• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Epidemic threshold influenced by non-pharmaceutical interventions in residential university environments

    2024-02-29 09:20:02ZechaoLu盧澤超ShengmeiZhao趙生妹HuazhongShu束華中andLongYanGong鞏龍延
    Chinese Physics B 2024年2期
    關(guān)鍵詞:華中

    Zechao Lu(盧澤超), Shengmei Zhao(趙生妹), Huazhong Shu(束華中), and Long-Yan Gong(鞏龍延),?

    1Institute of Signal Processing and Transmission,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2College of Science,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    Keywords: epidemic threshold, susceptible–infected–recovered model, non-pharmaceutical interventions,time-varying heterogeneous contact networks

    1.Introduction

    In universities, the student population size is generally large, and students are in intimate contact, so infectious diseases spread more easily.Many research works have proposed models to study COVID-19 spread in such settings.[1–6]For instance,Hekmatiet al.studied the airborne transmission risk associated with holding in-person classes on university campuses.[1]Borowiaket al.used mathematical models to evaluate strategies that suppress the spread of the virus,specifically in dorms and in classrooms.[2]When there is an epidemic outbreak, non-pharmaceutical interventions (NPIs) are effective methods to contain infection and delay spread, and include isolation of ill individuals, quarantine of exposed individuals, face mask usage, nucleic acid testing, cancellation of mass gatherings, and school and workplace closures.[7–12]However,their real-world influence remains uncertain.[13]It is interesting to propose models to give quantitative evaluations in university environments.

    Epidemic threshold may be the important feature in the dynamics of an epidemic, which separates the healthy phase from the infected ones.To characterize it, mean-field compartmental models have been proposed and extensively studied,[14]where individuals belong to susceptible (S), infected (I), recovered (removed) (R), quarantine/isolation (Q),or other disease states (compartments).The population is supposed to be homogeneous mixing, and the evolutions of compartments are described by a group of non-linear differential coupling equations.For the SIR model,[15]the epidemic thresholdλc= 1, whereλ=β/μ.In Ref.[16],βandμare called transition rates for infection and recovery, andλis called the spreading rate or effective infection rate.

    It is known that network structure and human mobility greatly influence the dynamics of an epidemic.[25,26]However,it is a challenge to create models that capture real-world dynamics in complex systems.[17]Traditional math models neglect the heterogeneity in social contact networks.[14,15]Static heterogeneous networks omit human mobility.[18–21]These time-varying heterogeneous contact networks are far away from the real world.[22–24]In recent years, agent based, spatially structured models have attracted a lot of attention,where the discrete nature of individuals, their mobility and stochastic contacts are considered.[6,7,16]Such models can capture the spreading patterns at the level of single individuals.Based on such models, disease spreads in social networks are studied, such as households, schools, workplaces and stores.[7,16]Compared with other social networks, in universities the student population size is generally large,and students regularly have classes, have meals and go to sleep, where they are in intimate contact.So the university environment is a paradigm of temporal contact networks.With Monte–Carlo simulation methods,we will study how disease propagates in universities using the full-scale stochastic agent-based model.[6]In close environments,maintaining physical distancing is an available NPI and is the most often used.We consider NPIs including using larger classrooms, adopting staggered dining hours and/or decreasing the number of students per dorm.The influences on the epidemic thresholds are explored.The underlying mechanisms will provide scientific evidence to control epidemics in universities.

    The remainder of the paper is organized as follows.In Section 2 we introduce the model and related quantities.In Section 3,we present the numerical results.Finally,we summarize and conclude in Section 4.

    2.Model depiction and related quantities

    We simulate the epidemic spread in residential universities with a full-scale stochastic agent-based model.[6]Monte–Carlo simulation methods are used.In models, we trace the movements of all students, which include having classes in classrooms,eating at dinner halls and sleeping in dorms;they randomly choose seats in classes and to have meals.We record everyone’s health status,i.e.,S,IorR,as they attend activities.Every day, the simulation data of the numbers of infected individuals and recovered individuals are collected.Details are as follows.

    2.1.Disease spreading process

    We presume the SIR disease spreading process.[14,16]At every moment, each individual belongs to theS,IorRdisease state(compartment).For then-th individual, this is represented byXn,whereX=S,IorRandn=1,2,...,N.Suppose thatβandμare the transition rates for infection and recovery.[16]For a time interval ?t,with transition probabilityβ?t,a susceptible individual will change to an infected one if he is in contact with infected individuals.The largerβis,the more easily the disease spreads among people.At the same time,infected individuals will recover their health with transition probabilityμ?t.And the recovered individuals will not be infected again.The variations of disease states can be written as

    where them-th individual with stateIis the person in contact with then-th individual.In simulations,after ?t,disease states for all people simultaneously update.

    2.2.Time-varying and heterogeneous contact networks in residential universities

    There are a large number of individuals, including students, faculty, and staff, in campuses.Due to a high studentfaculty ratio at universities, for simplicity we only consider the behaviors of students.[1]Each student is enrolled in a class.Students go to classes according to their class schedules.Schedules are regular for every week.For some courses,students may have joint classes.The members are fixed for each course.We suppose all students have their breakfast, lunch,and supper at dining halls,and at dining tables they may touch students of other classes.Each student is assigned a dorm,and the roommates are fixed.

    Students mainly pack into classrooms, dining halls or dorms.Due to epidemic prevention, they are loosely connected in other zones.As pointed out in Ref.[27], on the weekends, the contact networks in universities are more loosely connected,with fewer users interacting with study participants.At the same time,school administrators advise students to maintain social distancing.So, for simplicity, during these times,except for bedtime in dorms,we omit disease spreading,but individuals can recover.If an individual enters a zone, the individual randomly selects a position and stays there until he/she leaves the zone.[6]Students move from one zone to another ones.For an individual, the people he/she is in contact with and the number of people will vary with time.In this sense, his/her contact networks are time-varying and heterogeneous.

    2.3.Procedure of simulation

    Suppose a residential university hasNcclasses.It has statistical data about the(frequency)distribution of weekly class hoursρwch, the distribution of class sizeρcsand the distribution of the number of joint classesρnjc.It also provides the school’s daily schedule.

    Triple parameters (ηc,ηd,nd) are introduced, which are the seat occupancy rate in classrooms,the seat occupancy rate in dining halls and the number of students per dorm, respectively.They can be taken as averaged values of corresponding quantities.First,they relate to the degree of subnetworks.Second,they quantitatively characterize classroom capacity,staggered dining hours and dorm capacity, which relate to NPIs.So they are important parameters in our models.

    Each classroom and each dining hall are simulated by square lattice networks.If an individual stays at lattice(i,j),the nearest and next nearest lattices (i±1,j), (i,j±1) or(i±1,j±1) may be occupied.He/she is in contact with the individuals who stay at these lattices, and the individuals at other lattices are omitted.Each dorm is simulated by a fully connected network,i.e.,an individual is in contact with all the other members of the dorm.

    The procedure of stochastic simulation is as follows:

    (i) The number of classesNcis set.Class sizes are randomly selected from the distribution of class sizeρcs.Each student is assigned a unique identifier numbern.

    (ii)A class schedule is generated for each class.Weekly class hours are randomly selected from the distributionρwch.For each course, joint classes are randomly selected from the distributionρnjc.Based on the school’s daily schedule, the time for each course is randomly arranged.In a classroom,the number of seatsncseat=[ρcsρnjc/ηc],where[z]denotes the integer ofz.In dining halls,the number of seatsndseat=N/ηd.In classrooms and dining halls, students randomly choose seats.And there arendstudents in each dorm.

    (iii) The recovery rateμand the effective transmission rateλare set.Then the infected rateβ=λμ.

    (iv) Initially, one student is randomly selected from allNstudents and we set his/her disease state asIand all other students’states asS.

    (v)From Monday to Sunday,based on the school’s daily schedule and the class schedules,an individual goes to dining halls,goes to classrooms if he/she has classes,stays at dorms,and so on.

    If an individual stays in one zone for a time interval ?t,a susceptible individual becomes infected at a rateβ?tif he/she is in contact with infected individuals, an infected individual becomes a recovered one at a rateμ?t, and a recovered individual stays recovered [see Eq.(2)].(Disease) states of all individuals are updated in parallel.

    (vi)Repeat the(v)-th step until there are no infected individuals,then simulation for one cycle is completed.

    (vii) Repeat steps (i)–(vi) to apply simulation for other cycles.

    University environments are temporal contact networks,where the prevalence rate of COVID-19 depends on the infected rate, the recovery rate, the contact rate of individuals,and others.In the models, the infected rateβand the recovery rateμare independent variables.Recovery time from a disease depends on ages,overall health and other factors.For COVID-19, research suggests that it could take 2 weeks for someone to get over a mild illness or up to 6 weeks for severe or critical cases.[28]In our studies, to reduce the number of parameters, we fixμ=1/14 day-1and varyβ.At the same time,we define the effective infected rateλ ≡β/μ,[16]so it is a tunable parameter.The largerλis,the larger the probability an individual may be infected.

    In simulations,everyone’s disease state evolves based on Eq.(2).The time interval ?t=45 mins for each class,?t=30 min for each meal, and ?t=8 hours for sleep.In numerical simulations, we transfer all units to minutes.The system works day after day and week after week,until there are no infected individuals.At 22:30 every day,the data of the number of infected individuals and recovered individuals are collected,which will be used to characterize dynamic behaviors of systems.

    2.4.Related quantities

    For SIR models,NS(t)+NI(t)+NR(t) =N, whereNS(t),NI(t)andNR(t)are the number of individuals with stateS,IandR, respectively.Astincreases,NS(t) will decrease,NR(t) will increase, andNIfirst increases to a peak, then decreases to zero.[16]After enough time, there are no infected individuals.The final epidemic size is defined by

    In fact,r∞can play the role of an order parameter to detect healthy-infected phase transitions.[16]In healthy phases,r∞are zeros,or are very small and can be ignored.In infected phases,r∞are finite values.

    The fluctuations of final epidemic sizes are often large near the epidemic threshold.In order to identify the epidemic thresholds in finite system sizes,we also study the variability ofr∞,which is defined by[29–32]

    Here〈z〉is the ensemble average ofz.In physics,it is a standard method to determine the critical point in the equilibrium phase of a magnetic system.[33]It may exhibit a peak atλp.For finite systems, it is used to approximate the epidemic thresholdλc.The validity of the numerical identification method has been confirmed for the SIR model in network models.[31]

    The outbreak durationτis another basic quantity.[16]When a system approaches a critical transition or a tipping point, the system may return more slowly to its stable states under small perturbations,[34]i.e., the critical slowing down phenomenon.It can be used as early warning signals of infectious disease transitions.[35]We use the definition in Ref.[32],which is

    where

    3.Results

    The reality of Nanjing University of Posts and Telecommunications (NJUPT) is used as an example.In Figs.1(a)–1(c), we plot the distribution of weekly class hoursρwch, the distribution of class sizeρcs, and the distribution of the number of joint classesρnjc,respectively.From Fig.1(b),we find that the mean number of students in each class is 31.9.

    Fig.1.(a) The distribution of weekly class hours ρwch, (b) the distribution of class size ρcs,and(c)the distribution of the number of joint classes ρnjc,respectively.

    From Monday to Friday, the school’s daily schedule is as follows: 7:00–7:30 breakfast;8:00–8:45,8:50–9:35,9:50–10:35,10:40–11:25 and 11:30–12:15 are the 1st to 5th classes,respectively; 12:30–13:00 lunch break; 13:45–14:30, 14:35–15:20,15:35–16:20 and 16:25–17:10 are the 6th to 9th classes,respectively;17:30–18:00 supper break;18:30–19:15,19:25–20:10 and 20:20–21:05 are the 10th to 12th classes; 22:30–6:30 sleeping.

    3.1.No interventions

    Based on the resources(the number of classrooms,dining rooms and dorms)of NJUPT and the total number of students in NJUPT,we set(ηc,ηd,nd)=(0.8,0.7,6),which is the baseline scenario,i.e.,the no interventions case.Results are shown in Fig.2.For eachλ, data for 100 cycles of stochastic simulations are given.More simulation cycles give similar results.The vertical blue lines are for the functionλ=0.52.

    In detail, the final epidemic sizer∞versus the effective infected rateλis plotted in Fig.2(a).It shows that data almost overlap for the number of classesNc= 150, 300 and 600, which means such sizes can reflect statistical properties of systems.Whenλis relatively small,r∞is relatively small and approaches zero,which corresponds to the healthy phase.Whenλis relatively large, the values ofr∞are divided into two branches: in the bottom one,r∞is relatively small and approaches zero,[36]and in the top one,r∞is finite and increases withλ, which corresponds to the infected phase.In fact,r∞plays the role of order parameter to detect phase transitions.[16]The epidemic thresholdλcdetermined byr∞should be in the thermodynamic limit.[16]For finite systems, Fig.2(b) shows that the variability?exhibits a peak atλ=0.52, which is used to approximateλc.[29–32]As there are two branches inr∞at relatively largeλ,in calculating?,data forr∞>0.05,i.e.,the top branch ofr∞,are considered.Further,Fig.2(c)shows that the outbreak durationτis maximal nearλ=0.52,which also signals the epidemic threshold.

    Fig.2.(a) The final epidemic size r∞, (b) the variability ?and (c) the outbreak duration τ versus the effective infected rate λ at(ηc,ηd,nd)=(0.8,0.7,6),respectively.The number of classes Nc=150,300 and 600,respectively.The vertical blue lines are for the function λ =0.52.Data for 100 stochastic simulations are given.

    3.2.Non-pharmaceutical interventions

    We set (ηc,ηd,nd) equal to (0.8,0.3,6), (0.8,0.7,3),(0.4,0.7,6) and (0.4,0.3,3), respectively, which are labeled NPI-I,NPI-II,NPI-III and NPI-IV scenarios,respectively.At least one of their components is smaller than that for the baseline scenario[no interventions,(ηc,ηd,nd)=(0.8,0.7,6)].In practice,the methods of small class teaching(or being designated a larger classroom),staggered dining hours,and renting social housing can realize the required conditions.

    For the four NPI scenarios,we plot the final epidemic sizer∞versus the effective infected rateλin Fig.3.The number of classesNc=300 is used as an example.For each scenario,there exists an epidemic thresholdλcseparating the healthy phase from the infected phase, which is labeled by a vertical blue line.The correspondingλccan be numerically estimated from Figs.4 and 5, at which the variability?and the outbreak durationτexhibit peak values.In calculating?, data forr∞>0.05 are taken into consideration.

    Eqnarray (1) gives the theoretical prediction ofλcfor static uncorrelated networks.[20,21]As the underlying networks we study are time-varying heterogeneous contact ones,inspired by Eq.(1)we define

    Fig.3.The final epidemic size r∞as a function of the effective infected rate λ for (ηc,ηd,nd) equal (a) (0.8,0.3,6), (b) (0.8,0.7,3), (c)(0.4,0.7,6) and (d) (0.4,0.3,3), respectively.The number of classes Nc =300.The vertical lines are for some values of λ.Data for 100 stochastic simulations are given.

    Fig.4.The same as Fig.3, but the variability ?as a function of the effective infected rate λ.

    Fig.5.The same as Fig.3, but the outbreak duration τ as a function of the effective infected rate λ.

    wherekis the degree of nodes and〈···〉tdenotes the time mean of the corresponding quantities.At the healthy-infected phase transition point,

    In our model,students have much leisure time and during these times individuals can recover but not be infected.SoWis the ratio of the time spent having classes,having dinner and sleeping in dorms to all time.On the other hand,atβ/μ>1,i.e.,infected rateβis greater than recovery rateμ,due to the heterogeneity and randomness in social contact networks,a finite value ofr∞may occasionally occur.Combining the two aspects,the epidemic threshold can be approximately evaluated by

    3.3.Comparing no interventions with non-pharmaceutical interventions

    Table 1 gives the epidemic thresholdsλ*cobtained from Eq.(8)and the epidemic thresholdsλcnumerically estimated by the peaks of the variability?(the outbreak durationτ).At the same time,to illustrate visually differences between them,we also plot the bar graph forλ*candλcin Fig.6.From them,we find NPIs can raise epidemic thresholds.In the NPI-III scenario,larger classrooms are used.Compared with the NPII and NPI-II scenarios,λ*c(λc)is relatively large in the NPI-III scenario,so its effect on containing infection is relatively obvious.The reason is that classrooms are the main places that students stay and contagious disease spreads.Combination of interventions is the NPI-IV scenario and the corresponding effect is most significant.

    Table 1.Table outlining the values of λ*c and λc.

    For all scenarios, including no interventions and NPIs,the final epidemic sizesr∞are plotted together in Fig.7(a).The mean〈r∞〉 are also shown in Fig.7(b), where data forr∞>0.05 are taken into consideration.To give quantitative comparisons,we define the ratio

    We plot the corresponding ratioKin Fig.7(c).This shows that at relatively smallλ,the effect of countermeasures is more obvious.All NPIs can reduce the outbreak size.For the combination of interventions,i.e.,(ηc,ηd,nd)=(0.4,0.3,3),K=7.8%atλ=1 andK=84.9%atλ=2,which has the most significant effect in reducing the outbreak size.

    Fig.6.The bar graph for λ*c and λc, where N denotes the baseline scenario,and I–IV denote the NPI-I–IV scenarios.

    Fig.7.(a) The final epidemic size r∞, (b) the mean 〈r∞〉, and (c)the ratio K versus the effective infected rate λ, respectively, where(ηc,ηd,nd)equals(0.8,0.7,6),(0.8,0.3,6),(0.8,0.7,3),(0.4,0.7,6)and(0.4,0.3,3).The number of classes Nc =300.Data for 100 stochastic simulations are given.

    4.Conclusion

    The university is a typical social community.To quantitatively evaluate the effect of NPIs on containing infection,an agent-based SIR model with time-varying heterogeneous contact networks is proposed.The seat occupancy rate in classrooms,the seat occupancy rate in dining halls and the number of students per dorm are important parameters to characterize NPIs.We obtain epidemic thresholds for scenarios including no interventions and four kinds of NPIs.We make quantitative comparisons.We find the NPI of using larger classrooms plays an important role in raising the epidemic threshold and reducing the outbreak size.In fact, it can also be realized by reducing the number of students in a classroom,i.e.,dividing a class into several small classes.The effect of combination of interventions is most significant.All these studies provide scientific evidence to support the use of NPIs in campuses.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant No.61871234).

    猜你喜歡
    華中
    華中要塞:義陽(yáng)三關(guān)
    華中建筑2021年總目錄
    華中建筑(2021年12期)2022-01-17 02:08:42
    新四軍華中抗戰(zhàn)
    Effects of Nb and Mo additions on thermal behavior,microstructure and magnetic property of FeCoZrBGe alloy?
    明年或激增40%?華中3萬(wàn)多噸加州鱸市場(chǎng)誰(shuí)能笑到最后?
    飼料廠近半數(shù)膨化線都來(lái)自這家公司,如今他將引領(lǐng)華中膨化料大轉(zhuǎn)型
    基于華中HNC-818AT數(shù)控系統(tǒng)的數(shù)控車(chē)床升級(jí)改造
    上下同欲者勝 風(fēng)雨同舟者興——記武漢華中數(shù)控股份有限公司
    《華中學(xué)術(shù)》來(lái)稿注意事項(xiàng)
    基于華中數(shù)控的PKC-1000P2磁流變拋光機(jī)床控制系統(tǒng)設(shè)計(jì)與開(kāi)發(fā)
    日韩一卡2卡3卡4卡2021年| 日本精品一区二区三区蜜桃| 国产日韩欧美视频二区| 国产成人av激情在线播放| 免费看十八禁软件| 两个人免费观看高清视频| 欧美日韩精品网址| 国产亚洲午夜精品一区二区久久| 亚洲精品自拍成人| 十八禁网站网址无遮挡| 日韩制服丝袜自拍偷拍| 国产精品久久久久成人av| 国产精品免费大片| 中国美女看黄片| 日本精品一区二区三区蜜桃| av线在线观看网站| 黑人操中国人逼视频| 桃花免费在线播放| 天天操日日干夜夜撸| 一本一本久久a久久精品综合妖精| 激情视频va一区二区三区| 精品少妇内射三级| 日韩中文字幕视频在线看片| 黑人巨大精品欧美一区二区蜜桃| 99久久99久久久精品蜜桃| av电影中文网址| 搡老熟女国产l中国老女人| 免费一级毛片在线播放高清视频 | 激情视频va一区二区三区| svipshipincom国产片| 久9热在线精品视频| 9热在线视频观看99| 我的亚洲天堂| 一进一出抽搐动态| 国产精品av久久久久免费| 成年动漫av网址| 蜜桃国产av成人99| 亚洲av片天天在线观看| 最新在线观看一区二区三区| 最近最新中文字幕大全免费视频| 两个人免费观看高清视频| 男人舔女人的私密视频| 99久久99久久久精品蜜桃| 久久久精品94久久精品| 国产av又大| 亚洲人成77777在线视频| 日韩视频在线欧美| 蜜桃国产av成人99| 我要看黄色一级片免费的| 亚洲欧洲精品一区二区精品久久久| 久9热在线精品视频| 国产成人精品久久二区二区91| 精品人妻熟女毛片av久久网站| 午夜福利视频在线观看免费| 男男h啪啪无遮挡| 久久久久国产一级毛片高清牌| 国产精品偷伦视频观看了| 精品国产乱码久久久久久男人| 亚洲成av片中文字幕在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 激情视频va一区二区三区| 热99国产精品久久久久久7| 欧美大码av| 国产麻豆69| 国产黄色免费在线视频| 国产欧美日韩精品亚洲av| 国产xxxxx性猛交| 12—13女人毛片做爰片一| 老熟妇乱子伦视频在线观看 | 999精品在线视频| 亚洲一区中文字幕在线| 男男h啪啪无遮挡| 久久国产精品人妻蜜桃| 亚洲第一欧美日韩一区二区三区 | 日本黄色日本黄色录像| 日韩 欧美 亚洲 中文字幕| 国产精品二区激情视频| 久久久久久免费高清国产稀缺| 亚洲自偷自拍图片 自拍| 国精品久久久久久国模美| 亚洲激情五月婷婷啪啪| 亚洲,欧美精品.| 亚洲三区欧美一区| 老熟妇乱子伦视频在线观看 | 老熟女久久久| 999久久久精品免费观看国产| 男人爽女人下面视频在线观看| 黄色a级毛片大全视频| svipshipincom国产片| 日韩大片免费观看网站| 日韩有码中文字幕| 国产精品偷伦视频观看了| 电影成人av| 亚洲一码二码三码区别大吗| 免费观看av网站的网址| 国产极品粉嫩免费观看在线| 欧美少妇被猛烈插入视频| 中文字幕高清在线视频| 国产一区二区 视频在线| 欧美一级毛片孕妇| 日韩制服骚丝袜av| 男人操女人黄网站| 视频在线观看一区二区三区| 久久精品国产亚洲av高清一级| 日本黄色日本黄色录像| 国产一卡二卡三卡精品| 国产xxxxx性猛交| 午夜福利一区二区在线看| 国产欧美日韩精品亚洲av| 久久中文字幕一级| 又大又爽又粗| 国产成人av教育| 日本vs欧美在线观看视频| a级毛片在线看网站| 亚洲欧美精品自产自拍| 国产精品av久久久久免费| 精品久久久久久久毛片微露脸 | 国产亚洲欧美在线一区二区| 黄片小视频在线播放| 国产精品久久久人人做人人爽| 搡老岳熟女国产| 国产深夜福利视频在线观看| 欧美 日韩 精品 国产| 亚洲欧美激情在线| av不卡在线播放| 国产亚洲精品一区二区www | 日韩视频一区二区在线观看| 亚洲中文av在线| 岛国毛片在线播放| 久久久水蜜桃国产精品网| 欧美黑人欧美精品刺激| 国产91精品成人一区二区三区 | 久久精品国产亚洲av香蕉五月 | 国产精品一区二区在线不卡| √禁漫天堂资源中文www| 亚洲欧洲日产国产| √禁漫天堂资源中文www| 法律面前人人平等表现在哪些方面 | 中文精品一卡2卡3卡4更新| 亚洲免费av在线视频| 国产精品亚洲av一区麻豆| 成人国语在线视频| 欧美黄色淫秽网站| 十分钟在线观看高清视频www| 日本撒尿小便嘘嘘汇集6| 少妇人妻久久综合中文| 两人在一起打扑克的视频| 亚洲伊人久久精品综合| 精品一区二区三区四区五区乱码| 女警被强在线播放| 亚洲欧美成人综合另类久久久| 视频区图区小说| 亚洲国产av新网站| 夜夜夜夜夜久久久久| 一本—道久久a久久精品蜜桃钙片| 两人在一起打扑克的视频| 亚洲成国产人片在线观看| av又黄又爽大尺度在线免费看| 老司机福利观看| svipshipincom国产片| 国产高清国产精品国产三级| 国产精品一区二区在线不卡| 久久人人爽av亚洲精品天堂| 国产成人av激情在线播放| 一区二区三区四区激情视频| 免费一级毛片在线播放高清视频 | 交换朋友夫妻互换小说| 亚洲黑人精品在线| 亚洲精品久久久久久婷婷小说| 欧美日韩成人在线一区二区| 青草久久国产| 久久久国产成人免费| 热99re8久久精品国产| 两人在一起打扑克的视频| 777米奇影视久久| 夫妻午夜视频| 9色porny在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲 欧美一区二区三区| 中文字幕av电影在线播放| 亚洲av成人一区二区三| 亚洲自偷自拍图片 自拍| 欧美精品啪啪一区二区三区 | 精品一区二区三卡| 午夜福利一区二区在线看| 美女高潮喷水抽搐中文字幕| 日韩三级视频一区二区三区| 91成年电影在线观看| 最近中文字幕2019免费版| 国产福利在线免费观看视频| 日韩人妻精品一区2区三区| 欧美日韩成人在线一区二区| 美女主播在线视频| 日本撒尿小便嘘嘘汇集6| 午夜激情久久久久久久| 中国国产av一级| 日日爽夜夜爽网站| 国产在视频线精品| 曰老女人黄片| 国产精品久久久久久精品古装| av天堂在线播放| 欧美激情 高清一区二区三区| 亚洲av欧美aⅴ国产| 菩萨蛮人人尽说江南好唐韦庄| 成人18禁高潮啪啪吃奶动态图| 亚洲av成人一区二区三| 国产一级毛片在线| 免费黄频网站在线观看国产| 一区福利在线观看| 久久亚洲国产成人精品v| 中文字幕人妻丝袜一区二区| 在线观看一区二区三区激情| 亚洲成人免费av在线播放| 一区福利在线观看| 十八禁网站网址无遮挡| 欧美日韩亚洲综合一区二区三区_| 国产精品 国内视频| 制服诱惑二区| 国产一区二区在线观看av| 777米奇影视久久| 亚洲情色 制服丝袜| netflix在线观看网站| 久久久久网色| 欧美日韩黄片免| 人人妻,人人澡人人爽秒播| 久久亚洲精品不卡| 男女之事视频高清在线观看| 桃红色精品国产亚洲av| 国产一区二区在线观看av| 午夜成年电影在线免费观看| 久久青草综合色| 在线十欧美十亚洲十日本专区| 又紧又爽又黄一区二区| 好男人电影高清在线观看| 精品一品国产午夜福利视频| 久久久久精品人妻al黑| 日本a在线网址| 桃红色精品国产亚洲av| 免费不卡黄色视频| 成人18禁高潮啪啪吃奶动态图| 99久久99久久久精品蜜桃| 国产精品免费视频内射| 好男人电影高清在线观看| 一区二区日韩欧美中文字幕| 美女高潮到喷水免费观看| 精品福利永久在线观看| 久久香蕉激情| 免费久久久久久久精品成人欧美视频| 免费在线观看日本一区| 色婷婷久久久亚洲欧美| 建设人人有责人人尽责人人享有的| 亚洲精品一区蜜桃| 蜜桃在线观看..| 久久中文字幕一级| 国产精品 欧美亚洲| 99久久99久久久精品蜜桃| 又紧又爽又黄一区二区| 日韩欧美国产一区二区入口| 在线永久观看黄色视频| 国产av精品麻豆| 久久久久国内视频| 欧美黄色淫秽网站| 人人妻人人添人人爽欧美一区卜| 又黄又粗又硬又大视频| 老司机靠b影院| 欧美在线黄色| 19禁男女啪啪无遮挡网站| 永久免费av网站大全| 久久精品久久久久久噜噜老黄| 日本猛色少妇xxxxx猛交久久| 亚洲中文日韩欧美视频| 日韩 亚洲 欧美在线| 久久精品国产a三级三级三级| kizo精华| 免费观看av网站的网址| 麻豆国产av国片精品| 老司机午夜福利在线观看视频 | 亚洲激情五月婷婷啪啪| 老司机午夜十八禁免费视频| 成人影院久久| 我要看黄色一级片免费的| 国产高清视频在线播放一区 | 少妇的丰满在线观看| 日日夜夜操网爽| 国产亚洲av高清不卡| 日本91视频免费播放| 免费在线观看完整版高清| cao死你这个sao货| 操美女的视频在线观看| 50天的宝宝边吃奶边哭怎么回事| a 毛片基地| 波多野结衣av一区二区av| 大香蕉久久网| 91国产中文字幕| 日本猛色少妇xxxxx猛交久久| 欧美乱码精品一区二区三区| 12—13女人毛片做爰片一| 久久久欧美国产精品| 最近最新中文字幕大全免费视频| 99久久国产精品久久久| 亚洲情色 制服丝袜| 水蜜桃什么品种好| 波多野结衣av一区二区av| 色94色欧美一区二区| 国产一区二区三区av在线| 男女高潮啪啪啪动态图| 色婷婷久久久亚洲欧美| 新久久久久国产一级毛片| 国产精品九九99| 亚洲熟女精品中文字幕| 成人影院久久| 午夜激情av网站| 天天影视国产精品| 久久中文字幕一级| 国产成人啪精品午夜网站| 老熟妇乱子伦视频在线观看 | 最近最新中文字幕大全免费视频| 日韩大片免费观看网站| 天天躁日日躁夜夜躁夜夜| 97在线人人人人妻| 亚洲七黄色美女视频| 亚洲精品国产一区二区精华液| 精品国产国语对白av| 18禁观看日本| 久久久水蜜桃国产精品网| 国产精品 欧美亚洲| 欧美国产精品va在线观看不卡| 韩国精品一区二区三区| 久久久水蜜桃国产精品网| 两性夫妻黄色片| 91大片在线观看| 亚洲五月色婷婷综合| 日韩欧美一区视频在线观看| 亚洲欧美一区二区三区黑人| 日韩大片免费观看网站| 久久精品国产综合久久久| 999久久久国产精品视频| 国产精品九九99| 自拍欧美九色日韩亚洲蝌蚪91| 一边摸一边做爽爽视频免费| 五月开心婷婷网| 极品人妻少妇av视频| 久久综合国产亚洲精品| 老司机在亚洲福利影院| 精品视频人人做人人爽| 99国产精品一区二区蜜桃av | 精品人妻1区二区| 久久女婷五月综合色啪小说| 人人妻人人澡人人看| 国产1区2区3区精品| 亚洲全国av大片| 大香蕉久久网| 久久精品久久久久久噜噜老黄| 亚洲色图综合在线观看| 12—13女人毛片做爰片一| 十八禁网站网址无遮挡| 久9热在线精品视频| 日本av手机在线免费观看| 国产精品久久久久久精品古装| 欧美黑人欧美精品刺激| 国产一区二区三区av在线| 我的亚洲天堂| 女人被躁到高潮嗷嗷叫费观| 亚洲精品粉嫩美女一区| 一进一出抽搐动态| 丝袜美足系列| 国产精品影院久久| 美女脱内裤让男人舔精品视频| 女人精品久久久久毛片| 又黄又粗又硬又大视频| 日韩视频在线欧美| 精品福利永久在线观看| 一级毛片电影观看| 亚洲成人免费电影在线观看| 美女高潮喷水抽搐中文字幕| 亚洲熟女精品中文字幕| 日日爽夜夜爽网站| 嫩草影视91久久| 久久中文字幕一级| 亚洲国产欧美在线一区| 欧美日韩av久久| 国产不卡av网站在线观看| 十八禁人妻一区二区| 色视频在线一区二区三区| 午夜精品国产一区二区电影| 亚洲中文av在线| 夜夜夜夜夜久久久久| 女性被躁到高潮视频| av视频免费观看在线观看| 欧美日韩成人在线一区二区| 亚洲欧美日韩高清在线视频 | 天天躁夜夜躁狠狠躁躁| 美女脱内裤让男人舔精品视频| 日韩中文字幕视频在线看片| 欧美日韩精品网址| 欧美激情 高清一区二区三区| 国产熟女午夜一区二区三区| 99久久综合免费| 天天影视国产精品| 色精品久久人妻99蜜桃| 国产精品一区二区免费欧美 | 成年人黄色毛片网站| 午夜福利视频精品| 国产精品麻豆人妻色哟哟久久| 亚洲av欧美aⅴ国产| 国产一区二区 视频在线| 999久久久国产精品视频| 欧美日韩亚洲综合一区二区三区_| 午夜激情久久久久久久| 99热全是精品| 黄色视频不卡| 国产精品亚洲av一区麻豆| 亚洲精品一卡2卡三卡4卡5卡 | 十八禁人妻一区二区| 啦啦啦在线免费观看视频4| 精品亚洲成国产av| 母亲3免费完整高清在线观看| 久久综合国产亚洲精品| 韩国精品一区二区三区| 亚洲七黄色美女视频| 精品一品国产午夜福利视频| 欧美日韩成人在线一区二区| 国产成人免费无遮挡视频| 国产精品麻豆人妻色哟哟久久| 一级,二级,三级黄色视频| 久久99热这里只频精品6学生| 国产精品影院久久| 亚洲av欧美aⅴ国产| 高潮久久久久久久久久久不卡| 午夜免费成人在线视频| 老鸭窝网址在线观看| 我的亚洲天堂| av在线app专区| 最近最新免费中文字幕在线| xxxhd国产人妻xxx| 日本91视频免费播放| 丝袜人妻中文字幕| 热re99久久国产66热| avwww免费| 久久久国产成人免费| 欧美性长视频在线观看| 久久av网站| 十分钟在线观看高清视频www| 色老头精品视频在线观看| 色婷婷av一区二区三区视频| 国产精品久久久久久精品电影小说| 午夜福利,免费看| 亚洲av男天堂| 秋霞在线观看毛片| 精品久久久久久久毛片微露脸 | 亚洲专区字幕在线| 18禁国产床啪视频网站| 久久久精品国产亚洲av高清涩受| 一边摸一边抽搐一进一出视频| 精品人妻熟女毛片av久久网站| 国产成人欧美在线观看 | 欧美成狂野欧美在线观看| 国产免费一区二区三区四区乱码| 80岁老熟妇乱子伦牲交| 国产成人av教育| 日韩 亚洲 欧美在线| 色94色欧美一区二区| av一本久久久久| av天堂在线播放| 亚洲人成电影观看| 91九色精品人成在线观看| 欧美老熟妇乱子伦牲交| 久久久久久亚洲精品国产蜜桃av| 黄网站色视频无遮挡免费观看| 美女脱内裤让男人舔精品视频| 久久影院123| av在线app专区| 亚洲美女黄色视频免费看| 欧美性长视频在线观看| 国产欧美日韩精品亚洲av| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品国产区一区二| 男女免费视频国产| 国产免费视频播放在线视频| 午夜福利一区二区在线看| 日本vs欧美在线观看视频| 亚洲成人免费电影在线观看| 免费观看人在逋| av国产精品久久久久影院| 久久久久视频综合| 国产精品一二三区在线看| 天堂中文最新版在线下载| av国产精品久久久久影院| 日韩欧美一区视频在线观看| 日本wwww免费看| 动漫黄色视频在线观看| 满18在线观看网站| 久久 成人 亚洲| 18禁国产床啪视频网站| 精品欧美一区二区三区在线| 亚洲精品国产av蜜桃| 久久精品成人免费网站| 亚洲精品国产av成人精品| 成年人免费黄色播放视频| 久久久精品94久久精品| 日本91视频免费播放| 99精品久久久久人妻精品| 少妇 在线观看| 中文字幕人妻丝袜制服| 丁香六月欧美| 亚洲国产精品999| 欧美另类亚洲清纯唯美| av天堂在线播放| 99香蕉大伊视频| 麻豆乱淫一区二区| 国产成人精品无人区| 精品国产国语对白av| 捣出白浆h1v1| 男女高潮啪啪啪动态图| 国产在线观看jvid| 一区二区av电影网| 老汉色∧v一级毛片| 1024视频免费在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品国产色婷婷电影| 国产日韩欧美在线精品| 性少妇av在线| 午夜精品国产一区二区电影| 在线观看免费日韩欧美大片| 黄色视频在线播放观看不卡| 免费女性裸体啪啪无遮挡网站| 国产成人精品久久二区二区免费| 高清视频免费观看一区二区| 免费av中文字幕在线| 搡老岳熟女国产| 桃花免费在线播放| 丝瓜视频免费看黄片| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品国产三级国产专区5o| 欧美精品一区二区大全| 亚洲自偷自拍图片 自拍| 黑丝袜美女国产一区| 少妇猛男粗大的猛烈进出视频| 十八禁网站免费在线| 精品第一国产精品| 80岁老熟妇乱子伦牲交| 欧美日韩亚洲国产一区二区在线观看 | 国产一区有黄有色的免费视频| 极品人妻少妇av视频| 91字幕亚洲| 99香蕉大伊视频| 欧美亚洲日本最大视频资源| 亚洲五月婷婷丁香| 欧美成人午夜精品| 免费看十八禁软件| 久热爱精品视频在线9| av网站免费在线观看视频| 五月天丁香电影| 少妇裸体淫交视频免费看高清 | 国产成人精品在线电影| 亚洲精品av麻豆狂野| 国产在线视频一区二区| 黄色a级毛片大全视频| 人人妻人人爽人人添夜夜欢视频| av天堂久久9| 国产精品国产av在线观看| 黑人猛操日本美女一级片| 日韩欧美一区视频在线观看| 欧美中文综合在线视频| 一区二区日韩欧美中文字幕| 国产精品免费大片| 一区福利在线观看| 国产亚洲午夜精品一区二区久久| 日韩电影二区| 亚洲精品国产一区二区精华液| 精品视频人人做人人爽| 免费久久久久久久精品成人欧美视频| 美女中出高潮动态图| 人妻久久中文字幕网| avwww免费| 久久久精品94久久精品| 美女高潮喷水抽搐中文字幕| 日日摸夜夜添夜夜添小说| 亚洲性夜色夜夜综合| 一本久久精品| 最近最新中文字幕大全免费视频| 九色亚洲精品在线播放| 成人手机av| 欧美老熟妇乱子伦牲交| 热99re8久久精品国产| 亚洲国产成人一精品久久久| 99精品久久久久人妻精品| 纯流量卡能插随身wifi吗| bbb黄色大片| 亚洲少妇的诱惑av| 18禁裸乳无遮挡动漫免费视频| 国产成人系列免费观看| 大码成人一级视频| 男人添女人高潮全过程视频| 日本猛色少妇xxxxx猛交久久| 考比视频在线观看| 9色porny在线观看| 亚洲国产日韩一区二区| 国产1区2区3区精品| 国产精品一区二区在线观看99| 天天躁日日躁夜夜躁夜夜| 男女之事视频高清在线观看| 一边摸一边抽搐一进一出视频| 日韩人妻精品一区2区三区| 亚洲熟女毛片儿| 国产熟女午夜一区二区三区| 好男人电影高清在线观看| 操美女的视频在线观看| 天天影视国产精品| 欧美少妇被猛烈插入视频| 欧美老熟妇乱子伦牲交| 久久青草综合色| 久久国产精品大桥未久av| 两性午夜刺激爽爽歪歪视频在线观看 | 精品少妇久久久久久888优播|