• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator

    2022-10-26 09:49:24TongXing邢彤EnboXing邢恩博TaoJia賈濤JianglongLi李江龍JiaminRong戎佳敏YanruZhou周彥汝WenyaoLiu劉文耀JunTang唐軍andJunLiu劉俊
    Chinese Physics B 2022年10期
    關(guān)鍵詞:劉俊江龍唐軍

    Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(賈濤), Jianglong Li(李江龍), Jiamin Rong(戎佳敏),Yanru Zhou(周彥汝), Wenyao Liu(劉文耀), Jun Tang(唐軍), and Jun Liu(劉俊)

    Key Laboratory of Electronic Testing Technology,School of Instrument and Electronics,North University of China,Taiyuan 030051,China

    Keywords: whispering gallery mode, crystalline resonator, Raman lasing, nonlinear effects, thermo-optical oscillation,optical frequency combs

    1. Introduction

    Achieving efficient nonlinear optical interactions at low optical power has always been one of the main goals of nonlinear optics.[1–5]Various nonlinear optical effects,such as frequency doubling,[6]frequency mixing,[7]Raman scattering,[8,9]Brillouin scattering,[10]and other effects[11]have broad prospects in optical computing, quantum information processing, precision spectroscopy, optical communication, biological imaging, and many other fields.[12,13]The whispering gallery mode (WGM) resonators are fabricated with a variety of materials including silicon, sapphire, fused silica,fluoride crystalline, lithium ninobate, and other optical glasses. Owing to their ultrahigh quality(Q)factor and small mode volume, optical resonators significantly enhance lightmatter interactions and establish extremely high circulating intracavity intensities, thereby reducing the pump threshold for nonlinear processes. The frequency conversion of the pump light can also be achieved at low power, so the optical resonator becomes an ideal platform to study various nonlinear effects.[14–16]

    Recently, fluoride crystals, such as calcium fluoride(CaF2), magnesium fluoride (MgF2),[17]barium fluoride(BaF2),[18]and strontium fluoride(SrF2)[19]have been equally demonstrated to have ultrahighQin the near-IR, such an ultrahighQattracts extremely great attention in various research fields.[20–22]Another advantage of crystalline materials for the fabrication of the resonators is that they can be stable against humidity, and do not degradeQwhen exposed to atmospheric water vapor. A CaF2resonator withQ >1011at 1550 nm has been fabricated and reported.[23]Such an ultrahighQgreatly reduces the excitation threshold of nonlinear effects in the resonator,and it is easy to obtain laser emission based on nonlinear effects even in materials without significant nonlinearity.[24–26]Therefore, the CaF2resonator with ultrahighQ,small mode volume,high stability,and low noise interference has become the best choice for nonlinear optical applications.[27,28]

    Here, we theoretically analyze the Raman threshold of the CaF2resonator, and obtain the relationship betweenQ,mode volume (Vm) of the resonator, and the Raman threshold. Meanwhile, we experimentally demonstrate Raman lasing, first-order Raman comb, and the second-order Raman lasing in a millimeter size CaF2WGM disk resonator with ultrahigh-Qfactor of 8.43×108at 1550 nm. We also report the observation and characterization of thermal effects due to the negative thermo-optic coefficient and the positive thermo-expansion coefficient. At the same time, the threshold for thermo-optical oscillation is approximately coincident with Raman lasing.With a further increase in pump power,the optical frequency combs range is from 1520 nm to 1650 nm,with a wavelength interval of 4×FSR. And the adjustment of the optical frequency combs can be realized by using the frequency tuning of the pump light,which have great applications in optical communication,biological environment monitoring,spectral analysis,and microwave signal sources.

    2. Theoretical analysis and discussion

    For the first-order Raman lasing output in the optical resonator,the coupled mode equation is established,which is expressed as

    whereEpandERare the pump light energy and stimulated Raman laser energy, respectively,cis the speed of light,neffis the effective refractive index of the resonator,ωpandωRare the pump light frequency and the stimulated Raman laser frequency, respectively, andgR=2.4×10-13m/W[22]is the Raman gain coefficient of the CaF2resonator.

    The mode volume (Vm) of the CaF2resonator is defined as the ratio of the full-space integral of the mode field energy density to the maximum energy density,and is expressed as

    whereE(r) is the electric field vector,n2(r)|E(r)|2is the energy density at a point in the resonator. TheVmaffects the energy density of the WGM in the resonator. A smaller mode volume corresponds to a larger energy density, which enhances the interaction between light and matter and is beneficial to lowering the threshold of nonlinear effects.

    The basis of Raman laser is stimulated Raman scattering which is a process of obtaining Raman gain in materials through nonlinear effects. In the process of stimulated Raman scattering, photons with red-shifted and blue-shifted frequencies are generated. The lasing threshold occurs when cavity round-trip gain equals round-trip loss. For an intensitydependent gain coefficient,the minimum Raman threshold can be simplified as[21]

    whereλpandλRare the pump light wavelength and the stimulated Raman laser wavelength,respectively,n=1.426 is the refractive index of the CaF2resonator,QPandQRare quality factors for the pump and Raman wavelengths,respectively,andVmis the mode volume. If theQfactor is the same for pump and Raman wavelengths, the Raman threshold is proportional to the ratioVm/Q2. Thus, the low Raman lasing threshold and efficient cascaded operation is made possible by the ultrahigh-Qof the WGM crystalline resonator.

    According to Eq. (4), the relationship between the Raman threshold and theQand theVmcan be obtained. It can be seen from Fig.1 thatQis inversely proportional to the Raman threshold,that is,asQincreases,the Raman threshold gradually decreases;theVmis proportional to the Raman threshold,that is, as the mode volume decreases, the Raman threshold decreases.Therefore,choosing a ultrahigh-Q,small mode volume CaF2resonator can further reduce the Raman threshold.

    Fig. 1. Relationship between mode volume and Q of CaF2 resonator and power threshold for Raman laser generation.

    3. Experimental results and discussion

    3.1. Experimental setup and characterization

    The experimental setup shown in Fig.2(a)is used to characterize the Raman lasing and other nonlinear effects based on the CaF2resonator system. A continuous-wave tunable laser(DLC pro)around 1550 nm with a linewidth of 10 kHz passes through the isolator and enters the CaF2resonator via the fibertaper. The wavelength of the laser is scanned by signal generator (SG) to obtain the transmission spectrum for characterization of the resonator. The fiber-baser polarization controller(PC)is used to optimize the coupling strength.The light out of the fiber taper is connected with the beam splitter to the lownoise photodetector(PD)and wavelength division multiplexer(WDM) respectively. PD convert optical signals into electrical signals and then connect to oscilloscopes (OSC) for data acquisition and analysis processing. The WDM separates the pump laser and the Raman laser,and then connects them to the optical spectrum analyzer(OSA)for display. The CaF2crystalline WGM resonator is fabricated by single point diamond cutting and mechanical polishing method. The radius of the CaF2resonator is 2.48 mm, the thickness is 0.5 mm and the shape of cylinder blanks. The tapered fiber with the diameter of about 2 μm serves as the input and output ports, and the coupling to the CaF2resonator is accomplished by evanescent field coupling using a nano-positioning system. Figure 2(b)is the schematic diagram of fiber coupling in CaF2resonator.Figure 2(c) is the calculatedQfactor for CaF2resonator of 8.43×108and remains stable under normal atmospheric conditions. Once inside the clean room environment or vacuum,theQcan be preserved on a very high level for indefinite amount of time, for which our experiments are conducted in the clean room.

    Fig.2. (a)Diagram of the measurement setup for characterizing the nonlinear optical processes based on high-Q CaF2 optical resonator. (b)Schematic diagram of fiber coupling in CaF2 resonator. (c) The calculated Q for CaF2 resonator of 8.43×108. DLC: pro continuous-wave tunable laser, PC: polarization controller, EDFA: erbium-doped fiber amplifier, PD: photodetector, OSC: oscilloscope, SG: signal generator,OSA:optical spectrum analyzer,WDM:wavelength division multiplexer.

    3.2. Raman lasing measurement

    For Raman lasing measurement,the pump wavelength is 1550.58 nm, and the pump power gradually increases from 100 μW. When the pump power is increased to 33 mW, the first-order Raman laser with the signal to noise ratio(SNR)of 46 dB is observed on the optical spectrum analyzer,as shown in Fig. 3(a). Similarly, when the pump power is gradually increased to 36 mW, the first-order Raman comb appears in Fig.3(b)and the second-order Raman lasing appears when the pump power is increased to 45 mW in Fig.3(c).Raman combs result from the delayed molecular response of the host medium to the laser excitation. Thanks to the low lasing threshold,the first Stokes radiation to longer wavelengths is feasible,resulting in Raman combs. By further enhancing the pump power,the intracavity first Stokes power will be sufficiently high to act as a secondary pump source to enable the second Stokes lasing at 1722.19 nm, as shown in Fig. 3(c). The transition from Fig.3(b)to Fig.3(c)is because the energy coupling from the side modes to the second Stokes,when the second Stokes existed. Since the side modes has lower gain than that of the central mode,so only the central mode survived.[29]

    Fig.3. Observation of cascaded Raman lasing and threshold measurement. (a)First-order Raman lasing at 1631.59 nm. (b)First-order Raman comb generation. (c)Second-order Raman lasing generation. (d)Raman output power as a function of the pump power based on a diameter of 4.96-mm resonator.

    In order to measure the Raman threshold,we plot the Raman output power as a function of pump power in Fig. 3(d).The measurement shows a linear dependency and indicates the pump power threshold is 30 mW for a diameter of 4.96-mm CaF2resonator. We also plot the relationship between the pump power and the cavity absorbed power, as shown in the inset of Fig. 3(d). The actual power entering the resonator is only 9.68%of the pump power, the calculated conversion efficiency is about 5.27%. The power of the Raman lasing peak seems very low is because the attenuator is connected before connecting to the OSA during the experiment. The first-order Raman comb threshold pump power is 36 mW,and the secondorder Raman lasing is 45 mW.The reasons for the low conversion efficiency mainly include the following aspects: (i) the detuning loss caused by the frequency scanning of the pump laser;(ii)the loss at the connection of various devices;(iii)in our experiment, we use the ‘zero-gap’ coupling state, that is,the tapered fiber is attached to the surface of the resonator,the influence of environmental fluctuation noise is suppressed,but reduces theQ.

    Since Raman lasing threshold is proportional toVm/Q2,mode volume to quality factor squared ratio,it is natural to expect improvements in efficiency and threshold for a cavity with higherQfactor. The higher theQ(theoreticalQ ≈1014)and the smaller the mode volume(V-shaped),the lower the Raman threshold(a few μW),so that the crystalline WGM resonators can become efficient and compact Raman converters. Next,we will prepare V-shaped resonator to further reduce the mode volume and thus lower the Raman threshold.

    3.3. Thermal effect and Raman laser

    When the input power increases above 30 mW, a strong heat accumulation occurs inside the resonator, resulting in thermal effect. The heat generated by the absorbed optical power in the mode volume elevates the temperature very rapidly. As the cavity temperature varies,neffandRchange due to the thermo-optic (TO) effect (dn/dT=-1.14×10-5K-1) and thermal expansion (TE) effect (dR/RdT=1.87×10-5K-1), respectively, giving rise to the resonance shift. While taking the direction of the wavelength shift into consideration,we scan the pump laser wavelength in the long to short wavelength direction. The scanning voltage of the laser is 1.5 V,and the scanning frequency is 10 Hz,as shown in the upper picture of Fig.4(a). When the pump light scans into the resonant peak in the long wavelength direction, the thermal effect will push the resonant peak to move in the opposite direction due to the negative TO effect, and the compressed resonant peak will be obtained on the transmission spectrum.On the contrary,when the pump light scans to the short wavelength and enters the resonant peak, the pump light will stay in the resonant peak for a long time,and a broadened resonant peak will be obtained in the transmission spectrum,as shown in the lower picture of Fig.4(a).

    Fig.4. (a)Thermal nonlinear effects in CaF2 resonator. (b)The pump laser and Raman laser from the WDM on the OSC.

    Figure 4(b) uses the wavelength division multiplexer(WDM) to separate the pump laser and the Raman laser, and then connect them to the oscilloscope for simultaneous observation. CaF2resonator has a negative TO coefficient and a positive TE coefficient,these two parameters will cause completely opposite changes in the resonance wavelength, resulting in the fluctuation of the intracavity power, so the output light field exhibits periodic oscillation,that is,thermo-optical oscillation can be generated,as shown in the lower picture of Fig.4(b). When the power reaches the threshold,the intracavity power increases rapidly, the Raman emission power turns into laser oscillation. A higher input pump power results in a longer thermal drift and a higher Raman emission power while the threshold coupled power is maintained. However,different modes have differentQand require different pump power to generate thermal effects. When the pump power is greater than 30 mW, the mode with higherQwill first generate thermo-optic oscillation, while the mode with lowerQdoes not observe the phenomenon,that is,the relatively lowerQdoes not generate Raman laser accordingly. Furthermore,thermal broadening and thermal compression occur in pairs,located on the left and right sides of the triangular wave, respectively. In order to see the paired phenomenon more intuitively, we added triangular waves in Fig. 4(b). And in the experiment,the threshold for generating thermo-optical oscillation is also 30 mW, that is, Raman lasing is always accompanied by thermo-optical oscillations. It was found that the threshold for the oscillations is approximately coincident with Raman lasing threshold.

    3.4. Other nonlinear effects

    As the pump power increases,the energy will be concentrated in the ultrahigh-Qresonator, the resonant frequency of the resonator and the detuning of the pump light will reach a balance point, and then the degenerate four-wave mixing(FWM)effect will appear.Further broadening of the FWM results in an optical frequency combs. When the power reaches the threshold,the intracavity power increases rapidly because the Kerr effect causes a rapid redshift of the resonance wavelength. The wavelength of the pump light power is set to 1550 nm, when the input power is set to 80 mW, after the energy is accumulated in the resonator,the primary comb are generated due to the FWM effect. Since the pump power energy is high enough,the energy in the resonator is further accumulated, and the secondary combs appears due to the cascaded FWM effect.The wavelength range of optical frequency comb extends from 1520 nm to 1650 nm and exceeds 120 nm,as shown in Fig.5(a).

    The pump wavelength is swept from short to long wavelengths while gradually increasing the power from 100 μW to 80 mW. When a sideband appears near the pump wavelength, stop increasing the pump power, detuning the pump wavelength from blue to the resonance peak, and observe the change of the comb teeth. At this time, several symmetrical spectrum lines appear around the pump wavelength,which are mainly composed of multiple FSRs. When the pump wavelength gradually approaches the resonance peak from blue detuning, the main combs have strong sideband effects and excite regular and gradually denser secondary combs. With the further reduction of the detuning amount of the pump wavelength, the sideband effect continues to strengthen, and more spectrum can be generated. The secondary combs next to the main comb continue to expand,the spectrum becomes denser,and finally an optical frequency comb is formed. The modulation of the optical frequency combs can be achieved by using the frequency tuning of the pump light.

    The power and mode spacing of the optical frequency comb are not uniform, which is caused by the changed temperature of the resonator absorbed optical power and the existence of abundant resonance modes in the CaF2resonator,and the interaction between different modes. This temperature change leads to a modification of the refractive index of calcium fluoride which affects the optical path length of the resonator modes. In order to reduce the influence on the optical frequency comb,it is necessary to improve the fabrication process and continuously modify the shape to prepare a V-type crystal resonator. In addition, the mutual coupling of other nonlinear effects and the optical frequency comb effect will also produce some burrs,thus affecting the comb mode spacing. Therefore, it is necessary to precisely control the power to reduce the influence of other nonlinear effects in the experiment.

    Fig.5.(a)Optical frequency combs with wavelength range from 1520 nm to 1650 nm in CaF2 resonator.(b)The influence of frequency tuning on optical frequency combs.

    4. Conclusion

    In conclusion, we theoretically analyzed the Raman threshold of the CaF2resonator, and obtained theQis inversely proportional to the Raman threshold,the mode volume(Vm) of the resonator is proportional to the Raman threshold,therefore,choosing an ultrahighQ,small mode volume CaF2resonator can further reduce the Raman threshold.Meanwhile,we experimentally demonstrated Raman lasing,first-order Raman comb,and the second-order Raman lasing in a CaF2disk resonator with a diameter of 4.96 mm and an ultrahighQof 8.43×108at 1550-nm wavelength. At the same time,we also observed thermal effects in CaF2disk resonators,and obtained the threshold for thermo-optical oscillations is approximately coincident with Raman lasing. With a further increase in pump power,we observed optical frequency combs with wavelengths from 1520 nm to 1650 nm,with the range greater than 120 nm and a wavelength interval of 4×FSR. This work provides a comprehensive understanding of the Raman lasing and other nonlinear effects,which has great applications in optical communication, biological environment monitoring, spectral analysis,and microwave signal sources.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.51727808,51922009,52005457,and 62004179) and the Fund from the Key Laboratory of Quantum Sensing and Precision Measurement of Shanxi Province,China(Grant No.201905D121001).

    猜你喜歡
    劉俊江龍唐軍
    創(chuàng)新企業(yè)民主管理途徑的探索
    劉俊
    唐軍治療圍絕經(jīng)期失眠經(jīng)驗(yàn)總結(jié)
    Unpinning the spiral waves by using parameter waves*
    美食鑒定師
    In fluence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48?x Co2Mn38+x Sn12(x=0,1.0,1.5,2.0, and 2.5)ferromagnetic shape memory alloys?
    我和你打個(gè)賭
    唐軍 留守少年的逆襲
    江龍出口斯里蘭卡19.5米鋼鋁引航船順利下水
    廣東造船(2014年3期)2014-04-29 10:32:09
    江龍為廣東省水利廳建造的43.2m鋼鋁執(zhí)法船成功交付
    廣東造船(2014年3期)2014-04-29 10:32:09
    精品人妻在线不人妻| 亚洲国产精品一区三区| 欧美精品亚洲一区二区| 又黄又爽又刺激的免费视频.| 18禁国产床啪视频网站| 亚洲一区二区三区欧美精品| 亚洲内射少妇av| 亚洲高清免费不卡视频| 国产欧美日韩一区二区三区在线| 免费看光身美女| 一区二区三区精品91| 又粗又硬又长又爽又黄的视频| 亚洲成人手机| 日日啪夜夜爽| 欧美日韩一区二区视频在线观看视频在线| 日韩伦理黄色片| 精品第一国产精品| 久久精品久久久久久久性| 久久精品aⅴ一区二区三区四区 | 啦啦啦啦在线视频资源| 国产精品一二三区在线看| 女的被弄到高潮叫床怎么办| 国产精品久久久久久精品古装| a级毛色黄片| 人妻系列 视频| 国产亚洲一区二区精品| 国产精品久久久久久精品古装| 人妻系列 视频| 韩国精品一区二区三区 | 中文字幕人妻丝袜制服| 久久99一区二区三区| 国产精品 国内视频| 制服诱惑二区| 精品国产乱码久久久久久小说| 亚洲熟女精品中文字幕| 有码 亚洲区| 亚洲欧美一区二区三区黑人 | 国产欧美另类精品又又久久亚洲欧美| 咕卡用的链子| 日韩视频在线欧美| 飞空精品影院首页| 国产精品国产三级国产专区5o| 亚洲高清免费不卡视频| 成人漫画全彩无遮挡| av免费在线看不卡| 国产精品无大码| 一级,二级,三级黄色视频| av.在线天堂| 看十八女毛片水多多多| 18+在线观看网站| 国产精品久久久av美女十八| 久久久久久久国产电影| 一级黄片播放器| 成年人午夜在线观看视频| 最近手机中文字幕大全| 色视频在线一区二区三区| 大片电影免费在线观看免费| 亚洲精品色激情综合| 亚洲欧美成人综合另类久久久| 日韩av在线免费看完整版不卡| 精品酒店卫生间| 日韩在线高清观看一区二区三区| 18禁观看日本| 人妻系列 视频| 国产老妇伦熟女老妇高清| videossex国产| 亚洲欧洲精品一区二区精品久久久 | kizo精华| 午夜免费观看性视频| 国产高清三级在线| 自线自在国产av| 亚洲精品456在线播放app| 国产日韩欧美视频二区| 人妻少妇偷人精品九色| 青青草视频在线视频观看| 欧美bdsm另类| 国产av精品麻豆| 国产成人精品一,二区| 久久精品夜色国产| 视频中文字幕在线观看| 日本vs欧美在线观看视频| 边亲边吃奶的免费视频| 伦精品一区二区三区| 美女视频免费永久观看网站| 精品少妇久久久久久888优播| freevideosex欧美| 久久国产精品大桥未久av| 成年av动漫网址| 婷婷色综合www| 高清av免费在线| 久久99蜜桃精品久久| 亚洲经典国产精华液单| 国产一区有黄有色的免费视频| 亚洲四区av| 成人漫画全彩无遮挡| 欧美日韩精品成人综合77777| 色94色欧美一区二区| 亚洲图色成人| 九色亚洲精品在线播放| 在线观看免费高清a一片| 亚洲人成网站在线观看播放| 精品第一国产精品| 国产精品人妻久久久影院| 久久久亚洲精品成人影院| 国产探花极品一区二区| 九九爱精品视频在线观看| www日本在线高清视频| 在线观看免费高清a一片| 日韩中文字幕视频在线看片| 亚洲欧美中文字幕日韩二区| 国产亚洲午夜精品一区二区久久| 欧美日本中文国产一区发布| 狠狠精品人妻久久久久久综合| 国产伦理片在线播放av一区| 免费观看无遮挡的男女| 各种免费的搞黄视频| 亚洲av国产av综合av卡| videosex国产| 亚洲三级黄色毛片| 日韩一区二区三区影片| 好男人视频免费观看在线| 国产精品免费大片| 一级毛片 在线播放| 汤姆久久久久久久影院中文字幕| 亚洲国产精品999| 亚洲成人一二三区av| 日本欧美国产在线视频| 搡老乐熟女国产| 成人国语在线视频| 一区在线观看完整版| 成年美女黄网站色视频大全免费| 夜夜爽夜夜爽视频| 少妇人妻精品综合一区二区| 亚洲国产最新在线播放| 国产视频首页在线观看| 色婷婷av一区二区三区视频| 日本午夜av视频| 日本-黄色视频高清免费观看| 两个人免费观看高清视频| 建设人人有责人人尽责人人享有的| 一区二区三区四区激情视频| 久久久精品94久久精品| av免费观看日本| 精品熟女少妇av免费看| 香蕉国产在线看| 赤兔流量卡办理| 熟妇人妻不卡中文字幕| 女性被躁到高潮视频| 久久97久久精品| 日本猛色少妇xxxxx猛交久久| 如日韩欧美国产精品一区二区三区| 欧美xxⅹ黑人| 国产精品一区二区在线观看99| 成年女人在线观看亚洲视频| 亚洲美女搞黄在线观看| 性色av一级| 日韩欧美精品免费久久| 国产亚洲欧美精品永久| 久久99蜜桃精品久久| 人成视频在线观看免费观看| 久久久国产精品麻豆| 免费人成在线观看视频色| 在线观看www视频免费| 男人爽女人下面视频在线观看| 男女高潮啪啪啪动态图| 成人黄色视频免费在线看| 中文字幕最新亚洲高清| 伊人亚洲综合成人网| 99re6热这里在线精品视频| 国产乱人偷精品视频| 亚洲四区av| 久久综合国产亚洲精品| 少妇人妻久久综合中文| 日本与韩国留学比较| 中文字幕人妻丝袜制服| 免费大片黄手机在线观看| 亚洲丝袜综合中文字幕| 免费看av在线观看网站| 99九九在线精品视频| 国产高清国产精品国产三级| 国产一区二区在线观看av| 欧美成人午夜免费资源| 一本久久精品| 成人18禁高潮啪啪吃奶动态图| 国产熟女午夜一区二区三区| 免费女性裸体啪啪无遮挡网站| 午夜免费观看性视频| 久久青草综合色| 18禁在线无遮挡免费观看视频| 亚洲精品色激情综合| 午夜免费鲁丝| 国产亚洲午夜精品一区二区久久| 看免费成人av毛片| av女优亚洲男人天堂| 91aial.com中文字幕在线观看| 亚洲色图综合在线观看| 欧美精品人与动牲交sv欧美| 久久久久久久大尺度免费视频| 亚洲情色 制服丝袜| 国产欧美日韩综合在线一区二区| 一区在线观看完整版| 丰满迷人的少妇在线观看| 美女国产高潮福利片在线看| 久久久a久久爽久久v久久| 亚洲精品一二三| 久久99一区二区三区| 国产成人91sexporn| 久久人人爽av亚洲精品天堂| 秋霞在线观看毛片| av在线老鸭窝| 国产在线视频一区二区| 2022亚洲国产成人精品| 高清av免费在线| 我要看黄色一级片免费的| 天天躁夜夜躁狠狠躁躁| 精品少妇黑人巨大在线播放| 精品人妻偷拍中文字幕| 亚洲欧美成人综合另类久久久| 制服人妻中文乱码| 女性被躁到高潮视频| 国产乱人偷精品视频| 亚洲精品美女久久久久99蜜臀 | 国产爽快片一区二区三区| a级片在线免费高清观看视频| 成人亚洲欧美一区二区av| 波多野结衣一区麻豆| 国产日韩一区二区三区精品不卡| 国产片特级美女逼逼视频| 天天躁夜夜躁狠狠躁躁| 日韩在线高清观看一区二区三区| 国产有黄有色有爽视频| 少妇人妻 视频| 精品少妇久久久久久888优播| 国产老妇伦熟女老妇高清| 国产日韩欧美亚洲二区| 午夜免费男女啪啪视频观看| 美女大奶头黄色视频| 久久人人爽人人爽人人片va| 免费观看无遮挡的男女| 99热这里只有是精品在线观看| av黄色大香蕉| 亚洲,欧美,日韩| 最近中文字幕2019免费版| 精品一区二区免费观看| 久久影院123| 建设人人有责人人尽责人人享有的| 男人添女人高潮全过程视频| 波野结衣二区三区在线| 街头女战士在线观看网站| 国产欧美日韩综合在线一区二区| 又大又黄又爽视频免费| 日本vs欧美在线观看视频| 久久热在线av| 欧美xxxx性猛交bbbb| 国产亚洲精品第一综合不卡 | 男女边吃奶边做爰视频| 国语对白做爰xxxⅹ性视频网站| 亚洲国产成人一精品久久久| 中文字幕制服av| 日韩一区二区视频免费看| 成人亚洲欧美一区二区av| 日产精品乱码卡一卡2卡三| 国产男人的电影天堂91| 国产免费一区二区三区四区乱码| 性色av一级| 亚洲,欧美,日韩| 中文天堂在线官网| 亚洲精品国产色婷婷电影| 亚洲精品第二区| 午夜福利,免费看| 制服诱惑二区| 天美传媒精品一区二区| 天堂俺去俺来也www色官网| 少妇的逼水好多| 1024视频免费在线观看| 久久久精品94久久精品| 人妻少妇偷人精品九色| 青春草视频在线免费观看| 一级毛片黄色毛片免费观看视频| 日韩制服骚丝袜av| 亚洲av男天堂| 高清av免费在线| 最近2019中文字幕mv第一页| av在线老鸭窝| 欧美最新免费一区二区三区| 亚洲熟女精品中文字幕| 亚洲,一卡二卡三卡| 九九爱精品视频在线观看| 18禁国产床啪视频网站| 男女边摸边吃奶| 精品久久蜜臀av无| 美国免费a级毛片| 亚洲欧美色中文字幕在线| 在线看a的网站| 亚洲欧美成人综合另类久久久| 国产精品三级大全| 国产精品嫩草影院av在线观看| 国产色爽女视频免费观看| 亚洲成人av在线免费| 亚洲av成人精品一二三区| 大片免费播放器 马上看| 亚洲国产毛片av蜜桃av| 九九在线视频观看精品| 99热国产这里只有精品6| 亚洲 欧美一区二区三区| 亚洲伊人色综图| 国产一区二区激情短视频 | 久久精品国产a三级三级三级| 亚洲,欧美精品.| 久久99精品国语久久久| 久久人人爽av亚洲精品天堂| 熟妇人妻不卡中文字幕| 亚洲欧美精品自产自拍| 亚洲av福利一区| 大香蕉97超碰在线| 老女人水多毛片| 国产欧美亚洲国产| av免费在线看不卡| 色视频在线一区二区三区| 18禁观看日本| 免费观看av网站的网址| 国产精品人妻久久久影院| 成年人午夜在线观看视频| 日韩精品免费视频一区二区三区 | 一边亲一边摸免费视频| 少妇熟女欧美另类| 欧美+日韩+精品| 波多野结衣一区麻豆| 王馨瑶露胸无遮挡在线观看| 国产亚洲精品第一综合不卡 | 女性被躁到高潮视频| 高清视频免费观看一区二区| 欧美bdsm另类| 精品国产一区二区三区四区第35| 成人亚洲精品一区在线观看| xxx大片免费视频| 少妇熟女欧美另类| 日本黄色日本黄色录像| 一级毛片 在线播放| 国产精品一二三区在线看| 亚洲,欧美,日韩| 免费播放大片免费观看视频在线观看| 夜夜骑夜夜射夜夜干| 免费在线观看完整版高清| 国产一区二区三区av在线| 国内精品宾馆在线| 久久精品熟女亚洲av麻豆精品| 一级片免费观看大全| 久久综合国产亚洲精品| 婷婷成人精品国产| 欧美xxⅹ黑人| 国产精品三级大全| 国产69精品久久久久777片| 久久久精品免费免费高清| 视频区图区小说| 男人爽女人下面视频在线观看| 午夜福利乱码中文字幕| 国产精品无大码| 久久韩国三级中文字幕| 午夜福利视频在线观看免费| 美女大奶头黄色视频| 国产亚洲最大av| 欧美日韩亚洲高清精品| 99国产综合亚洲精品| 中文字幕最新亚洲高清| 久久精品久久久久久久性| 国产一区二区激情短视频 | 日本91视频免费播放| 欧美精品一区二区大全| 最近中文字幕高清免费大全6| 美女视频免费永久观看网站| 国产熟女欧美一区二区| 久久久国产一区二区| 国产精品久久久久久久久免| av有码第一页| 777米奇影视久久| 国产日韩欧美视频二区| 久久鲁丝午夜福利片| 成人国产av品久久久| 桃花免费在线播放| 午夜老司机福利剧场| 亚洲伊人色综图| 制服丝袜香蕉在线| www.熟女人妻精品国产 | 最近中文字幕2019免费版| 午夜久久久在线观看| 熟妇人妻不卡中文字幕| 亚洲一码二码三码区别大吗| 成人漫画全彩无遮挡| 国产69精品久久久久777片| 亚洲性久久影院| 少妇人妻 视频| 最近手机中文字幕大全| 久热这里只有精品99| 2022亚洲国产成人精品| 少妇猛男粗大的猛烈进出视频| 天天躁夜夜躁狠狠躁躁| 欧美日韩综合久久久久久| 日韩av免费高清视频| 国产爽快片一区二区三区| 最新的欧美精品一区二区| 男男h啪啪无遮挡| 久久婷婷青草| 国产av一区二区精品久久| 日韩av不卡免费在线播放| 精品午夜福利在线看| 人妻系列 视频| 亚洲人成网站在线观看播放| 日韩av在线免费看完整版不卡| xxxhd国产人妻xxx| 夜夜爽夜夜爽视频| 亚洲精品自拍成人| 美女福利国产在线| 少妇的逼水好多| av片东京热男人的天堂| 亚洲欧美一区二区三区国产| 欧美日韩综合久久久久久| 中文欧美无线码| 热re99久久国产66热| 国产免费又黄又爽又色| 亚洲熟女精品中文字幕| 国产精品嫩草影院av在线观看| 久久久欧美国产精品| 少妇被粗大猛烈的视频| 国产成人免费无遮挡视频| 日韩视频在线欧美| 大片免费播放器 马上看| 国产精品久久久av美女十八| 看非洲黑人一级黄片| 一区二区三区四区激情视频| 久久狼人影院| 欧美bdsm另类| 热99国产精品久久久久久7| 国产毛片在线视频| 亚洲一级一片aⅴ在线观看| 51国产日韩欧美| 国产探花极品一区二区| 精品一区二区三区四区五区乱码 | 免费不卡的大黄色大毛片视频在线观看| 国产免费一区二区三区四区乱码| 亚洲伊人色综图| 这个男人来自地球电影免费观看 | 国产精品熟女久久久久浪| 欧美激情国产日韩精品一区| 日本色播在线视频| 国产精品久久久久成人av| 十八禁网站网址无遮挡| 男女国产视频网站| 国产亚洲精品第一综合不卡 | 国产精品久久久久成人av| 国产成人一区二区在线| 成人国产av品久久久| 欧美 日韩 精品 国产| 欧美精品一区二区大全| 国产免费一区二区三区四区乱码| 巨乳人妻的诱惑在线观看| 老女人水多毛片| 夫妻午夜视频| 黑人巨大精品欧美一区二区蜜桃 | 性色avwww在线观看| 色5月婷婷丁香| 亚洲精品乱久久久久久| 熟妇人妻不卡中文字幕| 久久99精品国语久久久| 亚洲国产色片| 欧美日韩综合久久久久久| 伦理电影免费视频| 久久久国产欧美日韩av| 成人黄色视频免费在线看| 秋霞在线观看毛片| 色94色欧美一区二区| 午夜免费鲁丝| 老熟女久久久| 波多野结衣一区麻豆| 国产精品一二三区在线看| 久久久国产精品麻豆| 91在线精品国自产拍蜜月| 搡老乐熟女国产| 久久久国产欧美日韩av| 两性夫妻黄色片 | 国产精品蜜桃在线观看| 亚洲一区二区三区欧美精品| 熟女人妻精品中文字幕| 成年美女黄网站色视频大全免费| 久久人人爽av亚洲精品天堂| 在线观看免费视频网站a站| 国产欧美另类精品又又久久亚洲欧美| 香蕉精品网在线| 成人黄色视频免费在线看| 麻豆精品久久久久久蜜桃| 肉色欧美久久久久久久蜜桃| 国产免费视频播放在线视频| 欧美激情国产日韩精品一区| 又粗又硬又长又爽又黄的视频| 婷婷色av中文字幕| 一区二区三区精品91| 欧美精品亚洲一区二区| 亚洲第一区二区三区不卡| 校园人妻丝袜中文字幕| 日韩电影二区| 国产成人91sexporn| 人妻系列 视频| 亚洲一区二区三区欧美精品| 亚洲国产色片| 高清黄色对白视频在线免费看| 国产免费视频播放在线视频| 欧美+日韩+精品| 欧美国产精品一级二级三级| 欧美97在线视频| 精品久久蜜臀av无| 久久久久久久亚洲中文字幕| 欧美人与性动交α欧美精品济南到 | 一区二区日韩欧美中文字幕 | 亚洲 欧美一区二区三区| 日韩制服丝袜自拍偷拍| 男女下面插进去视频免费观看 | 亚洲成av片中文字幕在线观看 | 亚洲av日韩在线播放| 最近中文字幕高清免费大全6| 国产av一区二区精品久久| 在线观看三级黄色| 国产日韩欧美亚洲二区| 亚洲伊人久久精品综合| 欧美成人午夜免费资源| 日韩伦理黄色片| 精品99又大又爽又粗少妇毛片| 免费女性裸体啪啪无遮挡网站| 色视频在线一区二区三区| 免费少妇av软件| 一级片'在线观看视频| 国产高清三级在线| 久久久久视频综合| 国产色婷婷99| 亚洲熟女精品中文字幕| 超碰97精品在线观看| 两性夫妻黄色片 | 青春草视频在线免费观看| 日韩大片免费观看网站| videos熟女内射| 亚洲综合色惰| 老熟女久久久| 女人精品久久久久毛片| 日韩制服丝袜自拍偷拍| 精品国产乱码久久久久久小说| 99热6这里只有精品| 亚洲精品视频女| 亚洲精品日本国产第一区| 永久网站在线| 丰满少妇做爰视频| 波野结衣二区三区在线| av国产精品久久久久影院| 五月开心婷婷网| 亚洲婷婷狠狠爱综合网| 免费大片黄手机在线观看| 一区二区三区四区激情视频| 国产一区二区三区综合在线观看 | 秋霞伦理黄片| 国产精品三级大全| 国产色爽女视频免费观看| 桃花免费在线播放| 伊人久久国产一区二区| 日本wwww免费看| 日本91视频免费播放| 日韩中文字幕视频在线看片| 少妇精品久久久久久久| 一级片'在线观看视频| 国产xxxxx性猛交| 男女边吃奶边做爰视频| 亚洲三级黄色毛片| 亚洲av福利一区| 久久狼人影院| 欧美另类一区| 国产成人午夜福利电影在线观看| 色哟哟·www| 久久精品熟女亚洲av麻豆精品| 精品久久蜜臀av无| 青春草视频在线免费观看| 国产精品人妻久久久影院| 国产亚洲av片在线观看秒播厂| 精品一区二区免费观看| 九九爱精品视频在线观看| av福利片在线| 久久精品国产a三级三级三级| 中文字幕人妻熟女乱码| 亚洲精品国产av蜜桃| 久久这里只有精品19| 极品少妇高潮喷水抽搐| 日韩三级伦理在线观看| 97在线人人人人妻| 精品午夜福利在线看| 涩涩av久久男人的天堂| 国产国拍精品亚洲av在线观看| 亚洲精品一区蜜桃| 欧美精品国产亚洲| 新久久久久国产一级毛片| 大片电影免费在线观看免费| 久久精品aⅴ一区二区三区四区 | 中文字幕人妻丝袜制服| 熟女人妻精品中文字幕| 国产 一区精品| 18禁动态无遮挡网站| 草草在线视频免费看| 亚洲第一av免费看| www.熟女人妻精品国产 | 欧美精品国产亚洲| 午夜免费观看性视频| 亚洲国产精品一区三区| 国产免费现黄频在线看| 五月天丁香电影| 男女边摸边吃奶| 最近的中文字幕免费完整| 欧美xxⅹ黑人| 久久久久国产精品人妻一区二区| 人成视频在线观看免费观看| 国产精品一二三区在线看|