• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of short-term plasticity on working memory

    2023-12-02 09:38:54FanYang楊帆andFengLiu劉鋒
    Chinese Physics B 2023年11期
    關(guān)鍵詞:楊帆

    Fan Yang(楊帆) and Feng Liu(劉鋒)

    Department of Physics and Institute for Brain Sciences,Nanjing University,Nanjing 210093,China

    Keywords: bump attractor,synaptic plasticity,robustness,sensitivity

    1.Introduction

    Working memory (WM) refers to the brain function of holding and manipulating information over short time periods and is involved in diverse cognitive behaviors such as reasoning, decision making and learning.[1–4]Oculomotor delayed response(ODR)task is a classical experimental paradigm for working memory, where an animal is trained to saccade in the direction indicated by a cue presented seconds earlier.[5,6]During the interval between cue removal and action initiation,i.e.the delay period,selective neurons in the dorsolateral prefrontal cortex (PFC) exhibit elevated spiking activity.It has been proposed that this persistent firing underlies spatial working memory.[5,7]

    The self-sustained activity in a recurrent neural network is often manifested as a bump attractor, arising from the interplay between local excitation and global inhibition.[7]Typically, the interaction between activated pyramidal cells, mediated by NMDA receptors, forms a self-reinforcing mechanism characterized by slow dynamics, enabling the sustained firing of these cells.Simultaneously,the inhibition exerted by interneurons through GABA receptors ensures global control and facilitates a winner-takes-all mechanism within the network.

    Notably, synaptic plasticity, particularly short-term plasticity(STP),is also recognized as playing a role in the maintenance of WM.For example, short-term facilitation(STF)enhances the ability of a neural circuit to sustain persistent activity following a transient stimulus.[8]The slow dynamics of STP allow tuning the tradeoff between accuracy and flexibility in a WM circuit.[9]Interestingly, STP has been implicated in memory biases resulting from the previous experiment[10,11]and supports an activity-silent mechanism of WM.[12]Thus,although persistent firing is widely accepted as the substrate of WM,the influence of STP on WM cannot be overlooked.

    It was reported that STF has a stabilizing effect on WM,in contrast to short-term depression (STD) in a firing rate based model.[13]However,the impact of STP on cue detection sensitivity and memory storage against distraction remains unclear.To this end,we built a spiking neural network to examine the mechanisms underlying WM in the ODR task.Our analysis dissects the contributions of STF and STD to the stability of memory storage and the network’s sensitivity to cue presentation.This study indicates that appropriate levels of STP are required to ensure robust memory maintenance.

    2.Methods

    2.1.Network model

    To recapitulate the mnemonic behavior on the ODR task,we constructed a recurrent network model in a manner similar to that in Ref.[7].The network consists of 2048 pyramidal cells (E) and 512 interneurons (I) [Fig.1].All neurons are labeled by their preferred directions, which are uniformly distributed between 0?and 360?.Neurons are recurrently connected;the connections between pyramidal cells are structured,while the others are uniform.

    Both pyramidal cells and interneurons are described by the leaky integrate-and-fire (LIF) model.The membrane potentialVm(t)of each neuron obeys

    whereCm,gLandVLdenote the membrane capacitance,leaky conductance and resting potential, respectively.Irecis the total amount of recurrent currents in the network, andIbgdenotes the random background inputs from neurons outside the network.During a specific time period, only a subset of pyramidal cells receives a stimulusIstim, representing a cue-or distractor-related input.The neuron generates a spike whenever its membrane potential reaches a thresholdVth,followed by a reset toVresduring a refractory period (τref).For pyramidal cells,Cm= 0.5 nF,gL= 25 nS,VL=-70 mV,Vth=-50 mV,Vres=-60 mV andτref=2 ms;for interneurons,Cm=0.2 nF,gL=20 nS,VL=-70 mV,Vth=-50 mV,Vres=-60 mV andτref= 1 ms.The ordinary differential equations were integrated using a second-order Runge–Kutta algorithm,with a time step of 0.1 ms.d

    Fig.1.Schematic of the ring attractor network model.Pyramidal cells and interneurons are uniformly distributed on a separate ring,with their preferred directions indicated by labeled short arrows.Pyramidal cells with more similar preferred directions have stronger connectivity strength,as reflected by the depth of the arrows.

    The inputIstimis modeled as an injected current to pyramidal cells:Istim(θ)=I0exp[-(θ-θs)2/2σ2s], whereθslabels the direction of a cue or distractor, andσsrepresents its width and is always set to 18?.θsvaries in different situations,andI0=500 pA unless otherwise specified.In simulation,the cue always appears at 75 ms and lasts 250 ms;on some trials,the distractor appears at 375 ms,with the same strength,width and duration as the cue but at a distinct position.

    Different from the stimulus input, both recurrent currents and background inputs are transmitted by synapses.Excitatory postsynaptic currents (EPSCs) are mediated by NMDA receptors (NMDARs) and AMPA ones (AMPARs),while inhibitory currents are mediated by GABAAreceptors(GABARs).Considering that NMDAR-mediated recurrent currents have proved indispensable for sustained activity in working memory,[14,15]here recurrent excitatory currents are purely NMDAR-driven for simplicity,and background synaptic currents are solely AMPAR-controlled,as in Ref.[7].

    For neuroni,Irec=Ii,NMDA+Ii,GABAandIbg=Ii,AMPA,with

    whereViis the membrane potential,VE= 0 mV andVI=-70 mV are reversal potentials for excitatory and inhibitory synapses, respectively.The extracellular magnesium concentration ([Mg2+]) is set to 1 mM.[16]gjilabels the maximum synaptic conductance from neuronjto neuroni,depending on ion channels and cell pairs.sjdenotes the gating variable.pjrepresents the synaptic efficacy with short-term plasticity, as will be described in Subsection 2.2.

    Given a spike train{tk}in the presynaptic neuronj, the gating variablessj,AMPAandsj,GABAfollow the first-order dynamics:[7]

    withτNMDA=100 ms,αNMDA=0.5 kHz,andτx=2 ms.

    The strength of recurrent connectivity between neurons simply depends on the difference between their preferred directions:Wij=W(θi-θj);correspondingly,gij=WijG,withGE→E=1.09 nS,GE→I=0.846 nS,GI→E=1.336 nS andGI→I=1.024 nS.W(θi–θj)is normalized,obeying

    The background activity is modeled as an independent Poisson spike train with a frequency of 1.8 kHz (given 1000 presynaptic neurons, then each neuron fires independently at 1.8 Hz).The corresponding synaptic conductance (Gext) is 3.1 nS and 2.38 ns for pyramidal cells and interneurons, respectively.

    2.2.Short-term plasticity

    The short-term plasticity is modeled based on the synaptic efficacy adaptation at pre-synapses.[12]Letube the current release probability of neurotransmitters andvbe the fraction of resources available for depletion; the instantaneous synaptic efficacy is thus depicted byp=uv.When a spike occurs,the release probability increases due to the flux of calcium into the axon terminal,which acts as a mechanism of short-term facilitation.Meanwhile,a portion of the remaining resources is utilized for chemical transmission, causingvto decrease and function as the short-term depression component.Between spikes,udecays over time with a timescale ofτF,while the replenishment of neurotransmitters occurs with a time constant ofτD.Overall, the dynamics of STP can be described as follows:

    wheretspdenotes the spike timing,andU(0

    2.3.Population firing profile

    The population firing profile (PFP) during the delay period is often used to characterize the overall state of the network,involving the firing rates of all pyramidal cells over each bin of 10 ms.[18]Worthy of attention are its heightHPFPand sharpnessSPFP.HPFPlabels the difference in firing rate between the neurons whose preferred directions are around the cue direction and those whose directions are opposite the cue direction,i.e.,

    SPFPresembles the kurtosis describing probability density functions and is defined as

    wherefiandθiare the firing rate and preferred direction of celli, andθcis the cue direction.SPFPis equal to 1.8 for the plateau-like profile and 3.0 for the standard Gaussian curve.

    To track the memory state in the network,a population activity vectorPis used to infer the peak location of the bump attractor during a given time interval,

    whereFiis a vector,with directionθiand amplitude representing the average firing rate of neuroniduring the 500 ms bin centered on timet.The angle ofP,θP,represents the remembered cue direction,subject to drifts caused by the randomness of background inputs.The length ofP,LP,somewhat reflects the strength of memory storage.

    3.Results

    3.1.Short-term plasticity at single synapses

    To clarify the impact of STP on WM,we first investigated the synaptic plasticity at single synapses.For fixedU(=0.2),the synaptic plasticity is modulated byτF,τDand the firing ratefof the presynaptic neuron.Given that the synaptic efficacyp=uvis equal toUat the resting state,the synapse exhibits facilitation forp>Uand otherwise depression.When the neuron periodically discharges at 3 Hz,uandvundergo a series of pulses;with each spike,uincreases instantly and then declines gradually, whilevdisplays the opposite pattern [Fig.2(a)].After seven spikes,uandvvary periodically,and thusposcillates between 0.34 and 0.49.Overall,this represents synaptic facilitation.However, when the firing rate reaches 30 Hz,uandvchange periodically after only eight spikes(much earlier in time),andpfluctuates between 0.12 and 0.24[Fig.2(b)];in this case,the synapse demonstrates overall depression.

    Fig.2.Strength of synaptic plasticity under various conditions.(a)and(b)Time courses of u(pink),v(blue)and p(green)with τD=200 ms,τF=1.5 s and the firing rate of 3 Hz(a)or 30 Hz(b).(c)Time-averaged p/U as a function of firing rate for different τD values,with τF fixed at 1.5 s.The synapse shows facilitation if the ratio is greater than one.(d)Time-averaged p/U as a function of firing rate for various τF values with τD=200 ms.

    To further reveal the dependence of synaptic efficacy onf,τFandτD, we calculated the average ofpover one full period,〈p〉.It first increases and then decreases with increasingfat fixedτFandτD; the peak shifts rightwards and its height elevates with decreasingτD[Fig.2(c)].In contrast,the peak shifts leftwards and becomes higher with increasingτF[Fig.2(d)].Note that〈p〉>Uoccurs over a relatively wide range off, which is more prominent at largerτFand smallerτD.Together,givenτF?τD,synaptic facilitation can be achieved when the firing rate is not high; increasingτFor decreasingτDalways enhances the synaptic facilitation.

    3.2.Maintenance of working memory with STP

    Fig.3.Spatiotemporal firing patterns of pyramidal cells with τD =200 ms.(a) Raster plot for principal cells with τF =1.5 s when a cue is presented at 180?from 750 ms to 1.0 s.There are 2048 pyramidal cells labeled by their preferred directions and arranged along the y-axis in order.Dots on each row mark spikes of that neuron.(b)Population firing profiles for different τF values.The firing rate of each pyramidal cell is an average over the whole delay period and over 100 trials.(c) Height (square) and sharpness (circle) of the population firing profile versus τF.

    The results above indicate thatτFandτDexert opposing controls over STP.In the following,τDis typically set at 200 ms unless otherwise specified in Subsection 3.4, whileτFis varied to explore the impact of synaptic plasticity on the maintenance of visuospatial working memory.Before cue presentation, the network exhibits homogenous sparse firing at a few Hz [Fig.3(a)].Given the cue located atθc=180?,the neurons with preferred directions aroundθcare activated to persistently discharge during the delay period, while others with preferred directions far away fromθcare greatly suppressed.Thus, a bump attractor is maintained to encode the cue location, which is attributed to the slow recurrent excitation driven by NADARs and strong global inhibition mediated by GABARs.[7]

    We calculated the mean firing rate of each pyramidal cell over the whole delay period and obtained the population firing profile,which is bell shaped with the maximum aroundθcand varies remarkably withτF[Fig.3(b)].The peak height elevates and the peak width enlarges with increasingτFdue to enhanced synaptic transmission.Quantitatively, the PFP can be characterized by its heightHPFPand sharpnessSPFP; with increasingτF,HPFPincreases towards saturation, whileSPFPfirst increases and then decreases[Fig.3(c)].

    Fig.4.Synaptic mechanism for persistent activity during the delay period.(a) Total current and (b) synaptic plasticity (averaged over the delay period) for each pyramidal cell for different τF values with τD=200 ms.

    The changing trend described above can be understood as follows.The short-term plasticity modulates the balance between excitation and inhibition in the network.As can be seen in Fig.4(a), the total current (Itot) for each neuron within the bump attractor increases with greaterτF.AtτF=500 ms,Itotis relatively uniform across the pyramidal cells(data not shown),and no bump attractor emerges.ForτF≥1.0 s,stronger shortterm facilitation leads to the activation of more neurons firing at higher rates.This enhanced local excitation activates more neurons near the edges of the attractor.Since synaptic facilitation becomes limited at high firing rates(Fig.2),the highest synaptic efficacy does not appear aroundθcbut rather on either side ofθc,especially at largerτFvalues[Fig.4(b)].Thus,the curve ofItotversus neuron index becomes wider and flatter aroundθcasτFincreases.This leads to a decrease inSPFPat largeτF.Overall,largerτFvalues give rise to stronger synaptic efficacy,resulting in higherHPFP,but cause the current profile to broaden,thereby constrainingSPFP.

    3.3.Robust memory storage and sensitivity to cue presentation

    The robustness of bump attractor dynamics is crucial for working memory,making it necessary to investigate its stability over time, specifically its resistance to random drifts and distractions.Due to the circular symmetry in synaptic connectivity strength and randomness of background inputs, the peak location of the bump attractor(θP)shifts randomly over time,resembling a diffusion process[Fig.5(a)].We conducted 100 simulations of the same mnemonic task and calculated the standard deviation ofθP,σP.AlthoughσPtends to increase across the delay period, its magnitude is sufficiently small(around 9?at 6 s)[Fig.5(b)],which is attributed to STF.Indeed,σPat 6 s decreases with increasingτF[Fig.5(c)].Nevertheless,the decline becomes less pronounced forτF>2.5 s,suggesting a limited role for simply enhancing STF.Overall,STF plays a beneficial role in mitigating the random drift of the bump attractor.

    Fig.5.Random drifts of the bump attractor during the delay period with τD =200 ms.(a) Time courses of the angle of the population activity vector on 100 simulations for τF=1.5 s.(b)Temporal evolution of the standard deviation of θP,σP.The data are from the same simulations as in(a).(c)σP at 6 s versus τF.

    The resistance of the bump attractor against a distractor also reflects its dynamic stability.The distractor-related input has the same strength and duration as the cue-related input.Specifically, the cue is presented atθc=90?, while the distractor is presented atθd(somewhere between 90?and 270?)from 3.75 s to 4 s.After the removal of the distractor, three scenarios may emerge: 1) the bump attractor centers aroundθd, leading to memory loss [Fig.6(a)]; 2) the bump attractor remains centered aroundθc,preserving the memory of the cue [Fig.6(b)]; 3) the center of the bump attractor lies betweenθdandθc,resulting in a bias in cue memory[Fig.6(c)].The occurrence of each scenario depends on various factors,such as background inputs,the angular difference between the cue and distractor (θcd=|θd-θc|),τFandτD.To quantify the deviation of memory storage,we calculated the difference inθPbefore and after the distractor presentation, denoted as?θ=|θ1-θ2|.Considering the slow process of synaptic plasticity,θ1represents the peak location of the bump attractor right before the distractor onset, whileθ2is that at 3 s after the distractor offset.An average of ?θover 100 trials is also taken and denoted as?θ.

    Forθcd=45?or 90?, although the cue- and distractorrelated inputs share the same strength and duration, it is generally more difficult to evoke and maintain a new bump attractor aroundθd, especially at largeτFvalues, due to the enhanced local excitation around the existing bump attractor and the dominance of global inhibition [Fig.7(a)].Indeed,only scenarios 2 and 3 appear forτF>1.0 s, and the likelihood of scenario 2 improves with increasingτF[Fig.7(c)].Forθcd=135?or 180?,the pyramidal cells aroundθdmay be easily activated to win the competition with the prior bump attractor atτF=1.0 s[Fig.7(b)].However,atτF=2.0 s,only scenarios 3 and 2 emerge forθcd=135?and 180?,respectively[Fig.7(c)].

    Figure 7(d) shows the dependence of ?θonθcdandτF.Atθcd=90?,?θfrist declines markedly and then gradually tends towards saturation with increasingτF(see the inset).The saturation occurs because the release probabilityucannot increase beyond 1,limiting the extent of STF.For fxiedτF,F?θincreases with increasingθcdup to 135?; atθcd=180?,?θdepends remarkably onτF.IncreasingτFfacilitates reducing the deviation, especially atθcd=180?.Altogether, the network’s robustness against drift and distraction is enhanced with largerτF.

    Fig.7.Resistance of memory storage against distraction with STF.(a) and (b) The average of recurrent currents over 100 trials for each pyramidal cell before(solid line)and after(dashed line)distraction for τF=1.0 s(upper)or 2.0 s(lower)and θcd=90?(a)or 180?(b).The gray rectangle marks the distractor position.(c)Distribution of three scenarios for different θcd and τF values.Here,memory loss and perfect maintenanceseparately correspond to ?θ/θcd ≥0.8 and ?θ/θcd ≤0.2.(d)?θ versus θcd for different τF values.The inset shows?θ versus τF withθcd=90?.

    In addition to the attractor stability, the network’s sensitivity to cue presence is also worth probing.As mentioned earlier,I0=500 pA is sufficient for a cue to evoke a bump attractor, where the mean and variance ofLPare denoted asmL,500andσL,500,respectively.Regardless of the cue intensity,only states withLP>Lth(=mL,500-3σL,500)are regarded as memory states.[18]The occurrence probability of the memory state quickly increases towards saturation with increasingI0[Fig.8(a)],and the minimum strength required for 95%occurrence is labeled asImin.AtτD=200 ms,Imindecreases with increasingτF[Fig.8(b)].This heightened sensitivity to cues still stems from the enhancement of synaptic efficacy.Note thatIminapproaches zero atτF=2.5 s,indicating that the network is hypersensitive.Without cue inputs, the STF is sufficiently strong with highτF, allowing certain pyramidal cells to predominate over others when activated by random background inputs.This, along with strong recurrent excitation and global inhibition from interneurons, can lead these cells to discharge persistently.In this case, the attractor center becomes entirely random.This result suggests a potential side effect of excessive STF.

    3.4.Enhancing STD deteriorates the WM performance

    We have probed the network behavior by varyingτFwhile keepingτDfixed at 200 ms.Here, we further examined how working memory is affected by varying the time constant of short-term depression.AsτDincreases, the profile of the bump attractor becomes lower, while suppressed pyramidal cells beyond the attractor instead elevate their firing activity[Fig.9(a)].Accordingly,HPFPdecreases with increasingτD,whileSPFPfirst increases and then decreases[Fig.9(b)].The minimal cue strength required for the memory state also increases with increasingτD[Fig.9(c)], indicating a reduced sensitivity to cue detection.The random drifts of the bump attractor become more prominent with increasingτD[Fig.9(d)].When the angular difference between the cue and distractor is 90?,?θalso increases with increasingτD[Fig.9(d)].In contrast toτF, increasingτDweakens the robustness of working memory and the network’s sensitivity to cue presentation.

    Fig.9.Network behavior with τF=1.5 s.(a)Population firing profile for different τD values and(b)the corresponding HPFP and SPFP versus τD.The firing rate is averaged over the whole delay period and over 100 simulations.(c)Imin versus τD.(d)σP at 6 s(diamond)and ?θ with θcd=90?(triangle)versus τD.

    Indeed,τDandτFexert opposing controls over transmission effciacy and ultimately on working memory performance.LowerτDensures a continuous supply of neurotransmitters over time,enhancing the synaptic effciacy,whereas higherτDresults in a neurotransmitter shortage, reducing the effciacy;higherτDhas a similar effect to lowerτFin terms of limiting the effciacy.Consequently,τDandτFhave opposite influences on the short-term plasticity.As a result,lowerτDstrengthens the robustness of working memory,similar to higherτF.

    4.Discussion

    In this study, we systematically examined the impact of short-term plasticity on working memory in the oculomotor delayed response task.Short-term plasticity comprises two components: short-term facilitation,which enhances the neurotransmitter release probability, and short-term depression,which restricts the depletion of neurotransmitters from recovery.These two components act in opposition at the single synapse level.Consistently, increasingτFor decreasingτDenhances the memory maintenance and sensitivity to cue detection.Compared to STD,excessively strong STF can render the network hypersensitive,while inadequate STF can result in the loss of the mnemonic state during the delay period.Suitable levels of STP are crucial for the network’s performance.

    Numerous studies have demonstrated the role of STF in enhancing the stability of WM.For instance, STF markedly reduces the drifts caused by connectivity heterogeneity in a WM network.[19]STP improves network stability when the network suffers from synaptic connectivity defects.[20]Noise resistance can be improved when decoding a continuous attractor neural network with STF.[21]Differently, the current study offered a detailed analysis of network behavior over a wide range of STF levels and provides novel insight into the network’s stability against drifts and distractions and sensitivity to cue detection.

    In a firing rate-based network model,STF and STD exert opposing effects on drifts caused by random firing or connectivity heterogeneity.[13]The current study confirms the contrasting functions of STF and STD and further investigated the network’s response to distractors and its sensitivity to cue presentation.Note that stronger STF alone leads to increased drifts when the effects ofτD-controlled STD are neglected.[9]Without STD, the synaptic efficacy improves monotonically towards saturation at individual synapses with increasingτF,and the profile of synaptic efficacy around the cue position is a plateau at higherτF, which amplifies local excitation and drives more neurons to fire at higher rates.Thus,the attractor is more prone to shift due to random background inputs.With both STF and STD in our study,however,the synaptic efficacy profile exhibits two peaks on either side of the cue direction,counteracting each other; this aids in preventing the attractor from drifting.

    The sensitivity to cue presentation has a crucial role in WM.Mejiaset al.[22]reported that STF improves information retrieval in noisy neural networks.Consistent with theirs,our simulations showed a decrease in the minimal cue strength required for the memory state with increasingτF.However, at extremely highτF,the WM network still exhibits a mnemonic state even without a cue, resulting in a loss of cue detection.Therefore,achieving optimal WM performance necessitates a moderate level of STF,which enhances weak signal detection while preserving the ability to discriminate between cues and noise.

    While the short-term facilitation mechanism in neural networks may share similarities with the excitation mediated by NMDA receptors, there are three key differences to highlight.First, the time scale of NMDARs ranges from tens to hundreds of milliseconds,[23]whereas STF can persist for minutes.[24]Second,NMDAR-mediated postsynaptic currents are voltage dependent and follow a second-order gating process,ultimately decaying to zero.[7]In contrast,STF involves the release of neurotransmitters from presynaptic vesicles,which is influenced by the release probability and available resources.The baseline release probability in the absence of presynaptic firing isU(nonzero).Third, NMDARs play an indispensable role in working memory, and impairments in NMDA function directly affect WM performance.[25]In contrast, while STF is known to reduce random drifts,[19]enrich neural firing patterns[26]and introduce interference from preceding trials,[10]it is not essential for the formation of attractors in WM networks.Instead, STF modulates WM by influencing its dynamics and performance.

    The influence of short-term plasticity on working memory extends beyond its known complexity and functionality.Only the STP of NMDAR-driven currents is considered in our simulations, and the modulation of working memory could be further enriched by considering the STP of AMPAR- and GABAR-mediated currents.In addition,exploring other forms of STP holds promise for further insight.Developing a more comprehensive model would enable a deeper understanding and interpretation of complex cognitive tasks.

    Acknowledgement

    This study was supported by STI 2030-Major Projects 2021ZD0201300.

    猜你喜歡
    楊帆
    Band structures of strained kagome lattices
    《魚與蓮》
    Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
    Two regularization methods for identifying the source term problem on the time-fractional diffusion equation with a hyper-Bessel operator
    Theory of unconventional superconductivity in nickelate-based materials?
    Three-dimensional spatial multi-point uniform light focusing through scattering media based on feedback wavefront shaping?
    劫后華夏再楊帆(弋陽腔)
    影劇新作(2020年2期)2020-09-23 03:22:12
    THE QUASI-BOUNDARY VALUE METHOD FOR IDENTIFYING THE INITIAL VALUE OF THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION ?
    假期(劇本)
    我學(xué)會了
    欧美精品一区二区大全| 99久久精品一区二区三区| 亚洲精品乱码久久久v下载方式| 国产色婷婷99| 国产在线视频一区二区| 国产白丝娇喘喷水9色精品| 久久久久久久久久人人人人人人| 日韩欧美 国产精品| 成人高潮视频无遮挡免费网站| 尤物成人国产欧美一区二区三区| 久久99热6这里只有精品| 九色成人免费人妻av| 欧美最新免费一区二区三区| 国产乱人偷精品视频| 日本av免费视频播放| 视频中文字幕在线观看| 高清黄色对白视频在线免费看 | 五月天丁香电影| 看非洲黑人一级黄片| 国产精品久久久久久久电影| 成人免费观看视频高清| 91狼人影院| 少妇精品久久久久久久| 国产精品国产av在线观看| 国产探花极品一区二区| 国产成人一区二区在线| 久久久久久久久久人人人人人人| 尾随美女入室| av.在线天堂| 久久精品国产鲁丝片午夜精品| 人妻系列 视频| 国产精品精品国产色婷婷| 我的女老师完整版在线观看| 少妇人妻一区二区三区视频| 亚洲欧美一区二区三区黑人 | 赤兔流量卡办理| 精品少妇黑人巨大在线播放| 99re6热这里在线精品视频| 国产成人aa在线观看| 中国三级夫妇交换| 久久国产乱子免费精品| 亚洲美女视频黄频| 精品午夜福利在线看| 久久久久人妻精品一区果冻| av在线播放精品| 一本久久精品| 97精品久久久久久久久久精品| 如何舔出高潮| 一级毛片aaaaaa免费看小| 国产高清三级在线| 国产爽快片一区二区三区| 精品亚洲乱码少妇综合久久| 久久精品国产亚洲av天美| 欧美 日韩 精品 国产| 久久精品国产亚洲av天美| 蜜桃在线观看..| 肉色欧美久久久久久久蜜桃| 男女下面进入的视频免费午夜| 免费大片18禁| a 毛片基地| 欧美极品一区二区三区四区| 欧美高清成人免费视频www| 日韩在线高清观看一区二区三区| 亚洲成色77777| 成人毛片60女人毛片免费| 一区二区三区精品91| 亚洲av福利一区| 国产亚洲欧美精品永久| 亚洲美女视频黄频| 久久久久人妻精品一区果冻| 久久久成人免费电影| 日本wwww免费看| 久久久久久久久大av| 啦啦啦在线观看免费高清www| 偷拍熟女少妇极品色| 亚洲欧美日韩卡通动漫| 有码 亚洲区| 国产爱豆传媒在线观看| 欧美精品一区二区免费开放| 午夜激情久久久久久久| 嫩草影院入口| 熟妇人妻不卡中文字幕| 久久精品国产亚洲av涩爱| 欧美精品一区二区大全| 婷婷色综合大香蕉| 一级毛片电影观看| 能在线免费看毛片的网站| 国产精品伦人一区二区| 老师上课跳d突然被开到最大视频| 日韩在线高清观看一区二区三区| 老司机影院毛片| 国产精品一区二区性色av| 日本午夜av视频| 国产精品三级大全| 热re99久久精品国产66热6| 欧美+日韩+精品| 欧美精品一区二区大全| 欧美激情极品国产一区二区三区 | 国产视频首页在线观看| 午夜免费鲁丝| 亚洲国产精品国产精品| 成人毛片60女人毛片免费| 多毛熟女@视频| a 毛片基地| 国产色爽女视频免费观看| 久久精品久久精品一区二区三区| 亚洲性久久影院| 少妇的逼水好多| 啦啦啦啦在线视频资源| 一个人免费看片子| 久久婷婷青草| 偷拍熟女少妇极品色| 一区二区三区四区激情视频| 久久国产亚洲av麻豆专区| 国产片特级美女逼逼视频| 国产日韩欧美亚洲二区| 日韩av在线免费看完整版不卡| 亚洲欧洲日产国产| 99久久精品国产国产毛片| 久久国产亚洲av麻豆专区| 国产 一区精品| 国产精品秋霞免费鲁丝片| 国产视频首页在线观看| 欧美成人午夜免费资源| 日韩人妻高清精品专区| 我要看日韩黄色一级片| 99久久精品国产国产毛片| 男人和女人高潮做爰伦理| 国产极品天堂在线| 交换朋友夫妻互换小说| 久久久久精品久久久久真实原创| 91在线精品国自产拍蜜月| 伊人久久国产一区二区| 亚洲激情五月婷婷啪啪| 天美传媒精品一区二区| 三级国产精品片| 女的被弄到高潮叫床怎么办| 国产亚洲欧美精品永久| 舔av片在线| 国模一区二区三区四区视频| 欧美成人精品欧美一级黄| 中文在线观看免费www的网站| 欧美+日韩+精品| 亚洲欧洲国产日韩| 狂野欧美白嫩少妇大欣赏| 99国产精品免费福利视频| 日韩制服骚丝袜av| 少妇 在线观看| 人妻制服诱惑在线中文字幕| 一本色道久久久久久精品综合| 五月天丁香电影| 欧美日本视频| 亚洲欧美成人综合另类久久久| 日本一二三区视频观看| 高清视频免费观看一区二区| 亚洲av福利一区| 麻豆乱淫一区二区| 亚洲成人av在线免费| 日韩中文字幕视频在线看片 | 欧美日本视频| 免费不卡的大黄色大毛片视频在线观看| 狂野欧美激情性bbbbbb| 久久鲁丝午夜福利片| 国产成人91sexporn| 在线免费十八禁| 国产成人一区二区在线| 国产精品人妻久久久影院| 99热6这里只有精品| 亚洲在久久综合| 在线观看一区二区三区| 狂野欧美激情性bbbbbb| 插逼视频在线观看| 视频中文字幕在线观看| 一级爰片在线观看| 国产精品福利在线免费观看| 老司机影院成人| 人人妻人人爽人人添夜夜欢视频 | 国产欧美另类精品又又久久亚洲欧美| 香蕉精品网在线| 精品国产露脸久久av麻豆| 成人特级av手机在线观看| 18禁动态无遮挡网站| 高清午夜精品一区二区三区| 深爱激情五月婷婷| 成人综合一区亚洲| 久久精品久久久久久噜噜老黄| 日本欧美国产在线视频| a级一级毛片免费在线观看| 99久久精品一区二区三区| 精品人妻熟女av久视频| 精品亚洲成国产av| 久久精品国产亚洲av涩爱| 欧美日韩一区二区视频在线观看视频在线| 久久精品久久久久久噜噜老黄| 午夜福利影视在线免费观看| 色5月婷婷丁香| 亚洲av.av天堂| 一级黄片播放器| 国产成人freesex在线| 亚洲精品色激情综合| 狂野欧美激情性bbbbbb| 高清午夜精品一区二区三区| 国精品久久久久久国模美| 精品久久久噜噜| 亚洲美女黄色视频免费看| 97热精品久久久久久| 国产精品国产av在线观看| 欧美精品一区二区免费开放| 日韩 亚洲 欧美在线| 高清视频免费观看一区二区| 成人国产av品久久久| 国产欧美亚洲国产| 亚洲欧洲日产国产| 久久久a久久爽久久v久久| 久久久久久九九精品二区国产| 18禁在线播放成人免费| 一级毛片aaaaaa免费看小| 日本与韩国留学比较| 丰满少妇做爰视频| kizo精华| 久久久久视频综合| 亚洲美女搞黄在线观看| 亚洲精品日韩在线中文字幕| av不卡在线播放| 另类亚洲欧美激情| 欧美精品一区二区免费开放| 最近的中文字幕免费完整| 国产高清不卡午夜福利| av国产精品久久久久影院| 涩涩av久久男人的天堂| 日韩av在线免费看完整版不卡| 搡老乐熟女国产| 国产一级毛片在线| 欧美精品亚洲一区二区| 在现免费观看毛片| 少妇的逼水好多| 免费播放大片免费观看视频在线观看| 日韩免费高清中文字幕av| 青春草视频在线免费观看| 国产乱人视频| 久久综合国产亚洲精品| 国产深夜福利视频在线观看| 国产色婷婷99| 成人毛片a级毛片在线播放| 国产爱豆传媒在线观看| 少妇的逼好多水| 成人二区视频| 免费观看在线日韩| 伦理电影免费视频| 高清不卡的av网站| 夫妻性生交免费视频一级片| 美女主播在线视频| av国产精品久久久久影院| 久久精品夜色国产| 中文字幕人妻熟人妻熟丝袜美| 你懂的网址亚洲精品在线观看| 中文精品一卡2卡3卡4更新| 亚洲国产色片| 日韩欧美一区视频在线观看 | 欧美区成人在线视频| 777米奇影视久久| 美女内射精品一级片tv| 国产乱来视频区| 在线播放无遮挡| 3wmmmm亚洲av在线观看| 欧美日韩国产mv在线观看视频 | 大码成人一级视频| 欧美xxxx性猛交bbbb| 国产伦在线观看视频一区| 欧美日韩精品成人综合77777| 大片免费播放器 马上看| tube8黄色片| 男女啪啪激烈高潮av片| 国产综合精华液| 成人二区视频| 女人久久www免费人成看片| 最近最新中文字幕免费大全7| 最近手机中文字幕大全| 国产在线一区二区三区精| 中文字幕精品免费在线观看视频 | 日日撸夜夜添| 成人影院久久| 久久精品夜色国产| 99热这里只有是精品50| 久久精品国产亚洲网站| 国产 精品1| 久久久久久久久久成人| 免费播放大片免费观看视频在线观看| 91精品伊人久久大香线蕉| 免费看av在线观看网站| 51国产日韩欧美| 亚洲无线观看免费| 欧美精品一区二区免费开放| 亚洲国产精品一区三区| 国产91av在线免费观看| 91狼人影院| 日本午夜av视频| 女人十人毛片免费观看3o分钟| 伊人久久国产一区二区| 亚洲精品aⅴ在线观看| 色哟哟·www| 日日撸夜夜添| 久久久国产一区二区| 丝瓜视频免费看黄片| 亚洲最大成人中文| 午夜日本视频在线| 在线观看三级黄色| 六月丁香七月| 欧美日韩亚洲高清精品| 老女人水多毛片| 日韩av在线免费看完整版不卡| 成人漫画全彩无遮挡| 丝瓜视频免费看黄片| av在线蜜桃| 欧美日韩视频高清一区二区三区二| av线在线观看网站| 在线看a的网站| 国产av精品麻豆| 大片电影免费在线观看免费| 建设人人有责人人尽责人人享有的 | 成人无遮挡网站| 亚洲av中文字字幕乱码综合| 精品久久久久久久久亚洲| 亚洲四区av| 伦精品一区二区三区| 十分钟在线观看高清视频www | 一区二区三区乱码不卡18| 久热这里只有精品99| 一区二区三区精品91| 最后的刺客免费高清国语| 国产精品国产av在线观看| 日韩不卡一区二区三区视频在线| 精品一区二区三区视频在线| 看免费成人av毛片| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久久久久久丰满| 一个人免费看片子| 黄色一级大片看看| 国产欧美另类精品又又久久亚洲欧美| 在现免费观看毛片| 亚洲欧美日韩东京热| 欧美精品国产亚洲| 久久久久精品性色| 在线播放无遮挡| 亚洲av男天堂| 麻豆成人午夜福利视频| av专区在线播放| 国产欧美日韩一区二区三区在线 | 激情 狠狠 欧美| 亚洲成人一二三区av| 一个人看的www免费观看视频| av.在线天堂| 22中文网久久字幕| 丰满乱子伦码专区| 国产 精品1| 亚洲精品久久午夜乱码| 建设人人有责人人尽责人人享有的 | 成人二区视频| 免费av不卡在线播放| 久久人人爽人人爽人人片va| av不卡在线播放| 国语对白做爰xxxⅹ性视频网站| 欧美97在线视频| 高清午夜精品一区二区三区| 777米奇影视久久| 建设人人有责人人尽责人人享有的 | 80岁老熟妇乱子伦牲交| 在线观看一区二区三区| 国产片特级美女逼逼视频| 美女脱内裤让男人舔精品视频| 欧美日韩国产mv在线观看视频 | 久久久久国产精品人妻一区二区| 这个男人来自地球电影免费观看 | 插阴视频在线观看视频| 尾随美女入室| 国产成人精品婷婷| 国产精品欧美亚洲77777| 一本久久精品| 人妻一区二区av| 搡女人真爽免费视频火全软件| 最近的中文字幕免费完整| 少妇高潮的动态图| 日韩中文字幕视频在线看片 | 亚洲av二区三区四区| a级毛片免费高清观看在线播放| 99久久人妻综合| 日产精品乱码卡一卡2卡三| 最近手机中文字幕大全| 国产在线视频一区二区| 一边亲一边摸免费视频| 欧美高清性xxxxhd video| 最新中文字幕久久久久| 久久久久久人妻| 少妇人妻 视频| 中文字幕免费在线视频6| 日韩中字成人| 尤物成人国产欧美一区二区三区| 精品午夜福利在线看| 免费人成在线观看视频色| 大片电影免费在线观看免费| 18+在线观看网站| 噜噜噜噜噜久久久久久91| 亚洲精华国产精华液的使用体验| 一级毛片久久久久久久久女| 亚洲,欧美,日韩| 国产黄片视频在线免费观看| 国产黄片美女视频| 18禁裸乳无遮挡免费网站照片| 精品国产露脸久久av麻豆| 亚洲av免费高清在线观看| 中文天堂在线官网| 久久人人爽人人片av| 久久99蜜桃精品久久| 熟女人妻精品中文字幕| 日日摸夜夜添夜夜添av毛片| 国产毛片在线视频| www.色视频.com| 国产精品一区www在线观看| 黄色一级大片看看| 免费久久久久久久精品成人欧美视频 | 国产精品成人在线| 亚洲av免费高清在线观看| 黄色配什么色好看| 一区二区三区免费毛片| 天堂中文最新版在线下载| 男人和女人高潮做爰伦理| 精品熟女少妇av免费看| 亚洲国产色片| 国产精品偷伦视频观看了| 亚洲成人一二三区av| 美女主播在线视频| 在线观看人妻少妇| 97在线视频观看| 亚洲欧美成人精品一区二区| 久久 成人 亚洲| 国产有黄有色有爽视频| 欧美xxxx性猛交bbbb| 街头女战士在线观看网站| 三级国产精品片| 中文欧美无线码| 99热这里只有精品一区| av又黄又爽大尺度在线免费看| 99久久精品一区二区三区| 欧美性感艳星| 女人久久www免费人成看片| 一本久久精品| 男的添女的下面高潮视频| 最近的中文字幕免费完整| 自拍偷自拍亚洲精品老妇| 免费看日本二区| 免费播放大片免费观看视频在线观看| 国产大屁股一区二区在线视频| 一边亲一边摸免费视频| 亚洲精华国产精华液的使用体验| 久久99热这里只频精品6学生| 免费av不卡在线播放| 男人和女人高潮做爰伦理| 亚洲av国产av综合av卡| 欧美成人精品欧美一级黄| 欧美变态另类bdsm刘玥| 黄色视频在线播放观看不卡| 99视频精品全部免费 在线| 91久久精品国产一区二区成人| 一个人看视频在线观看www免费| 激情五月婷婷亚洲| 在线观看免费视频网站a站| 国产亚洲午夜精品一区二区久久| 欧美人与善性xxx| 91精品国产国语对白视频| 黄色日韩在线| 国产人妻一区二区三区在| 中文欧美无线码| 国产在线一区二区三区精| 国产亚洲欧美精品永久| 大又大粗又爽又黄少妇毛片口| 啦啦啦在线观看免费高清www| 国产在线男女| 女人十人毛片免费观看3o分钟| 黑丝袜美女国产一区| 国产精品嫩草影院av在线观看| 日韩av不卡免费在线播放| 男人狂女人下面高潮的视频| 国产成人免费观看mmmm| 国产在线男女| 在线观看免费高清a一片| 女人久久www免费人成看片| 亚洲欧美日韩卡通动漫| 老熟女久久久| 国产伦理片在线播放av一区| 国产精品三级大全| 99热这里只有是精品50| 高清日韩中文字幕在线| 亚洲国产成人一精品久久久| 亚洲天堂av无毛| 男人狂女人下面高潮的视频| 国产精品成人在线| 国产亚洲一区二区精品| 日日啪夜夜撸| 妹子高潮喷水视频| av免费观看日本| 特大巨黑吊av在线直播| 国产一区二区在线观看日韩| 欧美极品一区二区三区四区| 免费播放大片免费观看视频在线观看| 亚洲精品国产av蜜桃| 九草在线视频观看| av免费观看日本| 免费看日本二区| av播播在线观看一区| 免费看av在线观看网站| 在线观看免费日韩欧美大片 | 国产欧美日韩精品亚洲av| 国产免费现黄频在线看| 搡老乐熟女国产| 精品亚洲成a人片在线观看| 亚洲欧洲国产日韩| 晚上一个人看的免费电影| 波多野结衣一区麻豆| 国产一级毛片在线| 美女主播在线视频| 18禁观看日本| 精品国产乱码久久久久久小说| 国产欧美日韩一区二区三区在线| 视频区图区小说| 亚洲精品一区蜜桃| 国产欧美日韩综合在线一区二区| 美女中出高潮动态图| 久久精品久久精品一区二区三区| 成年美女黄网站色视频大全免费| 另类精品久久| 一本—道久久a久久精品蜜桃钙片| a级片在线免费高清观看视频| 欧美日韩国产mv在线观看视频| 亚洲精品日韩在线中文字幕| 日本五十路高清| 国产高清videossex| 亚洲人成77777在线视频| 少妇 在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产看品久久| 免费一级毛片在线播放高清视频 | 国产精品国产av在线观看| 大片免费播放器 马上看| 亚洲激情五月婷婷啪啪| 亚洲精品一区蜜桃| 制服人妻中文乱码| 精品国产乱码久久久久久男人| 日韩中文字幕欧美一区二区 | 宅男免费午夜| av电影中文网址| 两性夫妻黄色片| 天天影视国产精品| 啦啦啦在线免费观看视频4| 欧美在线一区亚洲| 自线自在国产av| 国产视频首页在线观看| 亚洲九九香蕉| 超碰97精品在线观看| 精品久久蜜臀av无| 岛国毛片在线播放| 一级a爱视频在线免费观看| 精品久久久久久电影网| 亚洲第一青青草原| 亚洲自偷自拍图片 自拍| 波多野结衣一区麻豆| 国产淫语在线视频| 精品少妇内射三级| 色精品久久人妻99蜜桃| 男女午夜视频在线观看| 黄色a级毛片大全视频| 亚洲七黄色美女视频| 久久久久久久大尺度免费视频| 亚洲欧洲日产国产| 欧美日韩综合久久久久久| 久久久精品区二区三区| 日韩中文字幕视频在线看片| 19禁男女啪啪无遮挡网站| 日韩 亚洲 欧美在线| 操美女的视频在线观看| 欧美黑人欧美精品刺激| 亚洲国产精品成人久久小说| 亚洲国产av影院在线观看| a级片在线免费高清观看视频| 国产精品久久久久成人av| 中文字幕人妻熟女乱码| 少妇被粗大的猛进出69影院| 国精品久久久久久国模美| 亚洲精品自拍成人| tube8黄色片| 亚洲精品av麻豆狂野| 亚洲一码二码三码区别大吗| av线在线观看网站| 91老司机精品| 国产女主播在线喷水免费视频网站| 久久人人97超碰香蕉20202| 制服人妻中文乱码| 亚洲国产精品一区二区三区在线| 女人被躁到高潮嗷嗷叫费观| 各种免费的搞黄视频| 久久天堂一区二区三区四区| 一级毛片 在线播放| 一本大道久久a久久精品| 精品免费久久久久久久清纯 | 丰满饥渴人妻一区二区三| 美女主播在线视频| videos熟女内射| 国产视频首页在线观看| 亚洲av日韩精品久久久久久密 | 欧美在线黄色| av天堂久久9| 看十八女毛片水多多多| 久久精品亚洲熟妇少妇任你| 欧美日韩成人在线一区二区| 99久久人妻综合| 国产精品久久久久成人av|