• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two regularization methods for identifying the source term problem on the time-fractional diffusion equation with a hyper-Bessel operator

    2022-08-25 08:52:54FanYANG楊帆QiaoxiSUN孫喬夕XiaoxiaoLI李曉曉
    關(guān)鍵詞:楊帆

    Fan YANG(楊帆)+Qiaoxi SUN(孫喬夕)Xiaoxiao LI (李曉曉)

    Department of Mathematics,Lanzhou University of Technology,Lanzhou 730000,China E-mail: gufggd114@163.com; qiaoxisunlaut@163.com; liaiaoriaogood@126.com.

    Nguyen Huy Tuan et al. [62]considered the initial value problem of the time-fractional diffusion equation with hyper-Bessel operator, gave the existence and regularity of the solution for the inverse problem, and obtained the corresponding H¨older-type error estimation under different regularization parameter selection rules. In [63], they considered the inverse problem of identifying the source term of the time-fractional diffusion equation, in which the time-fractional operator is replaced by a regular hyper-Bessel operator, and gave the existence of the source term and the conditional stability. The error estimates under the selection of a priori and a posterior regularization parameters were given, but the error estimations were saturated, and the order of error estimations was not optimal.

    In this article, we give the optimal error analysis of this inverse problem, and present the error estimates under the fractional Tikhonov regularization method and the fractional Landweber iterative regularization method. Combining this with the optimal order theorem,we find that the error estimate obtained by the fractional Tikhonov regularization method is saturated,and the error estimates are not of the order optimal for all p,while the error estimate under the fractional Landweber regularization method obtained is not saturated and the order is optimal for all p. In this paper, we consider the following time-fractional diffusion equation with a hyper-Bessel operator:

    where 0 <α <1, 0 <β <1, Γ(x) is a Gamma function, and T >0 is a fixed value. When β = 1, this operator coincides with the R-L fractional derivation. If F(x,t) is known, the problem(1.2) is a forward problem. If F(x,t) is unknown, problem(1.2) is an inverse problem.In this paper, we identify the unknown source term by using the final value data of t = T.Assume that we have the source term F(x,t)=F(x)Q(t), where Q(t)is known in advance. We then want to identify the unknown source term F(x) by using the value of the final time T.In fact, the observation data g(x) is obtained by measurement, and the measurement data is noised. The exact data g(x) and the measurement data gδ(x) satisfy

    The rest of this article is organized as follows: in Section 2, some auxiliary propositions are introduced. In Section 3, we give the ill-posedness and conditional stability of the inverse problem. In Section 4, the optimal error bound for the inverse problem is given. Section 5 and Section 6 give the error estimates under the a priori and a posteriori regularization parameter selection rules of the fractional Tikhonov regularization method and the fractional Landweber iterative regularization method. In the last section,numerical examples are given to prove that the two regularization methods are effective for restoring the stability of the inverse problem.

    2 Auxiliary Propositions

    3 Ill-Posedness of the Problem and the Conditional Stability of (1.2)

    4 Preliminary Results and Optimal Error Bounds for Problem (1.2)

    4.1 Preliminary results

    Let X and Y be two Hilbert spaces. Problem(1.2)can be transferred to solve the following operator equation:

    If Theorems 4.2 and 4.3 are satisfied,we can obtain an optimal error bound for the problem(1.2).

    4.2 Optimal error bound for problem (1.2)

    In this subsection, we will give the optimal error bound for the inverse problem (1.2). We only focus on recovering F(x) from noisy data gδ∈L2(Ω) provided that

    Remark 4.9 In general,the source condition(3.4)is difficult to verify for practical problems since the index function φ cannot be known explicitly. However,in our consideration,the a priori source condition u(x,0)∈Mφ,Eis equivalent to u(x,0)∈Mp,E, and it is easy to verify the latter since the unknown function u(x,0) has p order smoothness.

    Remark 4.10 The index function φ(see p.4 in[33])can be derived in three stages. First,to obtain the convergence estimate, we need some smoothness assumption for the solution(e.g.(3.18)). The smoothness assumption is often given in the form of a familiar Sobolev norm,for example, in the Hpnorm. Second, we can formulate the inverse problem as an operator equation. Using the singular values (which exist in most cases) of the obtained operator, we can rewrite the smoothness assumption in the variable Hilbert scale (similar to (3.23), or see p. 791 in [38]). Third, comparing the smoothness assumption in a variable Hilbert scale and the source condition (3.4), we can easily get the implicit expression of the index function. For details, we refer the reader to [33]. For the self-adjoint compact operator in particular, the above procedure may be simpler; see the examples in [33].

    5 The Fractional Tikhonov Regular Method and the Convergence Error Estimate

    Huo proposed the following regularization method in[70],its essence being the least squares problem with penalty:

    5.1 Error estimate under an a priori parameter choice rule

    The proof is completed. □

    Remark 5.3 Combining Theorems 4.8 and 5.2,we know that the error estimate obtained by the fractional Tikhonov regularization method under the a priori regularization parameter selection rule is of the optimal order for 0 <p <γ+1.

    5.2 A posteriori parameter choice rule and convergent estimate

    In this subsection, we choose a posteriori regularization parameter μ by using Morozov’s discrepancy principal. We have that μ satisfies

    Remark 5.7 Combining Theorems 4.8 and 5.3, we know that the error estimate obtained by the fractional Tikhonov regularization method under the a posteriori regularization parameter selection rule is of the optimal order for 0 <p <γ.

    Remark 5.8 The error estimate obtained by the fractional Tikhonov regularization method is saturated. When p is a certain value and 0 <γ <1, the order of the measurement error δ in the error estimation formula is certain, as opposed to when p is increasing or decreasing.Therefore, in the next chapter, we propose a fractional Landweber regularization method in order to improve the deficiencies of the above method.

    6 The Fractional Landweber Regularization Method and the Convergent Error Estimate

    In this section, we use the fractional Landweber regularization method to obtain the regularization solution of the inverse problem (1.4), and KF = G is replaced by the operator equation

    6.1 Error estimate under an a priori parameter choice rule

    Remark 6.2 Combining Theorems 4.8 and 6.1,we know that the error estimate obtained by the fractional Landweber iterative regularization method under the a priori regularization parameter selection rule is of the optimal order for all p >0.

    6.2 The a posteriori parameter choice rule and the convergent estimate

    In this subsection,we choose a posteriori parameter m by using the Morozov Principle,and the a posteriori parameter choice rule satisfies that

    The proof of the theorem is completed. □

    Remark 6.6 Combining Theorems 4.8 and 6.5,we know that the error estimate obtained by the fractional Landweber iterative regularization method under the a posteriori regularization parameter selection rule is of the optimal order for all p >0.

    7 Numerical Implementation and Numerical Examples

    In this section, several numerical examples are given to illustrate the effectiveness of the fractional Tikhonov regularization method and the fractional Landweber iterative regularization method. First,we can obtain g(x)from the initial value f(x)by solving the direct problem as follows:

    We use the finite difference method to discretize problem(7.1). We assume that Ω=(0,π).Let Δt=T/N and Δx=π/M be the step sizes for time and space variables,respectively. The grid points in the time interval are labelled tk= kΔt, k = 0,1,...,N, the grid points in the space interval are xi=iΔx, i=0,1,...,M, and we set uki=u(xi,tk).

    The discrete format of time fractional derivatives is as follows:

    Example 3 Take function

    In Figure 1, we give the numerical results of Example 1 under the a posteriori parameter choice rule for various noise levels δ = 0.001,0.0001,0.00001 in the case where α =0.05,0.15,0.25. It can be seen that the numerical error also decreases when the noise is reduced; the smaller α, the better the approximate effect.

    Figure 1 The exact solution and fractional Tikhonov regularization solution Fμ,δ(x) by using the a posteriori parameter choice rule for Example 1: (a) α = 0.05, (b)α=0.15, (c) α=0.25

    In Figure 2, we give the numerical results of Example 1 under the a posteriori parameter choice rule for various noise levels δ = 0.01,0.008,0.005 in the case of α = 0.2,0.5,0.8. It can be seen that the numerical error also decreases when the noise is reduced; the smaller α, the better the approximate effect.

    Figure 2 The exact solution and fractional Landweber iterative regularization solution Fm,δ(x)by using the a posteriori parameter choice rule for Example 1: (a)α=0.2,(b) α=0.5, (c) α=0.8

    Figure 3 The exact solution and the fractional Tikhonov regularization solution Fμ,δ(x) by using the a posteriori parameter choice rule for Example 2: (a) α = 0.05, (b)α=0.15, (c) α=0.25

    In Figure 3, we give the numerical results of Example 2 under the a posteriori parameter choice rule for various noise levels δ =0.001,0.0001,0.00001 in the case of α=0.05,0.15,0.25.It can be seen that the numerical error also decreases when the noise is reduced; the smaller α,the better the approximate effect.

    In Figure 4, we give the numerical results of Example 2 under the a posteriori parameter choice rule for various noise levels δ = 0.01,0.008,0.005 in the case of α = 0.2,0.5,0.8. It can be seen that the numerical error also decreases when the noise is reduced; the smaller α, the better the approximate effect.

    Figure 4 The exact solution and the fractional Landweber iterative regularization solution Fm,δ(x)by using the a posteriori parameter choice rule for Example 2: (a)α=0.2,(b) α=0.5, (c) α=0.8

    In Figure 5, we give the numerical results of Example 3 under the a posteriori parameter choice rule for various noise levels δ =0.001,0.0001,0.00001 in the case of α=0.05,0.15,0.25.It can be seen that the numerical error also decreases when the noise is reduced; the smaller α,the better the approximate effect.

    In Figure 6, we give the numerical results of Example 3 under the a posteriori parameter choice rule for various noise levels δ = 0.01,0.008,0.005 in the case of α = 0.2,0.5,0.8. It can be seen that the numerical error also decreases when the noise is reduced; the smaller α, the better the approximate effect.

    Figure 5 The exact solution and fractional Tikhonov regularization solution Fμ,δ(x) by using the a posteriori parameter choice rule for Example 3: (a) α = 0.05, (b)α=0.15, (c) α=0.25

    Figure 6 The exact solution and fractional Landweber iterative regularization solution Fm,δ(x)by using the a posteriori parameter choice rule for Example 3: (a)α=0.2,(b) α=0.5, (c) α=0.8

    Table 1, Table 2 and Table 3 show the number of iterative steps under the Landweber and the fractional Landweber iterative regularization methods for Example 1, Example 2 and Example 3,respectively. We find that the fractional Landweber iterative regularization method has fewer iteration steps than the Landweber iterative regularization method. From Table 4,Table 5 and Table 6, we find that the smaller the α, the smaller the error behaviour, and the better the numerical simulation for the fixed δ, and the smaller the δ, the smaller the error behaviour, and the better the numerical simulation for the fixed α. When α and δ are fixed, the fractional Landweber iterative regularization method has less error behaviour than the fractional Tikhonov regularization method, so we can infer that the fractional Landweber iterative regularization method is more effective than the fractional Tikhonov regularization method for restoring stability and identifying the source term problem.

    Table 1 The iteration steps of Example 1 for the Landweber iterative and the fractional Landweber iterative regularization methods

    Table 2 The iteration steps of Example 2 for the Landweber iterative and the fractional Landweber iterative regularization methods

    Table 3 The iteration steps of Example 3 for the Landweber iterative and the fractional Landweber iterative regularization methods

    Table 4 Error behaviour of Example 1 for different α with δ =0.01,0.005

    Table 5 Error behaviour of Example 2 for different α with δ =0.01,0.005

    Table 6 Error behaviour of Example 3 for different α with δ =0.01,0.005

    8 Conclusion

    An inverse problem of identifying the source term for the time-fractional diffusion equation with a caputo-like counterpart hyper-Bessel operator has been considered. Based on an optimal error bound and conditional stability, we proposed the fractional Tikhonov regularization method and the fractional Landweber iterative regularization method for dealing with things and derived the a priori and a posteriori convergent estimates under a selection of a priori and a posteriori regular parameters. We find that the fractional Tikhonov regularization method has a saturation effect, while the fractional Landweber iterative regularization method has no saturation effect. For the fractional Tikhonov regularization method,the a priori error estimate is the best order for the optimal bound theorem when 0 <p <γ+1, and the a posteriori error estimate is optimal order when 0 <p <γ. However,for the Landweber regularization method,the a priori and the a posteriori error estimates are equally good for all p >0. Finally, numerical examples verify that the fractional Tikhonov regularization method and the fractional Landweber iterative regular method are efficient and accurate for recovering the stability of the inverse problem.

    猜你喜歡
    楊帆
    Band structures of strained kagome lattices
    Effect of short-term plasticity on working memory
    《魚與蓮》
    Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
    Theory of unconventional superconductivity in nickelate-based materials?
    Three-dimensional spatial multi-point uniform light focusing through scattering media based on feedback wavefront shaping?
    劫后華夏再楊帆(弋陽(yáng)腔)
    影劇新作(2020年2期)2020-09-23 03:22:12
    THE QUASI-BOUNDARY VALUE METHOD FOR IDENTIFYING THE INITIAL VALUE OF THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION ?
    假期(劇本)
    我學(xué)會(huì)了
    熟女av电影| 精品亚洲乱码少妇综合久久| 啦啦啦在线免费观看视频4| 黑人欧美特级aaaaaa片| 亚洲精品国产色婷婷电影| 最近中文字幕高清免费大全6| 亚洲婷婷狠狠爱综合网| 2021少妇久久久久久久久久久| 王馨瑶露胸无遮挡在线观看| 亚洲综合精品二区| 麻豆乱淫一区二区| 热re99久久精品国产66热6| 美女视频免费永久观看网站| 亚洲成人一二三区av| 亚洲欧美精品综合一区二区三区| 一边摸一边抽搐一进一出视频| 国产av国产精品国产| 黄片播放在线免费| 久久97久久精品| 亚洲国产最新在线播放| 下体分泌物呈黄色| 免费日韩欧美在线观看| 水蜜桃什么品种好| 蜜桃国产av成人99| www.自偷自拍.com| 成人午夜精彩视频在线观看| 国产在线视频一区二区| av有码第一页| 亚洲一码二码三码区别大吗| 大香蕉久久成人网| 少妇被粗大猛烈的视频| 中国三级夫妇交换| 制服人妻中文乱码| 亚洲成人手机| 久久久久国产精品人妻一区二区| www.自偷自拍.com| 国产不卡av网站在线观看| kizo精华| 宅男免费午夜| 青春草视频在线免费观看| 久久毛片免费看一区二区三区| 999久久久国产精品视频| 国产欧美日韩一区二区三区在线| 高清欧美精品videossex| 中文字幕高清在线视频| 精品少妇内射三级| 亚洲国产精品一区三区| 久久久久人妻精品一区果冻| 日韩中文字幕视频在线看片| 成人国产av品久久久| 国产成人精品久久二区二区91 | 欧美日韩视频精品一区| 中文字幕人妻熟女乱码| 亚洲精品久久久久久婷婷小说| 免费观看人在逋| 亚洲国产日韩一区二区| 90打野战视频偷拍视频| 亚洲人成电影观看| 极品人妻少妇av视频| 成人影院久久| 夜夜骑夜夜射夜夜干| 日韩制服丝袜自拍偷拍| av视频免费观看在线观看| 亚洲国产日韩一区二区| 色精品久久人妻99蜜桃| 如日韩欧美国产精品一区二区三区| 国产精品秋霞免费鲁丝片| 丁香六月欧美| 伊人久久国产一区二区| 男女下面插进去视频免费观看| 色综合欧美亚洲国产小说| 不卡av一区二区三区| 欧美精品高潮呻吟av久久| 精品国产乱码久久久久久男人| 七月丁香在线播放| 久久久久网色| 欧美老熟妇乱子伦牲交| 日韩不卡一区二区三区视频在线| 亚洲自偷自拍图片 自拍| av在线app专区| 亚洲中文av在线| 99热国产这里只有精品6| 人人妻人人添人人爽欧美一区卜| 91精品国产国语对白视频| 中国三级夫妇交换| 婷婷色综合大香蕉| 91国产中文字幕| 成人黄色视频免费在线看| 亚洲欧美成人综合另类久久久| 一级毛片 在线播放| 制服诱惑二区| 性少妇av在线| 老司机影院成人| 久久精品熟女亚洲av麻豆精品| 久久久亚洲精品成人影院| 男女国产视频网站| 如何舔出高潮| 免费女性裸体啪啪无遮挡网站| 久久久久视频综合| 亚洲熟女毛片儿| 国产毛片在线视频| 欧美日韩福利视频一区二区| 色综合欧美亚洲国产小说| 欧美另类一区| 一级毛片 在线播放| 国产成人欧美在线观看 | 看免费av毛片| 搡老乐熟女国产| 青春草亚洲视频在线观看| www.精华液| 亚洲精品乱久久久久久| 午夜久久久在线观看| 欧美中文综合在线视频| 成人影院久久| 久久精品国产综合久久久| 新久久久久国产一级毛片| 国产免费福利视频在线观看| 中文精品一卡2卡3卡4更新| 色婷婷久久久亚洲欧美| 精品少妇黑人巨大在线播放| e午夜精品久久久久久久| 99久久99久久久精品蜜桃| 黄色视频在线播放观看不卡| 成年动漫av网址| 看十八女毛片水多多多| 欧美日韩福利视频一区二区| 国产精品一区二区在线不卡| 在线观看国产h片| 亚洲精品国产一区二区精华液| av网站在线播放免费| 国产精品欧美亚洲77777| 欧美中文综合在线视频| 国产精品99久久99久久久不卡 | 丝袜美腿诱惑在线| 亚洲国产精品一区二区三区在线| 一区在线观看完整版| 国产片内射在线| 亚洲精品av麻豆狂野| av在线播放精品| 自线自在国产av| 51午夜福利影视在线观看| 成人三级做爰电影| 晚上一个人看的免费电影| 久久国产精品大桥未久av| 午夜激情久久久久久久| 亚洲精品国产区一区二| 制服丝袜香蕉在线| 久久ye,这里只有精品| 丝袜美足系列| 大片免费播放器 马上看| 日本av手机在线免费观看| 啦啦啦视频在线资源免费观看| 在线观看免费高清a一片| 国产在线一区二区三区精| 大话2 男鬼变身卡| 国精品久久久久久国模美| 国产老妇伦熟女老妇高清| 亚洲欧美一区二区三区国产| 亚洲婷婷狠狠爱综合网| 精品久久久精品久久久| 伊人久久大香线蕉亚洲五| 99国产综合亚洲精品| 2018国产大陆天天弄谢| 成年av动漫网址| 满18在线观看网站| 中文字幕av电影在线播放| 一级爰片在线观看| 免费高清在线观看视频在线观看| 精品少妇内射三级| 18禁国产床啪视频网站| 操美女的视频在线观看| 久久久精品区二区三区| 精品免费久久久久久久清纯 | 亚洲精品aⅴ在线观看| 日韩人妻精品一区2区三区| 国产精品国产三级专区第一集| 十八禁人妻一区二区| 久久久久精品国产欧美久久久 | 嫩草影院入口| 国产伦理片在线播放av一区| 精品一区二区三区四区五区乱码 | 久热爱精品视频在线9| 久久久久久久大尺度免费视频| 亚洲专区中文字幕在线 | 亚洲欧美成人综合另类久久久| 丰满少妇做爰视频| 午夜免费男女啪啪视频观看| 国产成人91sexporn| 亚洲精品日本国产第一区| 亚洲视频免费观看视频| 亚洲免费av在线视频| 国产片特级美女逼逼视频| 亚洲精品美女久久久久99蜜臀 | 亚洲欧美清纯卡通| 天天躁狠狠躁夜夜躁狠狠躁| 建设人人有责人人尽责人人享有的| a级毛片在线看网站| 一级片免费观看大全| av免费观看日本| 午夜激情久久久久久久| 色播在线永久视频| 99久国产av精品国产电影| 中文乱码字字幕精品一区二区三区| 日本一区二区免费在线视频| 日本一区二区免费在线视频| 男女高潮啪啪啪动态图| 中文字幕高清在线视频| 在线免费观看不下载黄p国产| 国产精品蜜桃在线观看| 伊人久久国产一区二区| 亚洲精品美女久久久久99蜜臀 | 80岁老熟妇乱子伦牲交| 欧美激情 高清一区二区三区| 亚洲av日韩精品久久久久久密 | 中文字幕人妻丝袜一区二区 | 青春草视频在线免费观看| 极品少妇高潮喷水抽搐| 欧美97在线视频| 水蜜桃什么品种好| 亚洲国产成人一精品久久久| 精品亚洲成a人片在线观看| 热99久久久久精品小说推荐| 最近中文字幕2019免费版| 国产精品一国产av| 日韩av免费高清视频| 99久国产av精品国产电影| 精品人妻一区二区三区麻豆| 精品一品国产午夜福利视频| 99国产精品免费福利视频| 啦啦啦 在线观看视频| 欧美日韩一区二区视频在线观看视频在线| 日韩av不卡免费在线播放| 少妇被粗大猛烈的视频| 精品少妇久久久久久888优播| 久久久久久久大尺度免费视频| 人妻 亚洲 视频| 精品视频人人做人人爽| 热99久久久久精品小说推荐| 亚洲国产日韩一区二区| 母亲3免费完整高清在线观看| av福利片在线| 亚洲av男天堂| 午夜福利影视在线免费观看| h视频一区二区三区| 中文天堂在线官网| 最新在线观看一区二区三区 | 成人黄色视频免费在线看| 欧美少妇被猛烈插入视频| 热99国产精品久久久久久7| 久久毛片免费看一区二区三区| 免费不卡黄色视频| 国产成人欧美| 午夜日本视频在线| 不卡av一区二区三区| 十八禁网站网址无遮挡| 国产日韩一区二区三区精品不卡| 午夜福利视频在线观看免费| 国产极品粉嫩免费观看在线| 国产成人欧美| 91国产中文字幕| 久久韩国三级中文字幕| 亚洲久久久国产精品| av片东京热男人的天堂| 999精品在线视频| 最近最新中文字幕大全免费视频 | 午夜精品国产一区二区电影| 成人手机av| 亚洲国产精品成人久久小说| 老司机影院毛片| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产精品国产精品| 欧美日韩视频精品一区| 久久久久久免费高清国产稀缺| 久久99一区二区三区| 啦啦啦视频在线资源免费观看| 80岁老熟妇乱子伦牲交| 日本猛色少妇xxxxx猛交久久| 亚洲图色成人| 少妇被粗大猛烈的视频| 美女视频免费永久观看网站| 黄片无遮挡物在线观看| 亚洲熟女毛片儿| 永久免费av网站大全| 亚洲国产欧美网| 不卡视频在线观看欧美| 亚洲精品国产色婷婷电影| 国产日韩欧美在线精品| 日韩精品有码人妻一区| 国产成人欧美| 成人黄色视频免费在线看| 一级a爱视频在线免费观看| 美女脱内裤让男人舔精品视频| 人人澡人人妻人| 男女无遮挡免费网站观看| 亚洲欧洲国产日韩| 欧美 日韩 精品 国产| 午夜日本视频在线| 一边摸一边抽搐一进一出视频| 午夜福利免费观看在线| 在线观看免费高清a一片| 高清视频免费观看一区二区| 中文字幕最新亚洲高清| 日韩精品免费视频一区二区三区| 七月丁香在线播放| 97在线人人人人妻| 99热国产这里只有精品6| 麻豆乱淫一区二区| 国产精品 国内视频| 老司机深夜福利视频在线观看 | 久久久久精品人妻al黑| 天堂8中文在线网| 秋霞伦理黄片| 狂野欧美激情性xxxx| 免费黄网站久久成人精品| 在线观看免费日韩欧美大片| 亚洲熟女毛片儿| 亚洲国产欧美一区二区综合| 中文乱码字字幕精品一区二区三区| 亚洲中文av在线| 人人妻人人添人人爽欧美一区卜| 欧美黑人欧美精品刺激| 亚洲av电影在线观看一区二区三区| 免费少妇av软件| 久久这里只有精品19| 欧美日韩亚洲高清精品| av福利片在线| 悠悠久久av| 一区二区三区精品91| 一级a爱视频在线免费观看| 国产成人精品久久二区二区91 | 19禁男女啪啪无遮挡网站| 国产精品 欧美亚洲| 亚洲伊人色综图| 99精品久久久久人妻精品| 热99国产精品久久久久久7| 亚洲视频免费观看视频| 两性夫妻黄色片| 国产免费视频播放在线视频| 九九爱精品视频在线观看| 免费观看av网站的网址| 色视频在线一区二区三区| 午夜免费观看性视频| 99热网站在线观看| 亚洲国产精品国产精品| 精品久久久久久电影网| 成年av动漫网址| 成人手机av| 建设人人有责人人尽责人人享有的| 1024视频免费在线观看| 国产乱来视频区| 亚洲av国产av综合av卡| 丰满饥渴人妻一区二区三| 日韩av在线免费看完整版不卡| 久久久久网色| 精品福利永久在线观看| 久久久久精品性色| 国产成人精品无人区| 婷婷色综合www| 免费观看人在逋| 亚洲欧美一区二区三区久久| 在线天堂最新版资源| 亚洲精品av麻豆狂野| 成人午夜精彩视频在线观看| av一本久久久久| 赤兔流量卡办理| 国产男人的电影天堂91| 老汉色av国产亚洲站长工具| 欧美成人午夜精品| 老司机亚洲免费影院| 黄色 视频免费看| 亚洲成人av在线免费| 日韩精品有码人妻一区| 国产在视频线精品| 人妻 亚洲 视频| 成人国产麻豆网| 美女国产高潮福利片在线看| 男女之事视频高清在线观看 | av国产精品久久久久影院| 久久精品国产亚洲av涩爱| 精品一区二区三区av网在线观看 | 精品午夜福利在线看| 国产一区有黄有色的免费视频| 亚洲成国产人片在线观看| 久久久国产欧美日韩av| 欧美日韩亚洲国产一区二区在线观看 | 日本欧美视频一区| 国产男女超爽视频在线观看| 久久这里只有精品19| 卡戴珊不雅视频在线播放| 午夜影院在线不卡| 一级片免费观看大全| 搡老乐熟女国产| 久久人人97超碰香蕉20202| 欧美xxⅹ黑人| 午夜福利影视在线免费观看| 欧美在线一区亚洲| 亚洲精品成人av观看孕妇| 欧美日韩成人在线一区二区| 超碰97精品在线观看| 69精品国产乱码久久久| 嫩草影视91久久| 午夜老司机福利片| 午夜福利视频在线观看免费| 国产激情久久老熟女| 午夜免费观看性视频| 亚洲精品国产色婷婷电影| 精品一品国产午夜福利视频| 色婷婷av一区二区三区视频| 青春草国产在线视频| 亚洲成av片中文字幕在线观看| 1024视频免费在线观看| 国产精品一区二区在线不卡| 丝袜在线中文字幕| 岛国毛片在线播放| 国产一区亚洲一区在线观看| 女的被弄到高潮叫床怎么办| 中文字幕人妻丝袜制服| 成人影院久久| 十八禁高潮呻吟视频| 超色免费av| 97人妻天天添夜夜摸| 亚洲一区二区三区欧美精品| 久久久久久免费高清国产稀缺| 69精品国产乱码久久久| 国产亚洲精品第一综合不卡| 少妇的丰满在线观看| 精品一品国产午夜福利视频| 黄片播放在线免费| 国产成人精品在线电影| av国产久精品久网站免费入址| 亚洲精品美女久久久久99蜜臀 | 国产成人欧美| 国产一卡二卡三卡精品 | 日韩av免费高清视频| 超碰97精品在线观看| 最近中文字幕2019免费版| 精品一区二区三区av网在线观看 | 欧美 亚洲 国产 日韩一| 男女床上黄色一级片免费看| 中文欧美无线码| 日本色播在线视频| 午夜福利影视在线免费观看| av在线app专区| 久久99精品国语久久久| 午夜激情av网站| 国产精品.久久久| 成人影院久久| 日韩一区二区视频免费看| 精品酒店卫生间| 精品一区在线观看国产| 99国产精品免费福利视频| 美女福利国产在线| 天堂中文最新版在线下载| 国产黄色视频一区二区在线观看| 国产精品成人在线| 免费黄网站久久成人精品| 成人国语在线视频| 久热这里只有精品99| 亚洲av电影在线观看一区二区三区| www.av在线官网国产| 日韩免费高清中文字幕av| 国产成人精品无人区| 黄网站色视频无遮挡免费观看| 免费在线观看黄色视频的| 午夜福利视频在线观看免费| 国产片内射在线| 在线天堂中文资源库| 人妻人人澡人人爽人人| 男女下面插进去视频免费观看| 青春草国产在线视频| 久久精品久久久久久噜噜老黄| 亚洲成av片中文字幕在线观看| 日日爽夜夜爽网站| 中文字幕另类日韩欧美亚洲嫩草| 一级黄片播放器| 日本色播在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 中国国产av一级| 国产免费现黄频在线看| 亚洲一区中文字幕在线| 国产 一区精品| 丁香六月天网| 在线观看国产h片| 19禁男女啪啪无遮挡网站| 高清欧美精品videossex| 亚洲精品视频女| 999久久久国产精品视频| 久久久久国产一级毛片高清牌| 宅男免费午夜| 欧美日韩国产mv在线观看视频| 男的添女的下面高潮视频| 在线观看www视频免费| 亚洲国产av影院在线观看| 美女午夜性视频免费| 91老司机精品| 中文字幕人妻丝袜制服| 青春草国产在线视频| 亚洲国产av影院在线观看| h视频一区二区三区| 久久青草综合色| 国产有黄有色有爽视频| 国产精品免费视频内射| 亚洲av成人精品一二三区| avwww免费| 亚洲精品久久午夜乱码| 免费观看人在逋| 国产精品国产三级国产专区5o| 又大又黄又爽视频免费| 一区二区日韩欧美中文字幕| 国产av国产精品国产| 亚洲国产精品一区二区三区在线| 欧美亚洲日本最大视频资源| 久久久久视频综合| 亚洲成av片中文字幕在线观看| 国产在视频线精品| 国产精品偷伦视频观看了| 十八禁高潮呻吟视频| 国产片内射在线| 人人妻人人澡人人爽人人夜夜| 亚洲欧美中文字幕日韩二区| av免费观看日本| 国产xxxxx性猛交| 综合色丁香网| 夫妻性生交免费视频一级片| av电影中文网址| 国产成人精品无人区| 久热爱精品视频在线9| 免费高清在线观看视频在线观看| 热re99久久精品国产66热6| 少妇被粗大猛烈的视频| 亚洲av成人不卡在线观看播放网 | 超碰97精品在线观看| 国产熟女午夜一区二区三区| 999久久久国产精品视频| 少妇人妻 视频| 亚洲国产精品国产精品| 成人国产av品久久久| 国产一区二区三区av在线| 国产日韩欧美亚洲二区| 两个人看的免费小视频| 免费观看人在逋| 亚洲成人一二三区av| 中文字幕色久视频| 久久精品国产亚洲av涩爱| 老司机亚洲免费影院| 婷婷色综合大香蕉| 日韩精品免费视频一区二区三区| 91精品国产国语对白视频| 日韩一本色道免费dvd| 国产在线一区二区三区精| 精品一区在线观看国产| 叶爱在线成人免费视频播放| 免费看av在线观看网站| 亚洲av福利一区| 岛国毛片在线播放| 一级a爱视频在线免费观看| 日本wwww免费看| 18禁国产床啪视频网站| 老司机深夜福利视频在线观看 | 婷婷色麻豆天堂久久| 久久精品国产a三级三级三级| 成人影院久久| 中文字幕人妻丝袜制服| 欧美成人精品欧美一级黄| 亚洲国产中文字幕在线视频| 人人妻人人澡人人爽人人夜夜| 韩国av在线不卡| 日日撸夜夜添| 国产成人一区二区在线| 久久久久网色| 亚洲国产av新网站| 免费在线观看完整版高清| 免费日韩欧美在线观看| 欧美日韩一级在线毛片| 久久毛片免费看一区二区三区| 一级毛片我不卡| 男人操女人黄网站| 日韩 欧美 亚洲 中文字幕| 一二三四中文在线观看免费高清| 日韩av不卡免费在线播放| videos熟女内射| 色视频在线一区二区三区| 精品福利永久在线观看| 精品亚洲乱码少妇综合久久| 激情五月婷婷亚洲| 九草在线视频观看| 婷婷色综合www| 激情视频va一区二区三区| 久久99精品国语久久久| 老汉色∧v一级毛片| 性少妇av在线| 一区福利在线观看| 人人妻人人添人人爽欧美一区卜| 亚洲av电影在线进入| 男人爽女人下面视频在线观看| 亚洲一区二区三区欧美精品| 中文字幕制服av| e午夜精品久久久久久久| 久热这里只有精品99| 久久青草综合色| 欧美xxⅹ黑人| 久久久精品区二区三区| 极品人妻少妇av视频| 国产精品香港三级国产av潘金莲 | 青春草亚洲视频在线观看| videosex国产| 久久久久精品性色| av免费观看日本| 欧美精品高潮呻吟av久久| 中国国产av一级| 成人亚洲欧美一区二区av| 九色亚洲精品在线播放| 最黄视频免费看| 巨乳人妻的诱惑在线观看| 黄片播放在线免费|