• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Epidemic threshold influenced by non-pharmaceutical interventions in residential university environments

    2024-02-29 09:20:02ZechaoLu盧澤超ShengmeiZhao趙生妹HuazhongShu束華中andLongYanGong鞏龍延
    Chinese Physics B 2024年2期
    關(guān)鍵詞:華中

    Zechao Lu(盧澤超), Shengmei Zhao(趙生妹), Huazhong Shu(束華中), and Long-Yan Gong(鞏龍延),?

    1Institute of Signal Processing and Transmission,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2College of Science,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    Keywords: epidemic threshold, susceptible–infected–recovered model, non-pharmaceutical interventions,time-varying heterogeneous contact networks

    1.Introduction

    In universities, the student population size is generally large, and students are in intimate contact, so infectious diseases spread more easily.Many research works have proposed models to study COVID-19 spread in such settings.[1–6]For instance,Hekmatiet al.studied the airborne transmission risk associated with holding in-person classes on university campuses.[1]Borowiaket al.used mathematical models to evaluate strategies that suppress the spread of the virus,specifically in dorms and in classrooms.[2]When there is an epidemic outbreak, non-pharmaceutical interventions (NPIs) are effective methods to contain infection and delay spread, and include isolation of ill individuals, quarantine of exposed individuals, face mask usage, nucleic acid testing, cancellation of mass gatherings, and school and workplace closures.[7–12]However,their real-world influence remains uncertain.[13]It is interesting to propose models to give quantitative evaluations in university environments.

    Epidemic threshold may be the important feature in the dynamics of an epidemic, which separates the healthy phase from the infected ones.To characterize it, mean-field compartmental models have been proposed and extensively studied,[14]where individuals belong to susceptible (S), infected (I), recovered (removed) (R), quarantine/isolation (Q),or other disease states (compartments).The population is supposed to be homogeneous mixing, and the evolutions of compartments are described by a group of non-linear differential coupling equations.For the SIR model,[15]the epidemic thresholdλc= 1, whereλ=β/μ.In Ref.[16],βandμare called transition rates for infection and recovery, andλis called the spreading rate or effective infection rate.

    It is known that network structure and human mobility greatly influence the dynamics of an epidemic.[25,26]However,it is a challenge to create models that capture real-world dynamics in complex systems.[17]Traditional math models neglect the heterogeneity in social contact networks.[14,15]Static heterogeneous networks omit human mobility.[18–21]These time-varying heterogeneous contact networks are far away from the real world.[22–24]In recent years, agent based, spatially structured models have attracted a lot of attention,where the discrete nature of individuals, their mobility and stochastic contacts are considered.[6,7,16]Such models can capture the spreading patterns at the level of single individuals.Based on such models, disease spreads in social networks are studied, such as households, schools, workplaces and stores.[7,16]Compared with other social networks, in universities the student population size is generally large,and students regularly have classes, have meals and go to sleep, where they are in intimate contact.So the university environment is a paradigm of temporal contact networks.With Monte–Carlo simulation methods,we will study how disease propagates in universities using the full-scale stochastic agent-based model.[6]In close environments,maintaining physical distancing is an available NPI and is the most often used.We consider NPIs including using larger classrooms, adopting staggered dining hours and/or decreasing the number of students per dorm.The influences on the epidemic thresholds are explored.The underlying mechanisms will provide scientific evidence to control epidemics in universities.

    The remainder of the paper is organized as follows.In Section 2 we introduce the model and related quantities.In Section 3,we present the numerical results.Finally,we summarize and conclude in Section 4.

    2.Model depiction and related quantities

    We simulate the epidemic spread in residential universities with a full-scale stochastic agent-based model.[6]Monte–Carlo simulation methods are used.In models, we trace the movements of all students, which include having classes in classrooms,eating at dinner halls and sleeping in dorms;they randomly choose seats in classes and to have meals.We record everyone’s health status,i.e.,S,IorR,as they attend activities.Every day, the simulation data of the numbers of infected individuals and recovered individuals are collected.Details are as follows.

    2.1.Disease spreading process

    We presume the SIR disease spreading process.[14,16]At every moment, each individual belongs to theS,IorRdisease state(compartment).For then-th individual, this is represented byXn,whereX=S,IorRandn=1,2,...,N.Suppose thatβandμare the transition rates for infection and recovery.[16]For a time interval ?t,with transition probabilityβ?t,a susceptible individual will change to an infected one if he is in contact with infected individuals.The largerβis,the more easily the disease spreads among people.At the same time,infected individuals will recover their health with transition probabilityμ?t.And the recovered individuals will not be infected again.The variations of disease states can be written as

    where them-th individual with stateIis the person in contact with then-th individual.In simulations,after ?t,disease states for all people simultaneously update.

    2.2.Time-varying and heterogeneous contact networks in residential universities

    There are a large number of individuals, including students, faculty, and staff, in campuses.Due to a high studentfaculty ratio at universities, for simplicity we only consider the behaviors of students.[1]Each student is enrolled in a class.Students go to classes according to their class schedules.Schedules are regular for every week.For some courses,students may have joint classes.The members are fixed for each course.We suppose all students have their breakfast, lunch,and supper at dining halls,and at dining tables they may touch students of other classes.Each student is assigned a dorm,and the roommates are fixed.

    Students mainly pack into classrooms, dining halls or dorms.Due to epidemic prevention, they are loosely connected in other zones.As pointed out in Ref.[27], on the weekends, the contact networks in universities are more loosely connected,with fewer users interacting with study participants.At the same time,school administrators advise students to maintain social distancing.So, for simplicity, during these times,except for bedtime in dorms,we omit disease spreading,but individuals can recover.If an individual enters a zone, the individual randomly selects a position and stays there until he/she leaves the zone.[6]Students move from one zone to another ones.For an individual, the people he/she is in contact with and the number of people will vary with time.In this sense, his/her contact networks are time-varying and heterogeneous.

    2.3.Procedure of simulation

    Suppose a residential university hasNcclasses.It has statistical data about the(frequency)distribution of weekly class hoursρwch, the distribution of class sizeρcsand the distribution of the number of joint classesρnjc.It also provides the school’s daily schedule.

    Triple parameters (ηc,ηd,nd) are introduced, which are the seat occupancy rate in classrooms,the seat occupancy rate in dining halls and the number of students per dorm, respectively.They can be taken as averaged values of corresponding quantities.First,they relate to the degree of subnetworks.Second,they quantitatively characterize classroom capacity,staggered dining hours and dorm capacity, which relate to NPIs.So they are important parameters in our models.

    Each classroom and each dining hall are simulated by square lattice networks.If an individual stays at lattice(i,j),the nearest and next nearest lattices (i±1,j), (i,j±1) or(i±1,j±1) may be occupied.He/she is in contact with the individuals who stay at these lattices, and the individuals at other lattices are omitted.Each dorm is simulated by a fully connected network,i.e.,an individual is in contact with all the other members of the dorm.

    The procedure of stochastic simulation is as follows:

    (i) The number of classesNcis set.Class sizes are randomly selected from the distribution of class sizeρcs.Each student is assigned a unique identifier numbern.

    (ii)A class schedule is generated for each class.Weekly class hours are randomly selected from the distributionρwch.For each course, joint classes are randomly selected from the distributionρnjc.Based on the school’s daily schedule, the time for each course is randomly arranged.In a classroom,the number of seatsncseat=[ρcsρnjc/ηc],where[z]denotes the integer ofz.In dining halls,the number of seatsndseat=N/ηd.In classrooms and dining halls, students randomly choose seats.And there arendstudents in each dorm.

    (iii) The recovery rateμand the effective transmission rateλare set.Then the infected rateβ=λμ.

    (iv) Initially, one student is randomly selected from allNstudents and we set his/her disease state asIand all other students’states asS.

    (v)From Monday to Sunday,based on the school’s daily schedule and the class schedules,an individual goes to dining halls,goes to classrooms if he/she has classes,stays at dorms,and so on.

    If an individual stays in one zone for a time interval ?t,a susceptible individual becomes infected at a rateβ?tif he/she is in contact with infected individuals, an infected individual becomes a recovered one at a rateμ?t, and a recovered individual stays recovered [see Eq.(2)].(Disease) states of all individuals are updated in parallel.

    (vi)Repeat the(v)-th step until there are no infected individuals,then simulation for one cycle is completed.

    (vii) Repeat steps (i)–(vi) to apply simulation for other cycles.

    University environments are temporal contact networks,where the prevalence rate of COVID-19 depends on the infected rate, the recovery rate, the contact rate of individuals,and others.In the models, the infected rateβand the recovery rateμare independent variables.Recovery time from a disease depends on ages,overall health and other factors.For COVID-19, research suggests that it could take 2 weeks for someone to get over a mild illness or up to 6 weeks for severe or critical cases.[28]In our studies, to reduce the number of parameters, we fixμ=1/14 day-1and varyβ.At the same time,we define the effective infected rateλ ≡β/μ,[16]so it is a tunable parameter.The largerλis,the larger the probability an individual may be infected.

    In simulations,everyone’s disease state evolves based on Eq.(2).The time interval ?t=45 mins for each class,?t=30 min for each meal, and ?t=8 hours for sleep.In numerical simulations, we transfer all units to minutes.The system works day after day and week after week,until there are no infected individuals.At 22:30 every day,the data of the number of infected individuals and recovered individuals are collected,which will be used to characterize dynamic behaviors of systems.

    2.4.Related quantities

    For SIR models,NS(t)+NI(t)+NR(t) =N, whereNS(t),NI(t)andNR(t)are the number of individuals with stateS,IandR, respectively.Astincreases,NS(t) will decrease,NR(t) will increase, andNIfirst increases to a peak, then decreases to zero.[16]After enough time, there are no infected individuals.The final epidemic size is defined by

    In fact,r∞can play the role of an order parameter to detect healthy-infected phase transitions.[16]In healthy phases,r∞are zeros,or are very small and can be ignored.In infected phases,r∞are finite values.

    The fluctuations of final epidemic sizes are often large near the epidemic threshold.In order to identify the epidemic thresholds in finite system sizes,we also study the variability ofr∞,which is defined by[29–32]

    Here〈z〉is the ensemble average ofz.In physics,it is a standard method to determine the critical point in the equilibrium phase of a magnetic system.[33]It may exhibit a peak atλp.For finite systems, it is used to approximate the epidemic thresholdλc.The validity of the numerical identification method has been confirmed for the SIR model in network models.[31]

    The outbreak durationτis another basic quantity.[16]When a system approaches a critical transition or a tipping point, the system may return more slowly to its stable states under small perturbations,[34]i.e., the critical slowing down phenomenon.It can be used as early warning signals of infectious disease transitions.[35]We use the definition in Ref.[32],which is

    where

    3.Results

    The reality of Nanjing University of Posts and Telecommunications (NJUPT) is used as an example.In Figs.1(a)–1(c), we plot the distribution of weekly class hoursρwch, the distribution of class sizeρcs, and the distribution of the number of joint classesρnjc,respectively.From Fig.1(b),we find that the mean number of students in each class is 31.9.

    Fig.1.(a) The distribution of weekly class hours ρwch, (b) the distribution of class size ρcs,and(c)the distribution of the number of joint classes ρnjc,respectively.

    From Monday to Friday, the school’s daily schedule is as follows: 7:00–7:30 breakfast;8:00–8:45,8:50–9:35,9:50–10:35,10:40–11:25 and 11:30–12:15 are the 1st to 5th classes,respectively; 12:30–13:00 lunch break; 13:45–14:30, 14:35–15:20,15:35–16:20 and 16:25–17:10 are the 6th to 9th classes,respectively;17:30–18:00 supper break;18:30–19:15,19:25–20:10 and 20:20–21:05 are the 10th to 12th classes; 22:30–6:30 sleeping.

    3.1.No interventions

    Based on the resources(the number of classrooms,dining rooms and dorms)of NJUPT and the total number of students in NJUPT,we set(ηc,ηd,nd)=(0.8,0.7,6),which is the baseline scenario,i.e.,the no interventions case.Results are shown in Fig.2.For eachλ, data for 100 cycles of stochastic simulations are given.More simulation cycles give similar results.The vertical blue lines are for the functionλ=0.52.

    In detail, the final epidemic sizer∞versus the effective infected rateλis plotted in Fig.2(a).It shows that data almost overlap for the number of classesNc= 150, 300 and 600, which means such sizes can reflect statistical properties of systems.Whenλis relatively small,r∞is relatively small and approaches zero,which corresponds to the healthy phase.Whenλis relatively large, the values ofr∞are divided into two branches: in the bottom one,r∞is relatively small and approaches zero,[36]and in the top one,r∞is finite and increases withλ, which corresponds to the infected phase.In fact,r∞plays the role of order parameter to detect phase transitions.[16]The epidemic thresholdλcdetermined byr∞should be in the thermodynamic limit.[16]For finite systems, Fig.2(b) shows that the variability?exhibits a peak atλ=0.52, which is used to approximateλc.[29–32]As there are two branches inr∞at relatively largeλ,in calculating?,data forr∞>0.05,i.e.,the top branch ofr∞,are considered.Further,Fig.2(c)shows that the outbreak durationτis maximal nearλ=0.52,which also signals the epidemic threshold.

    Fig.2.(a) The final epidemic size r∞, (b) the variability ?and (c) the outbreak duration τ versus the effective infected rate λ at(ηc,ηd,nd)=(0.8,0.7,6),respectively.The number of classes Nc=150,300 and 600,respectively.The vertical blue lines are for the function λ =0.52.Data for 100 stochastic simulations are given.

    3.2.Non-pharmaceutical interventions

    We set (ηc,ηd,nd) equal to (0.8,0.3,6), (0.8,0.7,3),(0.4,0.7,6) and (0.4,0.3,3), respectively, which are labeled NPI-I,NPI-II,NPI-III and NPI-IV scenarios,respectively.At least one of their components is smaller than that for the baseline scenario[no interventions,(ηc,ηd,nd)=(0.8,0.7,6)].In practice,the methods of small class teaching(or being designated a larger classroom),staggered dining hours,and renting social housing can realize the required conditions.

    For the four NPI scenarios,we plot the final epidemic sizer∞versus the effective infected rateλin Fig.3.The number of classesNc=300 is used as an example.For each scenario,there exists an epidemic thresholdλcseparating the healthy phase from the infected phase, which is labeled by a vertical blue line.The correspondingλccan be numerically estimated from Figs.4 and 5, at which the variability?and the outbreak durationτexhibit peak values.In calculating?, data forr∞>0.05 are taken into consideration.

    Eqnarray (1) gives the theoretical prediction ofλcfor static uncorrelated networks.[20,21]As the underlying networks we study are time-varying heterogeneous contact ones,inspired by Eq.(1)we define

    Fig.3.The final epidemic size r∞as a function of the effective infected rate λ for (ηc,ηd,nd) equal (a) (0.8,0.3,6), (b) (0.8,0.7,3), (c)(0.4,0.7,6) and (d) (0.4,0.3,3), respectively.The number of classes Nc =300.The vertical lines are for some values of λ.Data for 100 stochastic simulations are given.

    Fig.4.The same as Fig.3, but the variability ?as a function of the effective infected rate λ.

    Fig.5.The same as Fig.3, but the outbreak duration τ as a function of the effective infected rate λ.

    wherekis the degree of nodes and〈···〉tdenotes the time mean of the corresponding quantities.At the healthy-infected phase transition point,

    In our model,students have much leisure time and during these times individuals can recover but not be infected.SoWis the ratio of the time spent having classes,having dinner and sleeping in dorms to all time.On the other hand,atβ/μ>1,i.e.,infected rateβis greater than recovery rateμ,due to the heterogeneity and randomness in social contact networks,a finite value ofr∞may occasionally occur.Combining the two aspects,the epidemic threshold can be approximately evaluated by

    3.3.Comparing no interventions with non-pharmaceutical interventions

    Table 1 gives the epidemic thresholdsλ*cobtained from Eq.(8)and the epidemic thresholdsλcnumerically estimated by the peaks of the variability?(the outbreak durationτ).At the same time,to illustrate visually differences between them,we also plot the bar graph forλ*candλcin Fig.6.From them,we find NPIs can raise epidemic thresholds.In the NPI-III scenario,larger classrooms are used.Compared with the NPII and NPI-II scenarios,λ*c(λc)is relatively large in the NPI-III scenario,so its effect on containing infection is relatively obvious.The reason is that classrooms are the main places that students stay and contagious disease spreads.Combination of interventions is the NPI-IV scenario and the corresponding effect is most significant.

    Table 1.Table outlining the values of λ*c and λc.

    For all scenarios, including no interventions and NPIs,the final epidemic sizesr∞are plotted together in Fig.7(a).The mean〈r∞〉 are also shown in Fig.7(b), where data forr∞>0.05 are taken into consideration.To give quantitative comparisons,we define the ratio

    We plot the corresponding ratioKin Fig.7(c).This shows that at relatively smallλ,the effect of countermeasures is more obvious.All NPIs can reduce the outbreak size.For the combination of interventions,i.e.,(ηc,ηd,nd)=(0.4,0.3,3),K=7.8%atλ=1 andK=84.9%atλ=2,which has the most significant effect in reducing the outbreak size.

    Fig.6.The bar graph for λ*c and λc, where N denotes the baseline scenario,and I–IV denote the NPI-I–IV scenarios.

    Fig.7.(a) The final epidemic size r∞, (b) the mean 〈r∞〉, and (c)the ratio K versus the effective infected rate λ, respectively, where(ηc,ηd,nd)equals(0.8,0.7,6),(0.8,0.3,6),(0.8,0.7,3),(0.4,0.7,6)and(0.4,0.3,3).The number of classes Nc =300.Data for 100 stochastic simulations are given.

    4.Conclusion

    The university is a typical social community.To quantitatively evaluate the effect of NPIs on containing infection,an agent-based SIR model with time-varying heterogeneous contact networks is proposed.The seat occupancy rate in classrooms,the seat occupancy rate in dining halls and the number of students per dorm are important parameters to characterize NPIs.We obtain epidemic thresholds for scenarios including no interventions and four kinds of NPIs.We make quantitative comparisons.We find the NPI of using larger classrooms plays an important role in raising the epidemic threshold and reducing the outbreak size.In fact, it can also be realized by reducing the number of students in a classroom,i.e.,dividing a class into several small classes.The effect of combination of interventions is most significant.All these studies provide scientific evidence to support the use of NPIs in campuses.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant No.61871234).

    猜你喜歡
    華中
    華中要塞:義陽(yáng)三關(guān)
    華中建筑2021年總目錄
    華中建筑(2021年12期)2022-01-17 02:08:42
    新四軍華中抗戰(zhàn)
    Effects of Nb and Mo additions on thermal behavior,microstructure and magnetic property of FeCoZrBGe alloy?
    明年或激增40%?華中3萬(wàn)多噸加州鱸市場(chǎng)誰(shuí)能笑到最后?
    飼料廠近半數(shù)膨化線都來(lái)自這家公司,如今他將引領(lǐng)華中膨化料大轉(zhuǎn)型
    基于華中HNC-818AT數(shù)控系統(tǒng)的數(shù)控車(chē)床升級(jí)改造
    上下同欲者勝 風(fēng)雨同舟者興——記武漢華中數(shù)控股份有限公司
    《華中學(xué)術(shù)》來(lái)稿注意事項(xiàng)
    基于華中數(shù)控的PKC-1000P2磁流變拋光機(jī)床控制系統(tǒng)設(shè)計(jì)與開(kāi)發(fā)
    热re99久久国产66热| 一级a爱视频在线免费观看| cao死你这个sao货| АⅤ资源中文在线天堂| av中文乱码字幕在线| 精品国产超薄肉色丝袜足j| 午夜日韩欧美国产| 少妇的丰满在线观看| 99在线视频只有这里精品首页| 大香蕉久久成人网| 国产精华一区二区三区| 黑丝袜美女国产一区| 久久精品国产清高在天天线| 91精品三级在线观看| 黄色视频不卡| 19禁男女啪啪无遮挡网站| 一个人免费在线观看的高清视频| 精品免费久久久久久久清纯| 亚洲av电影在线进入| 精品国产乱码久久久久久男人| 亚洲熟妇中文字幕五十中出| 国产精品一区二区三区四区久久 | 亚洲最大成人中文| 超碰成人久久| 丰满人妻熟妇乱又伦精品不卡| 一区在线观看完整版| 制服丝袜大香蕉在线| 在线天堂中文资源库| 午夜免费成人在线视频| 久久国产精品影院| 两个人看的免费小视频| xxx96com| 成人亚洲精品av一区二区| 波多野结衣一区麻豆| 亚洲国产欧美一区二区综合| 久久精品人人爽人人爽视色| 18禁观看日本| 亚洲中文字幕一区二区三区有码在线看 | 制服丝袜大香蕉在线| 亚洲av日韩精品久久久久久密| 这个男人来自地球电影免费观看| 久99久视频精品免费| 精品久久久久久成人av| 久久青草综合色| 欧美精品啪啪一区二区三区| 亚洲成人久久性| 国产私拍福利视频在线观看| 国产精品自产拍在线观看55亚洲| 婷婷丁香在线五月| 人人妻,人人澡人人爽秒播| 美女国产高潮福利片在线看| 免费不卡黄色视频| 可以免费在线观看a视频的电影网站| 麻豆国产av国片精品| 在线免费观看的www视频| 午夜福利免费观看在线| 一级片免费观看大全| 亚洲成a人片在线一区二区| 亚洲在线自拍视频| 欧美日韩精品网址| 欧美成人午夜精品| 伊人久久大香线蕉亚洲五| 欧美av亚洲av综合av国产av| 国产野战对白在线观看| 99在线人妻在线中文字幕| 老司机靠b影院| 女同久久另类99精品国产91| 亚洲av五月六月丁香网| 欧美最黄视频在线播放免费| 无人区码免费观看不卡| 波多野结衣一区麻豆| 一边摸一边抽搐一进一小说| 俄罗斯特黄特色一大片| 一级a爱视频在线免费观看| www日本在线高清视频| 波多野结衣巨乳人妻| 国产精品乱码一区二三区的特点 | 在线观看舔阴道视频| 免费久久久久久久精品成人欧美视频| 久久久国产成人免费| 黄频高清免费视频| 国产精品免费一区二区三区在线| 国产一卡二卡三卡精品| 久久亚洲精品不卡| 精品一品国产午夜福利视频| 91字幕亚洲| av在线播放免费不卡| 好男人电影高清在线观看| 老熟妇仑乱视频hdxx| 亚洲电影在线观看av| 欧美国产精品va在线观看不卡| 50天的宝宝边吃奶边哭怎么回事| 亚洲免费av在线视频| 可以在线观看的亚洲视频| 欧美日韩一级在线毛片| 母亲3免费完整高清在线观看| 青草久久国产| 国产欧美日韩一区二区精品| 一进一出抽搐动态| 亚洲一区高清亚洲精品| 熟女少妇亚洲综合色aaa.| 亚洲国产精品久久男人天堂| 国产麻豆69| 一级片免费观看大全| 18禁美女被吸乳视频| 亚洲aⅴ乱码一区二区在线播放 | 身体一侧抽搐| 黄网站色视频无遮挡免费观看| 午夜视频精品福利| 精品久久久久久久人妻蜜臀av | 女同久久另类99精品国产91| 咕卡用的链子| 中文字幕高清在线视频| 久久影院123| 午夜免费鲁丝| 久久国产精品人妻蜜桃| 欧美大码av| 一级毛片女人18水好多| 中文字幕最新亚洲高清| 久久伊人香网站| www.精华液| www.精华液| 精品第一国产精品| 女警被强在线播放| 欧美色视频一区免费| 如日韩欧美国产精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 亚洲精品中文字幕一二三四区| 叶爱在线成人免费视频播放| 精品久久久久久久毛片微露脸| 亚洲熟女毛片儿| 午夜福利高清视频| 日韩精品青青久久久久久| 日本免费一区二区三区高清不卡 | 午夜免费激情av| 好男人在线观看高清免费视频 | 欧美另类亚洲清纯唯美| 国产亚洲精品综合一区在线观看 | 欧美日本亚洲视频在线播放| 人人妻人人澡欧美一区二区 | 久久久国产成人免费| 成人手机av| 亚洲成av片中文字幕在线观看| 91麻豆精品激情在线观看国产| 欧美老熟妇乱子伦牲交| 亚洲精品美女久久久久99蜜臀| 亚洲av成人不卡在线观看播放网| 一区二区日韩欧美中文字幕| 亚洲熟妇中文字幕五十中出| 亚洲激情在线av| 黄片小视频在线播放| 99国产精品免费福利视频| 一夜夜www| 亚洲成av片中文字幕在线观看| 国产精品av久久久久免费| 亚洲中文av在线| 国产精品精品国产色婷婷| 制服丝袜大香蕉在线| 97超级碰碰碰精品色视频在线观看| 一本综合久久免费| 国产野战对白在线观看| 亚洲人成77777在线视频| 精品欧美国产一区二区三| 亚洲av电影不卡..在线观看| 人妻丰满熟妇av一区二区三区| 熟妇人妻久久中文字幕3abv| 一进一出抽搐gif免费好疼| 国产主播在线观看一区二区| 国产三级黄色录像| 久久久国产精品麻豆| 99国产综合亚洲精品| 99riav亚洲国产免费| 欧美色视频一区免费| 99香蕉大伊视频| 日本一区二区免费在线视频| av片东京热男人的天堂| 欧美另类亚洲清纯唯美| 国产av一区在线观看免费| 日韩大尺度精品在线看网址 | 巨乳人妻的诱惑在线观看| 国产精品久久久人人做人人爽| 一二三四社区在线视频社区8| 欧美激情极品国产一区二区三区| 国产av又大| 黄色毛片三级朝国网站| 亚洲专区中文字幕在线| 男女午夜视频在线观看| 免费看美女性在线毛片视频| 国产极品粉嫩免费观看在线| 日日摸夜夜添夜夜添小说| 动漫黄色视频在线观看| 99精品欧美一区二区三区四区| 搡老妇女老女人老熟妇| 亚洲精华国产精华精| 国产精品久久电影中文字幕| www日本在线高清视频| 美女免费视频网站| 十八禁网站免费在线| 亚洲精华国产精华精| √禁漫天堂资源中文www| 一本大道久久a久久精品| av中文乱码字幕在线| 99国产精品免费福利视频| 少妇裸体淫交视频免费看高清 | 可以在线观看毛片的网站| 亚洲欧美日韩另类电影网站| 久久久久亚洲av毛片大全| 午夜亚洲福利在线播放| 国产精品久久电影中文字幕| 国产精品亚洲一级av第二区| 久热这里只有精品99| 在线观看免费日韩欧美大片| 多毛熟女@视频| 在线十欧美十亚洲十日本专区| 亚洲自拍偷在线| 日韩欧美一区二区三区在线观看| 亚洲国产精品成人综合色| 国产97色在线日韩免费| 亚洲av成人一区二区三| 亚洲伊人色综图| 18禁国产床啪视频网站| 亚洲精品粉嫩美女一区| 国产精品自产拍在线观看55亚洲| 这个男人来自地球电影免费观看| 亚洲国产精品久久男人天堂| 日日爽夜夜爽网站| av电影中文网址| 亚洲精品中文字幕在线视频| 久久亚洲精品不卡| 一个人免费在线观看的高清视频| 母亲3免费完整高清在线观看| 久久久久久久午夜电影| 一本久久中文字幕| 国产亚洲欧美精品永久| 色综合婷婷激情| 亚洲最大成人中文| 一a级毛片在线观看| 黄频高清免费视频| 成人手机av| 黄色a级毛片大全视频| 97人妻天天添夜夜摸| 美女午夜性视频免费| av视频在线观看入口| 麻豆国产av国片精品| 成人18禁在线播放| 又黄又粗又硬又大视频| ponron亚洲| 亚洲第一青青草原| 免费观看人在逋| 精品久久久久久成人av| 伦理电影免费视频| 亚洲一区中文字幕在线| 久久欧美精品欧美久久欧美| 国产伦人伦偷精品视频| 国产精品 欧美亚洲| 国产精品乱码一区二三区的特点 | 变态另类丝袜制服| 母亲3免费完整高清在线观看| www.熟女人妻精品国产| 国产一级毛片七仙女欲春2 | 18禁裸乳无遮挡免费网站照片 | 国产成人精品在线电影| 丝袜人妻中文字幕| 热re99久久国产66热| 午夜两性在线视频| avwww免费| 在线观看午夜福利视频| 成人三级做爰电影| 法律面前人人平等表现在哪些方面| 欧美日本视频| 天天一区二区日本电影三级 | 国产一区二区三区在线臀色熟女| 给我免费播放毛片高清在线观看| 99久久国产精品久久久| svipshipincom国产片| 欧美一区二区精品小视频在线| 亚洲欧美日韩无卡精品| 欧美激情高清一区二区三区| 日韩有码中文字幕| 看片在线看免费视频| 热re99久久国产66热| 午夜精品国产一区二区电影| 日韩成人在线观看一区二区三区| 丰满的人妻完整版| 99国产精品免费福利视频| 午夜福利视频1000在线观看 | 亚洲第一av免费看| 欧美日韩乱码在线| 男人操女人黄网站| 欧美大码av| 亚洲精品中文字幕在线视频| 男女床上黄色一级片免费看| 国产成人精品久久二区二区91| 成年人黄色毛片网站| 黄色丝袜av网址大全| 每晚都被弄得嗷嗷叫到高潮| 极品教师在线免费播放| 日本在线视频免费播放| 午夜视频精品福利| 亚洲欧美一区二区三区黑人| 九色国产91popny在线| 久久久久亚洲av毛片大全| 国产精品久久久久久人妻精品电影| 我的亚洲天堂| 免费看a级黄色片| 免费女性裸体啪啪无遮挡网站| svipshipincom国产片| ponron亚洲| 国产精品久久久久久人妻精品电影| 亚洲色图综合在线观看| 自线自在国产av| 欧美激情高清一区二区三区| 久久伊人香网站| 亚洲成人久久性| 啪啪无遮挡十八禁网站| 国产aⅴ精品一区二区三区波| 波多野结衣高清无吗| 亚洲第一av免费看| 脱女人内裤的视频| 999久久久精品免费观看国产| 精品乱码久久久久久99久播| 国产成人精品在线电影| 亚洲av电影不卡..在线观看| 免费无遮挡裸体视频| 欧美午夜高清在线| 99精品久久久久人妻精品| 怎么达到女性高潮| 亚洲国产毛片av蜜桃av| 国产精品久久视频播放| 精品久久久久久久人妻蜜臀av | 午夜免费成人在线视频| 亚洲精品一区av在线观看| 视频在线观看一区二区三区| 国产1区2区3区精品| 美女免费视频网站| 国产成人精品无人区| 色综合欧美亚洲国产小说| 一区二区三区国产精品乱码| 老司机靠b影院| 日韩欧美三级三区| 日本一区二区免费在线视频| 欧美日本视频| 无遮挡黄片免费观看| 变态另类丝袜制服| 精品欧美国产一区二区三| 9色porny在线观看| 亚洲欧美日韩无卡精品| 欧美日韩乱码在线| 制服人妻中文乱码| 亚洲一区中文字幕在线| 国产精品精品国产色婷婷| 午夜久久久久精精品| 久久 成人 亚洲| 亚洲少妇的诱惑av| 久久人妻福利社区极品人妻图片| 免费久久久久久久精品成人欧美视频| 在线观看舔阴道视频| 国产又爽黄色视频| 1024视频免费在线观看| 欧美性长视频在线观看| 亚洲第一青青草原| 十分钟在线观看高清视频www| 久久久久国产精品人妻aⅴ院| 99re在线观看精品视频| 麻豆av在线久日| 国产亚洲精品av在线| 国产单亲对白刺激| a在线观看视频网站| 黑人操中国人逼视频| 久久国产精品男人的天堂亚洲| 亚洲色图 男人天堂 中文字幕| 老司机在亚洲福利影院| 国产精品久久久人人做人人爽| 久9热在线精品视频| 欧美绝顶高潮抽搐喷水| 亚洲第一av免费看| 99国产精品一区二区蜜桃av| 99久久精品国产亚洲精品| 欧美黑人欧美精品刺激| 俄罗斯特黄特色一大片| 九色国产91popny在线| 国产激情欧美一区二区| 97人妻天天添夜夜摸| 村上凉子中文字幕在线| 青草久久国产| 在线十欧美十亚洲十日本专区| 动漫黄色视频在线观看| 亚洲午夜精品一区,二区,三区| 宅男免费午夜| 黄色片一级片一级黄色片| 欧美乱色亚洲激情| 国产一区二区三区在线臀色熟女| 看免费av毛片| 欧美在线黄色| 久久香蕉激情| 美国免费a级毛片| 99热只有精品国产| 首页视频小说图片口味搜索| 老熟妇乱子伦视频在线观看| 欧美日韩瑟瑟在线播放| 九色亚洲精品在线播放| 亚洲久久久国产精品| 女人精品久久久久毛片| svipshipincom国产片| 成人国产一区最新在线观看| 久久人妻熟女aⅴ| www.精华液| 亚洲中文字幕日韩| 国产精品精品国产色婷婷| 国产人伦9x9x在线观看| 亚洲少妇的诱惑av| 久久香蕉激情| 香蕉国产在线看| 可以免费在线观看a视频的电影网站| 欧美日韩瑟瑟在线播放| av有码第一页| 久久午夜综合久久蜜桃| 乱人伦中国视频| 一区在线观看完整版| 欧美日韩黄片免| 国产精品免费一区二区三区在线| av片东京热男人的天堂| 夜夜看夜夜爽夜夜摸| 欧美日韩亚洲综合一区二区三区_| av片东京热男人的天堂| 成人特级黄色片久久久久久久| 变态另类丝袜制服| 久久精品国产亚洲av高清一级| 国内久久婷婷六月综合欲色啪| 日韩成人在线观看一区二区三区| 如日韩欧美国产精品一区二区三区| 色婷婷久久久亚洲欧美| 日韩三级视频一区二区三区| 午夜成年电影在线免费观看| 日韩 欧美 亚洲 中文字幕| 欧美色视频一区免费| 精品少妇一区二区三区视频日本电影| 欧美日韩亚洲综合一区二区三区_| 欧美一级a爱片免费观看看 | 婷婷精品国产亚洲av在线| АⅤ资源中文在线天堂| 91麻豆av在线| 欧美+亚洲+日韩+国产| 黄频高清免费视频| 久久影院123| 欧美在线黄色| 久久精品91无色码中文字幕| 亚洲在线自拍视频| 亚洲自拍偷在线| 午夜免费激情av| 国产免费男女视频| 久久久久久国产a免费观看| 9色porny在线观看| 男女做爰动态图高潮gif福利片 | 老汉色av国产亚洲站长工具| 亚洲在线自拍视频| 妹子高潮喷水视频| 18禁美女被吸乳视频| netflix在线观看网站| 欧美黄色片欧美黄色片| 国产激情久久老熟女| 免费看a级黄色片| 久久这里只有精品19| 国产一级毛片七仙女欲春2 | 美女高潮到喷水免费观看| 日韩欧美在线二视频| 国产真人三级小视频在线观看| 高清在线国产一区| 美女高潮到喷水免费观看| 中文字幕精品免费在线观看视频| 亚洲精品久久国产高清桃花| 麻豆成人av在线观看| 亚洲国产精品成人综合色| 国产精品免费视频内射| 欧美日韩福利视频一区二区| 老熟妇仑乱视频hdxx| tocl精华| 99久久久亚洲精品蜜臀av| 夜夜夜夜夜久久久久| 久热这里只有精品99| 精品国内亚洲2022精品成人| 日本免费a在线| 欧美精品亚洲一区二区| 在线观看日韩欧美| 国产成人系列免费观看| xxx96com| 久久中文字幕人妻熟女| 女同久久另类99精品国产91| 一级作爱视频免费观看| 精品久久久久久,| 久久久久精品国产欧美久久久| 十八禁网站免费在线| 香蕉久久夜色| 十八禁人妻一区二区| 日本免费一区二区三区高清不卡 | 欧美激情 高清一区二区三区| 久久 成人 亚洲| av视频在线观看入口| 99久久99久久久精品蜜桃| 少妇裸体淫交视频免费看高清 | 国产精品永久免费网站| 久久久久久国产a免费观看| 少妇熟女aⅴ在线视频| 嫁个100分男人电影在线观看| 纯流量卡能插随身wifi吗| 十分钟在线观看高清视频www| 国产欧美日韩一区二区三| 91精品国产国语对白视频| 久久精品国产清高在天天线| 九色国产91popny在线| 中文字幕人妻丝袜一区二区| 久久久久久久久免费视频了| 91精品三级在线观看| 啦啦啦韩国在线观看视频| 国产一区二区三区综合在线观看| 级片在线观看| 久久精品aⅴ一区二区三区四区| 中出人妻视频一区二区| 亚洲精品在线观看二区| 国产亚洲av嫩草精品影院| 老司机在亚洲福利影院| 一级,二级,三级黄色视频| 搞女人的毛片| 大陆偷拍与自拍| 亚洲欧美日韩高清在线视频| 日本 av在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人精品中文字幕电影| 日本一区二区免费在线视频| 午夜两性在线视频| 69av精品久久久久久| 在线十欧美十亚洲十日本专区| 精品免费久久久久久久清纯| 两性午夜刺激爽爽歪歪视频在线观看 | 国产91精品成人一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 在线永久观看黄色视频| 亚洲第一电影网av| 精品人妻在线不人妻| www.精华液| 免费av毛片视频| 级片在线观看| 人人妻人人爽人人添夜夜欢视频| 国产日韩一区二区三区精品不卡| 88av欧美| 精品国产乱子伦一区二区三区| 长腿黑丝高跟| 精品卡一卡二卡四卡免费| 少妇裸体淫交视频免费看高清 | 欧美成人性av电影在线观看| 精品福利观看| 久久人妻福利社区极品人妻图片| 激情在线观看视频在线高清| 国产精品久久久久久人妻精品电影| 亚洲人成网站在线播放欧美日韩| a在线观看视频网站| 精品国产超薄肉色丝袜足j| 可以在线观看的亚洲视频| 亚洲精品在线观看二区| 在线av久久热| av在线播放免费不卡| 一区二区三区高清视频在线| 国产区一区二久久| 日本欧美视频一区| 黄色丝袜av网址大全| 亚洲成av片中文字幕在线观看| 我的亚洲天堂| videosex国产| 一本大道久久a久久精品| 男女下面插进去视频免费观看| 亚洲欧美精品综合一区二区三区| 91国产中文字幕| 久久人人97超碰香蕉20202| 精品一区二区三区四区五区乱码| 久久中文字幕人妻熟女| 午夜精品在线福利| 女人被躁到高潮嗷嗷叫费观| 午夜精品久久久久久毛片777| 91成人精品电影| 成人18禁在线播放| 亚洲成av片中文字幕在线观看| 色综合婷婷激情| 亚洲av成人不卡在线观看播放网| 视频在线观看一区二区三区| 欧美精品啪啪一区二区三区| 给我免费播放毛片高清在线观看| 午夜免费成人在线视频| 国内久久婷婷六月综合欲色啪| 久久久水蜜桃国产精品网| 中文字幕精品免费在线观看视频| 一级,二级,三级黄色视频| 亚洲国产欧美日韩在线播放| 最新在线观看一区二区三区| 在线永久观看黄色视频| 可以在线观看毛片的网站| 亚洲av电影在线进入| 少妇熟女aⅴ在线视频| 欧美成人一区二区免费高清观看 | 日本vs欧美在线观看视频| 亚洲一区二区三区色噜噜| 性少妇av在线| 午夜a级毛片| 久久青草综合色| 免费女性裸体啪啪无遮挡网站| 黄色成人免费大全| 国产欧美日韩一区二区精品| 久久欧美精品欧美久久欧美| 婷婷丁香在线五月| 欧美激情 高清一区二区三区| 欧美日本视频| 1024视频免费在线观看| 男人舔女人的私密视频| 91麻豆av在线| 99在线人妻在线中文字幕| 中文字幕精品免费在线观看视频|