• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator

    2022-10-26 09:49:24TongXing邢彤EnboXing邢恩博TaoJia賈濤JianglongLi李江龍JiaminRong戎佳敏YanruZhou周彥汝WenyaoLiu劉文耀JunTang唐軍andJunLiu劉俊
    Chinese Physics B 2022年10期
    關(guān)鍵詞:劉俊江龍唐軍

    Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(賈濤), Jianglong Li(李江龍), Jiamin Rong(戎佳敏),Yanru Zhou(周彥汝), Wenyao Liu(劉文耀), Jun Tang(唐軍), and Jun Liu(劉俊)

    Key Laboratory of Electronic Testing Technology,School of Instrument and Electronics,North University of China,Taiyuan 030051,China

    Keywords: whispering gallery mode, crystalline resonator, Raman lasing, nonlinear effects, thermo-optical oscillation,optical frequency combs

    1. Introduction

    Achieving efficient nonlinear optical interactions at low optical power has always been one of the main goals of nonlinear optics.[1–5]Various nonlinear optical effects,such as frequency doubling,[6]frequency mixing,[7]Raman scattering,[8,9]Brillouin scattering,[10]and other effects[11]have broad prospects in optical computing, quantum information processing, precision spectroscopy, optical communication, biological imaging, and many other fields.[12,13]The whispering gallery mode (WGM) resonators are fabricated with a variety of materials including silicon, sapphire, fused silica,fluoride crystalline, lithium ninobate, and other optical glasses. Owing to their ultrahigh quality(Q)factor and small mode volume, optical resonators significantly enhance lightmatter interactions and establish extremely high circulating intracavity intensities, thereby reducing the pump threshold for nonlinear processes. The frequency conversion of the pump light can also be achieved at low power, so the optical resonator becomes an ideal platform to study various nonlinear effects.[14–16]

    Recently, fluoride crystals, such as calcium fluoride(CaF2), magnesium fluoride (MgF2),[17]barium fluoride(BaF2),[18]and strontium fluoride(SrF2)[19]have been equally demonstrated to have ultrahighQin the near-IR, such an ultrahighQattracts extremely great attention in various research fields.[20–22]Another advantage of crystalline materials for the fabrication of the resonators is that they can be stable against humidity, and do not degradeQwhen exposed to atmospheric water vapor. A CaF2resonator withQ >1011at 1550 nm has been fabricated and reported.[23]Such an ultrahighQgreatly reduces the excitation threshold of nonlinear effects in the resonator,and it is easy to obtain laser emission based on nonlinear effects even in materials without significant nonlinearity.[24–26]Therefore, the CaF2resonator with ultrahighQ,small mode volume,high stability,and low noise interference has become the best choice for nonlinear optical applications.[27,28]

    Here, we theoretically analyze the Raman threshold of the CaF2resonator, and obtain the relationship betweenQ,mode volume (Vm) of the resonator, and the Raman threshold. Meanwhile, we experimentally demonstrate Raman lasing, first-order Raman comb, and the second-order Raman lasing in a millimeter size CaF2WGM disk resonator with ultrahigh-Qfactor of 8.43×108at 1550 nm. We also report the observation and characterization of thermal effects due to the negative thermo-optic coefficient and the positive thermo-expansion coefficient. At the same time, the threshold for thermo-optical oscillation is approximately coincident with Raman lasing.With a further increase in pump power,the optical frequency combs range is from 1520 nm to 1650 nm,with a wavelength interval of 4×FSR. And the adjustment of the optical frequency combs can be realized by using the frequency tuning of the pump light,which have great applications in optical communication,biological environment monitoring,spectral analysis,and microwave signal sources.

    2. Theoretical analysis and discussion

    For the first-order Raman lasing output in the optical resonator,the coupled mode equation is established,which is expressed as

    whereEpandERare the pump light energy and stimulated Raman laser energy, respectively,cis the speed of light,neffis the effective refractive index of the resonator,ωpandωRare the pump light frequency and the stimulated Raman laser frequency, respectively, andgR=2.4×10-13m/W[22]is the Raman gain coefficient of the CaF2resonator.

    The mode volume (Vm) of the CaF2resonator is defined as the ratio of the full-space integral of the mode field energy density to the maximum energy density,and is expressed as

    whereE(r) is the electric field vector,n2(r)|E(r)|2is the energy density at a point in the resonator. TheVmaffects the energy density of the WGM in the resonator. A smaller mode volume corresponds to a larger energy density, which enhances the interaction between light and matter and is beneficial to lowering the threshold of nonlinear effects.

    The basis of Raman laser is stimulated Raman scattering which is a process of obtaining Raman gain in materials through nonlinear effects. In the process of stimulated Raman scattering, photons with red-shifted and blue-shifted frequencies are generated. The lasing threshold occurs when cavity round-trip gain equals round-trip loss. For an intensitydependent gain coefficient,the minimum Raman threshold can be simplified as[21]

    whereλpandλRare the pump light wavelength and the stimulated Raman laser wavelength,respectively,n=1.426 is the refractive index of the CaF2resonator,QPandQRare quality factors for the pump and Raman wavelengths,respectively,andVmis the mode volume. If theQfactor is the same for pump and Raman wavelengths, the Raman threshold is proportional to the ratioVm/Q2. Thus, the low Raman lasing threshold and efficient cascaded operation is made possible by the ultrahigh-Qof the WGM crystalline resonator.

    According to Eq. (4), the relationship between the Raman threshold and theQand theVmcan be obtained. It can be seen from Fig.1 thatQis inversely proportional to the Raman threshold,that is,asQincreases,the Raman threshold gradually decreases;theVmis proportional to the Raman threshold,that is, as the mode volume decreases, the Raman threshold decreases.Therefore,choosing a ultrahigh-Q,small mode volume CaF2resonator can further reduce the Raman threshold.

    Fig. 1. Relationship between mode volume and Q of CaF2 resonator and power threshold for Raman laser generation.

    3. Experimental results and discussion

    3.1. Experimental setup and characterization

    The experimental setup shown in Fig.2(a)is used to characterize the Raman lasing and other nonlinear effects based on the CaF2resonator system. A continuous-wave tunable laser(DLC pro)around 1550 nm with a linewidth of 10 kHz passes through the isolator and enters the CaF2resonator via the fibertaper. The wavelength of the laser is scanned by signal generator (SG) to obtain the transmission spectrum for characterization of the resonator. The fiber-baser polarization controller(PC)is used to optimize the coupling strength.The light out of the fiber taper is connected with the beam splitter to the lownoise photodetector(PD)and wavelength division multiplexer(WDM) respectively. PD convert optical signals into electrical signals and then connect to oscilloscopes (OSC) for data acquisition and analysis processing. The WDM separates the pump laser and the Raman laser,and then connects them to the optical spectrum analyzer(OSA)for display. The CaF2crystalline WGM resonator is fabricated by single point diamond cutting and mechanical polishing method. The radius of the CaF2resonator is 2.48 mm, the thickness is 0.5 mm and the shape of cylinder blanks. The tapered fiber with the diameter of about 2 μm serves as the input and output ports, and the coupling to the CaF2resonator is accomplished by evanescent field coupling using a nano-positioning system. Figure 2(b)is the schematic diagram of fiber coupling in CaF2resonator.Figure 2(c) is the calculatedQfactor for CaF2resonator of 8.43×108and remains stable under normal atmospheric conditions. Once inside the clean room environment or vacuum,theQcan be preserved on a very high level for indefinite amount of time, for which our experiments are conducted in the clean room.

    Fig.2. (a)Diagram of the measurement setup for characterizing the nonlinear optical processes based on high-Q CaF2 optical resonator. (b)Schematic diagram of fiber coupling in CaF2 resonator. (c) The calculated Q for CaF2 resonator of 8.43×108. DLC: pro continuous-wave tunable laser, PC: polarization controller, EDFA: erbium-doped fiber amplifier, PD: photodetector, OSC: oscilloscope, SG: signal generator,OSA:optical spectrum analyzer,WDM:wavelength division multiplexer.

    3.2. Raman lasing measurement

    For Raman lasing measurement,the pump wavelength is 1550.58 nm, and the pump power gradually increases from 100 μW. When the pump power is increased to 33 mW, the first-order Raman laser with the signal to noise ratio(SNR)of 46 dB is observed on the optical spectrum analyzer,as shown in Fig. 3(a). Similarly, when the pump power is gradually increased to 36 mW, the first-order Raman comb appears in Fig.3(b)and the second-order Raman lasing appears when the pump power is increased to 45 mW in Fig.3(c).Raman combs result from the delayed molecular response of the host medium to the laser excitation. Thanks to the low lasing threshold,the first Stokes radiation to longer wavelengths is feasible,resulting in Raman combs. By further enhancing the pump power,the intracavity first Stokes power will be sufficiently high to act as a secondary pump source to enable the second Stokes lasing at 1722.19 nm, as shown in Fig. 3(c). The transition from Fig.3(b)to Fig.3(c)is because the energy coupling from the side modes to the second Stokes,when the second Stokes existed. Since the side modes has lower gain than that of the central mode,so only the central mode survived.[29]

    Fig.3. Observation of cascaded Raman lasing and threshold measurement. (a)First-order Raman lasing at 1631.59 nm. (b)First-order Raman comb generation. (c)Second-order Raman lasing generation. (d)Raman output power as a function of the pump power based on a diameter of 4.96-mm resonator.

    In order to measure the Raman threshold,we plot the Raman output power as a function of pump power in Fig. 3(d).The measurement shows a linear dependency and indicates the pump power threshold is 30 mW for a diameter of 4.96-mm CaF2resonator. We also plot the relationship between the pump power and the cavity absorbed power, as shown in the inset of Fig. 3(d). The actual power entering the resonator is only 9.68%of the pump power, the calculated conversion efficiency is about 5.27%. The power of the Raman lasing peak seems very low is because the attenuator is connected before connecting to the OSA during the experiment. The first-order Raman comb threshold pump power is 36 mW,and the secondorder Raman lasing is 45 mW.The reasons for the low conversion efficiency mainly include the following aspects: (i) the detuning loss caused by the frequency scanning of the pump laser;(ii)the loss at the connection of various devices;(iii)in our experiment, we use the ‘zero-gap’ coupling state, that is,the tapered fiber is attached to the surface of the resonator,the influence of environmental fluctuation noise is suppressed,but reduces theQ.

    Since Raman lasing threshold is proportional toVm/Q2,mode volume to quality factor squared ratio,it is natural to expect improvements in efficiency and threshold for a cavity with higherQfactor. The higher theQ(theoreticalQ ≈1014)and the smaller the mode volume(V-shaped),the lower the Raman threshold(a few μW),so that the crystalline WGM resonators can become efficient and compact Raman converters. Next,we will prepare V-shaped resonator to further reduce the mode volume and thus lower the Raman threshold.

    3.3. Thermal effect and Raman laser

    When the input power increases above 30 mW, a strong heat accumulation occurs inside the resonator, resulting in thermal effect. The heat generated by the absorbed optical power in the mode volume elevates the temperature very rapidly. As the cavity temperature varies,neffandRchange due to the thermo-optic (TO) effect (dn/dT=-1.14×10-5K-1) and thermal expansion (TE) effect (dR/RdT=1.87×10-5K-1), respectively, giving rise to the resonance shift. While taking the direction of the wavelength shift into consideration,we scan the pump laser wavelength in the long to short wavelength direction. The scanning voltage of the laser is 1.5 V,and the scanning frequency is 10 Hz,as shown in the upper picture of Fig.4(a). When the pump light scans into the resonant peak in the long wavelength direction, the thermal effect will push the resonant peak to move in the opposite direction due to the negative TO effect, and the compressed resonant peak will be obtained on the transmission spectrum.On the contrary,when the pump light scans to the short wavelength and enters the resonant peak, the pump light will stay in the resonant peak for a long time,and a broadened resonant peak will be obtained in the transmission spectrum,as shown in the lower picture of Fig.4(a).

    Fig.4. (a)Thermal nonlinear effects in CaF2 resonator. (b)The pump laser and Raman laser from the WDM on the OSC.

    Figure 4(b) uses the wavelength division multiplexer(WDM) to separate the pump laser and the Raman laser, and then connect them to the oscilloscope for simultaneous observation. CaF2resonator has a negative TO coefficient and a positive TE coefficient,these two parameters will cause completely opposite changes in the resonance wavelength, resulting in the fluctuation of the intracavity power, so the output light field exhibits periodic oscillation,that is,thermo-optical oscillation can be generated,as shown in the lower picture of Fig.4(b). When the power reaches the threshold,the intracavity power increases rapidly, the Raman emission power turns into laser oscillation. A higher input pump power results in a longer thermal drift and a higher Raman emission power while the threshold coupled power is maintained. However,different modes have differentQand require different pump power to generate thermal effects. When the pump power is greater than 30 mW, the mode with higherQwill first generate thermo-optic oscillation, while the mode with lowerQdoes not observe the phenomenon,that is,the relatively lowerQdoes not generate Raman laser accordingly. Furthermore,thermal broadening and thermal compression occur in pairs,located on the left and right sides of the triangular wave, respectively. In order to see the paired phenomenon more intuitively, we added triangular waves in Fig. 4(b). And in the experiment,the threshold for generating thermo-optical oscillation is also 30 mW, that is, Raman lasing is always accompanied by thermo-optical oscillations. It was found that the threshold for the oscillations is approximately coincident with Raman lasing threshold.

    3.4. Other nonlinear effects

    As the pump power increases,the energy will be concentrated in the ultrahigh-Qresonator, the resonant frequency of the resonator and the detuning of the pump light will reach a balance point, and then the degenerate four-wave mixing(FWM)effect will appear.Further broadening of the FWM results in an optical frequency combs. When the power reaches the threshold,the intracavity power increases rapidly because the Kerr effect causes a rapid redshift of the resonance wavelength. The wavelength of the pump light power is set to 1550 nm, when the input power is set to 80 mW, after the energy is accumulated in the resonator,the primary comb are generated due to the FWM effect. Since the pump power energy is high enough,the energy in the resonator is further accumulated, and the secondary combs appears due to the cascaded FWM effect.The wavelength range of optical frequency comb extends from 1520 nm to 1650 nm and exceeds 120 nm,as shown in Fig.5(a).

    The pump wavelength is swept from short to long wavelengths while gradually increasing the power from 100 μW to 80 mW. When a sideband appears near the pump wavelength, stop increasing the pump power, detuning the pump wavelength from blue to the resonance peak, and observe the change of the comb teeth. At this time, several symmetrical spectrum lines appear around the pump wavelength,which are mainly composed of multiple FSRs. When the pump wavelength gradually approaches the resonance peak from blue detuning, the main combs have strong sideband effects and excite regular and gradually denser secondary combs. With the further reduction of the detuning amount of the pump wavelength, the sideband effect continues to strengthen, and more spectrum can be generated. The secondary combs next to the main comb continue to expand,the spectrum becomes denser,and finally an optical frequency comb is formed. The modulation of the optical frequency combs can be achieved by using the frequency tuning of the pump light.

    The power and mode spacing of the optical frequency comb are not uniform, which is caused by the changed temperature of the resonator absorbed optical power and the existence of abundant resonance modes in the CaF2resonator,and the interaction between different modes. This temperature change leads to a modification of the refractive index of calcium fluoride which affects the optical path length of the resonator modes. In order to reduce the influence on the optical frequency comb,it is necessary to improve the fabrication process and continuously modify the shape to prepare a V-type crystal resonator. In addition, the mutual coupling of other nonlinear effects and the optical frequency comb effect will also produce some burrs,thus affecting the comb mode spacing. Therefore, it is necessary to precisely control the power to reduce the influence of other nonlinear effects in the experiment.

    Fig.5.(a)Optical frequency combs with wavelength range from 1520 nm to 1650 nm in CaF2 resonator.(b)The influence of frequency tuning on optical frequency combs.

    4. Conclusion

    In conclusion, we theoretically analyzed the Raman threshold of the CaF2resonator, and obtained theQis inversely proportional to the Raman threshold,the mode volume(Vm) of the resonator is proportional to the Raman threshold,therefore,choosing an ultrahighQ,small mode volume CaF2resonator can further reduce the Raman threshold.Meanwhile,we experimentally demonstrated Raman lasing,first-order Raman comb,and the second-order Raman lasing in a CaF2disk resonator with a diameter of 4.96 mm and an ultrahighQof 8.43×108at 1550-nm wavelength. At the same time,we also observed thermal effects in CaF2disk resonators,and obtained the threshold for thermo-optical oscillations is approximately coincident with Raman lasing. With a further increase in pump power,we observed optical frequency combs with wavelengths from 1520 nm to 1650 nm,with the range greater than 120 nm and a wavelength interval of 4×FSR. This work provides a comprehensive understanding of the Raman lasing and other nonlinear effects,which has great applications in optical communication, biological environment monitoring, spectral analysis,and microwave signal sources.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.51727808,51922009,52005457,and 62004179) and the Fund from the Key Laboratory of Quantum Sensing and Precision Measurement of Shanxi Province,China(Grant No.201905D121001).

    猜你喜歡
    劉俊江龍唐軍
    創(chuàng)新企業(yè)民主管理途徑的探索
    劉俊
    唐軍治療圍絕經(jīng)期失眠經(jīng)驗(yàn)總結(jié)
    Unpinning the spiral waves by using parameter waves*
    美食鑒定師
    In fluence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48?x Co2Mn38+x Sn12(x=0,1.0,1.5,2.0, and 2.5)ferromagnetic shape memory alloys?
    我和你打個(gè)賭
    唐軍 留守少年的逆襲
    江龍出口斯里蘭卡19.5米鋼鋁引航船順利下水
    廣東造船(2014年3期)2014-04-29 10:32:09
    江龍為廣東省水利廳建造的43.2m鋼鋁執(zhí)法船成功交付
    廣東造船(2014年3期)2014-04-29 10:32:09
    国产探花极品一区二区| av又黄又爽大尺度在线免费看| 日韩三级伦理在线观看| 精品一区二区三区四区五区乱码 | 国产精品久久久久久av不卡| 亚洲综合精品二区| videossex国产| 91精品国产国语对白视频| www.熟女人妻精品国产 | 99热全是精品| www日本在线高清视频| 看十八女毛片水多多多| 丝瓜视频免费看黄片| 欧美亚洲日本最大视频资源| 侵犯人妻中文字幕一二三四区| 一二三四在线观看免费中文在 | 搡老乐熟女国产| 国产成人免费观看mmmm| 啦啦啦在线观看免费高清www| 国产亚洲欧美精品永久| 日日撸夜夜添| 1024视频免费在线观看| 亚洲精品久久久久久婷婷小说| 欧美激情极品国产一区二区三区 | 99国产综合亚洲精品| 熟妇人妻不卡中文字幕| 99热全是精品| 99热全是精品| 国内精品宾馆在线| 水蜜桃什么品种好| 午夜老司机福利剧场| 看免费av毛片| 天美传媒精品一区二区| 日韩免费高清中文字幕av| 精品卡一卡二卡四卡免费| 国产精品久久久久成人av| 久久99热6这里只有精品| 免费黄色在线免费观看| 国产无遮挡羞羞视频在线观看| 狠狠精品人妻久久久久久综合| 欧美成人精品欧美一级黄| 乱人伦中国视频| 成年动漫av网址| 久久久久精品人妻al黑| 亚洲成人av在线免费| 黄色一级大片看看| 亚洲成人av在线免费| av.在线天堂| 亚洲成色77777| 国产一区二区激情短视频 | 日韩伦理黄色片| 在线观看三级黄色| 日本av手机在线免费观看| 国产1区2区3区精品| 大码成人一级视频| 亚洲av福利一区| 国产精品一区二区在线不卡| 久久人人爽av亚洲精品天堂| 黄色毛片三级朝国网站| 夜夜骑夜夜射夜夜干| 男人爽女人下面视频在线观看| 精品国产国语对白av| 亚洲av免费高清在线观看| 久久久久人妻精品一区果冻| 精品国产一区二区久久| 亚洲国产av影院在线观看| 久久人人爽人人爽人人片va| 国产精品三级大全| 啦啦啦中文免费视频观看日本| 亚洲四区av| 丰满少妇做爰视频| 午夜福利视频精品| 欧美 亚洲 国产 日韩一| 欧美精品亚洲一区二区| 欧美日韩亚洲高清精品| 国产乱人偷精品视频| 男女午夜视频在线观看 | 观看av在线不卡| av又黄又爽大尺度在线免费看| 亚洲情色 制服丝袜| 人妻人人澡人人爽人人| 人妻系列 视频| 久久久国产欧美日韩av| 国产毛片在线视频| av.在线天堂| 中文字幕免费在线视频6| 精品视频人人做人人爽| 少妇高潮的动态图| 日韩一本色道免费dvd| 一区二区av电影网| 日本猛色少妇xxxxx猛交久久| 日韩成人av中文字幕在线观看| 久久人人爽av亚洲精品天堂| 欧美少妇被猛烈插入视频| 日韩成人av中文字幕在线观看| 中文字幕精品免费在线观看视频 | 免费女性裸体啪啪无遮挡网站| 日韩av在线免费看完整版不卡| 超色免费av| 日本av免费视频播放| 99热网站在线观看| 日本黄大片高清| 国产成人精品无人区| a级毛片在线看网站| 少妇被粗大猛烈的视频| 国产一区二区三区av在线| 免费少妇av软件| 国产一级毛片在线| 熟妇人妻不卡中文字幕| 精品一品国产午夜福利视频| 久久精品国产亚洲av涩爱| 欧美日本中文国产一区发布| 涩涩av久久男人的天堂| 日韩欧美一区视频在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲av日韩在线播放| 香蕉国产在线看| 国产极品天堂在线| 黄片无遮挡物在线观看| 边亲边吃奶的免费视频| 欧美xxⅹ黑人| 日产精品乱码卡一卡2卡三| 国产欧美日韩综合在线一区二区| 亚洲熟女精品中文字幕| 亚洲av.av天堂| 丰满乱子伦码专区| 精品少妇内射三级| 999精品在线视频| 免费看不卡的av| 午夜福利网站1000一区二区三区| 国产成人91sexporn| 亚洲精品久久午夜乱码| 少妇人妻精品综合一区二区| 天天影视国产精品| 女性生殖器流出的白浆| 99国产综合亚洲精品| 黄色配什么色好看| 久久精品人人爽人人爽视色| 国产 一区精品| 久久久国产一区二区| 一区二区三区乱码不卡18| 青春草国产在线视频| 999精品在线视频| av线在线观看网站| www.av在线官网国产| 这个男人来自地球电影免费观看 | 丰满迷人的少妇在线观看| 国产片特级美女逼逼视频| 国产69精品久久久久777片| 巨乳人妻的诱惑在线观看| 日韩视频在线欧美| 捣出白浆h1v1| 国产免费现黄频在线看| 寂寞人妻少妇视频99o| 91午夜精品亚洲一区二区三区| 美女主播在线视频| 夫妻午夜视频| 99久国产av精品国产电影| 美女视频免费永久观看网站| 老女人水多毛片| 人妻 亚洲 视频| 国产不卡av网站在线观看| 国产探花极品一区二区| 九九在线视频观看精品| 国产熟女午夜一区二区三区| 丰满乱子伦码专区| 99久久综合免费| 欧美 亚洲 国产 日韩一| 美女福利国产在线| 国产成人aa在线观看| 男人舔女人的私密视频| 国产成人精品一,二区| 一区二区日韩欧美中文字幕 | 黄色一级大片看看| 国产男女超爽视频在线观看| 日本黄大片高清| 一区二区av电影网| 亚洲精品久久午夜乱码| 麻豆乱淫一区二区| 涩涩av久久男人的天堂| 18禁观看日本| 久久精品熟女亚洲av麻豆精品| 肉色欧美久久久久久久蜜桃| 久久这里只有精品19| 看免费av毛片| 成年人午夜在线观看视频| 18禁观看日本| tube8黄色片| 欧美老熟妇乱子伦牲交| 天天躁夜夜躁狠狠久久av| 亚洲国产欧美在线一区| 亚洲精品国产av成人精品| 99热全是精品| 伊人久久国产一区二区| 久久女婷五月综合色啪小说| 男人操女人黄网站| 搡老乐熟女国产| av在线播放精品| 久久久久国产精品人妻一区二区| 香蕉精品网在线| 久久国产精品男人的天堂亚洲 | 色婷婷av一区二区三区视频| 国产av国产精品国产| 啦啦啦啦在线视频资源| 国产精品国产av在线观看| 亚洲成人av在线免费| 亚洲av成人精品一二三区| 日日撸夜夜添| 久久综合国产亚洲精品| 国产成人aa在线观看| 精品亚洲乱码少妇综合久久| 亚洲性久久影院| 男女下面插进去视频免费观看 | 香蕉精品网在线| 不卡视频在线观看欧美| 制服诱惑二区| 婷婷色综合大香蕉| 午夜免费男女啪啪视频观看| 日韩在线高清观看一区二区三区| 亚洲精品自拍成人| 亚洲欧洲精品一区二区精品久久久 | 欧美人与性动交α欧美软件 | 国产精品国产三级国产av玫瑰| 日韩免费高清中文字幕av| 在线观看人妻少妇| 成年美女黄网站色视频大全免费| 国产国语露脸激情在线看| 男男h啪啪无遮挡| 久久精品国产鲁丝片午夜精品| 欧美日韩综合久久久久久| 七月丁香在线播放| 91精品伊人久久大香线蕉| 纯流量卡能插随身wifi吗| 亚洲中文av在线| 视频区图区小说| 最后的刺客免费高清国语| 午夜影院在线不卡| 亚洲第一区二区三区不卡| 日韩三级伦理在线观看| 日本欧美国产在线视频| 乱人伦中国视频| 精品熟女少妇av免费看| 18禁裸乳无遮挡动漫免费视频| 一级毛片我不卡| 欧美精品高潮呻吟av久久| 国产av码专区亚洲av| 爱豆传媒免费全集在线观看| 9色porny在线观看| 国产精品99久久99久久久不卡 | av电影中文网址| 国产高清三级在线| 男的添女的下面高潮视频| 亚洲欧洲精品一区二区精品久久久 | 在线观看人妻少妇| 寂寞人妻少妇视频99o| 18禁裸乳无遮挡动漫免费视频| 丰满少妇做爰视频| 一级爰片在线观看| 亚洲av欧美aⅴ国产| 91久久精品国产一区二区三区| 三级国产精品片| 捣出白浆h1v1| 精品一区二区三区四区五区乱码 | 99久久精品国产国产毛片| 精品一区二区三卡| 午夜日本视频在线| 黄片播放在线免费| 天天躁夜夜躁狠狠躁躁| 亚洲成色77777| 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久久久av不卡| 精品人妻一区二区三区麻豆| 免费女性裸体啪啪无遮挡网站| 日韩av免费高清视频| 欧美成人午夜精品| 看免费成人av毛片| 中国三级夫妇交换| 国产精品久久久久久精品电影小说| 80岁老熟妇乱子伦牲交| av播播在线观看一区| 啦啦啦视频在线资源免费观看| 免费黄频网站在线观看国产| 国产永久视频网站| 亚洲欧美一区二区三区黑人 | 亚洲性久久影院| 成人国产麻豆网| av电影中文网址| 国产精品麻豆人妻色哟哟久久| 纯流量卡能插随身wifi吗| 久久精品国产亚洲av涩爱| 成人国语在线视频| 天堂俺去俺来也www色官网| 免费大片黄手机在线观看| 午夜激情久久久久久久| 欧美成人午夜精品| 国产免费现黄频在线看| 日韩中文字幕视频在线看片| 国产一区二区在线观看av| 国产日韩一区二区三区精品不卡| 久久久久久久大尺度免费视频| 色网站视频免费| 国产男女内射视频| 婷婷成人精品国产| 全区人妻精品视频| 黑人猛操日本美女一级片| 亚洲精品456在线播放app| 大陆偷拍与自拍| 男女高潮啪啪啪动态图| 黄网站色视频无遮挡免费观看| 亚洲国产精品999| 国产精品秋霞免费鲁丝片| 国产老妇伦熟女老妇高清| 熟女av电影| 亚洲av成人精品一二三区| 国产精品嫩草影院av在线观看| 国产精品不卡视频一区二区| 免费播放大片免费观看视频在线观看| 一级毛片我不卡| 国产淫语在线视频| 男人操女人黄网站| 午夜老司机福利剧场| 久热这里只有精品99| 美女主播在线视频| 日韩免费高清中文字幕av| 赤兔流量卡办理| 又大又黄又爽视频免费| 老司机影院成人| 91精品三级在线观看| 国产又爽黄色视频| 母亲3免费完整高清在线观看 | 男人操女人黄网站| 最近手机中文字幕大全| 美女中出高潮动态图| 黄片无遮挡物在线观看| 午夜老司机福利剧场| 人妻 亚洲 视频| 久久久久精品久久久久真实原创| 色婷婷久久久亚洲欧美| 99re6热这里在线精品视频| 最近最新中文字幕免费大全7| 亚洲精品成人av观看孕妇| 色94色欧美一区二区| 精品久久国产蜜桃| 久久久久久人人人人人| 精品国产露脸久久av麻豆| 中文字幕最新亚洲高清| 亚洲av在线观看美女高潮| 日韩av不卡免费在线播放| 卡戴珊不雅视频在线播放| 秋霞伦理黄片| 亚洲国产精品专区欧美| 最近2019中文字幕mv第一页| 99re6热这里在线精品视频| 99久久中文字幕三级久久日本| 麻豆精品久久久久久蜜桃| 肉色欧美久久久久久久蜜桃| 成人18禁高潮啪啪吃奶动态图| 内地一区二区视频在线| 永久免费av网站大全| 午夜免费鲁丝| 亚洲第一av免费看| 91aial.com中文字幕在线观看| 好男人视频免费观看在线| 国产免费又黄又爽又色| 哪个播放器可以免费观看大片| 欧美国产精品va在线观看不卡| 国产又色又爽无遮挡免| 精品国产一区二区久久| 97精品久久久久久久久久精品| 看十八女毛片水多多多| 黑人猛操日本美女一级片| 黑人巨大精品欧美一区二区蜜桃 | 丝袜脚勾引网站| 伦理电影大哥的女人| 一级毛片电影观看| 新久久久久国产一级毛片| 一区二区三区精品91| 2021少妇久久久久久久久久久| 免费看光身美女| 精品久久国产蜜桃| 黑人巨大精品欧美一区二区蜜桃 | 天堂俺去俺来也www色官网| 免费观看av网站的网址| 一区二区三区四区激情视频| 午夜免费观看性视频| 99热网站在线观看| 婷婷色av中文字幕| 男的添女的下面高潮视频| 美女内射精品一级片tv| 免费在线观看完整版高清| 自拍欧美九色日韩亚洲蝌蚪91| 国产爽快片一区二区三区| 国产黄色免费在线视频| 精品久久久精品久久久| 99re6热这里在线精品视频| 免费久久久久久久精品成人欧美视频 | 丁香六月天网| av福利片在线| 国产乱来视频区| 在线看a的网站| 亚洲欧美日韩卡通动漫| 国产又色又爽无遮挡免| av又黄又爽大尺度在线免费看| 老熟女久久久| 国产精品偷伦视频观看了| 一本大道久久a久久精品| 亚洲精华国产精华液的使用体验| 欧美最新免费一区二区三区| 免费观看在线日韩| √禁漫天堂资源中文www| 狠狠精品人妻久久久久久综合| 精品人妻偷拍中文字幕| 一本大道久久a久久精品| 伦理电影大哥的女人| 精品少妇久久久久久888优播| 男女无遮挡免费网站观看| 哪个播放器可以免费观看大片| 中文字幕av电影在线播放| 精品一区在线观看国产| 久久久久久久国产电影| 精品熟女少妇av免费看| 国产视频首页在线观看| av黄色大香蕉| 中文欧美无线码| 亚洲人与动物交配视频| 国产成人精品久久久久久| av卡一久久| 精品少妇黑人巨大在线播放| 国产亚洲午夜精品一区二区久久| 丁香六月天网| 免费在线观看黄色视频的| 免费黄色在线免费观看| 一级毛片黄色毛片免费观看视频| 高清不卡的av网站| 久久久a久久爽久久v久久| 婷婷色麻豆天堂久久| 久久国内精品自在自线图片| 国产白丝娇喘喷水9色精品| 天堂8中文在线网| 亚洲人成网站在线观看播放| 精品午夜福利在线看| av在线app专区| 成人国产麻豆网| 国产亚洲av片在线观看秒播厂| 久久人人爽人人爽人人片va| 亚洲性久久影院| 午夜福利视频精品| 满18在线观看网站| 性色av一级| 成人国产麻豆网| 亚洲国产毛片av蜜桃av| xxxhd国产人妻xxx| 国产一区二区激情短视频 | 欧美3d第一页| 亚洲综合色惰| 久久精品aⅴ一区二区三区四区 | 777米奇影视久久| 丝瓜视频免费看黄片| 如日韩欧美国产精品一区二区三区| 亚洲欧美日韩另类电影网站| 亚洲一码二码三码区别大吗| 国产在视频线精品| 夫妻性生交免费视频一级片| 国产成人免费无遮挡视频| 深夜精品福利| 搡老乐熟女国产| 午夜福利乱码中文字幕| 精品久久蜜臀av无| 国产亚洲精品第一综合不卡 | 韩国高清视频一区二区三区| 亚洲一区二区三区欧美精品| 99久国产av精品国产电影| 九九在线视频观看精品| 香蕉国产在线看| 亚洲av综合色区一区| 波多野结衣一区麻豆| 婷婷色av中文字幕| 亚洲熟女精品中文字幕| 婷婷色av中文字幕| 国产 一区精品| 亚洲国产欧美日韩在线播放| av播播在线观看一区| 在线观看www视频免费| 日本av免费视频播放| 婷婷成人精品国产| 国产 一区精品| 亚洲国产欧美日韩在线播放| 观看av在线不卡| 亚洲精品国产av蜜桃| 婷婷色综合大香蕉| 纯流量卡能插随身wifi吗| 看非洲黑人一级黄片| 久久人人97超碰香蕉20202| 久久精品久久久久久噜噜老黄| 国产一级毛片在线| 香蕉国产在线看| 美女视频免费永久观看网站| 街头女战士在线观看网站| 国产亚洲一区二区精品| 亚洲精品,欧美精品| 另类精品久久| 哪个播放器可以免费观看大片| 少妇熟女欧美另类| 亚洲精品乱码久久久久久按摩| 亚洲国产精品成人久久小说| 天天操日日干夜夜撸| a 毛片基地| 大香蕉久久成人网| 在线观看人妻少妇| 9色porny在线观看| 中文字幕另类日韩欧美亚洲嫩草| 99热这里只有是精品在线观看| 少妇人妻久久综合中文| 少妇的逼水好多| 91精品伊人久久大香线蕉| 免费观看在线日韩| a级毛色黄片| 久久久久久伊人网av| 国产精品国产av在线观看| 久久国产亚洲av麻豆专区| 欧美精品一区二区大全| 狠狠精品人妻久久久久久综合| 一级片'在线观看视频| 国产一区二区三区综合在线观看 | 超色免费av| 极品少妇高潮喷水抽搐| 成人影院久久| 精品国产露脸久久av麻豆| 三级国产精品片| 桃花免费在线播放| 人妻一区二区av| 久久青草综合色| 久久精品人人爽人人爽视色| 美女内射精品一级片tv| 老司机影院毛片| 欧美人与性动交α欧美软件 | 亚洲四区av| 男女免费视频国产| 日韩 亚洲 欧美在线| 丝袜人妻中文字幕| 建设人人有责人人尽责人人享有的| 18在线观看网站| 2018国产大陆天天弄谢| 欧美 日韩 精品 国产| 亚洲熟女精品中文字幕| 亚洲成人一二三区av| 免费观看a级毛片全部| 男人舔女人的私密视频| 草草在线视频免费看| √禁漫天堂资源中文www| 日本欧美视频一区| 又粗又硬又长又爽又黄的视频| 午夜免费观看性视频| 搡老乐熟女国产| 久久久久精品人妻al黑| 国产成人免费无遮挡视频| 亚洲人成77777在线视频| 国产精品久久久久成人av| 成人毛片60女人毛片免费| 九色亚洲精品在线播放| 2022亚洲国产成人精品| 欧美亚洲日本最大视频资源| 亚洲av成人精品一二三区| 午夜福利视频在线观看免费| 自拍欧美九色日韩亚洲蝌蚪91| 日韩欧美一区视频在线观看| 国产片内射在线| 欧美日本中文国产一区发布| 午夜91福利影院| 男女免费视频国产| 少妇 在线观看| 亚洲天堂av无毛| 亚洲图色成人| 国产精品国产三级国产av玫瑰| 男女无遮挡免费网站观看| 亚洲欧洲精品一区二区精品久久久 | 久久久久久久久久久免费av| 最后的刺客免费高清国语| 亚洲一码二码三码区别大吗| 一级黄片播放器| 99香蕉大伊视频| 精品亚洲成a人片在线观看| 久久人人爽人人爽人人片va| 国产成人午夜福利电影在线观看| 日韩成人av中文字幕在线观看| 90打野战视频偷拍视频| 亚洲精品日本国产第一区| 国产黄色免费在线视频| 欧美成人精品欧美一级黄| 美女国产视频在线观看| 亚洲三级黄色毛片| 97在线视频观看| 国产成人一区二区在线| 美女内射精品一级片tv| 成年美女黄网站色视频大全免费| 水蜜桃什么品种好| 成人黄色视频免费在线看| 日日啪夜夜爽| 午夜久久久在线观看| 99国产精品免费福利视频| 咕卡用的链子| 亚洲av国产av综合av卡| 中文字幕亚洲精品专区| 日韩三级伦理在线观看| 亚洲精华国产精华液的使用体验| 亚洲欧美日韩卡通动漫| 久久人妻熟女aⅴ| 亚洲五月色婷婷综合| 99热国产这里只有精品6| 久久国产精品男人的天堂亚洲 | 国产精品人妻久久久久久| 国精品久久久久久国模美| 国产有黄有色有爽视频| 一二三四在线观看免费中文在 | 咕卡用的链子|