• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Band structures of strained kagome lattices

    2024-02-29 09:17:28LutingXu徐露婷andFanYang楊帆
    Chinese Physics B 2024年2期
    關鍵詞:楊帆

    Luting Xu(徐露婷) and Fan Yang(楊帆),?

    1Center for Joint Quantum Studies and Department of Physics,School of Science,Tianjin University,Tianjin 300354,China

    2Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology,Department of Physics,Tianjin University,Tianjin 300354,China

    Keywords: kagome lattice,strain,band structure engineering

    1.Introduction

    A kagome lattice is a special two-dimentional (2D)hexagonal Bravais lattice consisting of corner-sharing triangles.It has been discovered as a fertile land for realizing various exotic physics since introduced by Sy?ozi in 1951.[1]Due to their frustrated lattice geometry and nontrivial band features,kagome lattices are predicted to be a promising platform for investigating novel physics such as frustration-driven magnetism,[2,3]quantum-spin-liquid states,[4–10]topological phases,[11–13]and electron correlations.[14]

    Unfortunately, materials with kagome lattices are rare in nature.As an alternative approach to explore the physics related to kagome lattices, various artificial kagome systems,such as optical kagome lattices[15–17]and monatomic kagome layer grown on metal surfaces,[18]have been experimentally developed.The advantage of artificial kagome systems is that they allow the individual tuning of all system parameters in a wide range,and thus enable us to search for the predicted nontrivial features of kagome lattices in a much larger parameter space.For example, in natural kagome materials, parameters such as hopping energy, defect density and mechanical strain are difficult to control experimentally,but they can all be conveniently tuned in artificial kagome systems by simply varying the designs and geometries of the artificial lattices.

    Mechanical strain has proven to be an important tool for engineering electronic band structures.[19–21]Over the past decades,extensive research has been carried out on the strain effect in graphene,[22–25]carbon nanotube,[26–28]MoS2,[29–31]WSe2,[32,33]and many other materials.In contrast,studies of strained kagome systems have just started;[34–38]a systematic investigation of the band structures of strained kagome lattice is still lacking.

    In this work, we theoretically study the electronic band structures of a strained kagome lattice using both a tightbinding model and an antidot model based on a periodic muffin-tin potential.The main findings include: (i)The Dirac points of kagome lattice are shifted away from the corners of Brillouin zoom under applied uniaxial strain.In contrast to the situation in strained graphene,[23]the Dirac cones of strained kagome lattices never merge within the framework of the nearest-neighbor tight-binding model.However, in a more realistic model based on a periodic muffin-tin potential,the Dirac cones do merge with increasing compressive strain,causing band-gap openings at the Dirac points.(ii) When a stretching strain is applied inydirection, the flat band of the unstrained kagome lattice becomes highly anisotropic, forming a partially flat band with an area that is dispersionless alongkydirection whereas dispersive alongkxdirection.

    The paper is organized as follows.In Section 2, we calculate the energy bands of the strained kagome lattice using the nearest-neighbor tight-binding model.In Section 3, we first introduce an antidot model for artificial kagome lattice,and then numerically investigate its band structures under uniaxial strain.The results and conclusions are summarized in Section 4.

    2.Tight-binding approach to the strained kagome lattice

    In this section, we investigate the band structures of the strained kagome lattice using the tight-binding approximation.Since the band structures of the kagome lattice are primarily characterized by coexistence of Dirac cones and a flat band,here we mainly focus on the shift of the Dirac cones and the reshaping of the flat band in response to applied uniaxial strain.

    2.1.The tight-binding model for the kagome lattice

    Figure 1(a) presents an illustration of the nearestneighbor tight-binding model for the strained kagome lattice.The kagome lattice is a triangular Bravais lattice with a unit cell composed of three inequivalent sites, which are labeled asA,B, andC, respectively.The three sites in the unit cell form a regular triangle, as indicated by the shaded region in Fig.1(a).The repeated Brillouin zone of kagome lattice is shown in Fig.1(b), where the first Brillouin zone is a regular hexagon with two independent cornersKandK′.

    The tight-binding Hamiltonian of the kagome lattice reads[11,34]

    Fig.1.(a) The tight-binding model of the kagome lattice with only nearest-neighbor hopping terms.The three inequivalent sites in the unit cell are labeled as A, B, and C, respectively;ti (i=1,2,3)denotes the hopping parameter between the nearest neighboring atoms along direction δi.A uniaxial strain in y direction is modeled by a group of anisotropic hopping parameters t1=t2=t′and t3=t.(b)The repeated Brillouin zone of the kagome lattice.The central point Γ and two independent corners K and K′ are denoted by the black crosses, hollow green circles and solid green circles, respectively.When the lattice is strained in y direction,the Dirac points D1 and D2 are shifted away from K and K′ and located somewhere between C and C′.

    By applying the Wannier transformation

    Hereki ≡k·δi(i=1,2,3),satisfyingk1+k2=k3.

    In an unstrained kagome lattice, the six-fold rotational symmetry ensurest1=t2=t3.However,as shown in Fig.1(a),an uniaxial strain applied inydirection breaks the rotational symmetry and consequently leads tot1=t2?=t3.Assuming thatt1=t2=t′andt3=t, the anisotropy ratioαcan be defined asα ≡t′/t.The parameterαcharacterizes both the type and strength of the uniaxial strain, as explained as follows: (i) A decrease in inter-site distance always causes an increment of hopping parameter, and vise versa, and henceα>1(α<1)corresponds to the situation where a compressive strain(stretching strain)is applied alongydirection.(ii)Apparently,the further theαdeviates from 1,the stronger the applied strain is.

    Meanwhile, as a reasonable approximation for weak strain,[23]we neglect the site shift in the strained lattice and assume that the lattice will keep its shape whenα ?=1.Based on this assumption,a uniaxial strain applied inydirection can be modeled using a single parameterα,which greatly reduces the mathematical complexity.The eigenvalue equation of?kis consequently reduced to

    2.2.Results and discussion

    2.2.1.General features of energy bands

    2.2.2.Shift of Dirac points

    The shift of Dirac points are more visible in the energy bands plotted along thekxaxis.As shown in Fig.2(d),the intersection points of the two lower bands,i.e.,the Dirac points,move with applied strain.The horizontal position of the two Dirac points are calculated analytically as

    Obviously,Dirac pointsD1andD2are symmetric with respect to theSpoint atkx=π/a[see Fig.1(b)].Therefore,in the following we discuss only the position ofD1.

    Fig.2.[(a)–(c)] Band structures of strained kagome lattices with various anisotropy ratio α ≡t′/t, calculated using a tight-binding model with only nearest-neighbor hopping.The lattice is (a) unstrained (α =1.0), (b) stretched (α =0.8), and (c) compressed(α =1.2)along y direction.[(d),(e)]Band structures plotted along(d)the kx axis and(e)the ky axis.The hopping parameter along x direction is set to t=t3=2 meV.

    The movement of Dirac points in response to strain are summarized as follows.(i)For the kagome lattice stretched inydirection (α<1), the Dirac pointD1moves along theKCline [red lines in Fig.1(b)] towards theCpoint atπ/2a, andD1→Cwhenα →0.(ii) For the unstrained kagome lattice(α=1),D1lies exactly at theKpoint of the Brillouin zone,withkD1x=2π/(3a).(iii)For a lattice subjected to a compressive strain inydirection(α>1),D1moves towards theSpoint along theKK′line[blue lines in Fig.1(b)],andD1→Swhenα →∞.

    In a word, compared to graphene where the Dirac cones merge under applied strain,[23]the Dirac cones of kagome lattice remain intact at any strength of uniaxial strain within the framework of the nearest-neighbor tight-binding model, indicating a more robust phase of semimetal.

    2.2.3.Reshaping of flat band

    3.Artificial kagome lattice under uniaxial strain

    In this section, we numerically investigate the strain effects in artificial kagome lattices using an antidot model.Compared with the tight-binding model with only nearestneighboring hopping terms, the antidot model based on a periodic potential is more realistic in the sense that it provides the design of antidot patterns required for experimentally fabricating artificial kagome materials from conventional twodimensional electron gases(2DEGs).[40–42]

    3.1.Antidot model for kagome lattice

    Two different antidot models have been proposed in the literature for realizing kagome lattices,[42,43]and here we adapt the design in Ref.[42].This model is based on a periodic muffin-tin potentialV(r)comprising two types of circular barrier regions whereV(r)takes a constant valueV0>0,as indicated by the blue circles in Fig.3(a).The radii of the large and small barrier circles are denoted byρ1andρ2, respectively, and the vertical spacing between nearest-neighboring circles is denoted byL.Most calculations in this section are performed withρ1/ρ2=3,because such a choice ensures that the large and small barrier circles in Fig.3(a) will touch the dashed lines simultaneously asρ1increases.Due to the repulsion from the barriers,the wave functions of electrons mainly distribute in the space between the barrier regions,forming an artificial kagome lattice with a horizontal inter-site distance ofa,as illustrated by the hollow circles in Fig.3(a).

    Fig.3.(a) Periodic muffin-tin potential for realizing the artificial kagome lattice.The potential function satisfies V(r)=V0 >0 inside the blue circles and V(r)=0 elsewhere.The large solid circles form a triangular lattice spanned by the lattice vectors b1 and b2, the angle between which changes with applied strain.Each large circle is surrounded by six small circles.The hollow circles located in the gaps between blue circles illustrate the sites of the kagome lattice.The lattice shown here is stretched along y direction with α′ =0.8.(b) The repeated Brillouin zone corresponds to the lattice shown in(a).The first Brillouin zone of the strained kagome lattice is a squashed hexagon.The Dirac points are located in the CC′ line when a uniaxial strain is applied in y direction.

    3.2.Numerical method for band calculation

    For an electron system subjected to the periodic potentialV(r)given by Eq.(8),the Bloch wave functionψk(r)satisfies the Schr?dinger equation

    3.3.Results and discussion

    In the following we present the numerical results obtained using the antidot model described in Subsection 3.1.The calculation was performed witha= 25 nm andm*= 0.04me,wheremeis the free electron mass.These parameters are experimentally achievable by fabricating an antidot array onto a typical 2DEG using e-beam lithography.

    3.3.1.Width of the flat band

    Fig.4.[(a)–(c)] The lowest three energy bands of strained kagome lattices with various values of α′, calculated using the periodic muffin-tin potential described in the main text.The lattice is(a)unstrained(α′ =1.0),(b)stretched(α′ =0.8),and(c)compressed(α′=1.2)along y direction.[(e),(f)]Band structures plotted along(e)the kx axis and(f)the ky axis.The bands are shifted vertically to move the Dirac points to zero energy.All calculations were performed with V0=200 meV,ρ1/ρ2=3,and β ≡ρ1/a=0.6.

    Fig.5.Band width ?E of the flat bandversus barrier height V0 ofthe maffin-tin potential V(r)calculated(a)with ρ1/ρ2=3 and various values of β ≡ρ1/a,and(b)with various values of ρ1/ρ2 and β =0.6.

    When eitherV0orβis small,the wave functions of electrons are not well localized to the regions of lattice sites illustrated by the hollow circles in Fig.3(a).In this situation,the antidot model cannot be well approximated by the tightbinding lattice model and therefore the obtained ?Eofis large.As shown in Fig.5,?Egenerally decreases with increasingV0andβexcept for the highV0region of the curve withβ=0.7.A small band width of ?E=0.45 meV is obtained with parametersβ=0.6 andV0=200 meV;the calculations presented in Fig.4 were all carried out with this group of parameters.

    3.3.2.Merging of Dirac points

    To quantitatively present the movement of the Dirac points in response to applied strain,we introduce a parameterγto describe the relative position of the Dirac pointsD1andD2with respect to theSpoint[see Fig.3(b)].The parameterγis defined as

    where|kC-kS|=|kC′-kS|=π/a.Obviously,γ=1 corresponds to the situation in which the Dirac pointsD1andD2are respectively shifted toCandC′,andγ=0 is reached whenD1andD2meet and merge at theSpoint.In addition, in the antidot model,it is noteworthy that bothKandK′move with applied strain due to the deformation of the lattice.Therefore,a parameterγKis similarly introduced to describe the relative position ofK,defined as

    Fig.6.[(a), (b)] Relative position γ of Dirac points as a function of anisotropy ratio α′ for(a)β ≡ρ1/a=0.6 and(b)β =0.2,calculated with ρ1/ρ2 =3 and various values of V0.The dashed lines depict the position of the K point given by Eq.(17).[(c), (d)] Band gap ?E at Dirac points as a function of α′, calculated with (c) β =0.6 and (d)β =0.2.

    3.3.3.Partially flat regions in deformed flat bands

    Fig.7.Probability density distribution of the Bloch state ψΓ(r)of band, calculated with α′ =0.8.Dashed lines illustrate the kagome lattice.The parameters of muffin-tin potential are the same as those in Fig.5.

    4.Further discussion

    4.1.Band structures along high-symmetry paths

    To better illustrate the evolution of the band features in response to applied strain, we plot the band-structure data calculated using both the tight-binding model and the antidot model along the high-symmetry pathΓ–M–K–Γ–M′–K′.As shown in Fig.8, the band structures calculated using the tight-binding model always show characteristic van Hove singularities at both theMandM′points, irrespective of applied strain.However, for the band structures calculated using the antidot model,the van Hove singularity at theMpoint disappears whenα′=0.8 whereas that at theM′point disappears whenα′=1.2,as illustrated in Figs.9(b)and 9(c).

    Fig.8.Plots of the band-structure data in Fig.2 along the highsymmetry path.The corresponding Brillouin zone is illustrated in the left panel of Fig.9(a).

    Fig.9.Plots of the band-structure data in Fig.4 along the highsymmetry path when the lattice is (a) unstrained (α′ = 1.0), (b)stretched (α′ =0.8), and (c) compressed (α′ =1.2) along y direction.The corresponding Brillouin zones are shown on the left-hand side of the data.

    4.2.Comparison between the two models

    In the following, we compare the two theoretical models and briefly discuss their advantages and limitations.The nearest-neighboring tight-binding model is used for approximating a periodic potentialV(r) in which electrons are strongly bound to the lattice sites.It is assumed that the energy eigenstateφiof theithisolated site distributes only in a small region near the site and therefore the hopping parametersti j=〈φi| ?H|φj〉take non-zero values only between neighboring sitesiandj.The advantage of the nearest-neighboring tightbinding model lies in its mathematical simplicity: in many situations, the energy bandE(i)kcan be obtained analytically as a function oftij.In this work, the analytical results obtained using the tight-binding method helps us to intuitively understand the evolution of band structures under strain.On the other hand,the obvious limitation of this model is that it cannot nicely describe periodic potentials in which electrons are not firmly bound to the lattice sites and thus the hopping between non-adjacent lattice sites cannot be neglected.

    The antidot model based on a periodic muffin-tin potential is specifically designed for modeling the artificial superlattice realized by patterning an array of holes(called an antidot array) on a 2DEG.In the antidot model, the potential functionV(r)is explicitly given.In this regard,it is more realistic than the tight-binding model.However,the application of antidot model is limited to artificial kagome superlattices and it is not directly applicable to kagome materials and other artificial kagome systems.

    As discussed above,these two theoretical models are not mathematically equivalent.The antidot model given by Eq.(8)cannot be perfectly mapped to the nearest-neighboring tightbinding model because electrons in the antidot model are not bound firmly enough to the lattice sites shown in Fig.3(a).Such a mathematical inequivalence is the origin of the differences in the calculation results obtained using the two models.

    5.Conclusion

    In summary, we have performed a comprehensive study on the band structures of a strained kagome lattice using both a tight-binding model and an antidot model.Both the models predict a strain-induced horizontal shift of the Dirac cones in the band structures.In addition, according to the antidot model, when the lattice is subjected to a strong compressive strain inydirection,the Dirac cones will merge and a band gap will open between the two lowest energy bands.Furthermore,in the kagome lattice stretched alongydirection,the flat bandis found to develop into a highly anisotropic shape,with a partially flat region dispersionless alongkydirection while dispersive alongkxdirection.Our results pave the way for engineering the electronic band structures of kagome materials by mechanical strain.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant Nos.11904261 and 11904259).

    猜你喜歡
    楊帆
    Effect of short-term plasticity on working memory
    《魚與蓮》
    Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
    Two regularization methods for identifying the source term problem on the time-fractional diffusion equation with a hyper-Bessel operator
    Theory of unconventional superconductivity in nickelate-based materials?
    Three-dimensional spatial multi-point uniform light focusing through scattering media based on feedback wavefront shaping?
    劫后華夏再楊帆(弋陽腔)
    影劇新作(2020年2期)2020-09-23 03:22:12
    THE QUASI-BOUNDARY VALUE METHOD FOR IDENTIFYING THE INITIAL VALUE OF THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION ?
    假期(劇本)
    我學會了
    精品人妻偷拍中文字幕| 国产免费视频播放在线视频| 一区二区三区激情视频| 国产伦理片在线播放av一区| 久久人妻熟女aⅴ| 亚洲av成人精品一二三区| 国产日韩一区二区三区精品不卡| 一级a爱视频在线免费观看| 国产亚洲av片在线观看秒播厂| www.av在线官网国产| 日本av免费视频播放| 久久ye,这里只有精品| 男人爽女人下面视频在线观看| 国产亚洲精品第一综合不卡| 中文字幕人妻丝袜制服| 一级片'在线观看视频| 欧美人与性动交α欧美软件| 极品少妇高潮喷水抽搐| 最近中文字幕2019免费版| 人人妻人人澡人人看| 啦啦啦中文免费视频观看日本| 一级黄片播放器| 一区二区日韩欧美中文字幕| 亚洲av欧美aⅴ国产| 777米奇影视久久| 2021少妇久久久久久久久久久| 欧美日韩亚洲高清精品| 国产白丝娇喘喷水9色精品| 一区在线观看完整版| 黑人欧美特级aaaaaa片| 晚上一个人看的免费电影| 亚洲精品美女久久久久99蜜臀| 日韩大码丰满熟妇| 伦理电影免费视频| 999久久久精品免费观看国产| 久久精品国产清高在天天线| 成人黄色视频免费在线看| 欧美激情高清一区二区三区| 久久久久国产一级毛片高清牌| 91九色精品人成在线观看| 国产精品综合久久久久久久免费 | 久久香蕉国产精品| 国产国语露脸激情在线看| 欧美最黄视频在线播放免费 | 18美女黄网站色大片免费观看| 免费久久久久久久精品成人欧美视频| 麻豆成人av在线观看| 国产主播在线观看一区二区| 久久久久九九精品影院| 99精品在免费线老司机午夜| 免费看a级黄色片| 免费高清在线观看日韩| 亚洲欧美激情综合另类| 久久精品亚洲熟妇少妇任你| 久久国产精品男人的天堂亚洲| 黄频高清免费视频| 校园春色视频在线观看| 欧美不卡视频在线免费观看 | 色婷婷av一区二区三区视频| 超碰成人久久| 午夜a级毛片| 免费女性裸体啪啪无遮挡网站| 亚洲成国产人片在线观看| 国产成+人综合+亚洲专区| 男女午夜视频在线观看| 久久人妻福利社区极品人妻图片| www.精华液| 97人妻天天添夜夜摸| 日本 av在线| 中国美女看黄片| 久久久久精品国产欧美久久久| 变态另类成人亚洲欧美熟女 | 日韩高清综合在线| 99精品在免费线老司机午夜| 亚洲美女黄片视频| 亚洲av熟女| 日韩欧美在线二视频| 亚洲欧美精品综合一区二区三区| 欧美日本中文国产一区发布| 夜夜夜夜夜久久久久| 成人永久免费在线观看视频| 国产高清激情床上av| 一级片免费观看大全| 校园春色视频在线观看| 亚洲五月色婷婷综合| a级片在线免费高清观看视频| 久久精品亚洲av国产电影网| 国产在线精品亚洲第一网站| 少妇粗大呻吟视频| 中文字幕人妻丝袜制服| 亚洲精品国产一区二区精华液| 精品福利观看| 亚洲av美国av| 两人在一起打扑克的视频| 亚洲一区二区三区不卡视频| 国产免费av片在线观看野外av| 久久久久国内视频| 看片在线看免费视频| 人人妻,人人澡人人爽秒播| 99精国产麻豆久久婷婷| 免费av中文字幕在线| 女同久久另类99精品国产91| 90打野战视频偷拍视频| www.精华液| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩精品亚洲av| 热99re8久久精品国产| 国产亚洲精品一区二区www| 成人三级黄色视频| 黄片大片在线免费观看| 在线国产一区二区在线| 精品人妻在线不人妻| 18禁裸乳无遮挡免费网站照片 | 国产精品一区二区三区四区久久 | 日本欧美视频一区| 国产一区二区激情短视频| 麻豆国产av国片精品| 精品久久蜜臀av无| 美女国产高潮福利片在线看| 亚洲久久久国产精品| 欧美日韩一级在线毛片| 欧美性长视频在线观看| 亚洲男人天堂网一区| 久久久国产成人免费| 丝袜美足系列| 国产在线观看jvid| 欧美乱妇无乱码| 夜夜躁狠狠躁天天躁| 久久婷婷成人综合色麻豆| 深夜精品福利| 成年人黄色毛片网站| 一级毛片高清免费大全| 一区福利在线观看| 国产精品久久视频播放| 一区二区三区国产精品乱码| 一区二区日韩欧美中文字幕| 真人一进一出gif抽搐免费| 久久国产亚洲av麻豆专区| av中文乱码字幕在线| 在线看a的网站| 国产av一区在线观看免费| 欧美日韩黄片免| 久久久久久久午夜电影 | 亚洲精品久久成人aⅴ小说| 嫁个100分男人电影在线观看| 免费观看精品视频网站| 日本欧美视频一区| 国产av又大| 一级毛片高清免费大全| 男人舔女人下体高潮全视频| 中文字幕人妻熟女乱码| 午夜福利影视在线免费观看| 黄片小视频在线播放| av福利片在线| 国产熟女xx| 亚洲成人精品中文字幕电影 | 丁香六月欧美| 国产三级在线视频| 99riav亚洲国产免费| 久久国产亚洲av麻豆专区| 国产在线观看jvid| 99精品久久久久人妻精品| 9191精品国产免费久久| 欧美老熟妇乱子伦牲交| 亚洲一区高清亚洲精品| 动漫黄色视频在线观看| 亚洲欧美一区二区三区黑人| 我的亚洲天堂| 精品久久久久久,| 18美女黄网站色大片免费观看| 中文字幕高清在线视频| 日本 av在线| 波多野结衣一区麻豆| 搡老熟女国产l中国老女人| 国产精品香港三级国产av潘金莲| 操出白浆在线播放| 9热在线视频观看99| 美女高潮喷水抽搐中文字幕| 国产亚洲欧美精品永久| 日本免费一区二区三区高清不卡 | 亚洲欧美精品综合久久99| 夜夜看夜夜爽夜夜摸 | 黑人欧美特级aaaaaa片| 免费看a级黄色片| 视频在线观看一区二区三区| 在线观看舔阴道视频| 欧美黑人精品巨大| 久久这里只有精品19| 成年版毛片免费区| 黄色视频,在线免费观看| 国产成人啪精品午夜网站| 女人被躁到高潮嗷嗷叫费观| 18禁美女被吸乳视频| 久久影院123| 嫩草影视91久久| 大型av网站在线播放| 一级毛片女人18水好多| 欧美黑人精品巨大| 久久久久久亚洲精品国产蜜桃av| 老司机靠b影院| 久久人妻福利社区极品人妻图片| 欧美最黄视频在线播放免费 | 97超级碰碰碰精品色视频在线观看| 97人妻天天添夜夜摸| 19禁男女啪啪无遮挡网站| 精品欧美一区二区三区在线| 少妇粗大呻吟视频| 在线观看午夜福利视频| 老司机亚洲免费影院| 亚洲男人天堂网一区| 桃色一区二区三区在线观看| 午夜视频精品福利| 亚洲一码二码三码区别大吗| 国产成人免费无遮挡视频| 精品国产一区二区三区四区第35| 日本wwww免费看| 国产精品一区二区精品视频观看| 国产精品av久久久久免费| 黄色丝袜av网址大全| www.自偷自拍.com| 一级片免费观看大全| 男男h啪啪无遮挡| 国产高清激情床上av| 美女 人体艺术 gogo| 水蜜桃什么品种好| 久久人妻福利社区极品人妻图片| 久久 成人 亚洲| 国产av一区二区精品久久| x7x7x7水蜜桃| 亚洲精品在线美女| 欧美日韩亚洲综合一区二区三区_| 亚洲欧洲精品一区二区精品久久久| 久久 成人 亚洲| 天天躁夜夜躁狠狠躁躁| 亚洲av熟女| 老司机午夜福利在线观看视频| 水蜜桃什么品种好| 午夜免费观看网址| 欧美人与性动交α欧美精品济南到| 色综合婷婷激情| ponron亚洲| 色综合站精品国产| 亚洲人成伊人成综合网2020| 成人18禁在线播放| 亚洲专区国产一区二区| 午夜免费观看网址| 18禁美女被吸乳视频| 久久久久久久午夜电影 | 国产伦人伦偷精品视频| 欧美中文日本在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 午夜免费成人在线视频| 国产精品日韩av在线免费观看 | 最新在线观看一区二区三区| 黄色成人免费大全| 日本精品一区二区三区蜜桃| 一区二区三区精品91| 亚洲精品av麻豆狂野| 国产深夜福利视频在线观看| 天堂中文最新版在线下载| 亚洲avbb在线观看| 欧美在线一区亚洲| 制服诱惑二区| 久久国产亚洲av麻豆专区| 精品国产一区二区三区四区第35| 久久性视频一级片| 高潮久久久久久久久久久不卡| 国产精品综合久久久久久久免费 | 国产精品亚洲一级av第二区| 天堂动漫精品| 性少妇av在线| 又黄又粗又硬又大视频| 国产又色又爽无遮挡免费看| 精品福利永久在线观看| 91老司机精品| 色在线成人网| 两性夫妻黄色片| 女人爽到高潮嗷嗷叫在线视频| 欧美激情 高清一区二区三区| 桃色一区二区三区在线观看| 又紧又爽又黄一区二区| 亚洲精品一二三| 国产精品美女特级片免费视频播放器 | 久久欧美精品欧美久久欧美| 日韩三级视频一区二区三区| 成人三级做爰电影| 每晚都被弄得嗷嗷叫到高潮| videosex国产| 国产精品美女特级片免费视频播放器 | 免费高清在线观看日韩| 欧美日韩亚洲国产一区二区在线观看| 亚洲色图av天堂| 午夜免费观看网址| 欧美日韩视频精品一区| av国产精品久久久久影院| 悠悠久久av| 在线看a的网站| 看免费av毛片| 日本五十路高清| 满18在线观看网站| 国产精品永久免费网站| 亚洲成人免费电影在线观看| 国产一区二区三区综合在线观看| 十分钟在线观看高清视频www| 亚洲人成网站在线播放欧美日韩| 丝袜美腿诱惑在线| 日本三级黄在线观看| 日本免费一区二区三区高清不卡 | 日本wwww免费看| 日韩中文字幕欧美一区二区| 中文字幕人妻丝袜制服| 久久人妻av系列| 神马国产精品三级电影在线观看 | 老司机深夜福利视频在线观看| 黄片小视频在线播放| 桃色一区二区三区在线观看| 国产免费男女视频| 宅男免费午夜| 日本一区二区免费在线视频| 又紧又爽又黄一区二区| 欧美激情极品国产一区二区三区| 免费av中文字幕在线| 国产欧美日韩一区二区三区在线| 中文字幕另类日韩欧美亚洲嫩草| xxx96com| 免费少妇av软件| 午夜老司机福利片| 欧美成人午夜精品| 国产一区二区三区在线臀色熟女 | 男人舔女人下体高潮全视频| 精品熟女少妇八av免费久了| 一级黄色大片毛片| 黑丝袜美女国产一区| 亚洲精品国产色婷婷电影| 久久人人97超碰香蕉20202| 久久精品91无色码中文字幕| 在线国产一区二区在线| 午夜福利一区二区在线看| 国产熟女午夜一区二区三区| 欧美人与性动交α欧美软件| 成人免费观看视频高清| 欧美另类亚洲清纯唯美| 国产精品98久久久久久宅男小说| 久久久水蜜桃国产精品网| 国产精品久久电影中文字幕| 涩涩av久久男人的天堂| 久久久久国内视频| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲欧美在线一区二区| 国产麻豆69| 两性午夜刺激爽爽歪歪视频在线观看 | 色播在线永久视频| avwww免费| 国产av又大| 搡老熟女国产l中国老女人| 国产av一区二区精品久久| 99精品久久久久人妻精品| 免费日韩欧美在线观看| 久久中文看片网| 精品熟女少妇八av免费久了| 欧美激情久久久久久爽电影 | 日韩视频一区二区在线观看| 日韩欧美在线二视频| 一进一出抽搐gif免费好疼 | 免费日韩欧美在线观看| 黄色女人牲交| 国内久久婷婷六月综合欲色啪| 一a级毛片在线观看| 熟女少妇亚洲综合色aaa.| 巨乳人妻的诱惑在线观看| 女人精品久久久久毛片| 男女午夜视频在线观看| 久久久国产成人精品二区 | 亚洲精品国产色婷婷电影| 精品人妻在线不人妻| 亚洲精品国产一区二区精华液| avwww免费| 国产亚洲欧美精品永久| 免费av毛片视频| 在线播放国产精品三级| 亚洲第一青青草原| 亚洲情色 制服丝袜| 黄片小视频在线播放| 国产aⅴ精品一区二区三区波| 宅男免费午夜| 人妻丰满熟妇av一区二区三区| 国产精品一区二区三区四区久久 | 亚洲人成电影免费在线| 韩国精品一区二区三区| 国产亚洲欧美98| 无遮挡黄片免费观看| 成人国语在线视频| av欧美777| 欧美日韩亚洲国产一区二区在线观看| 在线永久观看黄色视频| xxx96com| 琪琪午夜伦伦电影理论片6080| 可以在线观看毛片的网站| 视频区欧美日本亚洲| 国产成人免费无遮挡视频| av有码第一页| 91在线观看av| 男女下面插进去视频免费观看| 欧美精品啪啪一区二区三区| 久久精品成人免费网站| 精品一区二区三区视频在线观看免费 | 亚洲成国产人片在线观看| 国产男靠女视频免费网站| 性欧美人与动物交配| 成人三级黄色视频| 成人18禁在线播放| 欧美黄色片欧美黄色片| 亚洲 欧美一区二区三区| 久久香蕉国产精品| 国产伦一二天堂av在线观看| 久久精品国产亚洲av高清一级| 老司机亚洲免费影院| 日韩av在线大香蕉| 亚洲 欧美 日韩 在线 免费| 一区在线观看完整版| 自线自在国产av| 久久这里只有精品19| 精品久久久久久,| 精品午夜福利视频在线观看一区| 亚洲激情在线av| 丰满迷人的少妇在线观看| 亚洲熟妇中文字幕五十中出 | 亚洲七黄色美女视频| 国产精品98久久久久久宅男小说| 国产精品成人在线| 久久久久久人人人人人| 97超级碰碰碰精品色视频在线观看| 在线观看一区二区三区激情| 欧洲精品卡2卡3卡4卡5卡区| 国产成年人精品一区二区 | 亚洲精品中文字幕一二三四区| 一边摸一边抽搐一进一出视频| 麻豆av在线久日| 丰满饥渴人妻一区二区三| 午夜精品久久久久久毛片777| 午夜精品国产一区二区电影| 久久草成人影院| 精品国产一区二区三区四区第35| xxx96com| 午夜福利在线免费观看网站| 欧美人与性动交α欧美软件| 这个男人来自地球电影免费观看| 人人澡人人妻人| 在线观看免费视频网站a站| 欧洲精品卡2卡3卡4卡5卡区| 两个人免费观看高清视频| 国产人伦9x9x在线观看| 国产三级黄色录像| 香蕉久久夜色| 国产精品久久视频播放| 日本黄色视频三级网站网址| 亚洲人成伊人成综合网2020| 在线观看免费视频网站a站| 搡老乐熟女国产| 久久香蕉国产精品| 高清欧美精品videossex| 色精品久久人妻99蜜桃| 妹子高潮喷水视频| 操美女的视频在线观看| 在线观看免费视频网站a站| 国产精品一区二区免费欧美| videosex国产| 老熟妇乱子伦视频在线观看| 男人操女人黄网站| 精品人妻1区二区| 精品久久久久久成人av| 88av欧美| 好看av亚洲va欧美ⅴa在| 久久精品国产亚洲av高清一级| 国产精品亚洲一级av第二区| 99热国产这里只有精品6| 在线视频色国产色| 欧洲精品卡2卡3卡4卡5卡区| 成年人免费黄色播放视频| 美国免费a级毛片| 国产精品久久久久久人妻精品电影| 国产视频一区二区在线看| 久9热在线精品视频| 免费看a级黄色片| 美女扒开内裤让男人捅视频| 长腿黑丝高跟| 美国免费a级毛片| 中国美女看黄片| 99久久久亚洲精品蜜臀av| 首页视频小说图片口味搜索| 久久中文看片网| 久久 成人 亚洲| 久久久精品欧美日韩精品| 国产精品国产高清国产av| 成年人黄色毛片网站| 久久欧美精品欧美久久欧美| svipshipincom国产片| 88av欧美| 一本大道久久a久久精品| 人成视频在线观看免费观看| 亚洲精品中文字幕在线视频| www国产在线视频色| 亚洲视频免费观看视频| 热re99久久国产66热| 性色av乱码一区二区三区2| 亚洲欧美激情在线| 精品国产一区二区久久| 精品一品国产午夜福利视频| 免费在线观看日本一区| 日日干狠狠操夜夜爽| 不卡一级毛片| 国产麻豆69| 午夜福利一区二区在线看| 国产精品电影一区二区三区| 国产成人精品久久二区二区91| 天堂俺去俺来也www色官网| 97超级碰碰碰精品色视频在线观看| 国产免费av片在线观看野外av| 国产激情欧美一区二区| 久久精品国产亚洲av高清一级| 夜夜看夜夜爽夜夜摸 | ponron亚洲| 老司机午夜福利在线观看视频| 宅男免费午夜| 一本综合久久免费| 国产黄色免费在线视频| 免费看a级黄色片| av天堂久久9| 露出奶头的视频| 精品福利观看| 国产极品粉嫩免费观看在线| avwww免费| 国产精品电影一区二区三区| 国产精品久久久久久人妻精品电影| 老熟妇仑乱视频hdxx| 老司机午夜福利在线观看视频| 国产精品二区激情视频| 在线观看舔阴道视频| www.www免费av| 神马国产精品三级电影在线观看 | 午夜福利在线免费观看网站| 九色亚洲精品在线播放| x7x7x7水蜜桃| 欧美午夜高清在线| 好看av亚洲va欧美ⅴa在| 日韩高清综合在线| 亚洲美女黄片视频| 淫妇啪啪啪对白视频| 亚洲九九香蕉| 国产无遮挡羞羞视频在线观看| 99久久精品国产亚洲精品| 男女下面进入的视频免费午夜 | bbb黄色大片| 精品一区二区三卡| 久久国产亚洲av麻豆专区| 亚洲精华国产精华精| 亚洲专区中文字幕在线| 久久伊人香网站| 美女高潮到喷水免费观看| 黄色成人免费大全| 亚洲成a人片在线一区二区| 午夜免费观看网址| 亚洲专区字幕在线| 午夜免费激情av| 免费看a级黄色片| 亚洲在线自拍视频| 18禁美女被吸乳视频| 欧美日韩亚洲高清精品| 美女扒开内裤让男人捅视频| 国产成人精品在线电影| 国产亚洲精品久久久久久毛片| 精品无人区乱码1区二区| 午夜免费观看网址| 好看av亚洲va欧美ⅴa在| 制服诱惑二区| 亚洲片人在线观看| 亚洲精品av麻豆狂野| 久久精品91无色码中文字幕| 99国产极品粉嫩在线观看| 国产人伦9x9x在线观看| 日本免费a在线| 欧美亚洲日本最大视频资源| 欧美中文综合在线视频| 十八禁网站免费在线| 中文字幕av电影在线播放| 免费观看人在逋| 亚洲精品国产区一区二| 国产成人欧美在线观看| 亚洲精品美女久久久久99蜜臀| 9热在线视频观看99| 午夜老司机福利片| 少妇被粗大的猛进出69影院| 人人澡人人妻人| 久久久国产精品麻豆| 曰老女人黄片| 视频区图区小说| 久久亚洲精品不卡| 两个人看的免费小视频| 琪琪午夜伦伦电影理论片6080| 午夜激情av网站| 性少妇av在线| 免费高清视频大片| 成年版毛片免费区| 夜夜夜夜夜久久久久| 国产成年人精品一区二区 | 久久香蕉激情| 一区二区日韩欧美中文字幕| 好看av亚洲va欧美ⅴa在| 大香蕉久久成人网| 在线观看一区二区三区| 黑人操中国人逼视频| 国产精品成人在线| 亚洲精品久久成人aⅴ小说| 香蕉久久夜色| 欧美人与性动交α欧美精品济南到|