 日本vs欧美在线观看视频| 热re99久久国产66热| 国产精品久久久久久久久免| 亚洲精品美女久久av网站| 久久久久久伊人网av| 国内精品宾馆在线| 久久鲁丝午夜福利片| 亚洲国产精品专区欧美| 婷婷成人精品国产| 日韩一本色道免费dvd| 久久青草综合色| 国产亚洲av片在线观看秒播厂| 永久免费av网站大全| 黑人欧美特级aaaaaa片| 亚洲精品久久成人aⅴ小说 | 王馨瑶露胸无遮挡在线观看| 欧美变态另类bdsm刘玥| 亚洲av男天堂| 最近2019中文字幕mv第一页| av在线app专区| 一级毛片 在线播放| 观看av在线不卡| 亚洲av.av天堂| 婷婷色综合www| 精品视频人人做人人爽| 亚洲欧美一区二区三区黑人 | 久久久久国产精品人妻一区二区| 一级毛片aaaaaa免费看小| 日韩av在线免费看完整版不卡| 成人影院久久| 欧美成人午夜免费资源| 国产熟女欧美一区二区| 七月丁香在线播放| 能在线免费看毛片的网站| 国产色爽女视频免费观看| 波野结衣二区三区在线| 少妇人妻 视频| 人妻人人澡人人爽人人| 久久久国产欧美日韩av| 你懂的网址亚洲精品在线观看| 久久久国产一区二区| 久久久久网色| 中国美白少妇内射xxxbb| 如日韩欧美国产精品一区二区三区 | 亚洲国产欧美在线一区| 成年人午夜在线观看视频| 国产亚洲av片在线观看秒播厂| 成年人免费黄色播放视频| freevideosex欧美| 国产亚洲最大av| 日韩亚洲欧美综合| 精品亚洲乱码少妇综合久久| 久久毛片免费看一区二区三区| 日韩制服骚丝袜av| 国产精品国产三级国产专区5o| 免费av不卡在线播放| 激情五月婷婷亚洲| 亚洲av成人精品一区久久| 69精品国产乱码久久久| 韩国高清视频一区二区三区| 91午夜精品亚洲一区二区三区| 午夜91福利影院| 伦精品一区二区三区| 午夜激情久久久久久久| 蜜桃久久精品国产亚洲av| freevideosex欧美| 熟女人妻精品中文字幕| 欧美+日韩+精品| 极品人妻少妇av视频| 女性被躁到高潮视频| 日韩成人伦理影院| 一区二区三区精品91| 久久精品久久精品一区二区三区| 久久久a久久爽久久v久久| 亚洲人成77777在线视频| 亚洲一级一片aⅴ在线观看| 91精品伊人久久大香线蕉| 18禁动态无遮挡网站| 波野结衣二区三区在线| 桃花免费在线播放| 亚洲av免费高清在线观看| 免费人成在线观看视频色| 久久久久久久久久久久大奶| av天堂久久9| 丝袜在线中文字幕| 看十八女毛片水多多多| 日韩制服骚丝袜av| 老司机亚洲免费影院| 人妻 亚洲 视频| 国产黄频视频在线观看| 国产成人a∨麻豆精品| 国产精品麻豆人妻色哟哟久久| 婷婷色综合大香蕉| 久久99热6这里只有精品| 精品国产露脸久久av麻豆| 国产精品 国内视频| 91精品一卡2卡3卡4卡| 91午夜精品亚洲一区二区三区| 精品一区在线观看国产| 欧美 亚洲 国产 日韩一| 国产成人精品一,二区| 最近中文字幕2019免费版| 女人精品久久久久毛片| 黄色视频在线播放观看不卡| 日韩在线高清观看一区二区三区| 一区在线观看完整版| 精品久久久精品久久久| 精品视频人人做人人爽| 国产精品偷伦视频观看了| 卡戴珊不雅视频在线播放| 国产亚洲精品第一综合不卡 | 九九在线视频观看精品| 亚洲综合色网址| 青春草国产在线视频| 女性生殖器流出的白浆| 亚洲内射少妇av| 亚洲国产欧美日韩在线播放| 亚洲久久久国产精品| 最新的欧美精品一区二区| 色网站视频免费| 亚洲精品视频女| 日本av手机在线免费观看| av线在线观看网站| 欧美xxⅹ黑人| freevideosex欧美| 久久午夜福利片| av在线app专区| 精品人妻偷拍中文字幕| 欧美性感艳星| 妹子高潮喷水视频| 亚洲av国产av综合av卡| 国产黄色视频一区二区在线观看| 边亲边吃奶的免费视频| 欧美日韩av久久| 成年美女黄网站色视频大全免费 | 欧美日本中文国产一区发布| 国产综合精华液| 人妻 亚洲 视频| 啦啦啦在线观看免费高清www| 亚洲av在线观看美女高潮| 婷婷色综合大香蕉| 狠狠精品人妻久久久久久综合| 欧美精品一区二区免费开放| 亚洲成人一二三区av| 男女边摸边吃奶| 下体分泌物呈黄色| 国产女主播在线喷水免费视频网站| 美女cb高潮喷水在线观看| 国产白丝娇喘喷水9色精品| 国产成人av激情在线播放 | 亚洲av福利一区| 国产高清三级在线| 成人国语在线视频| 中文字幕人妻熟人妻熟丝袜美| 一区二区av电影网| 十八禁高潮呻吟视频| 精品国产乱码久久久久久小说| 欧美亚洲日本最大视频资源| 最新的欧美精品一区二区| 欧美xxxx性猛交bbbb| 两个人的视频大全免费| 国产免费视频播放在线视频| 人人妻人人澡人人爽人人夜夜| xxxhd国产人妻xxx| 不卡视频在线观看欧美| 一二三四中文在线观看免费高清| 大香蕉久久网| 高清不卡的av网站| 亚洲av二区三区四区| 亚洲欧美日韩卡通动漫| 国产免费现黄频在线看| 一级毛片我不卡| 99精国产麻豆久久婷婷| 最后的刺客免费高清国语| 国产男女超爽视频在线观看| 性色avwww在线观看| 大陆偷拍与自拍| 毛片一级片免费看久久久久| 国产免费现黄频在线看| 性色avwww在线观看| 精品国产一区二区三区久久久樱花| 国产免费一区二区三区四区乱码| 在线天堂最新版资源| 亚洲高清免费不卡视频| 在线天堂最新版资源| 亚洲综合精品二区| 亚洲av日韩在线播放| 日韩亚洲欧美综合| 精品人妻偷拍中文字幕| a级毛色黄片| av播播在线观看一区| 欧美3d第一页| 日本午夜av视频| 女的被弄到高潮叫床怎么办| 九九久久精品国产亚洲av麻豆| 乱人伦中国视频| 日本vs欧美在线观看视频| 日日啪夜夜爽| 国产精品国产三级国产av玫瑰| tube8黄色片| 99久久中文字幕三级久久日本| 伊人久久国产一区二区| 黑人高潮一二区| 一个人免费看片子| 亚洲内射少妇av| 一区二区日韩欧美中文字幕 | 黄色毛片三级朝国网站| 性高湖久久久久久久久免费观看| 丝袜美足系列| 99视频精品全部免费 在线| 久久午夜福利片| 插逼视频在线观看| 美女国产高潮福利片在线看| 纵有疾风起免费观看全集完整版| 欧美精品亚洲一区二区| 汤姆久久久久久久影院中文字幕| 美女视频免费永久观看网站| 亚洲av国产av综合av卡| 国产69精品久久久久777片| 亚洲精品日韩在线中文字幕| 婷婷色av中文字幕| 26uuu在线亚洲综合色| 三上悠亚av全集在线观看| 国产 一区精品| 国产精品久久久久久久久免| 免费播放大片免费观看视频在线观看| 亚洲精品一区蜜桃| 又粗又硬又长又爽又黄的视频| 久热这里只有精品99| 中国三级夫妇交换| 日韩欧美一区视频在线观看| 国产精品女同一区二区软件| 国产白丝娇喘喷水9色精品| videossex国产| av.在线天堂| 国产精品久久久久久精品电影小说| 永久网站在线| 一级黄片播放器| 欧美日韩视频精品一区| 黑人巨大精品欧美一区二区蜜桃 | 美女福利国产在线| 欧美三级亚洲精品| 久久久久国产精品人妻一区二区| 制服诱惑二区| 十八禁高潮呻吟视频| 黑人高潮一二区| 亚洲精品久久成人aⅴ小说 | 考比视频在线观看| 日本av手机在线免费观看| 久久久国产精品麻豆| 最近手机中文字幕大全| 日韩人妻高清精品专区| 欧美亚洲日本最大视频资源| 少妇人妻久久综合中文| 欧美一级a爱片免费观看看| 国产精品欧美亚洲77777| 亚洲国产精品999| 人人澡人人妻人| 女性生殖器流出的白浆| 老司机亚洲免费影院| 午夜日本视频在线| 纯流量卡能插随身wifi吗| 亚洲av.av天堂| 日韩精品免费视频一区二区三区 | av国产久精品久网站免费入址| 久久人妻熟女aⅴ| 男人爽女人下面视频在线观看| 日韩人妻高清精品专区| 国产精品国产三级国产专区5o| 国产熟女午夜一区二区三区 | 国产成人免费观看mmmm| 日韩电影二区| 亚洲精品国产色婷婷电影| 国产成人一区二区在线| 91精品伊人久久大香线蕉| 九九在线视频观看精品| 精品人妻熟女av久视频| 欧美日韩成人在线一区二区| 三上悠亚av全集在线观看| www.色视频.com| 一个人免费看片子| 亚洲综合色网址| 在线播放无遮挡| 高清不卡的av网站| 日本免费在线观看一区| 51国产日韩欧美| 婷婷色综合大香蕉| 日本91视频免费播放| 日韩av免费高清视频| 夜夜看夜夜爽夜夜摸| 午夜福利影视在线免费观看| 成人毛片a级毛片在线播放| 一边摸一边做爽爽视频免费| 国产欧美日韩综合在线一区二区| 免费少妇av软件| 成人18禁高潮啪啪吃奶动态图 | 久久影院123| 91精品三级在线观看| 91精品国产国语对白视频| 制服丝袜香蕉在线| 性色av一级| 少妇人妻久久综合中文| 少妇被粗大的猛进出69影院 | 在线 av 中文字幕| 如日韩欧美国产精品一区二区三区 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人手机av| 熟妇人妻不卡中文字幕| 日韩三级伦理在线观看| 亚洲欧美成人精品一区二区| 国产免费一区二区三区四区乱码| 国产女主播在线喷水免费视频网站| 久久精品夜色国产| 欧美日韩成人在线一区二区| 亚洲不卡免费看| 国产男女内射视频| 亚洲精华国产精华液的使用体验| 久久午夜福利片| 久久免费观看电影| 亚洲精品第二区| 99热国产这里只有精品6| 国产一区有黄有色的免费视频| 亚洲av电影在线观看一区二区三区| 亚洲成色77777| a 毛片基地| 少妇被粗大猛烈的视频| 国产淫语在线视频| 中文字幕av电影在线播放| 亚洲av日韩在线播放| 亚洲成人一二三区av| 日韩大片免费观看网站| 亚洲性久久影院| 国产在视频线精品| 午夜日本视频在线| 亚洲精品一区蜜桃| 久久ye,这里只有精品| 国产精品一区二区在线观看99| 水蜜桃什么品种好| 少妇人妻 视频| 80岁老熟妇乱子伦牲交| 日本爱情动作片www.在线观看| 天堂中文最新版在线下载| 亚洲欧美日韩另类电影网站| 日本vs欧美在线观看视频| 久久久欧美国产精品| 国产成人免费无遮挡视频| 亚洲av日韩在线播放| 美女视频免费永久观看网站| 又粗又硬又长又爽又黄的视频| 伊人久久精品亚洲午夜| 国产片特级美女逼逼视频| 2022亚洲国产成人精品| 免费看av在线观看网站| 亚洲伊人久久精品综合| 欧美精品高潮呻吟av久久| 黑人高潮一二区| 制服诱惑二区| 香蕉精品网在线| 亚洲精品日韩av片在线观看| 女的被弄到高潮叫床怎么办| 免费播放大片免费观看视频在线观看| 欧美日韩国产mv在线观看视频| 国产成人精品一,二区| 日本猛色少妇xxxxx猛交久久| 国产又色又爽无遮挡免| 亚洲国产精品一区三区| 91精品三级在线观看| av卡一久久| 色网站视频免费| 中文字幕精品免费在线观看视频 | 久久久国产精品麻豆| 亚洲精品久久午夜乱码| 岛国毛片在线播放| 国产精品久久久久久av不卡| 人体艺术视频欧美日本| 国产在视频线精品| 成年美女黄网站色视频大全免费 | 成人毛片60女人毛片免费| 九色亚洲精品在线播放| 日本与韩国留学比较| 蜜桃国产av成人99| 少妇丰满av| 国产亚洲av片在线观看秒播厂| 大片电影免费在线观看免费| 18+在线观看网站| 国产亚洲最大av| 国产探花极品一区二区| 99久久中文字幕三级久久日本| 18禁在线播放成人免费| 国产成人freesex在线| 亚洲情色 制服丝袜| 成年人免费黄色播放视频| 亚洲精品久久久久久婷婷小说| 日韩成人av中文字幕在线观看| 国产欧美亚洲国产| 丝袜美足系列| 99国产综合亚洲精品| 美女内射精品一级片tv| 精品国产露脸久久av麻豆| 国产精品99久久99久久久不卡 | 亚洲av男天堂| 一级爰片在线观看| 爱豆传媒免费全集在线观看| 日韩成人伦理影院| 在线 av 中文字幕| 亚洲国产av新网站| 亚洲欧美成人精品一区二区| av不卡在线播放| 国产极品粉嫩免费观看在线 | 久久久久视频综合| 亚洲中文av在线| a级毛片黄视频| 少妇人妻久久综合中文| 99国产精品免费福利视频| 亚洲欧美日韩卡通动漫| 久久久午夜欧美精品| 亚洲第一av免费看| 国产精品女同一区二区软件| 女人久久www免费人成看片| 亚洲,一卡二卡三卡| 亚洲一级一片aⅴ在线观看| 国产亚洲av片在线观看秒播厂| 777米奇影视久久| 亚洲精华国产精华液的使用体验| 亚洲成人手机| 永久免费av网站大全| 国产片特级美女逼逼视频| 街头女战士在线观看网站| 黄色视频在线播放观看不卡| 亚洲精品久久久久久婷婷小说| 女的被弄到高潮叫床怎么办| 久久人人爽人人爽人人片va| 日本黄色日本黄色录像| 日韩免费高清中文字幕av| 亚洲精品,欧美精品|