• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In fluence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48?x Co2Mn38+x Sn12(x=0,1.0,1.5,2.0, and 2.5)ferromagnetic shape memory alloys?

    2017-08-30 08:26:32IshfaqAhmadShahNajamulHassanAbdurRaufJunLiu劉俊YuanyuanGong龔元元GuizhouXu徐桂舟andFengXu徐鋒
    Chinese Physics B 2017年9期
    關(guān)鍵詞:劉俊

    Ishfaq Ahmad Shah,Najamul Hassan,Abdur Rauf,Jun Liu(劉俊), Yuanyuan Gong(龔元元),Guizhou Xu(徐桂舟),and Feng Xu(徐鋒),?

    1 Jiangsu Key Laboratory of Advanced Microamp;Nano Materials and Technology,School of Materials Science and Engineering, Nanjing University of Science and Technology,Nanjing 210094,China

    2 Herbert Gleiter Institute of Nanoscience,Nanjing University of Science and Technology,Nanjing 210094,China

    In fluence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48?xCo2Mn38+xSn12(x=0,1.0,1.5,2.0, and 2.5)ferromagnetic shape memory alloys?

    Ishfaq Ahmad Shah1,Najamul Hassan1,Abdur Rauf2,Jun Liu(劉俊)1, Yuanyuan Gong(龔元元)1,Guizhou Xu(徐桂舟)1,and Feng Xu(徐鋒)1,?

    1 Jiangsu Key Laboratory of Advanced Microamp;Nano Materials and Technology,School of Materials Science and Engineering, Nanjing University of Science and Technology,Nanjing 210094,China

    2 Herbert Gleiter Institute of Nanoscience,Nanjing University of Science and Technology,Nanjing 210094,China

    An investigation on the magnetostructural transformation and magnetocaloric properties of Ni48?xCo2Mn38+xSn12(x=0,1.0,1.5,2.0,and 2.5)ferromagnetic shape memory alloys is carried out.With the partial replacement of Ni by Mn in the Ni48Co2Mn38Sn12alloy,the electron concentration decreases.As a result,the martensitic transformation temperature is decreased into the temperature window between the Curie-temperatures of austenite and martensite.Thus,the samples with x=1.5 and 2.0 exhibit the magnetostructural transformation between the weak-magnetization martensite and ferromagnetic austenite at room temperature.The structural transformation can be induced not only by the temperature, but also by the magnetic field.Accompanied by the magnetic-field-induced magnetostructural transformation,a considerable magnetocaloric effect is observed.With the increase of x,the maximum entropy change decreases,but the effective magnetic cooling capacity increases.

    Ni–Co–Mn–Sn alloy,magnetostructural transformation,magnetocaloric effect,magnetic entropy change

    1.Introduction

    Room-temperature magnetic refrigeration is an innovative cooling technology with the advantages of high efficiency,low cost,and environmental friendliness.In this technology,magnetic materials are used as the refrigerants.To maximize the cooling capacity of magnetic refrigeration at room temperature(RT),the magnetic refrigerants should exhibit a large magnetic entropy or temperature change under a magnetic field.[1–4]During the last decade,the large magnetocaloric effect(MCE)has been successively observed in magnetic alloys that experience a magnetic-field-induced firstorder phase transition,including Gd–Si–Ge-based alloys,[5]MnAs1?xSbx,[6]Mn–Fe–P–As,[7]La(Fe1?xSix)13,[8]and especially,Ni–Mn-based magnetic shape memory alloys.[9,10]

    Rare-earth-free Ni–Mn-based magnetic shape memory alloys(Ni–Mn–X,X=Al,Ga,Sn,In and Sb)display a structural transformation between magnetic martensite and austenite.Various investigations on the structural,magnetic, and electrical properties of these alloys have been carried out.[11–17]It is found that the first-order magnetostructural transformation(MST)from the high-temperature austenite to the low-temperature martensite is accompanied by an obvious magnetization difference(ΔM)in some alloys with specific compositions.Due to the existence of ΔM,the MST can be driven by a magnetic field,and thus a large MCE can be achieved.[18–22]

    Among Ni–Mn–X alloys,Ni–Mn–Sn attracts considerable attention due to its tunable MST,large MCE,and relatively low cost.From the application point of view,the designed material as a magnetic refrigerant should display the MCE and large effective refrigeration capacity(RCeff)at RT. In this work,we select Ni48Co2Mn38Sn12as the starting composition,which experiences a structural transformation above RT.By changing the Ni/Mn ratio,the structural transformation temperature(Tt)is decreased to RT.Meanwhile,the structural transformation is tuned into the Curie temperature window, which leads to a large ΔM and be in favor of the magneticfield-induced structural transformation(MFIST).Based on this improvement,large MCE,reduced hysteresis loss(HL), and improved RCeffare obtained.

    2.Experimental details

    The polycrystalline Ni48?xCo2Mn38+xSn12(x=0,1.0, 1.5,2.0,and 2.5)alloys were prepared by arc-melting appropriate amounts of high purity elements Ni(99.995 wt.% purity),Co(99.95 wt.%purity),Mn(99.998 wt.%purity), and Sn(99.99 wt.%purity)in argon atmosphere.The samples were re-melted three times for homogeneity.The obtained ingots were annealed at 900°C in vacuum for 24 h, and then quenched into cold water.The martensitic and reverse transformation behaviors were identified by differential scanning calorimetry(DSC)with the heating/cooling rate of 10 K/min.The crystal structures were investigated by powder x-ray diffraction(XRD)using Cu-Kαradiation at RT. The compositions of the elaborated alloys were confirmed by x-ray energy dispersive spectrometry(EDS).Magnetic measurements were performed on a physical property measurement system(PPMS).Isothermal magnetization(M–B)curves were measured using a so-called loop process to avoid the irreversibility caused by the magnetic-field-induced first-order MST.[23]Before each M–B measurement,the samples were cooled down to full martensitic state,and then gradually heated to the measurement temperature with a ramp rate of 3 K/min.To ensure the temperature stability of the measurement,a waiting time of 3 min was hold at the target temperatures.

    3.Results and discussion

    The XRD patterns of all the samples are shown in Fig.1. For x=0,the XRD pattern demonstrates a 4O modulated martensitic structure at RT.It suggests that the structural transformation in Ni48Co2Mn38Sn12occurs above RT.While for x=2.5,the presence of(111),(220),(400),and(422)peaks indicates a L21austenitic structure with the lattice constant of a=5.978?A.The coexistence of austenitic and martenitic phases is observed in the samples with 0<x<2.5 at RT.The XRD data indicates that Ttdecreases with x increasing.[24]

    The thermal-induced structural transformation was investigated by DSC measurements.As shown in Fig.2,the large endothermic and exothermic peaks in the heating/cooling processes and the large thermal hysteresis indicate the occurrence of first-order structural transformation between martensite and austenite in these Heusler-type Ni48?xCo2Mn38+xSn12(x=0, 1.0,1.5,2.0,and 2.5)alloys.As x increases from 0 to 2.5,the Ttshifts to the lower temperatures by around 85 K and 110 K in the heating and cooling processes,respectively.It is known that the Ttof Ni–Mn-based shape memory alloys is sensitive to the electron concentration(e/a),and it decreases with the e/a decreasing.[25–28]The e/a calculated from the EDS results for our samples are listed in Table 1.It can be found that with the increase of x,the e/a decreases from 8.115 to 8.025,resulting in the observed decrease of Tt.

    Fig.1.(color online)Powder XRD patterns of Ni48?x Co2Mn38+x Sn12 (x=0,1.0,1.5,2.0,and 2.5)alloys at RT.

    Fig.2.(color online)DSC curves for Ni48?x Co2Mn38+x Sn12(x=0,1.0, 1.5,2.0,and 2.5)alloys in heating and cooling processes.

    Table 1.The measured compositions and the characteristic phase-transition temperatures of Ni48?x Co2 Mn38+x Sn12(x=0,1.0,1.5, 2.0,and 2.5)alloys.

    Figure 3 shows the temperature dependence of magnetization(M–T)of Ni48?xCo2Mn38+xSn12(x=1.0,1.5,2.0,and 2.5)alloys under an applied field of 0.01 T during the heating and cooling processes.For x=1.0,due to the fact of that the Ttin the heating process is close to the Curie-temperature of austenite(TC,A≈340 K),the ferromagnetic austenite is not obviously observed in the heating process,but can be found in the cooling process.The existence of thermal hysteresis proves the first-order nature of the structural transformation between martensite and austenite.With x increasing from 1.5 to 2.5,the Ttshifts to the lower temperatures.As a result,the ferromagnetic austenite appears both in the heating and cooling processes.It is found that TC,Ais nearly stable with the alteration of composition.The Curie temperature of martensite(TC,M)is not observed in the samples with x=1.0,1.5, and 2.0 in the temperature range of 250–400 K,but is found in the x=2.5 sample.In the heating process,the sample with x=2.5 experiences the magnetic ordering-disordering transition of martensite,and then the first-order MST from the low-magnetization martensite to ferromagnetic austenite.The TC,Mof x=2.5 is around 208 K.A phase diagram including austenitic start temperature As,austenitic finish temperature Af,martensitic start temperature Ms,martensitic finish temperature Mf,TC,M,and TC,Afor Ni48?xCo2Mn38+xSn12(x=0, 1.0,1.5,2.0,and 2.5)alloys is shown in Fig.4(a).According to Fig.4(a),it can be found that with the increase of x, the Ttis decreased into the temperature window between TC,Aand TC,M.Thus,the samples with x=1.5 and 2.0 exhibit the room-temperature MST between the weak-magnetization martensite and ferromagnetic austenite.This transition is accompanied by a large ΔM,which is favor of MFIST.Due to the existence of ΔM between martensite and austenite,the MST can be induced by a magnetic field.The M–B curves for Ni48?xCo2Mn38+xSn12(x=1.0,1.5,and 2.0)alloys with a temperature interval of 3 K in the heating process are shown in Figs.4(b)–4(d).With the increase of the magnetic field,an obvious slope change is observed when the temperature is close to As.This behavior suggests the existence of MFIST from the martensite to austenite.[29–31]

    According to the M–B curves,the MCE of Ni48?xCo2Mn38+xSn12(x=1.0,1.5 and 2.0)alloys is estimated by the Maxwell equation[32]

    Fig.3.(color online)M–T curves for Ni48?x Co2Mn38+x Sn12(x=1.0,1.5,2.0,and 2.5)alloys under an applied magnetic field of 0.01 T during the heating and cooling processes.

    Fig.4.(color online)(a)Phase diagram for Ni48?x Co2Mn38+x Sn12(x=0,1.0,1.5,2.0,and 2.5)alloys as a function of x.(b)-(d)M?B curves for Ni48?x Co2Mn38+x Sn12(x=1.0,1.5,and 2.0)alloys with a maximum magnetic field of 5 T.

    Fig.5.(color online)Temperature dependence of magnetic entropy change for Ni48?x Co2Mn38+x Sn12(x=1.0,1.5,and 2.0)alloys under the magnetic field variations of 0–2 and 0–5 T.The inset shows the x dependence of average HL for Ni48?x Co2Mn38+x Sn12(x=1.0,1.5 and 2.0) alloys under a magnetic field variation of 0–5 T.

    As shown in Fig.5,the maximum values of magnetic entropy change(ΔSM)with the magnetic field variation of 0–5 T are 19.22 J·kg?1·K?1,13.64 J·kg?1·K?1,and 7.71 J·kg?1·K?1for x=1.0,1.5 and 2.0,respectively,and with the magneticfield variation of 0–2 T,the corresponding values decrease to 5.75 J·kg?1·K?1,5.54 J·kg?1·K?1,and 3.57 J·kg?1·K?1, respectively.[33–38]The maximum ΔSMdecreases with the increase of x.It is found that the ΔSMis inversely proportional to the transformation width(W),which gradually increases with x increasing(shown in Table 2).As mentioned by Cugini et al.,[39]the transformation width is highly related to the structural discontinuity between the martensite and austenite phases,impurities,vacancies,and interstitial defects in Heusler-type alloys.Wu et al.[40]also reported that the magnetostructural transformation in the Mn–Ni–Ge alloy becomes broadened when the grain size decreases.Therefore,there are various factors that can influence the transformation width.In this work,it is found that accompanied by the increase of x,the transformation width increases.So,the observed broadened transformation width may be related to the increased chemical disorder.Besides ΔSM,the effective refrigeration capacity (RCeff)isalso an important parameter to evaluate the magnetic cooling capacity of MCE materials.Here,RCeffis calculated by

    where Tcoldand Thotare the temperatures corresponding to the full width at half maximum(FWHM)of the ΔSMpeak, and average HL is calculated from the area surrounded by the hysteresis loops(M–B curves in Fig.4),as shown in the inset of Fig.5.[41,42]The calculated values for the transformation width,Tcold,Thot,ΔSM,average HL,and RCeffof Ni48?xCo2Mn38+xSn12alloys are summarized in Table 2.Although the maximum ΔSMdecreases with x increasing,the average HL is remarkably reduced.Therefore, an enhanced RCeffis obtained in the samples with x=1.5 and 2.The calculated values of RCeffare 23.36 J·kg?1, 60.79 J·kg?1,and 67.60 J·kg?1for x=1.0,1.5,and 2.0 with the magnetic field variation of 0–5 T,respectively, which are comparable to those of some other Ni–Mn-based Heusler alloys,such as Ni42Co8Mn30Fe2Ga18(70 J·kg?1, ΔB=5 T),Ni42.8Mn40.3Co5.7Sn11.2(72.10 J·kg?1,ΔB=3 T), Ni2Mn0.75Cu0.25Ga(72 J·kg?1,ΔB=5 T),Ni50Mn37Sn13(54 J·kg?1,ΔB=5 T),Ni45Co5Mn38Sb9Ge3(54 J·kg?1,ΔB= 5 T),and Ni52Mn26Ga22(58.7 J·kg?1,ΔB=5 T).[43–48]

    Table 2.The transformation width W(=A f?A s),Tcold,Thot,magnetic entropy change ΔS M,hysteresis loss(HL),and effective refrigeration capacity(RCeff)of Ni48?x Co2Mn38+x Sn12(x=1.0,1.5,and 2.0)alloys.

    4.Conclusion

    In summary,we investigate the structural transformation and MCE in Ni48?xCo2Mn38+xSn12alloys with x=0,1.0,1.5, 2.0,and 2.5.The partial substitution of Ni by Mn stabilizes the austenite phase and leads to the decrease of Tt.For the samples with x=1.5 and 2,the MST between the weak-magnetization martensite and ferromagnetic austenite is achieved at RT.This transition is accompanied by a large ΔM,which is favor of MFIST.Accompanied by the MFIST,a considerable MCE is obtained.Maximum values of ΔSMare 19.22 J·kg?1·K?1, 13.64 J·kg?1·K?1,and 7.71 J·kg?1·K?1for x=1.0,1.5,and 2.0 under the magnetic field variation of 0–5 T,respectively. Although the maximum ΔSMis reduced with x increasing,the RCeffis remarkably improved.

    [1]Gutfleisch O,Willard M A,Bruck E,Chen C H,Sankar S G and Liu J P 2011 Adv.Mater.23 821

    [2]Guillou F,Porcari G,Yibole H,Van Dijk N and Bruck E 2014 Adv. Mater.26 2671

    [3]Lyubina J 2017 J.Phys.D:Appl.Phys.50 053002

    [4]Shah I A,Hassan N,Liu J,Gong Y Y,Zhou X G and Feng X 2017 Chin.Phys.B 26 017501

    [5]Liu J,Gottschall T,Skokov K P,Moore J D and Gutfleisch O 2012 Nat. Mater.11 620

    [6]Wada H,and Tanabe Y 2001 Appl.Phys.Lett.79 3302

    [7]Hu F,Shen B,Sun J,Wang G and Cheng Z 2002 Appl.Phys.Lett.80 826

    [8]Tagus O,Bruck E,Buschow K and Boer F D 2002 Nature 415 150

    [9]Han Z D,Wang D H,Qian B,Feng J F,Jiang X F and Du Y W 2010 J. Appl.Phys.49 010211

    [10]Zhang Y,Liu J,Zheng Q,Zhang J,Xia W,Du J and Ya A 2014 Scr. Mater 75 26

    [11]Quetz A,Koshkidko Y S,Titov I,Rodionov I,Pandey S,Aryal A, Ibarra-Gaytan P J,Prudnikov V,Granovsky A,Dubenko I,Samanta T,Cwik J,Llamazares J L S,Stadler S,Lahderanta E and Ali N 2016 J.Alloys Compd.683 139

    [12]Xuan H C,Han P D,Wang D H and Du Y W 2014 J.Alloys Compd. 582 369

    [13]Varzaneh A G,Kameli P,Karimzadeh F,Aslibeiki B,Varvaro G and Salamati H 2014 J.Alloys Compd.598 6

    [14]Li Z,Xu K,Zhang Y L and Jing C 2015 J.Appl.Phys.117 023902

    [15]Ma S C,Shih C W,Liu J,Yuan J H,Lee S Y,Lee Y I,Chang H W and Chang W C 2015 Acta Mater.90 292

    [16]Xuan H C,Zheng Y X,Ma S C,Cao Q Q,Wang D H and Du Y W 2010 J.Appl.Phys.108 103920

    [17]Chen F H,Huang Q X,Jiang Z Y,Xuan H C,Zhang M G,Xu X H and Zhao J W 2016 Smart Mater.Struct.25 6

    [18]Zheng H,Wang W,Xue S,Zhai Q,Frenzel J and Luo Z 2013 Acta Mater 61 4648

    [19]Huang L,Cong D Y,Suo H L and Wang Y D 2014 Appl.Phys.Lett. 104 132407

    [20]Ma S C,Wang D H,Zhong Z C,Luo J M,Xu J L and Du Y W 2013 Appl.Phys.Lett.102 032407

    [21]Moya X,Narayan S K and Mathur N D 2014 Nat.Mater.13 439

    [22]Chen F,Tong Y X,Tian B,Li L,Zheng Y F and Liu Y 2013 J.Magn. Magn.Mater.347 72

    [23]Caron L,Ou Z Q,Nguyen T T,Cam-Thanh D T,Tegus O and Bruck E 2009 J.Magn.Magn.Mater.321 3559

    [24]Maziarz W,Czaja P,Szczerba M J,Dobrzynska L L,Czeppe T and Dutkiewicz J 2014 J.Alloys Compd.615 S173

    [25]Cong D Y,Roth S and Schultz L 2012 Acta Mater.60 5335

    [26]Srivastava V,Chen X and James R D 2010 Appl.Phys.Lett.97 014101

    [27]Bhatti K P,Khatib S E,Srivastava V,James R D and Leighton C 2012 Phys.Rev.B 85 134450

    [28]Chen F H,Gong C W,Guo Y P,Zhang M G and Chai Y S 2013 Phys. Status Solidi A 210 2762

    [29]Emre B,Bruno N M,Emre S Y and Karaman I 2014 Appl.Phys.Lett. 105 231910

    [30]Luo H,Meng F,Jiang Q,Liu H,Liu E,Wu G and Wang Y 2010 Scr. Mater.63 569

    [31]Ye M,Kimura A,Miura Y,Shirai M,Cui Y T,Shimada K,Namatame H,Taniguchi M,Ueda S,Kobayashi K,Kainuma R,Shishido T,Fukushima K and Kanomata T 2010 Phys.Rev.Lett.104 176401

    [32]Zhong Z C,Ma S C,Wang D H and Du Y W 2012 J.Mater.Sci.Technol.28 193

    [33]Pecharsky V K and Gschneidner Jr K A 1997 Phys.Rev.Lett.78 4494

    [34]Benford S M and Brown G V 1981 J.Appl.Phys.52 2110

    [35]Krenke T,Duman E,Acet M,Moya X,Manosa L and Planes A 2007 J.Appl.Phys.102 033903

    [36]Sharma V K,Chattopadhyay M K and Roy S B 2010 J.Phys.D:Appl. Phys.43 225001

    [37]Xuan H C,Chen F H,Han P D,Wang D H and Du Y W 2014 Intermetallics 47 31

    [38]Niemann R,Heczko O,Schultz L and Fahler S 2010 Appl.Phys.Lett. 97 222507

    [39]Cugini1 F,Porcari G,Fabbrici S,Albertini F and Solzi M 2016 Phil. Trans.R.Soc.A 374 20150306

    [40]Wu R,Shen F,Hu F,Wang J,Bao L,Zhang L,Liu Y,Zhao Y,Liang F, Zuo W,Sun J and Shen B 2016 Sci.Rep.6 20993

    [41]Brock J and Khan M 2017 J.Magn.Magn.Mater.425 1

    [42]Sharma V K,Chattopadhyay M K and Roy S B 2007 J.Phys.D:Appl. Phys.40 1869

    [43]Pathak A K,Dubenko I,Karaca H E,Stadler S and Ali N 2010 Appl. Phys.Lett.97 062505

    [44]Chen F H,Gong C W,Guo Y P,Zhang M G and Chai Y S 2014 Chin. Phys.B 23 067501

    [45]Stadler S,Khan M,Mitchell J,Ali N,Gomes A M,Dubenko I, Takeuchi A Y and Guimaraes A P 2006 Appl.Phys.Lett.88 192511

    [46]Phan T L,Zhang P,Dan N H,Yen N H,Thanh P T,Thanh T D,Phan M H and Yu S C 2012 Appl.Phys.Lett.101 212403

    [47]Sahoo R,Nayak A K,Suresh K G and Nigam A K,2012 J.Magn. Magn.Mater.324 1267

    [48]Li Z B,Zhang Y D,Sanchez-Valdes C F,Sanchez-Llamazares J F,Esling C,Zhao X and Zuo L 2014 Appl.Phys.Lett.104 044101

    27 April 2017;revised manuscript

    23 May 2017;published online 9 August 2017)

    10.1088/1674-1056/26/9/097501

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.51601092,51571121,and 11604148),the Fundamental Research Funds for the Central Universities,China(Grant Nos.30916011344 and 30916011345),Jiangsu Natural Science Foundation for Distinguished Young Scholars, China(Grant No.BK20140035),China Postdoctoral Science Foundation(Grant No.2016M591851),the Natural Science Foundation of Jiangsu Province, China(Grant Nos.BK20160833 and BK20160829),Qing Lan Project of Jiangsu Province,China,Priority Academic Program Development of Jiangsu Higher Education Institutions,China,and NMG–NJUST Joint Scholarship Program for Ishfaq Ahmad Shah(Student ID:914116020118).

    ?Corresponding author.E-mail:xufeng@njust.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    劉俊
    Phase sensitivity with a coherent beam and twin beams via intensity difference detection
    Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
    Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
    Synthetical optimization of the structure dimension for the thermoacoustic regenerator
    劉俊
    我和你打個(gè)賭
    小飯店,大飯店
    三月三(2014年11期)2014-11-05 03:24:03
    漫漫看
    只送你更貴的
    意林(2011年17期)2011-04-09 05:47:31
    方向盤被盜
    遼河(2009年3期)2009-05-04 10:15:20
    亚洲精品乱码久久久久久按摩| 亚洲五月色婷婷综合| a级毛色黄片| 在线观看一区二区三区激情| 国产有黄有色有爽视频| 国产精品国产三级国产av玫瑰| 亚洲色图综合在线观看| 一边摸一边做爽爽视频免费| 午夜影院在线不卡| 三级国产精品欧美在线观看| 九色成人免费人妻av| 性色avwww在线观看| 内地一区二区视频在线| videosex国产| 又大又黄又爽视频免费| 久久 成人 亚洲| 亚洲精品成人av观看孕妇| 欧美97在线视频| .国产精品久久| 只有这里有精品99| 天堂8中文在线网| 日韩一区二区三区影片| 亚洲无线观看免费| av福利片在线| 亚洲成人手机| 乱码一卡2卡4卡精品| 久久精品人人爽人人爽视色| 久久久久久伊人网av| 久久韩国三级中文字幕| av黄色大香蕉| 成年美女黄网站色视频大全免费 | 51国产日韩欧美| 在线观看一区二区三区激情| 精品人妻偷拍中文字幕| 国产亚洲最大av| 熟女人妻精品中文字幕| 在线播放无遮挡| 欧美精品人与动牲交sv欧美| 搡老乐熟女国产| 国产黄色视频一区二区在线观看| 亚洲精品一二三| 亚洲精品自拍成人| 国产精品女同一区二区软件| 久久精品国产亚洲网站| 91精品三级在线观看| 日产精品乱码卡一卡2卡三| 国国产精品蜜臀av免费| 国产亚洲一区二区精品| 欧美激情 高清一区二区三区| 男女啪啪激烈高潮av片| 国产片内射在线| 亚洲欧美一区二区三区国产| 亚洲国产毛片av蜜桃av| 99国产精品免费福利视频| 色94色欧美一区二区| 熟女电影av网| 男女啪啪激烈高潮av片| freevideosex欧美| 亚洲天堂av无毛| 草草在线视频免费看| 搡女人真爽免费视频火全软件| 国产 一区精品| 国产 一区精品| 如日韩欧美国产精品一区二区三区 | 美女脱内裤让男人舔精品视频| 黄色配什么色好看| 日韩,欧美,国产一区二区三区| 国产熟女欧美一区二区| 又粗又硬又长又爽又黄的视频| 老司机亚洲免费影院| 亚洲国产毛片av蜜桃av| 亚洲激情五月婷婷啪啪| 青青草视频在线视频观看| 99热这里只有是精品在线观看| 高清视频免费观看一区二区| 欧美精品一区二区免费开放| xxxhd国产人妻xxx| 亚洲美女搞黄在线观看| 亚洲欧美一区二区三区黑人 | 国产欧美日韩综合在线一区二区| 午夜福利影视在线免费观看| 久久毛片免费看一区二区三区| 欧美亚洲 丝袜 人妻 在线| 丰满迷人的少妇在线观看| 日本黄色片子视频| 亚洲av二区三区四区| 亚洲伊人久久精品综合| 国产在视频线精品| 考比视频在线观看| 3wmmmm亚洲av在线观看| 国语对白做爰xxxⅹ性视频网站| 午夜福利视频在线观看免费| 久久人妻熟女aⅴ| 亚洲av福利一区| 国产老妇伦熟女老妇高清| 男女无遮挡免费网站观看| 91久久精品电影网| 激情五月婷婷亚洲| 国产爽快片一区二区三区| 欧美激情极品国产一区二区三区 | 国产免费视频播放在线视频| 亚洲av成人精品一区久久| 男女免费视频国产| 国产午夜精品一二区理论片| 久久99精品国语久久久| 精品少妇内射三级| 久久这里有精品视频免费| 男女边摸边吃奶| 成人18禁高潮啪啪吃奶动态图 | 国产精品 国内视频| 精品一区在线观看国产| 女的被弄到高潮叫床怎么办| 久久久国产精品麻豆| 一级毛片 在线播放| 精品久久久精品久久久| 97在线人人人人妻| 日本黄大片高清| 精品久久蜜臀av无| 老司机亚洲免费影院| 国产免费又黄又爽又色| av网站免费在线观看视频| 激情五月婷婷亚洲| 香蕉精品网在线| 十八禁网站网址无遮挡| 国产精品秋霞免费鲁丝片| 大片免费播放器 马上看| 内地一区二区视频在线| 寂寞人妻少妇视频99o| 亚洲国产欧美在线一区| 51国产日韩欧美| 国产精品国产av在线观看| 日韩一本色道免费dvd| 夫妻午夜视频| 婷婷色av中文字幕| 你懂的网址亚洲精品在线观看| 一本色道久久久久久精品综合| 夜夜骑夜夜射夜夜干| 久久久国产欧美日韩av| 美女大奶头黄色视频| 精品久久国产蜜桃| 亚洲成人一二三区av| 十八禁网站网址无遮挡| 亚洲综合色惰| 老司机亚洲免费影院| 亚洲丝袜综合中文字幕| av在线观看视频网站免费| 最近中文字幕高清免费大全6| 亚洲国产欧美日韩在线播放| av.在线天堂| 中文欧美无线码| 校园人妻丝袜中文字幕| av在线老鸭窝| 最新的欧美精品一区二区| 国产精品女同一区二区软件| 熟妇人妻不卡中文字幕| 精品熟女少妇av免费看| 青春草亚洲视频在线观看| 国产69精品久久久久777片| 国产探花极品一区二区| 女人精品久久久久毛片| 九色亚洲精品在线播放| av有码第一页| 一级片'在线观看视频| 亚洲精品第二区| 黄色一级大片看看| 多毛熟女@视频| 国产一级毛片在线| 三级国产精品欧美在线观看| 免费观看性生交大片5| av在线app专区| 人成视频在线观看免费观看| 啦啦啦视频在线资源免费观看| 极品少妇高潮喷水抽搐| 91aial.com中文字幕在线观看| 王馨瑶露胸无遮挡在线观看| 中国美白少妇内射xxxbb| 久久精品国产自在天天线| 免费观看的影片在线观看| 国产又色又爽无遮挡免| 国产精品国产三级国产av玫瑰| 一级黄片播放器| 国产精品.久久久| 国产一区亚洲一区在线观看| 99热这里只有是精品在线观看| .国产精品久久| √禁漫天堂资源中文www| 亚洲国产欧美日韩在线播放| 22中文网久久字幕| 亚洲成人手机| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成年人免费黄色播放视频| 十分钟在线观看高清视频www| 一级黄片播放器| 亚洲成色77777| 日本猛色少妇xxxxx猛交久久| 丝袜在线中文字幕| 亚洲av欧美aⅴ国产| 久久精品久久精品一区二区三区| 亚洲人成网站在线观看播放| 爱豆传媒免费全集在线观看| 亚洲精品国产av蜜桃| 精品国产一区二区三区久久久樱花| 男女国产视频网站| 国产成人精品一,二区| 在线观看免费日韩欧美大片 | a级毛片在线看网站| 久久 成人 亚洲| av专区在线播放| 日韩伦理黄色片| a级毛片黄视频| 日韩,欧美,国产一区二区三区| xxx大片免费视频| 欧美丝袜亚洲另类| 纵有疾风起免费观看全集完整版| 大片免费播放器 马上看| 考比视频在线观看| 精品午夜福利在线看| 亚洲成人一二三区av| 制服丝袜香蕉在线| 18禁在线无遮挡免费观看视频| 久久这里有精品视频免费| 久久久久精品久久久久真实原创| 日韩一区二区三区影片| 两个人的视频大全免费| 欧美日韩国产mv在线观看视频| 国产精品国产av在线观看| 日本vs欧美在线观看视频| 日韩一区二区三区影片| 成人毛片a级毛片在线播放| 一区二区三区四区激情视频| 日韩成人伦理影院| 又粗又硬又长又爽又黄的视频| 如何舔出高潮| 国产黄频视频在线观看| 国产精品久久久久久精品电影小说| 看免费成人av毛片| 狂野欧美激情性xxxx在线观看| 涩涩av久久男人的天堂| 视频区图区小说| 亚洲精品第二区| 国产有黄有色有爽视频| 丝袜美足系列| 熟女av电影| 一本—道久久a久久精品蜜桃钙片| 啦啦啦啦在线视频资源| 两个人的视频大全免费| 高清欧美精品videossex| 国产一区二区三区综合在线观看 | 精品人妻熟女av久视频| 国产免费福利视频在线观看| 精品久久久精品久久久| 成人免费观看视频高清| 人人澡人人妻人| 日本欧美视频一区| 国产午夜精品久久久久久一区二区三区| 在现免费观看毛片| 夜夜看夜夜爽夜夜摸| 黄色怎么调成土黄色| 亚洲丝袜综合中文字幕| xxx大片免费视频| 九九爱精品视频在线观看| 亚洲av国产av综合av卡| 亚洲国产色片| 亚洲欧美一区二区三区黑人 | 人人澡人人妻人| 美女中出高潮动态图| 精品久久久久久电影网| 午夜精品国产一区二区电影| 国产精品偷伦视频观看了| av不卡在线播放| 女性生殖器流出的白浆| 午夜免费鲁丝| 亚洲无线观看免费| 中文字幕最新亚洲高清| 一级毛片aaaaaa免费看小| 久久久久久伊人网av| 亚洲精品456在线播放app| 美女大奶头黄色视频| 国语对白做爰xxxⅹ性视频网站| 国产成人freesex在线| 有码 亚洲区| 国产日韩欧美亚洲二区| 免费播放大片免费观看视频在线观看| 欧美亚洲日本最大视频资源| 街头女战士在线观看网站| 国产精品嫩草影院av在线观看| 亚洲中文av在线| 亚洲国产精品一区三区| 热99久久久久精品小说推荐| 国国产精品蜜臀av免费| 亚洲丝袜综合中文字幕| 国产男人的电影天堂91| 久久久a久久爽久久v久久| 日韩伦理黄色片| 韩国高清视频一区二区三区| 最新的欧美精品一区二区| 日韩亚洲欧美综合| 亚洲欧美一区二区三区黑人 | av国产精品久久久久影院| 国产又色又爽无遮挡免| av一本久久久久| 免费少妇av软件| 菩萨蛮人人尽说江南好唐韦庄| 美女视频免费永久观看网站| 91国产中文字幕| 国产黄色视频一区二区在线观看| 22中文网久久字幕| 水蜜桃什么品种好| 成人毛片a级毛片在线播放| 一本大道久久a久久精品| 九草在线视频观看| 中文字幕av电影在线播放| 日韩在线高清观看一区二区三区| 亚洲欧洲日产国产| 秋霞伦理黄片| 九色成人免费人妻av| tube8黄色片| 亚洲国产av影院在线观看| 欧美 日韩 精品 国产| 最新的欧美精品一区二区| 国产 精品1| 亚洲第一区二区三区不卡| 欧美日韩国产mv在线观看视频| 五月开心婷婷网| 视频中文字幕在线观看| 一个人看视频在线观看www免费| 制服人妻中文乱码| 国产不卡av网站在线观看| 国产亚洲欧美精品永久| 午夜精品国产一区二区电影| 国产欧美日韩综合在线一区二区| 特大巨黑吊av在线直播| 少妇被粗大猛烈的视频| 亚洲精品中文字幕在线视频| 免费观看a级毛片全部| 国产黄色视频一区二区在线观看| 91午夜精品亚洲一区二区三区| 日韩亚洲欧美综合| 纵有疾风起免费观看全集完整版| 简卡轻食公司| 男女啪啪激烈高潮av片| 久久人人爽人人片av| 亚洲激情五月婷婷啪啪| 亚洲五月色婷婷综合| 久久免费观看电影| 韩国av在线不卡| 视频在线观看一区二区三区| 一级黄片播放器| 亚洲精品乱码久久久久久按摩| 欧美日韩av久久| 亚洲精品aⅴ在线观看| 五月天丁香电影| 免费观看av网站的网址| 国产精品熟女久久久久浪| 欧美三级亚洲精品| 日韩亚洲欧美综合| 母亲3免费完整高清在线观看 | 又大又黄又爽视频免费| 99久久人妻综合| 国产欧美日韩综合在线一区二区| 久久精品国产亚洲av天美| 久久精品国产自在天天线| 晚上一个人看的免费电影| 亚洲美女黄色视频免费看| 建设人人有责人人尽责人人享有的| 久久久亚洲精品成人影院| 亚洲欧美中文字幕日韩二区| 亚洲精品亚洲一区二区| 国产精品国产三级国产专区5o| 婷婷色麻豆天堂久久| 久久人人爽人人片av| 最新的欧美精品一区二区| 亚洲精品成人av观看孕妇| freevideosex欧美| 亚洲av综合色区一区| 欧美精品一区二区免费开放| 中文字幕亚洲精品专区| 亚洲欧美成人综合另类久久久| 久久久久久久大尺度免费视频| 国产 一区精品| 嘟嘟电影网在线观看| 亚洲色图 男人天堂 中文字幕 | 在线观看人妻少妇| 国产成人精品婷婷| 久久毛片免费看一区二区三区| av一本久久久久| 日韩在线高清观看一区二区三区| 国产综合精华液| 一个人看视频在线观看www免费| 精品少妇久久久久久888优播| 国产一区二区三区综合在线观看 | 九九爱精品视频在线观看| 搡女人真爽免费视频火全软件| 国产深夜福利视频在线观看| 一级毛片 在线播放| av在线老鸭窝| 精品久久国产蜜桃| 国产伦理片在线播放av一区| 久久精品久久精品一区二区三区| 亚洲经典国产精华液单| 最近手机中文字幕大全| 91久久精品电影网| 99热这里只有是精品在线观看| 美女福利国产在线| 成人亚洲欧美一区二区av| 国模一区二区三区四区视频| 男女免费视频国产| 亚洲精品成人av观看孕妇| 在线观看免费日韩欧美大片 | 国产精品国产三级国产av玫瑰| tube8黄色片| 久久人人爽人人爽人人片va| kizo精华| 国精品久久久久久国模美| 黄色一级大片看看| 国产在视频线精品| 22中文网久久字幕| 免费看av在线观看网站| 搡女人真爽免费视频火全软件| 极品少妇高潮喷水抽搐| 一边亲一边摸免费视频| 国产精品人妻久久久久久| 青青草视频在线视频观看| 青春草视频在线免费观看| 亚洲怡红院男人天堂| av国产久精品久网站免费入址| 午夜福利影视在线免费观看| 热99久久久久精品小说推荐| 中文欧美无线码| 亚洲人与动物交配视频| 99国产综合亚洲精品| 十八禁高潮呻吟视频| 纵有疾风起免费观看全集完整版| videossex国产| videosex国产| 国产精品久久久久久av不卡| 看十八女毛片水多多多| 国产亚洲最大av| 精品人妻在线不人妻| 女人精品久久久久毛片| 特大巨黑吊av在线直播| 亚洲精品乱码久久久久久按摩| 男男h啪啪无遮挡| 一区二区日韩欧美中文字幕 | 国产爽快片一区二区三区| 中文天堂在线官网| 丰满饥渴人妻一区二区三| 欧美人与性动交α欧美精品济南到 | 国产精品一国产av| 精品亚洲乱码少妇综合久久| 少妇的逼好多水| 18+在线观看网站| 久久青草综合色| 欧美日韩综合久久久久久| 美女国产高潮福利片在线看| 欧美日韩成人在线一区二区| 中文字幕亚洲精品专区| 国产欧美另类精品又又久久亚洲欧美| 免费看不卡的av| 久久97久久精品| 国产熟女欧美一区二区| 在线免费观看不下载黄p国产| 亚洲精品日韩av片在线观看| 老女人水多毛片| 国产精品欧美亚洲77777| 欧美人与善性xxx| 大片免费播放器 马上看| 在线看a的网站| 久久人人爽人人片av| 26uuu在线亚洲综合色| 日本91视频免费播放| 日本猛色少妇xxxxx猛交久久| 麻豆成人av视频| 卡戴珊不雅视频在线播放| 成年美女黄网站色视频大全免费 | 草草在线视频免费看| 亚洲三级黄色毛片| 黑人欧美特级aaaaaa片| 国产精品一区二区在线观看99| 亚洲四区av| 久久99精品国语久久久| 精品亚洲乱码少妇综合久久| 97在线视频观看| 免费看光身美女| 亚洲精品国产av成人精品| 亚洲一区二区三区欧美精品| 中文字幕免费在线视频6| 五月玫瑰六月丁香| 亚洲,欧美,日韩| 日韩欧美精品免费久久| 日韩一本色道免费dvd| 欧美日韩亚洲高清精品| 爱豆传媒免费全集在线观看| 日韩成人伦理影院| 日韩欧美精品免费久久| 最新的欧美精品一区二区| 九九爱精品视频在线观看| 少妇的逼好多水| 不卡视频在线观看欧美| 国产亚洲精品久久久com| 视频在线观看一区二区三区| 丝瓜视频免费看黄片| 免费久久久久久久精品成人欧美视频 | 国产高清三级在线| 9色porny在线观看| 成人亚洲欧美一区二区av| 熟女人妻精品中文字幕| 久久精品久久久久久噜噜老黄| 国产乱人偷精品视频| 一级毛片电影观看| 久久精品人人爽人人爽视色| 精品人妻熟女av久视频| 国产极品粉嫩免费观看在线 | av免费在线看不卡| 国产精品不卡视频一区二区| videossex国产| 日韩av在线免费看完整版不卡| 国产爽快片一区二区三区| 一边亲一边摸免费视频| www.av在线官网国产| 一本一本综合久久| 91aial.com中文字幕在线观看| 日本91视频免费播放| 亚洲国产精品一区三区| 高清午夜精品一区二区三区| 一边摸一边做爽爽视频免费| 日本vs欧美在线观看视频| 久久久欧美国产精品| 亚洲高清免费不卡视频| 亚洲av欧美aⅴ国产| 纯流量卡能插随身wifi吗| 亚洲综合色网址| 欧美日本中文国产一区发布| 男人爽女人下面视频在线观看| 亚洲熟女精品中文字幕| 亚洲av成人精品一区久久| 国产成人av激情在线播放 | 免费观看无遮挡的男女| 欧美精品人与动牲交sv欧美| 免费黄网站久久成人精品| 国国产精品蜜臀av免费| 亚洲av二区三区四区| 97精品久久久久久久久久精品| 久久久久精品久久久久真实原创| 久久这里有精品视频免费| 在线观看免费高清a一片| 久久久久久久久久久久大奶| 亚洲图色成人| 在线观看国产h片| 成人亚洲欧美一区二区av| 三级国产精品片| 久久久久久伊人网av| 色5月婷婷丁香| 春色校园在线视频观看| 成人黄色视频免费在线看| 在线观看一区二区三区激情| av在线播放精品| 亚洲精品aⅴ在线观看| 狠狠精品人妻久久久久久综合| 2018国产大陆天天弄谢| 黄色一级大片看看| 51国产日韩欧美| 久久久久久伊人网av| 亚洲无线观看免费| 国产精品熟女久久久久浪| 最黄视频免费看| 精品人妻在线不人妻| 国模一区二区三区四区视频| av播播在线观看一区| 国产高清三级在线| av国产精品久久久久影院| 22中文网久久字幕| 97在线人人人人妻| 视频中文字幕在线观看| 天天操日日干夜夜撸| 18禁观看日本| 国产视频首页在线观看| 肉色欧美久久久久久久蜜桃| 欧美 日韩 精品 国产| 国国产精品蜜臀av免费| 99国产综合亚洲精品| 蜜桃国产av成人99| 高清av免费在线| 国产成人精品在线电影| 国产亚洲一区二区精品| 777米奇影视久久| 国产白丝娇喘喷水9色精品| 亚洲精品成人av观看孕妇| 成人国语在线视频| 国产探花极品一区二区| 欧美精品亚洲一区二区| 七月丁香在线播放| 国产在线视频一区二区| 九色亚洲精品在线播放| 十分钟在线观看高清视频www| 国产探花极品一区二区| 亚洲欧美一区二区三区国产| 一级毛片 在线播放| 亚洲国产日韩一区二区| 免费黄色在线免费观看| 99久久中文字幕三级久久日本| 十八禁网站网址无遮挡| 51国产日韩欧美| 97超视频在线观看视频| av有码第一页| 国产视频内射| 一边亲一边摸免费视频| 欧美日韩综合久久久久久| 91精品国产九色| 男女边吃奶边做爰视频| 国产精品久久久久久久电影| 纯流量卡能插随身wifi吗| 久久午夜综合久久蜜桃| 永久网站在线| 中文字幕免费在线视频6|