• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise

    2024-02-29 09:19:52XunYan晏詢ZhijunLi李志軍andChunlaiLi李春來
    Chinese Physics B 2024年2期

    Xun Yan(晏詢), Zhijun Li(李志軍),?, and Chunlai Li(李春來)

    1School of Automation and Electronic Information,Xiangtan University,Xiangtan 411105,China

    2School of Computer Science&School of Cyberspace Science,Xiangtan University,Xiangtan 411105,China

    Keywords: heterogeneous neuron network,discrete memristor,coexisting attractors,synchronization,noise

    1.Introduction

    Studying neuromorphic behaviors of neurons is favorable to help us to understand more about the operating mechanism of the brain.Therefore, establishing appropriate neuron models to simulate the dynamic behavior of biological neurons has received widespread attention.[1–3]The Hodgkin–Huxley (HH) model was the first established neuron paradigm,[4]which demonstrates the connection between the membrane voltage of neurons and the membrane currents of squid giant axons.However, the HH model is formulated by seven coupled ordinary differential equations and includes four ionic channels,which lead to its complexity.Some simplified models, thus, have been proposed to simulate the neuromorphic behaviors of the biological neurons, such as FitzHugh–Nagumo(FHN)model,[5–8]Hindmarsh–Rose(HR)model,[9–13]Morris–Lecar(ML),[14–18]etc.These continuous neuron models have played an important role in understanding the generation and transmission of action potential.[19–23]

    Compared with continuous neuron models,discrete neuron models are more computationally efficient, especially in the modeling of large-scale neuron networks.The modeling of discrete neurons and the analysis of their firing patterns have become a hot topic in the field of neurodynamics in recent years.[24–27]Due to the non-volatile, nanoscale,memory properties of memristors,and the similarity between nano-scale moving particles in memristors and mobile neurotransmitters in biological synapses, memristors are often considered as ideal candidates for simulating synapses.[28–32]For example, Baoet al.[33]established a discrete neuron network containing two identical Rulkov neurons, and regarded the current flowing through the memristor as the electromagnetic induction current to analyze the effect of electromagnetic induction on the dynamic behavior of neuron network.Under the influence of the electromagnetic induction current,the model can achieve complete synchronization and lag synchronization.The synchronous firing and chimera state were observed in a ring neuron network constructed with memristorcoupled discrete Chialvo neurons.[34]Mahtab Mehrabbeiket al.[35]studied the memristive Rulkov neuron maps and analyzed the synchronous dynamics under electrical and chemical coupling.Their results shows that two m-Rulkov neurons can achieve synchronization only when electrically coupled,but not when chemically coupled.Liet al.[36]used discrete locally active memristor to construct a logarithmic map, and the coexisting attractors were observed.

    Among many neuron models, the Izhikevich model simplifies the HH model[37–40]with consideration of biological concepts, which is capable of simulating almost all spikes of cortical neurons.[41,42]Furthermore, the Izhikevich model outperforms other models in terms of computational efficiency.[43–46]The Chialvo model is one of the earliest discrete neuron models,[47,48]and it was attempted to study the synchronous rhythmic activity in some areas of mammals at that time,[48]including the cortical spindle rhythms, hyppocampal rhythms, and somatomotor cortices.The Chialvo model can demonstrate key patterns of neuronal activities,such as spiking,excitations,bursting,and so on.

    In fact, the brain is a very complex system, which can be divided into many brain regions,including the motor area,sensory area, visual area, auditory area and association area,just to name a few.[49]The neurons in different brain regions are independent but interact with each other, and jointly control neural activities of the human body.[50,51]Therefore,neuron networks composed of heterogeneous neurons is more in line with biological reality.However, to our knowledge, previous studies on discrete neuron networks mainly focus on homogeneous neurons,while neuron networks composed of heterogeneous neurons coupled by memristors are rarely studied.To further understand the operating mechanism of the brain,it is essential and meaningful to study the dynamic behavior of neuron networks constructed with heterogeneous neurons distributed in different brain regions.[52–54]In addition,in the biological nervous systems, a large number of neurons work together,which inevitably leads to changes in the surrounding physiological environment.Therefore, noise is ubiquitous in the biological nervous systems.[44]However,it is currently unclear how noise affects the information processing mechanism of neurons, so the impact of noise on the firing activities of neurons cannot be ignored.[55–57]

    In the present study,we propose a new discrete locally active memristor and use it to connect the discretized Izhikevich and Chialvo neurons.Thus, a heterogeneous discrete neuron network model coupled by the discrete locally active memristor is constructed.The dynamics of the neuron network are analyzed, and the synchronous behavior between two heterogeneous neurons are revealed.Finally,Gaussian noise is added to the model to analyze the impact of noise on firing activities of neuron network.

    The rest of this paper is organized as follows.Section 2 proposes a new four-stable locally active discrete memristor and studies its properties in detail.In Section 3, a heterogeneous discrete neuron network model is developed by using the discrete memristor to bridge two heterogeneous neurons and the equilibrium points of the model and their corresponding stabilities are theoretically analyzed.The dynamic behavior and coexistence behavior of neuron networks are revealed in Section 4.Section 5 studies the effect of adding noise on the phase synchronization of neuron networks.Finally,the study is concluded in Section 6.

    2.Four-stable locally-active memristor model and characteristics

    2.1.Memristor model

    The discrete memristor proposed in this paper can be described as follows:

    wherev,i,andw(φ)are the input voltage,output current,and admittance function,respectively.F(φ,v)is the internal state equation of the memristor, which consists of a sign function related to the magnetic flux and voltage, andα,β,λare the three parameters of the memristor.In this paper,α= 0.1,β=0.001,andλ=9.

    2.2.Pinched hysteresis loops

    A periodic voltage signalv(n)=Asin(2πωT(n)) is applied to the memristor, and the initial value of the memristor is selected as 1.By varying the amplitudeAand frequencyω, the memristor shows pinched hysteresis loops on thev–iplane,as shown in Fig.1.

    It can be seen from Fig.1 that all the pinched hysteresis loops pass through the origin.When the frequencyω=0.0001 is fixed,the area of the pinched hysteresis loop lobe increases monotonously as the excitation amplitudeAincreases.Once the amplitudeA=20 is fixed,the pinched hysteresis loop lobe area decreases monotonously with the increase of excitation frequencyω.Thus,the proposed memristor satisfies the three characteristic fingerprints of a generalized memristor.[58]

    Fig.1.Pinched hysteresis loops of locally active discrete memristor.(a) Amplitude-dependent pinched hysteresis loops with A = 10, 15,and 20.(b)Frequency-dependent pinched hysteresis with ω =0.0001,0.0002,and 0.0005.

    2.3.Nonvolatility and local activity

    Non-volatility means that a memristor can maintain its latest memductance value when the power is off, which can be verified by the power off plot (POP).If there are multiple negative slope intersections between the POP and the zero horizontal axis,then the memristor is non-volatile.Letvn=0 in Eq.(1),the resulting POP is shown in Fig.2.

    From Fig.2, it is observed that there are seven intersection points where the POP intersects the?axis, namely,Q1(-1,0),Q2(0,0),Q3(1,0),Q4(2,0),Q5(3,0),Q6(4,0), andQ7(5,0), among which the intersections with a negative slope are the stable equilibrium points, and the other intersections are unstable points.Therefore, the proposed memristor has four stable equilibrium pointsQ1,Q3,Q5, andQ7.When the power is off, the state?will trend to one of the four stable equilibrium points,depending on the attractive domain in which the fnial state?(n) is located.Based on Eq.(1), four possible remembered memductances after power-off are obtained as

    implying that the memristor is non-volatile.

    Fig.2.Power-off plot(POP)of the memristor.

    In circuit theory, the DCV–Idiagram is a visual tool to help us analyze whether the memristor is locally active.The region with a negative slope in the DCV–Idiagram is called the locally active region of the memristor.Let?(n+1)-?(n)=0, we can get the following expressions of voltageVand currentI:

    Imposing a voltage in the range-2 V≤V ≤1 V on the memristor, the corresponding DCV–Icurve can be obtained according to Eq.(3),as shown in Fig.3(a).The negative slope regions can be observed in the DCV–Idiagram,which are locally active regions of the memristor.In addition,the pinched hysteresis loops of this local active memristor under different initial values are shown in Fig.3(b).

    Fig.3.(a)The DC V–I diagram of the four-stable locally active discrete memristor.(b)The coexisting hysteresis loops with different initial values.

    3.Discrete heterogeneous neuron network

    3.1.Memristor coupled discrete heterogeneous neuron network

    For the discretization of the original Izhikevich neuron,the improved discrete Izhikevich neuron model is written as

    wherevanduare the neuron membrane potential and membrane recovery variables respectively,Iis the external excited current and the parametersa,b,c,anddare all dimensionless parameters.This improved Izhikevich model is more computationally efficient, and thus iterative calculations can be performed at a very fast rate.

    The discrete Chialvo model is written as

    wherexis the membrane potential of the neuron,yis the recovery variable,Itsimulates the effect of the ionic current injected into the neuron, the parameterarepresents the recovery time(a<1), the activation dependence of the recovery process is defined byb(b<1),and the constantcrepresents the offset,which can balance the firing states of the model.

    Based on the discrete Izhikevich model and the discrete Chialvo model,a new neuron network model based on locally active discrete memristor is constructed as follows:

    wherekis the coupling strength,and the parameters areI=1,a1=0.02,b1=0.25,c1=-55,d1=2,a2=0.9,b2=0.18,c2=0.28,It=0.03,c3=0.1.For an intuitive understanding of the proposed discrete heterogeneous neuron network,its topology is shown in Fig.4.

    Fig.4.The topology of the new discrete heterogeneous neuron network.

    and the relationship betweenvandxsatisfies the following expression:

    Therefore, two equations containing onlyxand?can be obtained.Note that the signum function is approximated by a hyperbolic tangent function with a large slope, namely,tan(1010?)is used instead of sign(?).The Jacobian matrix at each equilibrium pointE(v,0.25v,x,-1.8x+2.8,?) is given below:

    where

    3.2.Stability analysis of equilibrium points

    Stability analysis plays an important role in studying the firing behavior of neurons.From Eq.(6),the equilibrium point setEis described as

    Fig.5.Two function curves and their intersection points.

    Table 1.The eigenvalues and stability with k=0.001.

    Takingk=0.001, figure 5 shows the curves of Eq.(8)in the interval[-2,2].In order to examine whether the equilibrium pointsE1,E2,E3,E4,E5,E6,E7, andE8are stable,the eigenvalues corresponding to these equilibrium points are obtained as shown in Table 1.Based on the stability theory of discrete systems, a equilibrium point is stable when its all eigenvalues are located inside the unit circle, while it is unstable when one of the eigenvalues is located outside the unit circle.It can be seen from Table 1 that the equilibrium pointsE2, andE8are stable, while the other equilibrium points are unstable.

    4.Dynamics of heterogeneous discrete neuron networks

    In this section, we will study the dynamic behavior of the coupled neuron network under different initial values of the memristor and the coupling strengthk.The other parameters are determined asI=1,a1=0.02,b1=0.25,c1=-55,d1=2,a2=0.9,b2=0.18,c2=0.28,It=0.03,andc3=0.1.The MATLAB iterative algorithm is used in the following calculation.

    4.1.Coupling strength dependent dynamics

    Bifurcation diagram and Lyapunov exponents are common methods for analyzing system dynamics.In this study,we use the quadrature rectangle (QR) decomposition method to calculate the Lyapunov exponents.Consideringkas the bifurcation parameter with the step size 0.001 and selecting the initial value of the network (-6,-1, 1, 1, 1) as an example, the bifurcation diagram and Lyapunov exponents are shown in Figs.6(a)and 6(b),respectively.It can be seen from Fig.6(a)that the system initially exhibits chaotic firing whenkis located at the interval[-0.54,-0.453], where the corresponding maximum Lyapunov exponentLE1is greater than zero,as observed in Fig.6(b).Then,a reverse period-doubling bifurcation route occurs fork ∈[-0.452,0.0018],resulting in the appearance of periodic spiking.As illustrated in Fig.6(b),all Lyapunov exponents are less than zero in this parameter interval,verifying that the neuron network is in a periodic state.Whenkincreases to the critical valuek=0.0018, a tangent bifurcation occurs,resulting in the occurrence of hyperchaotic firing, which can be validated from the superimposed local magnification plot in Fig.6(b),where the Lyapunov exponentsLE1andLE2are both greater than zero.The sampled phase diagrams and the corresponding time series withk=-0.46,k=-0.4,andk=0.065 are shown in Fig.7,which effectively validate the three parameter regions of chaotic, periodic, and hyperchaotic firing in Fig.6.

    Fig.6.The dynamics of the network(6)with respect to the control parameter k with the initial parameters(-6,-1,1,1,1).(a)Bifurcation diagram.(b)Lyapunov exponents.

    Fig.7.Phase diagrams on the v–u plane and time series of the variable v with different parameters k: (a) and (b) k=-0.46; (c) and (d)k=-0.4;(e)and(f)k=0.065.

    4.2.Coexisting firing patterns

    Two different coupling strengthsk=0.011, and-0.002 are selected as examples to demonstrate the coexisting firing patterns of the neuron network related to the initial value of the memristor.

    Fork=0.011,figure 8(a)illustrates the Lyapunov exponents with respect to the initial value of the memristor.When?<0, all Lyapunov exponents are less than zero, meaning the neuron network is in a resting state.With the increase of?, the Lyapunov exponentsLE1andLE2suddenly jump to positive values when?exceeds the critical value?=0,resulting in the network transitioning from a resting state to a hyperchaotic firing pattern.When?increases to?= 2,the Lyapunov exponentLE1still remains positive value,whileLE2suddenly jump to negative values, resulting in the existence of one positive Lyapunov exponent,which indicates that the network transitions from hyperchaotic firing to chaotic firing.Figure 8(b) shows the phase diagram of the coexistence of resting state,hyperchaotic firing,and two different chaotic firing patterns.Note that in Fig.8(b), the red trajectory originates from the initial value?=5, the blue from?=3, the green from?=1, and the cyan from?=-1.The corresponding time series ofx(n) are illustrated in Fig.8(c).It is worth noting that although the all Lyapunov exponents remain unchanged when?=5 and?=3, the network exhibit two heterogeneous chaotic firing patterns, which can be validated by the red and the blue phase diagrams in Fig.8(b) and the time series diagrams colored with the same colors in Fig.8(c).Similarly,whenk=-0.002,the network can exhibit the coexisting hyperchaotic firing,chaotic firing,and two resting states under different initial values,as depicted in Figs.8(d)–8(f).

    Fig.8.The Lyapunov exponents,phase diagrams,and time series of coexisting attractors under two groups of different k values.(a)Lyapunov exponents for the initial value of the memristor at k=0.011.(b)The phase diagram of coexistence of chaotic attractors and resting state when k=0.011.(c) Time series diagram when k=0.011.(d) Lyapunov exponents for k=-0.002.(e) Phase diagram of coexistence of chaotic attractors and resting states at k=-0.002.(f)Time series diagram when k=-0.002.

    4.3.Effects of noise on the network

    We add the following noiseεξnto the internal state equation of the memristor in the neuron network.With the coupling and iteration of the discrete neuron network,the noise will act on the entire system.

    Fig.9.Time series diagram of membrane potential of Izhikevich neurons at k=0.1.(a)Periodic state in the absence of noise.(b)Chaotic state in the presence of noise.

    5.Synchronization transition of heterogeneous neural networks considering noise

    In order to study phase synchronization and synchronization transition of two different neurons coupled by the locally active discrete memristor,the definition of a phase is given as

    When the absolute value of the phase difference between two neurons is bounded by the value 2π, phase synchronization can be detected.We choose three differentkvalues to indicate synchronous transition behavior of the network.Whenk=0, the two neurons are uncoupled.In this case, the neuron Izhikevich exhibits a spiking firing pattern,while the Chialvo neuron exhibits a periodic firing pattern,as shown in Fig.10(a).It is observed that the firing patterns of the two neurons are obviously different.As depicted in Fig.10(b), the phase difference between the two neurons increases monotonously, validating that the two neurons are desynchronized.Whenk=0.44, the two neurons exhibit a quasi-synchronous burst firing pattern,as shown in Fig.10(c).In this case, the phase difference between two neurons is bounded by 2π.Whenkincreases tok=0.73 or more,the synchronous periodic spiking firing pattern emerges.Figure 10(e)shows the onsets of the action potential of the two neurons are consistent and figure 10(f) illustrates the phase difference is always 0.Thus, we can infer that the two neurons are completely phase synchronized.In addition,we found that appropriate noise can enable the network to achieve synchronization at a lower coupling strength.This has practical significance,because the large coupling strength does not conform to the biological reality.Whenk=0.4,figure 11 shows the time series and phase difference of two neurons.The red and blue trajectories in the figure represent the Izhikevich neuron, and the Chialvo neuron, respectively.When no noise is considered in the neuron network,The two neurons present an irregular chaotic firing pattern, as shown in Fig.11(a).The two neurons are desynchronized, which can be verified from the monotonously increasing phase difference of the two neurons in Fig.11(b).Then,the noise is added to the neuron network,it can be seen from Figs.11(c)and 11(d)that the two neurons are completely phase synchronized and the phase difference is always 0, which proves that the noise enables the neuron network achieve synchronization at a lower coupling strength.Note that when the noise intensity added to the neuron network is too large, the two neurons will return to the resting state.

    Fig.10.Synchronization transition of heterogeneous neuron networks.(a)The time series of k=0.(b)Phase difference of two neurons when k=0.(c)The time series of k=0.44.(d)Phase difference of two neurons when k=0.44.(e)The time series of k=0.73.(f)Phase difference of two neurons when k=0.73.

    Fig.11.The time series of neuron membrane voltage and the phase difference between two neurons when the system is at k=0.4.(a) Time series in the absence of noise.(b)Phase difference in the absence of noise.(c)Time series in the presence of noise.(d)Phase difference in the presence of noise.

    6.Conclusions

    In this study,a discrete four-stable memristor is proposed and its locally activity and non-volatility are studied in detail.Then, the discrete Izhikevich neuron and Chialvo neuron is coupled by the memristor, a discrete heterogeneous neuron network model, thus, is established.The equilibrium points along with their stabilities are systematically analyzed.The coupling strength dependent dynamics are analyzed and it is found that the network can exhibit resting state,periodic firing,chaotic firing and hyperchaotic firing under different coupling strengths.The coexisting firing patterns, including the coexistence of resting state,two different chaotic firing and hyperchaotic firing, the coexistence of hyperchaotic firing, chaotic firing and two resting states are revealed.Furthermore,phase synchronization between two heterogeneous neurons are explored by varying the coupling strength and our results shows that the two heterogeneous neurons can achieve perfect phase synchronization at large coupled strength.What is more, the effects of noise on the network are also considered.We find that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons at a low coupling strength.

    Acknowledgement

    Project supported by the National Natural Science Foundations of China(Grant Nos.62171401 and 62071411).

    av片东京热男人的天堂| 十八禁高潮呻吟视频| 亚洲精品中文字幕在线视频| 在线观看免费视频日本深夜| 欧美日韩精品网址| 老司机亚洲免费影院| 国产亚洲精品一区二区www | 动漫黄色视频在线观看| 久久精品亚洲熟妇少妇任你| 国产精品乱码一区二三区的特点 | 亚洲av欧美aⅴ国产| 99国产精品一区二区蜜桃av | 久久热在线av| 亚洲一区高清亚洲精品| 老司机午夜福利在线观看视频| 狂野欧美激情性xxxx| 国产成人啪精品午夜网站| 欧美精品av麻豆av| 自拍欧美九色日韩亚洲蝌蚪91| tube8黄色片| 精品视频人人做人人爽| 1024香蕉在线观看| 久久久久精品人妻al黑| 亚洲中文av在线| 国产成人精品在线电影| 中文字幕另类日韩欧美亚洲嫩草| 大型av网站在线播放| 精品福利永久在线观看| 十八禁人妻一区二区| bbb黄色大片| 十分钟在线观看高清视频www| 可以免费在线观看a视频的电影网站| 成熟少妇高潮喷水视频| 欧美另类亚洲清纯唯美| 国产人伦9x9x在线观看| 亚洲色图综合在线观看| 又黄又粗又硬又大视频| 亚洲欧美精品综合一区二区三区| 久久香蕉精品热| 男人舔女人的私密视频| 女人高潮潮喷娇喘18禁视频| 国产野战对白在线观看| 国产一区在线观看成人免费| 久久精品国产亚洲av香蕉五月 | 色婷婷av一区二区三区视频| 亚洲免费av在线视频| 色综合欧美亚洲国产小说| 欧美中文综合在线视频| 精品久久蜜臀av无| 欧美成人免费av一区二区三区 | 一进一出抽搐gif免费好疼 | 亚洲欧美色中文字幕在线| 国产97色在线日韩免费| 热re99久久精品国产66热6| 一级黄色大片毛片| 日韩中文字幕欧美一区二区| 天天躁夜夜躁狠狠躁躁| 91成人精品电影| 久久精品熟女亚洲av麻豆精品| 亚洲第一青青草原| 女人久久www免费人成看片| 中文字幕另类日韩欧美亚洲嫩草| 18在线观看网站| 69精品国产乱码久久久| 国产精品亚洲av一区麻豆| 欧美另类亚洲清纯唯美| 国产99久久九九免费精品| 91九色精品人成在线观看| 精品国产国语对白av| 亚洲欧美精品综合一区二区三区| 欧美日韩亚洲高清精品| 啦啦啦免费观看视频1| 免费黄频网站在线观看国产| 久久国产乱子伦精品免费另类| 一本一本久久a久久精品综合妖精| 久久久国产精品麻豆| 久久精品国产亚洲av高清一级| 欧美乱妇无乱码| 欧美黄色淫秽网站| 午夜成年电影在线免费观看| 国产99久久九九免费精品| av不卡在线播放| 国产视频一区二区在线看| 国产日韩欧美亚洲二区| 久久久精品免费免费高清| 亚洲成av片中文字幕在线观看| 国产欧美日韩一区二区三| 宅男免费午夜| 视频区欧美日本亚洲| 亚洲欧美一区二区三区黑人| 如日韩欧美国产精品一区二区三区| 日本vs欧美在线观看视频| 久久久久久人人人人人| 在线观看免费高清a一片| 一二三四在线观看免费中文在| 好男人电影高清在线观看| 国产一区有黄有色的免费视频| 欧美午夜高清在线| 亚洲精品美女久久久久99蜜臀| 国产精品.久久久| 亚洲一码二码三码区别大吗| 国产欧美日韩综合在线一区二区| 校园春色视频在线观看| 在线观看免费高清a一片| 亚洲欧美激情在线| 新久久久久国产一级毛片| 国产蜜桃级精品一区二区三区 | 成人18禁高潮啪啪吃奶动态图| 亚洲一区二区三区不卡视频| 超碰97精品在线观看| 亚洲第一av免费看| 国产欧美日韩精品亚洲av| 99国产综合亚洲精品| 又大又爽又粗| 十分钟在线观看高清视频www| 久久人妻av系列| 99国产精品一区二区三区| ponron亚洲| 啦啦啦免费观看视频1| 黄色视频不卡| 久久精品国产亚洲av高清一级| 国产欧美日韩一区二区精品| 精品午夜福利视频在线观看一区| 亚洲精品av麻豆狂野| 亚洲五月色婷婷综合| 久久国产乱子伦精品免费另类| 亚洲熟妇中文字幕五十中出 | av网站免费在线观看视频| 热99re8久久精品国产| 黑人猛操日本美女一级片| 亚洲av片天天在线观看| 久热爱精品视频在线9| 中文字幕制服av| 亚洲成人国产一区在线观看| 久久人妻福利社区极品人妻图片| 高清毛片免费观看视频网站 | 性色av乱码一区二区三区2| 一区在线观看完整版| 久久精品国产99精品国产亚洲性色 | 欧美精品人与动牲交sv欧美| 久久久精品国产亚洲av高清涩受| 国产精品 欧美亚洲| 国产在视频线精品| 一进一出抽搐gif免费好疼 | 天堂√8在线中文| 一级片免费观看大全| x7x7x7水蜜桃| 天堂动漫精品| 亚洲成人国产一区在线观看| 19禁男女啪啪无遮挡网站| 国产成人精品无人区| 别揉我奶头~嗯~啊~动态视频| 99久久综合精品五月天人人| 久久国产亚洲av麻豆专区| 成年人午夜在线观看视频| 亚洲五月色婷婷综合| 日韩成人在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀| 国产视频一区二区在线看| 国产极品粉嫩免费观看在线| 制服人妻中文乱码| 老司机亚洲免费影院| 亚洲全国av大片| 国产免费av片在线观看野外av| 这个男人来自地球电影免费观看| 伦理电影免费视频| 亚洲自偷自拍图片 自拍| www.自偷自拍.com| a级片在线免费高清观看视频| 满18在线观看网站| 99久久精品国产亚洲精品| 欧美最黄视频在线播放免费 | 精品午夜福利视频在线观看一区| 亚洲午夜理论影院| 99国产极品粉嫩在线观看| 成年人免费黄色播放视频| 精品免费久久久久久久清纯 | 欧美+亚洲+日韩+国产| 国产精品久久久人人做人人爽| 欧美日韩中文字幕国产精品一区二区三区 | 成人黄色视频免费在线看| 国产精品久久电影中文字幕 | 啦啦啦免费观看视频1| 天天添夜夜摸| 在线观看免费午夜福利视频| 亚洲欧美日韩高清在线视频| 又紧又爽又黄一区二区| 一a级毛片在线观看| 久久人妻熟女aⅴ| 国产成人欧美在线观看 | 91精品三级在线观看| 18禁美女被吸乳视频| 国产精品秋霞免费鲁丝片| 国产成人免费无遮挡视频| 超碰97精品在线观看| 黄片小视频在线播放| 亚洲五月天丁香| 免费久久久久久久精品成人欧美视频| 欧美日韩瑟瑟在线播放| 国产亚洲精品第一综合不卡| 超色免费av| 女人精品久久久久毛片| 一级毛片高清免费大全| 国产亚洲一区二区精品| 91麻豆精品激情在线观看国产 | 亚洲一码二码三码区别大吗| 美女 人体艺术 gogo| 丝袜美足系列| 亚洲全国av大片| 久久久水蜜桃国产精品网| 桃红色精品国产亚洲av| 免费av中文字幕在线| 一级a爱视频在线免费观看| 欧美黑人精品巨大| 久久久久久久精品吃奶| 精品欧美一区二区三区在线| 99国产精品一区二区三区| 日本欧美视频一区| 18禁美女被吸乳视频| 狂野欧美激情性xxxx| 免费在线观看视频国产中文字幕亚洲| 午夜影院日韩av| 国内毛片毛片毛片毛片毛片| 99久久精品国产亚洲精品| 一区二区三区国产精品乱码| www.自偷自拍.com| 亚洲精品粉嫩美女一区| 欧美人与性动交α欧美精品济南到| 黄色怎么调成土黄色| 欧美日韩黄片免| 国产精品二区激情视频| 国产av又大| 丰满迷人的少妇在线观看| 老司机亚洲免费影院| 国产成人系列免费观看| 国产成人精品久久二区二区91| 国产亚洲欧美精品永久| 高清欧美精品videossex| 99re在线观看精品视频| 亚洲av日韩在线播放| 大片电影免费在线观看免费| 色婷婷久久久亚洲欧美| av在线播放免费不卡| cao死你这个sao货| 精品国产超薄肉色丝袜足j| 国产在线观看jvid| 亚洲av熟女| 色综合欧美亚洲国产小说| 免费在线观看视频国产中文字幕亚洲| 欧美精品高潮呻吟av久久| 男女之事视频高清在线观看| 久久精品国产99精品国产亚洲性色 | 高清欧美精品videossex| 一级a爱视频在线免费观看| 一a级毛片在线观看| 国产精品 国内视频| 久久午夜综合久久蜜桃| 999久久久精品免费观看国产| 欧美激情极品国产一区二区三区| 精品久久久久久电影网| 亚洲专区字幕在线| 久久狼人影院| 一级,二级,三级黄色视频| 最新美女视频免费是黄的| 女同久久另类99精品国产91| 亚洲第一青青草原| 午夜精品在线福利| 91精品国产国语对白视频| 免费看a级黄色片| 国产伦人伦偷精品视频| 国产激情久久老熟女| 亚洲五月色婷婷综合| 久久久久精品人妻al黑| 精品久久久久久电影网| 香蕉久久夜色| 99re在线观看精品视频| 1024视频免费在线观看| 欧美久久黑人一区二区| 国产一区二区三区视频了| 日韩三级视频一区二区三区| 精品久久久久久电影网| 咕卡用的链子| 一a级毛片在线观看| 日韩大码丰满熟妇| 国产精品免费大片| 欧美人与性动交α欧美软件| 国产精品久久久av美女十八| 啪啪无遮挡十八禁网站| 黑人欧美特级aaaaaa片| 国产深夜福利视频在线观看| 亚洲av日韩在线播放| 丰满人妻熟妇乱又伦精品不卡| 欧美 亚洲 国产 日韩一| 极品人妻少妇av视频| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜精品在线福利| 日日爽夜夜爽网站| 亚洲国产精品sss在线观看 | www.999成人在线观看| 亚洲人成伊人成综合网2020| 国产亚洲精品一区二区www | 91麻豆av在线| 麻豆乱淫一区二区| 国产欧美日韩精品亚洲av| 无人区码免费观看不卡| 国产成+人综合+亚洲专区| 国产淫语在线视频| 成人黄色视频免费在线看| 色播在线永久视频| 日韩欧美国产一区二区入口| 欧美激情高清一区二区三区| www.熟女人妻精品国产| 国产精品综合久久久久久久免费 | 国产成人啪精品午夜网站| 成人特级黄色片久久久久久久| 岛国毛片在线播放| 老司机午夜福利在线观看视频| 又紧又爽又黄一区二区| 老汉色av国产亚洲站长工具| 国产97色在线日韩免费| 九色亚洲精品在线播放| 国产欧美日韩精品亚洲av| 99久久精品国产亚洲精品| 亚洲欧美精品综合一区二区三区| 日本精品一区二区三区蜜桃| 国产成人一区二区三区免费视频网站| 99国产精品一区二区三区| 欧美老熟妇乱子伦牲交| 国产麻豆69| 老司机在亚洲福利影院| 在线免费观看的www视频| 精品久久久久久电影网| 九色亚洲精品在线播放| 欧美日本中文国产一区发布| 免费在线观看亚洲国产| 欧美精品亚洲一区二区| 日韩三级视频一区二区三区| 成年女人毛片免费观看观看9 | 在线观看免费视频网站a站| 国产伦人伦偷精品视频| 一级片'在线观看视频| 变态另类成人亚洲欧美熟女 | 搡老熟女国产l中国老女人| 久久精品熟女亚洲av麻豆精品| 男人操女人黄网站| 不卡av一区二区三区| 国产精品二区激情视频| 99热网站在线观看| 久久精品亚洲熟妇少妇任你| 久久午夜亚洲精品久久| 精品少妇久久久久久888优播| 国产亚洲精品第一综合不卡| 久久久久国内视频| 精品卡一卡二卡四卡免费| 两个人免费观看高清视频| 99热国产这里只有精品6| 亚洲一区中文字幕在线| 免费在线观看完整版高清| 精品久久久久久电影网| 国产精品98久久久久久宅男小说| 日韩三级视频一区二区三区| 久久精品国产99精品国产亚洲性色 | 欧美亚洲日本最大视频资源| 亚洲九九香蕉| 国产人伦9x9x在线观看| 午夜免费成人在线视频| 亚洲国产欧美一区二区综合| 国精品久久久久久国模美| 国产又爽黄色视频| 69精品国产乱码久久久| 超碰成人久久| a级片在线免费高清观看视频| 十分钟在线观看高清视频www| 亚洲成人免费电影在线观看| 黄频高清免费视频| 国产日韩一区二区三区精品不卡| 国产野战对白在线观看| 国产精华一区二区三区| 咕卡用的链子| 一级a爱片免费观看的视频| 亚洲色图 男人天堂 中文字幕| 欧美精品啪啪一区二区三区| 亚洲精品粉嫩美女一区| 欧洲精品卡2卡3卡4卡5卡区| 自线自在国产av| 久久久久久久久久久久大奶| 啦啦啦视频在线资源免费观看| 亚洲视频免费观看视频| 色婷婷av一区二区三区视频| 国产亚洲一区二区精品| 天堂中文最新版在线下载| 亚洲在线自拍视频| 色在线成人网| 最新的欧美精品一区二区| 韩国av一区二区三区四区| 午夜福利,免费看| 在线av久久热| 国产欧美日韩一区二区三区在线| av超薄肉色丝袜交足视频| 亚洲中文日韩欧美视频| 日韩欧美一区二区三区在线观看 | 精品国产国语对白av| 人妻一区二区av| 777米奇影视久久| 日韩免费av在线播放| 1024视频免费在线观看| 国产免费男女视频| 女人久久www免费人成看片| 在线播放国产精品三级| 一级a爱视频在线免费观看| 一二三四社区在线视频社区8| 首页视频小说图片口味搜索| 美女福利国产在线| 中文字幕最新亚洲高清| 亚洲伊人色综图| 如日韩欧美国产精品一区二区三区| www日本在线高清视频| 亚洲精品粉嫩美女一区| 校园春色视频在线观看| 国产在线一区二区三区精| 亚洲精品自拍成人| netflix在线观看网站| 91精品三级在线观看| 欧洲精品卡2卡3卡4卡5卡区| 涩涩av久久男人的天堂| 波多野结衣一区麻豆| av免费在线观看网站| 久久国产精品大桥未久av| 淫妇啪啪啪对白视频| 久久精品aⅴ一区二区三区四区| 日本撒尿小便嘘嘘汇集6| 欧美日韩黄片免| 中亚洲国语对白在线视频| 亚洲午夜理论影院| 1024香蕉在线观看| av网站在线播放免费| 丝瓜视频免费看黄片| 国产色视频综合| 激情在线观看视频在线高清 | 黄片播放在线免费| 精品一品国产午夜福利视频| 热99re8久久精品国产| 亚洲熟女毛片儿| 老鸭窝网址在线观看| 国产成+人综合+亚洲专区| 国产免费现黄频在线看| 国产在线精品亚洲第一网站| av视频免费观看在线观看| 久久精品国产99精品国产亚洲性色 | 婷婷精品国产亚洲av在线 | 亚洲三区欧美一区| 国产精品 国内视频| 日韩免费高清中文字幕av| 天天添夜夜摸| 免费观看精品视频网站| 国产av一区二区精品久久| 久久久国产一区二区| 免费看a级黄色片| 欧美成狂野欧美在线观看| 亚洲欧美日韩另类电影网站| 99国产精品一区二区蜜桃av | 亚洲av电影在线进入| 色尼玛亚洲综合影院| 老熟女久久久| 青草久久国产| 又紧又爽又黄一区二区| 久久久久久久精品吃奶| 免费在线观看视频国产中文字幕亚洲| 黑丝袜美女国产一区| 亚洲色图综合在线观看| 精品人妻熟女毛片av久久网站| 国产片内射在线| av欧美777| 久久精品国产99精品国产亚洲性色 | videosex国产| 黑人猛操日本美女一级片| 日本欧美视频一区| 国产单亲对白刺激| 韩国精品一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久婷婷成人综合色麻豆| 高清毛片免费观看视频网站 | 黑人欧美特级aaaaaa片| 久久国产精品男人的天堂亚洲| 日韩一卡2卡3卡4卡2021年| 日韩制服丝袜自拍偷拍| 精品国产一区二区久久| 成人av一区二区三区在线看| 麻豆av在线久日| 一二三四在线观看免费中文在| 国产精品久久久久久人妻精品电影| 香蕉久久夜色| 成人亚洲精品一区在线观看| 国产激情欧美一区二区| 天堂动漫精品| 国产精品一区二区免费欧美| 亚洲男人天堂网一区| 成人18禁高潮啪啪吃奶动态图| 欧美老熟妇乱子伦牲交| 男女高潮啪啪啪动态图| 国产蜜桃级精品一区二区三区 | 亚洲精品久久成人aⅴ小说| 婷婷丁香在线五月| 国产淫语在线视频| 成熟少妇高潮喷水视频| 欧美精品高潮呻吟av久久| 老司机午夜福利在线观看视频| 色在线成人网| 国产成人欧美在线观看 | 免费不卡黄色视频| 极品少妇高潮喷水抽搐| 美女 人体艺术 gogo| 国产在线一区二区三区精| 热99re8久久精品国产| 嫩草影视91久久| 免费在线观看亚洲国产| 老熟妇仑乱视频hdxx| tocl精华| 中文亚洲av片在线观看爽 | 亚洲三区欧美一区| a在线观看视频网站| 麻豆乱淫一区二区| 国产黄色免费在线视频| 一级黄色大片毛片| 国内毛片毛片毛片毛片毛片| 午夜日韩欧美国产| 人人妻人人澡人人爽人人夜夜| 在线国产一区二区在线| 国产精品一区二区在线观看99| 亚洲精品久久午夜乱码| 亚洲av成人av| 黄色毛片三级朝国网站| 美女高潮到喷水免费观看| 男男h啪啪无遮挡| 人人妻人人澡人人爽人人夜夜| 韩国av一区二区三区四区| 99国产综合亚洲精品| 欧美 亚洲 国产 日韩一| 亚洲aⅴ乱码一区二区在线播放 | 国产免费现黄频在线看| av一本久久久久| 亚洲成人国产一区在线观看| 亚洲精品国产一区二区精华液| 久久精品国产亚洲av香蕉五月 | 丁香欧美五月| 午夜久久久在线观看| 国产av一区二区精品久久| 三级毛片av免费| 嫩草影视91久久| 免费在线观看亚洲国产| 精品亚洲成a人片在线观看| 少妇的丰满在线观看| 一a级毛片在线观看| √禁漫天堂资源中文www| 宅男免费午夜| 精品久久久久久久久久免费视频 | 好男人电影高清在线观看| 三级毛片av免费| 国产日韩欧美亚洲二区| 国产单亲对白刺激| 亚洲片人在线观看| 久久ye,这里只有精品| 十八禁网站免费在线| 黄色毛片三级朝国网站| av有码第一页| 精品国产国语对白av| 亚洲欧美一区二区三区黑人| 国产乱人伦免费视频| 一级片免费观看大全| 亚洲五月色婷婷综合| 成人黄色视频免费在线看| 99久久人妻综合| e午夜精品久久久久久久| tube8黄色片| 亚洲国产中文字幕在线视频| 宅男免费午夜| 国产1区2区3区精品| 国产精品自产拍在线观看55亚洲 | 中文字幕人妻丝袜制服| 欧美日韩瑟瑟在线播放| 一级,二级,三级黄色视频| 天堂俺去俺来也www色官网| 男人操女人黄网站| 99久久人妻综合| 成熟少妇高潮喷水视频| 丰满的人妻完整版| xxxhd国产人妻xxx| 成人亚洲精品一区在线观看| 一本大道久久a久久精品| 男女下面插进去视频免费观看| 一级黄色大片毛片| 久久午夜亚洲精品久久| 热re99久久精品国产66热6| 久久精品亚洲av国产电影网| 国产视频一区二区在线看| 麻豆av在线久日| 不卡一级毛片| 国产精品美女特级片免费视频播放器 | 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产99精品国产亚洲性色 | 国产麻豆69| 欧美+亚洲+日韩+国产| e午夜精品久久久久久久| 国产一区在线观看成人免费| 国产片内射在线| 日韩三级视频一区二区三区| 国产成+人综合+亚洲专区| 一级片免费观看大全| 身体一侧抽搐| 久久久久久亚洲精品国产蜜桃av| 美女午夜性视频免费| 国产主播在线观看一区二区| 99久久综合精品五月天人人| 午夜免费观看网址| 丁香六月欧美|