• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In-plane spin excitation of skyrmion bags

    2023-12-02 09:38:02ShuangLi李爽KeXinLi李可欣ZhaoHuaLiu劉照華QiYuanZhu朱起源ChenBoZhao趙晨博HuZhang張虎XingQiangShi石興強(qiáng)JiangLongWang王江龍RuiNingWang王瑞寧RuQianLian連如乾PengLaiGong鞏朋來(lái)andChenDongJin金晨東
    Chinese Physics B 2023年11期
    關(guān)鍵詞:江龍李爽

    Shuang Li(李爽), Ke-Xin Li(李可欣), Zhao-Hua Liu(劉照華), Qi-Yuan Zhu(朱起源),Chen-Bo Zhao(趙晨博), Hu Zhang(張虎), Xing-Qiang Shi(石興強(qiáng)),Jiang-Long Wang(王江龍), Rui-Ning Wang(王瑞寧), Ru-Qian Lian(連如乾),Peng-Lai Gong(鞏朋來(lái)), and Chen-Dong Jin(金晨東),?

    1Key Laboratory of Optic-Electronic Information and Materials of Hebei Province,Research Center for Computational Physics,College of Physics Science and Technology,Hebei University,Baoding 071002,China

    2College of Mathematics and Physics,Chongqing University of Science and Technology,Chongqing 401331,China

    3Department of Materials Science and Engineering,Lanzhou University of Technology,Lanzhou 730050,China

    Keywords: skyrmion bags,spin-wave mode,power spectral density,micromagnetic simulation

    1.Introduction

    Magnetic skyrmions, as topologically protected spin structures characterized by topological charges, have been widely studied in recent years.[1–17]Skyrmions have the characteristics of small size,topological protection,and low drive current density,which are conducive to the technical applications in high-density data storage equipment and low-energyconsumption spintronic devices.[18–22]In particular, the theoretical application of skyrmions has been extended to antiferromagnetic skyrmions,including racetrack memories,logic devices,spin nano-oscillators,and other promising spintronic devices derived from no spin Hall effect,zero stray field,and ultra-fast magnetization dynamics.[23–25]Recently, the interaction between spin wave and skyrmion has attracted considerable attention.[26–35]The propagating spin wave strongly depends on the excitation mode of a skyrmion in frequency,decay length, and group velocity.[33]The spin excitation of microwave AC magnetic field has attracted a lot of attention due to its potential application in the design of spin-wave devices.[27,35–41]As is well known, the spin-wave mode of skyrmion contains in-plane counterclockwise(CCW)rotation mode and clockwise (CW) rotation mode, and one out-ofplane breathing mode.[27,36]In addition,the spin-wave modes of 2πskyrmion,[37,38]elliptical skyrmion,[41]bimeron,[42]magnetic hopfion of three-dimensional(3D)space,[39]and 3D skyrmions lattice[43]have been studied.For example,the spinwave mode of 2πskyrmions contains four in-plane modes including two CW modes, two CCW rotation modes, and two out-of-plane breathing modes;[37,38]the simple breathing mode of elliptical skyrmion splits into two complex breathing modes owing to the breaking of the rotational symmetry of the spin texture;[41]the spin-wave mode of bimeron presents an anisotropic property when the microwave magnetic field is applied in the plane;[42]the spin-wave mode of magnetic hopfion contains five modes of breathing and rotating characters;[39]the spin-wave mode of the 3D skyrmion lattice exhibits the CCW mode and CW mode that are excited in pair as the film thickness increases in the in-plane;[43]three coupled excitation modes were found in the antiferromagnetic exchange coupling disk.[44]

    Skyrmion bags are spin structures with arbitrary topological charges, each of which is composed of several small skyrmions with opposite topological charges inside a larger skyrmion.[45–48]Compared with skyrmions, skyrmion bags have high topological charges to represent more information.[49,50]Skyrmion bags were discovered in the liquid crystal and the thin plate of B20 chiral FeGe magnet by polarized optical microscopy and Lorentz transmission electron microscopy, respectively.[46,51,52]By numerical simulations, the interaction of stable skyrmion bags in the liquid crystal is similar to that of large skyrmions.[46]Moreover,the stability and current-induced motions of skyrmion bags have been investigated by micromagnetic simulations and in experiment,[46,48,51,53–55]the spintronic devices with tunable magnetic fields and variable topological charge driven by current have important application prospects.[46,48,51,53,54,56]Up to now, the in-plane spin excitation modes of skyrmion bags are still unclear.The in-plane spin excitations of skyrmion bags should be richer than those of skyrmions,because of the nested structure.Therefore,to manipulate skyrmion bags and promote the development of their potential applications, it is particularly important to study the spin excitation of skyrmion bags by applying an in-plane microwave magnetic field.In this work,we first calculate the ground state of the skyrmion bags,including the total topological charge and the total energy.Then, we calculate the power spectrum of the skyrmion bags and the corresponding spin-wave mode.Finally,we study the time evolution of skyrmion bag excitation, which contributes to a better understanding of each spin-wave mode.

    2.Micromagnetic simulation details

    The ground state and spin-wave resonance modes of skyrmion bags are obtained by solving the Landau–Lifshitz–Gilbert (LLG) equation with object oriented micromagnetic framework (OOMMF).[57]The LLG equation can be expressed as follows:

    wheremis the unit vector of magnetization,αis the Gilbert damping parameter and is set to 0.5 and 0.01 for the solution of the ground state and the resonant excitation procedure,respectively,Heffis the total effective field composed of the Heisenberg exchange field, the Dzyaloshinskii–Moriya interaction(DMI)field,the uniaxial anisotropy field,the demagnetization field,and the applied field.The applied field is set toBx(t)=B0sinc(2π ft) andBx(t)=Bxsin(2π ft) for the excitation spectrum solution and the time evolution solution,respectively.The simulation radius of the nanodisk is 100 nm and the cell size is 1 nm×1 nm×0.4 nm.Typical parameters for Co on heavy metal substrate parameters are cited from Refs.[21,54,58],exchange constantA=1.5×10-11J/m,DMI constantD= 3.5×103J/m2, uniaxial anisotropy constantKu=0.8×106J/m3,and saturation magnetizationMs=5.8×105A/m.Such parameters guarantee the existence of different types of skyrmion bags,as reported in Refs.[40,53,54,59].The ground state of skyrmion bag is denoted by S(n), wherenrepresents the number of inner skyrmions.The definition of skyrmion bag in this work is similar to that in Ref.[46], so the skyrmion bag shown in Fig.1(a)is denoted as S(4).Owing to the boundary potential and the large enough interfacial DMI,the initial position of the outer skyrmion(the polarity is+1)is stable in the middle of the nanodisk,and the four inner skyrmions (the polarity is-1) are centrally symmetric.The skyrmion bags are described by topological chargeQ,[3,60]

    whereQis the total topological charge.Figure 1(b) shows the topological density distribution corresponding to S(4).The topological density of the outer skyrmion boundary region reaches to 4.2×1015m-2, and the topological density of the four inner skyrmions’ region has the lowest value of-2.44×1015m-2.By integrating the topological density of the entire nanodisk, the topological charge of S(4) is-3.It should be noted that if the background magnetization direction is reversed,then the topological charge sign of skyrmion bags will be reversed correspondingly.

    3.Results and discussion

    3.1.Ground state, total topological charge and total energy of S(0)–S(9)

    We first calculate the ground state of S(0)–S(9)in Fig.2 by micromagnetic simulation.To obtain the ground state of skyrmion bag, we place a large bubble into the nanodisk and then set small bubbles into the large bubble.Then, we relax the magnetic system and obtain the minimum value of the total energy by using a conjugate gradient method implemented in the OOMMF code.[57]The magnetic system is considered stable when the change of the measured total energy is less than 1/105in 10 ns.[53]The arrows point in thez-direction away from the center of the skyrmion, and an elementary full skyrmion(S(0))has a topological charge-1 as shown in Fig.2(a).Inside a stretched skyrmion,the arrows point in the-zdirection,and a skyrmion placed here hasQ+1,so the 2πskyrmion(S(1))has a topological charge as shown in Fig.2(b).Furthermore,asn>1,S(n)represents different skyrmion bags shown in Figs.2(c)–2(j), and their stabilities have been systematically analyzed in thin magnetic films by simulations.[53]The magnetic moment direction of the ground state of S(0)–S(9) are shown in Fig.2.Skyrmion bag is a nested structure of small skyrmions contained by a big skyrmion, and its size becomes larger due to the increasing number of skyrmions.In addition,to further investigate the properties of skyrmion bag,we calculate the functional relationship between the total topological charge(Q)and S(n),and that between the total energy(E)and S(n).

    Figure 3(a)shows thatQdecreases from 1 to 8 withnincreasing from 0 to 9,soQ=1-n.Figure 3(b)shows thatEincreases from 2.448×10-18J(S(0))to 3.277×10-18J(S(9))with the increases of S(n),which means that the stability of the skyrmion bags decreases as the number of inner skyrmions increases.

    3.2.Map of power spectral density of skyrmion bags

    To investigate the spin excitation of skyrmion bags, the power spectral density (PSD) of skyrmion bag is calculated as shown in Fig.4.Specifically, we study the map of PSD of skyrmion bags varying withnto compare the differences among the different modes of skyrmion bags.For the excitation spectrum of each skyrmion bag,the map of PSD indicates the number of resonance frequencies as well as the linewidth of each resonant frequency,the magnitude of the peak amplitude is represented by the color depth of the color code.The excitation pulse is the sinc functionBx(t) =B0sinc(2π ft),where the amplitudeB0is 10 mT in thex-axis direction as shown in Fig.4(a).The cutoff frequency is set to 50 GHz.The excitation frequency can be obtained by the fast Fourier transform (FFT) of the oscillation of the in-planexcomponent of magnetization, and then the PSD phase diagram of skyrmion bags with S(n) is obtained by changing S(n) as shown in Fig.4(b).In earlier work, for S(0) as a single skyrmion, the number of in-plane excitation modes depends on the DMI value;[41]the in-plane excitation mode of 2πskyrmion S(1) exhibits two resonance modes, and the relationship between the resonant mode and the uniform magnetic field is studied.[37]We mainly focus on the excitation spectrum of skyrmion bag, i.e., S(n)>1, there are four inplane resonance modes of skyrmion bags,which are different from those of skyrmions and 2πskyrmions.The resonance frequency of mode 1 increases monotonically with S(n) increasing from 0.7 GHz (S(2)) to 4.9 GHz (S(9)).With S(n)increasing from S(2)to S(9),the resonance frequency of mode 2 and mode 4 remain unchanged at 10 GHz and 45 GHz,respectively.The resonance frequency of mode 3 decreases from 16.3 GHz (S(1)) to 14.5 GHz (S(3)) and then increases to 22.9 GHz(S(9)).It is found that the number of modes of the skyrmion bag does not change withnwhenn>2,but the resonance frequencies of different modes shift withn.Because each skyrmion bag has four specific modes excited by the inplane microwave magnetic field,these modes may be used for detecting and characterizing skyrmion bags.

    3.3.In-plane spin-wave modes of skyrmion bags

    Taking the S(4)-type skyrmion bag for example,the spinwave modes of skyrmion bags at in-plane resonance frequencies are studied in detail, as shown in Fig.5, the four inplane resonance frequencies of S(4) are 2.2 GHz, 9.6 GHz,15.4 GHz,and 44.3 GHz,respectively.For mode 1 at 2.2 GHz,the resonance amplitude ofδmzin the in-plane magnetization region of the outer skyrmion and inner skyrmion are both larger.The phase of the spatial distribution of the outer skyrmion changes continuously from-πtoπ, and the phase changes of the four inner skyrmions are opposite to that of the outer skyrmion.For mode 2 at 9.6 GHz, the spatial distribution of the resonance amplitude of the outer skyrmion is larger than those of four inner skyrmions.The phase of the outer skyrmion region changes continuously fromπto-π,and the phase difference in phase among the four inner skyrmions isπ/2.For mode 3 at 15.4 GHz,the resonance distribution and phase variation are similar to those for mode 2,and the difference is that the resonance amplitude of the inner skyrmions is larger than that of the outer skyrmion.For mode 4 at 44.3 GHz,the spatial distribution of the resonance amplitudes is concentrated in the region of the inner skyrmions, and the phases of the four inner skyrmions all vary fromπto-π.

    3.4.Compound modes of rotation and breathing of skyrmion bags under in-plane microwave magnetic field

    To further identify each spin-wave mode shown in Fig.5,we investigate the magnetization component of the skyrmion bags at different times by applying a sine-function magnetic fields with different resonance frequencies, to the bags as shown in Fig.6.The sine-function microwave magnetic field is expressed asBx(t)=Bxsin(2π ft),whereBx=10 mT,fis the resonance frequency of each spin-wave mode.To observe the changes of the skyrmion bag under the action of the sinefunction microwave magnetic field, we present the snapshots ofδmz(t)at different times,whereδmz(t)is the difference between thez-direction magnetization component changing with time and thez-direction magnetization component of the initial state,and it can be expressed asδmz(t)=mz(t)-mz(0),whereδmz(t)is normalized to observe its variation more clearly.The time evolution of the skyrmion bag in a circle is shown in five snapshots in Fig.6(a) when an in-plane microwave AC magnetic field at 2.2 GHz is applied to the skyrmion bags.The outer skyrmion and the inner skyrmion exhibit the CCW rotation mode and the CW rotation mode, respectively.The opposite directions of the inner rotation and the outer rotation result from the opposite directions of the opposite polarity of the inner skyrmions and the outer skyrmion.The CW modes of the inner skyrmions are not seen to be in phase,resulting from the rotation symmetry of the inner skyrmions being broken due to the influence of the CCW mode of the outer skyrmion.Figure 6(b) shows the spin-wave modes at 9.6 GHz: the outer skyrmion shows the CW rotation mode,and the weak breathing mode of the inner skyrmions traces the CW rotation mode of the outer skyrmion.Figure 6(c)shows the spin-wave modes at 15.4 GHz, i.e., the weak CW rotation mode of the outer skyrmion and the strong breathing mode of the inner skyrmions following the CW rotation mode of the outer skyrmion.For the spin-wave modes at 9.6 GHz and 15.4 GHz, the outer skyrmion shows the same CW rotation mode as a single skyrmion with the increase in frequency;the inner skyrmions do not show the CCW mode but a breathing mode following the CW mode of the outer skyrmion, because the rotation symmetry of the skyrmion bag is broken with the increase in frequency.The supplementary material video shows the time evolutions ofmzandδmzat various resonance frequencies, which can conduce to the understanding of the in-plane spin-wave modes of skyrmion bags,whereδmzis normalized.As can be seen from videos 2 and 3, the inner skyrmion of mode 2 with the largest distance from the outer domain wall is always the largest; mode 3 is a similar mode, with the key difference being that the inner skyrmion with the largest distance from the outer domain wall is always the smallest.The higher frequency of mode 3 causes the breathing of inner skyrmions to fail to keep up with the rotation change of the outer skyrmion.Figure 6(d)shows the spin-wave modes of the skyrmion bag at 44.3 GHz, in which the outer skyrmion has almost no resonance, and the inner skyrmion shows a CCW rotation mode.It can be seen from video 4 that the CCW modes of the four inner skyrmions are in phase without the influence of the domain wall of the outer skyrmion.

    The above results provide a method to manipulate the dynamics of skyrmion bags in nanostructures by using a microwave magnetic field.For example, in the future, it will be possible to create,[61]drive[62]or even detect and characterize the skyrmion bags[63]by using microwave magnetic fields, which is similar to the reported method of operating skyrmions.In addition, the in-plane spin-wave modes of skyrmion bags include some new rotation-breathing coupling modes (the breathing mode generally appears in the out-ofplane excitation of the skyrmion[40]), which can be used for realizing the logic devices and also contribute to the development of skyrmion bags-based oscillators.

    4.Conclusions

    In summary, we first investigated the ground state of skyrmion bag.We showed that the energy of geometrically confined skyrmion bags follows the same nearly linear dependence on topological charge as that of an extended system.By studying the in-plane excitation of skyrmion bags, we found that the skyrmion bags have four complex main spin-wave modes,which are different from the simple rotation modes of skyrmions.In addition, we focused our attention on the spin excitation of skyrmion bags.With the increase of resonance frequency,the four in-plane resonance modes are found as follows: for mode 1, the outer skyrmion is in a strong CCW rotation mode and each inner skyrmion is in a strong resonance CW rotation mode; for mode 2, the outer skyrmion is in a strong CW rotation mode and the inner skyrmions are of weak breathing mode; for mode 3, the outer skyrmion is in a weak CW rotation mode and inner skyrmions are of strong breathing mode; for mode 4, the outer skyrmion almost has no resonance and each inner skyrmion is in a strong CCW rotation mode.Because the skyrmion bags possess nested structures of skyrmions,they have some more complex in-plane spin-wave modes than a single skyrmion.Our results conduce to the understanding of the in-plane spin-wave modes of skyrmion bags and may provide a reference for designing the spintronic and logic devices.

    Supplementary material

    For more information about the micromagnetic simulation,readers may refer to the time domain variation videos ofmzandδmzat each resonance frequency in the supplementary material,videos 1–4 corresponding to modes 1–4 in sequence.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.12104124 and 12274111),the Natural Science Foundation of Hebei Province, China(Grant Nos.A2021201001 and A2021201008), the Central Guidance Fund on the Local Science and Technology Development of Hebei Province, China (Grant No.236Z0601G),the Post-graduate’s Innovation Fund Project of Hebei Province, China (Grant No.CXZZSS2023007), the Advanced Talents Incubation Program of the Hebei University, China (Grant Nos.521000981395, 521000981423,521000981394,and 521000981390),the Research Foundation of Chongqing University of Science and technology, China(Grant No.ckrc2019017),and the High-Performance Computing Center of Hebei University,China.

    猜你喜歡
    江龍李爽
    Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
    馬賽:以美為媒講好中國(guó)故事
    Hydrophobicity changes of polluted silicone rubber introduced by spatial and dose distribution of plasma jet
    創(chuàng)新企業(yè)民主管理途徑的探索
    美食鑒定師
    Large-eddy simulation of the in fluence of a wavy lower boundary on the turbulence kinetic energy budget redistribution*
    《西安交通大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》90后編委李江龍被評(píng)為西安交大第四屆“十大學(xué)術(shù)新人”
    老憨請(qǐng)客
    愛(ài)你(2017年7期)2017-11-14 20:15:27
    老憨請(qǐng)客
    電話(huà)打給局長(zhǎng)情人
    制服诱惑二区| 色播在线永久视频| www.熟女人妻精品国产| 欧美少妇被猛烈插入视频| av又黄又爽大尺度在线免费看| 国产成人91sexporn| 一本色道久久久久久精品综合| 久久久久久亚洲精品国产蜜桃av| 一区二区av电影网| 黄色片一级片一级黄色片| 亚洲色图 男人天堂 中文字幕| 香蕉国产在线看| 亚洲美女黄色视频免费看| 美女主播在线视频| 麻豆国产av国片精品| 亚洲人成电影观看| 日韩一本色道免费dvd| 久久精品成人免费网站| 国产精品成人在线| 日本色播在线视频| 亚洲人成电影免费在线| 操出白浆在线播放| 视频区图区小说| 别揉我奶头~嗯~啊~动态视频 | 国产在线免费精品| 岛国毛片在线播放| 日韩熟女老妇一区二区性免费视频| 国产有黄有色有爽视频| 国产成人精品久久二区二区91| 人成视频在线观看免费观看| 亚洲黑人精品在线| 亚洲精品自拍成人| 青草久久国产| 亚洲伊人久久精品综合| 国产激情久久老熟女| 久久人人爽av亚洲精品天堂| 我的亚洲天堂| 久久精品久久精品一区二区三区| 大片免费播放器 马上看| 五月天丁香电影| 国产精品一区二区精品视频观看| 亚洲欧美激情在线| 午夜精品国产一区二区电影| 搡老岳熟女国产| 日韩欧美一区视频在线观看| 97在线人人人人妻| 久久久国产欧美日韩av| 搡老岳熟女国产| 午夜福利,免费看| 91精品三级在线观看| 色94色欧美一区二区| 成人亚洲欧美一区二区av| 人成视频在线观看免费观看| 精品国产国语对白av| 欧美大码av| 亚洲 欧美一区二区三区| 亚洲av片天天在线观看| 色婷婷久久久亚洲欧美| 亚洲欧美中文字幕日韩二区| 国产亚洲一区二区精品| 久久久久久久国产电影| 国产在线观看jvid| 亚洲精品一二三| 大香蕉久久网| 少妇裸体淫交视频免费看高清 | 久久久亚洲精品成人影院| 国产高清不卡午夜福利| 大型av网站在线播放| 天天躁夜夜躁狠狠久久av| 亚洲色图 男人天堂 中文字幕| 精品少妇内射三级| 丰满迷人的少妇在线观看| 香蕉国产在线看| 乱人伦中国视频| 亚洲国产精品一区三区| 久久久国产精品麻豆| 在现免费观看毛片| 午夜激情久久久久久久| 伊人亚洲综合成人网| 精品一品国产午夜福利视频| 国产在线一区二区三区精| 国产xxxxx性猛交| 国产日韩欧美在线精品| 亚洲成人国产一区在线观看 | 亚洲精品国产色婷婷电影| 精品少妇久久久久久888优播| 亚洲成人手机| 日本欧美国产在线视频| a 毛片基地| 国产成人欧美| 欧美+亚洲+日韩+国产| 国产成人系列免费观看| www.999成人在线观看| 女人久久www免费人成看片| 国产熟女欧美一区二区| 亚洲精品自拍成人| 午夜老司机福利片| av网站在线播放免费| 搡老乐熟女国产| 国产成人免费无遮挡视频| 亚洲欧美一区二区三区久久| 午夜激情av网站| 国产一级毛片在线| 亚洲欧美激情在线| 国产成人系列免费观看| 成年av动漫网址| 欧美av亚洲av综合av国产av| 国产午夜精品一二区理论片| 亚洲男人天堂网一区| 午夜福利免费观看在线| 亚洲av日韩在线播放| 大型av网站在线播放| 欧美日韩视频精品一区| 日韩制服骚丝袜av| 成人三级做爰电影| 亚洲情色 制服丝袜| 亚洲国产欧美网| 国产精品99久久99久久久不卡| 三上悠亚av全集在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久久人人做人人爽| 99re6热这里在线精品视频| 亚洲中文av在线| 狠狠婷婷综合久久久久久88av| 天天添夜夜摸| 久久精品国产亚洲av涩爱| 色网站视频免费| 久久精品成人免费网站| 视频区图区小说| 日韩大片免费观看网站| 亚洲欧洲日产国产| 亚洲欧美日韩高清在线视频 | 九草在线视频观看| 国产成人精品在线电影| av网站免费在线观看视频| 色精品久久人妻99蜜桃| 极品人妻少妇av视频| 男女国产视频网站| 高清不卡的av网站| 在线 av 中文字幕| 精品少妇一区二区三区视频日本电影| 丰满饥渴人妻一区二区三| 男人爽女人下面视频在线观看| 黄色 视频免费看| 国产日韩欧美在线精品| 美女高潮到喷水免费观看| 交换朋友夫妻互换小说| 亚洲av成人精品一二三区| 亚洲精品国产一区二区精华液| 中文字幕av电影在线播放| 一二三四在线观看免费中文在| 中文字幕亚洲精品专区| 国产又爽黄色视频| 十八禁网站网址无遮挡| 美女脱内裤让男人舔精品视频| 日韩一本色道免费dvd| 别揉我奶头~嗯~啊~动态视频 | 国产成人欧美在线观看 | 在线看a的网站| 最新的欧美精品一区二区| 亚洲欧洲国产日韩| 伦理电影免费视频| 亚洲精品av麻豆狂野| 欧美性长视频在线观看| 欧美日韩黄片免| 国产精品麻豆人妻色哟哟久久| 久久天堂一区二区三区四区| 亚洲av日韩精品久久久久久密 | 亚洲av美国av| 久久国产精品大桥未久av| 满18在线观看网站| 制服诱惑二区| 久久久久视频综合| 国产精品一区二区免费欧美 | 色视频在线一区二区三区| 脱女人内裤的视频| 国产在视频线精品| 精品福利观看| 黑人巨大精品欧美一区二区蜜桃| avwww免费| 99精国产麻豆久久婷婷| 欧美日韩成人在线一区二区| 一区二区av电影网| 欧美少妇被猛烈插入视频| 午夜91福利影院| 9热在线视频观看99| 国产精品免费视频内射| 悠悠久久av| avwww免费| 亚洲精品美女久久久久99蜜臀 | av电影中文网址| 精品少妇一区二区三区视频日本电影| 久久人人97超碰香蕉20202| 一区福利在线观看| 成人亚洲欧美一区二区av| 欧美日韩成人在线一区二区| 亚洲美女黄色视频免费看| 爱豆传媒免费全集在线观看| 看免费av毛片| 男男h啪啪无遮挡| 亚洲中文字幕日韩| 巨乳人妻的诱惑在线观看| 人妻一区二区av| 纵有疾风起免费观看全集完整版| 亚洲人成电影免费在线| 脱女人内裤的视频| 女性被躁到高潮视频| 麻豆乱淫一区二区| 精品亚洲成国产av| 国产精品九九99| 丝袜人妻中文字幕| 亚洲国产欧美在线一区| 亚洲 欧美一区二区三区| 久热爱精品视频在线9| 狠狠精品人妻久久久久久综合| 在线观看人妻少妇| 久久av网站| 精品国产乱码久久久久久男人| 亚洲美女黄色视频免费看| e午夜精品久久久久久久| 国产激情久久老熟女| 最近手机中文字幕大全| 欧美日韩黄片免| 人妻 亚洲 视频| 男女之事视频高清在线观看 | 最新在线观看一区二区三区 | 久久人人爽人人片av| av在线app专区| 欧美日本中文国产一区发布| 亚洲av国产av综合av卡| 首页视频小说图片口味搜索 | 国产真人三级小视频在线观看| 欧美日本中文国产一区发布| 国产精品偷伦视频观看了| av网站在线播放免费| 老司机亚洲免费影院| 新久久久久国产一级毛片| 视频区欧美日本亚洲| 欧美日韩视频精品一区| 激情五月婷婷亚洲| 在线 av 中文字幕| 久久久国产欧美日韩av| 成人亚洲精品一区在线观看| 国产极品粉嫩免费观看在线| 久久99热这里只频精品6学生| 亚洲精品一卡2卡三卡4卡5卡 | 免费看av在线观看网站| 日本黄色日本黄色录像| 欧美人与性动交α欧美精品济南到| 久久久久久久精品精品| 国产亚洲一区二区精品| 一本一本久久a久久精品综合妖精| 老鸭窝网址在线观看| 中文字幕色久视频| 婷婷色综合www| 天天躁狠狠躁夜夜躁狠狠躁| 肉色欧美久久久久久久蜜桃| 中文字幕色久视频| 久久久久网色| 日韩精品免费视频一区二区三区| 欧美精品一区二区大全| 一级毛片电影观看| 日韩一区二区三区影片| 欧美激情 高清一区二区三区| 丝袜人妻中文字幕| 久久国产精品人妻蜜桃| 国产精品久久久久久精品古装| 精品少妇黑人巨大在线播放| 欧美人与性动交α欧美精品济南到| 免费在线观看日本一区| 欧美成人精品欧美一级黄| 久久鲁丝午夜福利片| 国产精品 国内视频| 久久ye,这里只有精品| 丝袜脚勾引网站| 国产亚洲欧美精品永久| 亚洲av欧美aⅴ国产| 日韩av免费高清视频| 日日夜夜操网爽| 在线 av 中文字幕| 妹子高潮喷水视频| 在线观看一区二区三区激情| 国产精品香港三级国产av潘金莲 | 中文字幕另类日韩欧美亚洲嫩草| 99热国产这里只有精品6| 99香蕉大伊视频| 欧美日韩一级在线毛片| 亚洲成国产人片在线观看| 国产麻豆69| 中文精品一卡2卡3卡4更新| 午夜久久久在线观看| 看免费av毛片| 水蜜桃什么品种好| 97在线人人人人妻| 国产伦理片在线播放av一区| 亚洲人成77777在线视频| 亚洲激情五月婷婷啪啪| 免费在线观看黄色视频的| 男女边吃奶边做爰视频| 在线观看免费高清a一片| 亚洲专区国产一区二区| 91成人精品电影| 亚洲,欧美,日韩| 中文字幕另类日韩欧美亚洲嫩草| 黄频高清免费视频| 亚洲欧美精品自产自拍| 一级毛片黄色毛片免费观看视频| 一级片'在线观看视频| 久久综合国产亚洲精品| 午夜免费鲁丝| 亚洲国产欧美日韩在线播放| av在线app专区| 国产欧美日韩一区二区三 | 国产成人啪精品午夜网站| 一二三四社区在线视频社区8| 久久久久久人人人人人| 色播在线永久视频| 99久久综合免费| 9热在线视频观看99| 免费日韩欧美在线观看| 久久ye,这里只有精品| 国产精品免费大片| 嫁个100分男人电影在线观看 | 69精品国产乱码久久久| 午夜av观看不卡| 国产av精品麻豆| 中国美女看黄片| 婷婷色综合大香蕉| 国产三级黄色录像| 国产成人系列免费观看| 亚洲欧美色中文字幕在线| 国产精品.久久久| 成人免费观看视频高清| 19禁男女啪啪无遮挡网站| 久久国产精品大桥未久av| 亚洲精品自拍成人| 国产色视频综合| 青草久久国产| 一边亲一边摸免费视频| 2021少妇久久久久久久久久久| 丝袜在线中文字幕| 纯流量卡能插随身wifi吗| 国产精品一二三区在线看| 久久人人爽人人片av| 国产1区2区3区精品| 午夜91福利影院| 少妇粗大呻吟视频| 国产av精品麻豆| 国产国语露脸激情在线看| 黄色怎么调成土黄色| netflix在线观看网站| 777久久人妻少妇嫩草av网站| h视频一区二区三区| 欧美日韩亚洲综合一区二区三区_| 日本午夜av视频| 热99国产精品久久久久久7| 无遮挡黄片免费观看| 老司机影院毛片| 精品久久蜜臀av无| av电影中文网址| 日韩制服丝袜自拍偷拍| 欧美在线一区亚洲| 久久久国产一区二区| 精品久久久精品久久久| 国产日韩欧美视频二区| 国产精品九九99| 亚洲五月婷婷丁香| 两个人看的免费小视频| 国产成人啪精品午夜网站| 欧美另类一区| 色婷婷久久久亚洲欧美| 亚洲视频免费观看视频| 亚洲精品久久久久久婷婷小说| 又大又黄又爽视频免费| 性少妇av在线| 中国国产av一级| 日韩 亚洲 欧美在线| 精品人妻熟女毛片av久久网站| 欧美日韩福利视频一区二区| 久久ye,这里只有精品| 亚洲色图综合在线观看| 日韩 欧美 亚洲 中文字幕| 男女下面插进去视频免费观看| 熟女少妇亚洲综合色aaa.| 蜜桃国产av成人99| 亚洲,欧美,日韩| 亚洲五月婷婷丁香| 18禁黄网站禁片午夜丰满| 下体分泌物呈黄色| 久久99一区二区三区| 黄频高清免费视频| 看十八女毛片水多多多| 精品一区二区三区四区五区乱码 | 亚洲情色 制服丝袜| 男人舔女人的私密视频| 女人久久www免费人成看片| 免费av中文字幕在线| 国产深夜福利视频在线观看| 日韩av不卡免费在线播放| 99热网站在线观看| 精品福利观看| 午夜福利免费观看在线| 欧美另类一区| 亚洲av在线观看美女高潮| 最近中文字幕2019免费版| 十分钟在线观看高清视频www| 亚洲中文日韩欧美视频| 另类精品久久| 下体分泌物呈黄色| 国产在线观看jvid| 欧美在线一区亚洲| 午夜久久久在线观看| 中文字幕精品免费在线观看视频| 91字幕亚洲| 最近最新中文字幕大全免费视频 | 夜夜骑夜夜射夜夜干| 亚洲av综合色区一区| 一本一本久久a久久精品综合妖精| 亚洲熟女精品中文字幕| 色综合欧美亚洲国产小说| 国产精品久久久久久精品电影小说| av欧美777| 一级,二级,三级黄色视频| 亚洲免费av在线视频| 夜夜骑夜夜射夜夜干| 亚洲第一av免费看| 国产一区二区激情短视频 | 悠悠久久av| a级片在线免费高清观看视频| 丝袜人妻中文字幕| 久久久久精品国产欧美久久久 | 成年美女黄网站色视频大全免费| 国产精品亚洲av一区麻豆| 99国产精品一区二区三区| 美女午夜性视频免费| 人成视频在线观看免费观看| 国产激情久久老熟女| 欧美成人午夜精品| 99国产精品免费福利视频| 欧美日韩视频精品一区| 免费在线观看视频国产中文字幕亚洲 | 在线观看一区二区三区激情| 永久免费av网站大全| svipshipincom国产片| 天堂俺去俺来也www色官网| 高清视频免费观看一区二区| 色精品久久人妻99蜜桃| 一区二区三区四区激情视频| 亚洲欧美一区二区三区国产| kizo精华| 99精品久久久久人妻精品| 美女福利国产在线| 丁香六月天网| 精品国产一区二区三区久久久樱花| 亚洲免费av在线视频| av不卡在线播放| 精品视频人人做人人爽| 国产成人av教育| 精品卡一卡二卡四卡免费| 久久久久久人人人人人| 午夜福利免费观看在线| 又粗又硬又长又爽又黄的视频| 亚洲一区中文字幕在线| 精品一品国产午夜福利视频| 在线观看免费日韩欧美大片| 亚洲 欧美一区二区三区| 超碰97精品在线观看| 国产精品九九99| 亚洲国产av影院在线观看| 天堂中文最新版在线下载| 欧美国产精品一级二级三级| 精品福利观看| av天堂在线播放| 波野结衣二区三区在线| 如日韩欧美国产精品一区二区三区| 亚洲精品成人av观看孕妇| kizo精华| 亚洲中文av在线| 亚洲成av片中文字幕在线观看| 99re6热这里在线精品视频| 国产免费一区二区三区四区乱码| 18禁观看日本| 亚洲第一av免费看| 19禁男女啪啪无遮挡网站| 午夜老司机福利片| 欧美乱码精品一区二区三区| 欧美黑人精品巨大| 婷婷色麻豆天堂久久| 又粗又硬又长又爽又黄的视频| 日韩 亚洲 欧美在线| 欧美日韩亚洲综合一区二区三区_| av又黄又爽大尺度在线免费看| 老司机亚洲免费影院| 国产成人一区二区在线| 黄色片一级片一级黄色片| 女性被躁到高潮视频| 1024香蕉在线观看| 后天国语完整版免费观看| 高清不卡的av网站| 欧美+亚洲+日韩+国产| 日本黄色日本黄色录像| 国产国语露脸激情在线看| 无限看片的www在线观看| 国产伦理片在线播放av一区| 免费在线观看黄色视频的| 欧美人与性动交α欧美软件| 一区二区日韩欧美中文字幕| 亚洲五月婷婷丁香| 热re99久久国产66热| av在线app专区| 亚洲精品日韩在线中文字幕| 久久99热这里只频精品6学生| 女人高潮潮喷娇喘18禁视频| 电影成人av| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产精品国产精品| 国产女主播在线喷水免费视频网站| 黑人欧美特级aaaaaa片| 亚洲少妇的诱惑av| 精品福利永久在线观看| 国产成人av激情在线播放| 精品亚洲乱码少妇综合久久| 亚洲黑人精品在线| 国产成人av激情在线播放| 男人舔女人的私密视频| 肉色欧美久久久久久久蜜桃| 美女福利国产在线| 午夜免费男女啪啪视频观看| 日本午夜av视频| 曰老女人黄片| 91精品三级在线观看| 少妇人妻久久综合中文| 亚洲自偷自拍图片 自拍| 午夜福利视频在线观看免费| 丝袜人妻中文字幕| 少妇猛男粗大的猛烈进出视频| 久久久国产欧美日韩av| 亚洲人成电影观看| 咕卡用的链子| 美女午夜性视频免费| 高清黄色对白视频在线免费看| 欧美日韩视频高清一区二区三区二| 黑人巨大精品欧美一区二区蜜桃| 满18在线观看网站| 精品少妇久久久久久888优播| av线在线观看网站| 久久人妻熟女aⅴ| 精品一区在线观看国产| 丰满饥渴人妻一区二区三| 五月开心婷婷网| 中文字幕色久视频| 97精品久久久久久久久久精品| 亚洲中文av在线| 亚洲 欧美一区二区三区| 精品一品国产午夜福利视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品国产综合久久久| 国产欧美日韩一区二区三 | 欧美国产精品va在线观看不卡| 国产一卡二卡三卡精品| e午夜精品久久久久久久| 少妇 在线观看| 叶爱在线成人免费视频播放| 91老司机精品| 女人被躁到高潮嗷嗷叫费观| www.av在线官网国产| 欧美亚洲 丝袜 人妻 在线| 大码成人一级视频| 人妻人人澡人人爽人人| 亚洲成人免费av在线播放| 一区在线观看完整版| 欧美成人精品欧美一级黄| 日韩人妻精品一区2区三区| 亚洲欧美精品综合一区二区三区| 欧美日韩亚洲综合一区二区三区_| av不卡在线播放| 免费高清在线观看日韩| 亚洲国产欧美网| 91麻豆精品激情在线观看国产 | 在线观看免费高清a一片| 少妇粗大呻吟视频| 国产国语露脸激情在线看| 久热爱精品视频在线9| 嫁个100分男人电影在线观看 | 亚洲成人免费av在线播放| 天天添夜夜摸| 无限看片的www在线观看| 岛国毛片在线播放| 午夜激情久久久久久久| 人妻 亚洲 视频| 在线av久久热| 欧美成人精品欧美一级黄| 亚洲欧美成人综合另类久久久| 国产视频一区二区在线看| 在线观看免费日韩欧美大片| 亚洲一区中文字幕在线| 美女脱内裤让男人舔精品视频| 亚洲国产欧美在线一区| 老司机靠b影院| 操出白浆在线播放| 亚洲五月色婷婷综合| 黄频高清免费视频| 久久 成人 亚洲| 欧美人与善性xxx| 国产一区亚洲一区在线观看| 成人午夜精彩视频在线观看| 国产一区亚洲一区在线观看| 午夜免费观看性视频| 欧美日韩亚洲综合一区二区三区_| 又大又黄又爽视频免费| 又紧又爽又黄一区二区| 天天操日日干夜夜撸| 日韩一区二区三区影片| 色精品久久人妻99蜜桃| 国产无遮挡羞羞视频在线观看|