• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components?

    2017-08-30 08:27:00PengchengZhao趙朋程andLixinGuo郭立新
    Chinese Physics B 2017年9期

    Pengcheng Zhao(趙朋程)and Lixin Guo(郭立新)

    School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,China

    Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components?

    Pengcheng Zhao(趙朋程)?and Lixin Guo(郭立新)?

    School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,China

    The air breakdown is easily caused by the high-power microwave,which can have two mutually orthogonal and heterophase electric field components.For this case,the electron momentum conservation equation is employed to deduce the electric field power and effective electric field for heating electrons.Then the formula of the electric field power is introduced into the global model to simulate the air breakdown.The breakdown prediction from the global model agrees well with the experimental data.Simulation results show that the electron temperature is sensitive to the phase difference between the two electron field components,while the latter can affect obviously the growth of the electron density at low electron temperature amplitudes.The ionization of nitrogen and oxygen induces the growth of electron density,and the density loss due to the dissociative attachment and dissociative recombination is obvious only at low electron temperatures.

    high power microwave,air breakdown,effective electric field,global model

    1.Introduction

    The high-power microwave easily causes the air breakdown because of its strong electric field.[1–5]The air breakdown is involved in many important applications,such as high power microwave systems,biomedical applications,and surface treatments.[6]In order to improve these applications,we must master the characteristics of the air breakdown,which include the breakdown formation time,breakdown electric field, breakdown plasma dynamics and pattern,and the microwave transmission in the breakdown plasma.

    In recent years,many scholars have studied the air breakdown caused by the high-power microwave.[7–10]Nam et al.introduced the pressure-independent enhanced electron energy distribution function into the global model,and improved fidelity for modeling the gas breakdown.[7]The two dimensional model coupling Maxwell equations with plasma fluid equations was developed by Boeuf et al.to simulate the patterns of breakdown plasma,in which the accurate diffusion coefficient was adopted.[8]Ford et al.used the finite difference time-domain method to solve a one-dimensional model similar to that of Boeuf et al.,and predicted the breakdown formation time and the microwave transmission in the breakdown plasma.[9]The Poisson and Boltzmann equations were utilized by Zhu et al.to describe the air breakdown near the dielectric window,and the results showed that the range can be roughly divided into at least two regions,sheath region and plasma region.[10]Most of these studies above focused on the case in which the microwave has one electric field component or two mutually orthogonal and in phase electric field components.However,the microwave with two mutually orthogonal and heterophase electric field components frequently appears in the waveguide or the near field region of the antenna.We still know little about the air breakdown caused by such microwave.

    In this paper,we use the global model consisting of spatially averaged continuity equations for charged particles and an electron energy equation to describe the air breakdown due to its great advantages in speed and simplicity.The global model requires the knowledge of the electric field power heating the electrons.In order to study the air breakdown caused by the microwave with the two mutually orthogonal and heterophase electric field components,we deduce the corresponding electric field power from the electron momentum conservation equation.We focus on how the phase difference between the two electron field components affects the electron temperature and electron density in the breakdown process. The dependence of the electron density on the reaction sets of oxygen and nitrogen is considered.In addition,the breakdown prediction from the global model is compared with the previous experimental data.

    2.Global model

    2.1.Basic equations

    The global model consists of spatially averaged continuity equations for electron,and O?,and an electron energy equation.[7]When the background gas is air,theseequations can be written as

    where ne,nN2,and nO2are the electron,N2,and O2densities,and nO?are theand O?densities,Teis the electron temperaturewhere ε is the electron energy and f(ε)is the normalized electron energy distribution function,εtiand Ki(i=N2–N25 in Table 1 and O2–O15 in Table 2)are the threshold energy and reaction coefficient of the reactions in Tables 1 and 2,is the energy transfer rate coefficient in the dissociative attachment collision process,PEis the electric field power for heating the electrons.

    Table 1.Oxygen reaction set,εt is the threshold energy.[11]

    Table 2.Nitrogen reaction set,εt is the threshold energy.[12]

    These rate coefficients can be obtained by integrating the corresponding collision cross section over the electron energy distribution function.For example,the rate coefficient for the ionization of oxygen can be obtained as

    where meis the electron mass,and σO14is the collision ion-ization cross section in oxygen.The detailed definition of these rate coefficients can refer to the work of Nam et al.[7]The electron energy distribution function is obtained from the Boltzmann equation solver Bolsig+at the low Te,[13],and is assumed as the Maxwellian distribution at the high Te.Next we deduce the electric field power of the microwave with the two mutually orthogonal and heterophase electric field components.

    2.2.Electric field power

    The two mutually orthogonal and heterophase electric field components of the microwave in time are written as

    where Exmand Eymare the electron field amplitudes in xand y-axis direction,respectively,ω is the microwave angular frequency,and Δφ is the phase difference between the two electron field components.When ignoring the magnetic field force,which is much smaller than the electric field force,the electron momentum conservation equation can be written as

    where e is the electron charge,and νmis the momentum transfer collision frequency whose definition is similar to Kiabove. By using Eqs.(7)–(9),the electron velocity is solved as

    Then the electric field power is obtained as

    Utilizing Eq.(13),we can deduce the average electricfield power as follows:

    where〈〉denotes the time average operation.It can be found from Eq.(14)that PEadoes not depend on Δφ.By comparing PEain Eq.(14)with that of the dc electric field,[14]the effective electric field of the microwave can be defined as

    By introducing the effective electric field into the empirical formulas for the ionization rate,one can easily estimate the breakdown formation time and threshold.[15]However,to obtain more physical characters,we introduce PEof Eq.(13)into the global model to simulate the air breakdown in this paper.

    In order to well understand the following results,we can further simplify Eq.(13).At intermediate and high pressures, νm?ω.Let Exm=Eym=Em,equation(13)is simplified as follows:

    It can be found from Eq.(16)that PEdepends obviously on Δφ.

    3.Results and discussion

    When using the global model to simulate the air breakdown,the initial conditions are taken as follows:ne= 106m?3,nN+2=7.8×105m?3,nO+2=2×105m?3,and nO?=2×104m?3.In this case,the electric neutrality holds in the air at the initial time.We assume that the air is composed of 20%oxygen and 80%nitrogen since the amounts of other gases are very small in the air.The dependence of the air number density on the pressure is nair(m?3)=p(Torr)/760× 2.44×1025.

    Since the oscillation frequency of PEis two times larger than that of the electric field(see Eq.(16)),we can consider the case of 0≤Δφ≤π.Figure 1 shows the variation of electron temperature and density with time at P=760 Torr, f=2.85 GHz,Exm=Eym=2.5 MV/m,and different Δφ.The electric field components of the incident microwave in time can refer to Eqs.(7)and(8).We see from Fig.1(a)that the electron temperature oscillates with time,and its oscillation frequency is two times larger than that of the electric field.It can be found from Eq.(16)that the electric field power PEcan reach the maximum when Δφ=kπ(k=0,±π,±2π,...). Therefore,among the four electron temperature amplitudes corresponding to different Δφ,the one at Δφ=0 is maximum, as shown in Fig.1(a).At Δφ=π/2,PEcan be approximated as constant(see Eq.(16)),and therefore the electron temperature Teremains almost unchanged with time.In this case, the electron temperature amplitude is minimum.At other Δφ such as 0.25π and 0.75π,the electron temperature amplitude lies between the maximum and the minimum.

    We see from Fig.1(b)that the phase difference Δφ plays an important role in the electron density growth since the former affects the electron temperature obviously.At the high pressure,the electron temperature is low,and the ionization occurs only at the electron temperatures higher than the critical value.At the larger electron temperature amplitude,the ionization rate is larger and the time of electron density growth over one temperature period is longer.Therefore,the larger the electron temperature amplitude is,the faster the electron density grows.It can also be expected that the electron density growth is fastest at Δφ=0,as shown in Fig.1(b).We see from Fig.1(b)that the growth rate of the electron density is close to a constant at Δφ=π/2.This is due to the fact that the electron temperature remains almost unchanged with time.

    Fig.1.(color online)(a)Variation of electron temperature with time. (b)Variation of electron density with time.P=760 Torr,f=2.85 GHz, Exm=Eym=2.5 MV/m,and Δφ=0,0.25π,0.5π,0.75π.

    Figure 2 shows the variation of electron temperature and density with time at P=76 Torr,f=2.85 GHz,Exm=Eym= 2.5 MV/m,and different Δφ.At 76 Torr,the electron temperature amplitude is higher than that at 760 Torr.This is due to the increase in the collision interval during which the electrons are accelerated by the microwave and can gain energy.The effect of Δφ on the electron temperature at 76 Torr is similar to the case of 760 Torr.However,the difference among the electron densities corresponding to different Δφ is small.This can be attributed to the fact that the average electric field powers in Eq.(14)for different Δφ are the same,and with high electron temperature amplitudes,the reaction rate coefficients are not sensitive to the electron temperature oscillation.

    Fig.2.(color online)(a)Variation of electron temperature with time. (b)Variation of electron density with time.P=76 Torr,f=2.85 GHz, Exm=Eym=2.5 MV/m,and Δφ=0,0.25π,0.5π,0.75π.

    Figure 3 shows the breakdown formation time tbas a function of air pressure at f=2.85 GHz,Exm=Eym= 2.5 MV/m,and Δφ=0,0.25π,0.5π,0.75π.The breakdown formation time is defined as the time in which the electron density reaches 108times the initial density.[16]From the analysis of Figs.1 and 2,it can be expected that at high pressures,the phase difference Δφ has an obvious impact on the breakdown formation time tband as the pressure decreases the impact becomes small,as shown in Fig.3.In Fig.4,corresponding to the case of Fig.3,the effective electric field(see Eq.(15)) normalized to the pressure is shown as a function of P·tb(the pressure times the breakdown formation time).The simulation results show the same trend as that in the experiment of Foster et al.[17]

    Fig.3.(color online)Breakdown formation time t b as a function of air pressure at f=2.85 GHz,Exm=Eym=2.5 MV/m,and Δφ=0,0.25π, 0.5π,0.75π.

    Fig.4.(color online)Effective electric field normalized to the air pressure E eff/P vs.P·t b at f=2.85 GHz,Exm=Eym=2.5 MV/m,and Δφ=0,0.25π,0.5π,0.75π.

    Fig.5.(color online)Reaction rates as a function of pressure when the electron density reaches 108 times the initial density.f=2.85 GHz, Exm=Eym=2.5 MV/m,and Δφ=0.5π.

    It can be seen from Eq.(1)and Tables 1 and 2 that the variation of the electron density with time is related to the ionization of nitrogen(N25),ionization of oxygen(O14),dissociative attachment in oxygen(O9),dissociative recombination in oxygen(O16),electron impact detachment(O17), and detachment in oxygen(O19).Figure 5 shows how these reaction sets affect the variation of the electron density at f=2.85 GHz,Exm=Eym=2.5 MV/m,and Δφ=0.5π.It is clear that the ionization of nitrogen and oxygen causes the growth of the electron density.At low and moderate pressures,the ionization rate of oxygen is lower than that of nitrogen,since the oxygen number density is smaller than that of nitrogen.However,at high pressures,the ionization rate of oxygen is close to or higher than that of nitrogen.This is because Teis low,and then the tail of the electron energy distribution locates in the low energy region,which causes higher oxygen ionization due to its lower ionization threshold energy (12.06 eV for oxygen and 15.6 eV for nitrogen).We also see from Fig.5 that the electron density loss due to the dissociative attachment and dissociative recombination is obvious only at high air pressures.The results similar to Fig.5 can also be observed at other Δφ.

    4.Conclusion

    When the microwave has two mutually orthogonal and heterophase electric field components,the electron momentum conservation equation is employed to deduce its electric field power and effective electric field for heating electrons.The formula of electric field power,which depends obviously on the phase difference between the electric field components,is introduced into the global model to simulate the air breakdown caused by the microwave.The breakdown prediction from the global model agrees well with the previous experimental data. The simulation results show that the electron temperature oscillates with time,and its amplitude depends obviously on the phase difference between the two electric field components. The phase difference has an important impact on the time evolution of the electron density at low electron temperature amplitudes,and as the amplitudes increases,this impact becomes small.This can be attributed to the fact that the average electric field powers for different phase differences are the same, and with high electron temperature amplitudes,the reaction rate coefficients are not sensitive to the electron temperature oscillation.In addition,we find that the ionization of nitrogen and oxygen induces the growth of electron density,and the density loss due to the dissociative attachment and dissociative recombination is obvious only at high air pressures.

    [1]Krile J T,Mcquage L,Edmiston G F,Walter J and Neuber A A 2009 IEEE Trans.Plasma Sci.2009 37 2139

    [2]Cook A M,Hummelt J S,Shapiro M A and Temkin R J 2013 Phys. Plasmas 20 043507

    [3]Zhao P,Guo L and Shu P 2017 Chin.Phys.B 26 029201

    [4]Zhou Q H,Sun H F,Dong Z W and Zhou H J 2015 Acta Phys.Sin.64 0175202(in Chinese)

    [5]Zhao P,Guo L and Li H 2015 Chin.Phys.B 24 105102

    [6]Oda Y,Komurasaki K and Takahashi K 2006 J.Appl.Phys.100 113307

    [7]Nam S K and Verboncoeur J P 2009 Comput.Phys.Comm.180 628

    [8]Boeuf J P,Chaudhury B and Zhu G Q 2010 Phys.Rev.Lett.104 015002

    [9]Ford P J,Beeson S R,Krompholz H G and Neuber A A 2012 Phys. Plasmas 19 073503

    [10]Zhu M,Chang C,Yan K,Liu C and Chen C 2015 IEEE Trans.Plasma Sci.43 1670

    [11]Vahedi V and Surendra M 1995 Comput.Phys.Comm.87 179

    [12]The Siglo Data Base,CPAT and Kinema Software, http://www.csn.net/siglo,1998

    [13]Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci.Technol. 14 722

    [14]Khodataev K V 2013 Tech.Phys.58 294

    [15]Ali A W 1988 Laser and Particle Beams 6 105

    [16]Nam S K and Verboncoeur J P 2008 Appl.Phys.Lett.92 231502

    [17]Foster J,Edmiston G,Thomas M and Neuber A 2008 Rev.Sci.Instrum. 79 114701

    6 March 2017;revised manuscript

    13 April 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/099201

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.61501358,61431010,and 61627901)and the Fundamental Research Funds for the Central Universities,China.

    ?Corresponding author.E-mail:pczhao@xidian.edu.cn

    ?Corresponding author.E-mail:lxguo@xidian.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    午夜av观看不卡| 在线看a的网站| 一区在线观看完整版| www.精华液| 日韩免费高清中文字幕av| 激情视频va一区二区三区| 丝袜喷水一区| 一级毛片黄色毛片免费观看视频| 欧美人与性动交α欧美精品济南到 | 亚洲精品aⅴ在线观看| 观看av在线不卡| 9色porny在线观看| 亚洲成人一二三区av| 男女无遮挡免费网站观看| 国产熟女欧美一区二区| 少妇的丰满在线观看| 久久精品国产综合久久久| 18禁观看日本| 黑丝袜美女国产一区| 中文欧美无线码| 男女国产视频网站| 妹子高潮喷水视频| 久久久欧美国产精品| 母亲3免费完整高清在线观看 | 三上悠亚av全集在线观看| 熟女av电影| 视频在线观看一区二区三区| 我的亚洲天堂| 伊人久久大香线蕉亚洲五| 不卡视频在线观看欧美| 成人国产麻豆网| 久久99热这里只频精品6学生| 丰满饥渴人妻一区二区三| 久久久欧美国产精品| 一级,二级,三级黄色视频| 日韩av免费高清视频| av不卡在线播放| 亚洲少妇的诱惑av| 天堂中文最新版在线下载| 色吧在线观看| 欧美日韩精品网址| 亚洲人成网站在线观看播放| 一级,二级,三级黄色视频| 97在线视频观看| 下体分泌物呈黄色| 亚洲,欧美精品.| 免费人妻精品一区二区三区视频| 久久青草综合色| 欧美亚洲日本最大视频资源| 久久久久国产网址| 日日撸夜夜添| 国产精品久久久久久精品电影小说| 国产又爽黄色视频| 亚洲av国产av综合av卡| 久久99热这里只频精品6学生| 欧美亚洲日本最大视频资源| 大陆偷拍与自拍| 精品久久久久久电影网| 午夜福利视频精品| 韩国精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 精品国产乱码久久久久久小说| 啦啦啦在线免费观看视频4| 国产无遮挡羞羞视频在线观看| 亚洲,欧美,日韩| 国产精品成人在线| 午夜福利视频精品| 国产免费又黄又爽又色| av在线观看视频网站免费| 男女国产视频网站| 女人被躁到高潮嗷嗷叫费观| 国产精品av久久久久免费| 亚洲伊人久久精品综合| 国产精品熟女久久久久浪| 在线观看一区二区三区激情| 亚洲av国产av综合av卡| 啦啦啦中文免费视频观看日本| 欧美成人精品欧美一级黄| 亚洲男人天堂网一区| 香蕉国产在线看| 我的亚洲天堂| 在线观看人妻少妇| 伊人亚洲综合成人网| 国产亚洲午夜精品一区二区久久| 久久精品久久久久久久性| 在线精品无人区一区二区三| 欧美亚洲 丝袜 人妻 在线| 两个人看的免费小视频| 国产爽快片一区二区三区| 90打野战视频偷拍视频| av片东京热男人的天堂| 曰老女人黄片| 免费看不卡的av| 在线观看免费日韩欧美大片| 亚洲精品av麻豆狂野| 欧美亚洲日本最大视频资源| 国产有黄有色有爽视频| www.熟女人妻精品国产| 国产爽快片一区二区三区| 色网站视频免费| 最近最新中文字幕免费大全7| 不卡av一区二区三区| 国产成人精品一,二区| 国产成人精品久久久久久| 男女边吃奶边做爰视频| 国产精品国产三级国产专区5o| 99国产精品免费福利视频| 91aial.com中文字幕在线观看| 亚洲精品久久午夜乱码| 丝袜喷水一区| 欧美日韩成人在线一区二区| 久久精品国产综合久久久| 国产日韩欧美在线精品| 国产黄频视频在线观看| 性色avwww在线观看| 日韩视频在线欧美| 日韩av在线免费看完整版不卡| 精品一区在线观看国产| 婷婷色av中文字幕| 国产熟女欧美一区二区| 久久女婷五月综合色啪小说| 美女国产视频在线观看| 不卡av一区二区三区| 午夜福利乱码中文字幕| 日本色播在线视频| 又黄又粗又硬又大视频| h视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 亚洲 欧美一区二区三区| 狠狠精品人妻久久久久久综合| 国产精品.久久久| 各种免费的搞黄视频| 丝袜脚勾引网站| 黄片小视频在线播放| 五月伊人婷婷丁香| 在现免费观看毛片| 成人午夜精彩视频在线观看| 国产精品一国产av| 久久国内精品自在自线图片| 18禁国产床啪视频网站| 七月丁香在线播放| 激情视频va一区二区三区| videosex国产| 91久久精品国产一区二区三区| 999精品在线视频| 午夜福利在线免费观看网站| 成人国产av品久久久| 超碰97精品在线观看| 国产免费现黄频在线看| 男女国产视频网站| 女人高潮潮喷娇喘18禁视频| 免费高清在线观看视频在线观看| 午夜91福利影院| 男女无遮挡免费网站观看| 国产精品成人在线| 国产老妇伦熟女老妇高清| 宅男免费午夜| 亚洲欧洲国产日韩| 国产精品免费视频内射| 欧美日韩综合久久久久久| 国产亚洲欧美精品永久| 亚洲精品在线美女| 永久免费av网站大全| av天堂久久9| 九九爱精品视频在线观看| 最近中文字幕2019免费版| av免费观看日本| 免费久久久久久久精品成人欧美视频| 91在线精品国自产拍蜜月| 亚洲国产欧美网| 久久久久久免费高清国产稀缺| 国产精品麻豆人妻色哟哟久久| 热99久久久久精品小说推荐| 亚洲av日韩在线播放| 一级毛片 在线播放| 久久精品国产综合久久久| 九九爱精品视频在线观看| 亚洲精品美女久久av网站| 91午夜精品亚洲一区二区三区| 日本vs欧美在线观看视频| 在线观看美女被高潮喷水网站| 国产精品免费视频内射| 国产免费又黄又爽又色| 人人妻人人澡人人爽人人夜夜| 观看av在线不卡| 综合色丁香网| 韩国av在线不卡| 蜜桃在线观看..| 一级片免费观看大全| 亚洲综合色网址| 国产老妇伦熟女老妇高清| 精品一区二区三卡| 久久人妻熟女aⅴ| 色婷婷av一区二区三区视频| 亚洲欧洲精品一区二区精品久久久 | 1024香蕉在线观看| 叶爱在线成人免费视频播放| 汤姆久久久久久久影院中文字幕| 日日撸夜夜添| 国产成人av激情在线播放| 99久国产av精品国产电影| 超碰97精品在线观看| 午夜影院在线不卡| 久久久久国产网址| 国产精品国产三级专区第一集| av一本久久久久| 亚洲av免费高清在线观看| 三上悠亚av全集在线观看| 伦精品一区二区三区| 久久免费观看电影| 久久久久国产一级毛片高清牌| 亚洲国产欧美网| 天天躁夜夜躁狠狠躁躁| 中文字幕人妻丝袜一区二区 | 久久免费观看电影| 国产一区亚洲一区在线观看| 亚洲国产精品一区三区| 亚洲成人手机| 欧美日韩av久久| 美女视频免费永久观看网站| videos熟女内射| 亚洲第一青青草原| 欧美最新免费一区二区三区| 亚洲av国产av综合av卡| 国产精品秋霞免费鲁丝片| 中文字幕最新亚洲高清| 性色avwww在线观看| av在线app专区| 成人免费观看视频高清| 永久网站在线| 香蕉国产在线看| 性少妇av在线| 欧美少妇被猛烈插入视频| 中文字幕av电影在线播放| a 毛片基地| 99久久人妻综合| 国产欧美亚洲国产| 香蕉国产在线看| 黑人猛操日本美女一级片| 久久午夜福利片| 亚洲欧美中文字幕日韩二区| 精品国产超薄肉色丝袜足j| 精品99又大又爽又粗少妇毛片| 欧美av亚洲av综合av国产av | 成年女人毛片免费观看观看9 | xxx大片免费视频| 午夜免费鲁丝| 激情视频va一区二区三区| 亚洲男人天堂网一区| 电影成人av| 有码 亚洲区| 免费在线观看视频国产中文字幕亚洲 | 亚洲欧美一区二区三区久久| av线在线观看网站| 午夜福利在线免费观看网站| 国产成人免费观看mmmm| 热99国产精品久久久久久7| 男人添女人高潮全过程视频| 久久久亚洲精品成人影院| 制服人妻中文乱码| 香蕉精品网在线| 女性生殖器流出的白浆| 日韩大片免费观看网站| 欧美日韩av久久| 热99久久久久精品小说推荐| av又黄又爽大尺度在线免费看| 在线观看www视频免费| 国产免费福利视频在线观看| 免费观看无遮挡的男女| 国产精品国产av在线观看| 国产成人免费观看mmmm| 熟妇人妻不卡中文字幕| 日韩一本色道免费dvd| 午夜福利视频精品| 欧美黄色片欧美黄色片| 91国产中文字幕| 中国国产av一级| 在线 av 中文字幕| 三上悠亚av全集在线观看| 免费少妇av软件| 日本黄色日本黄色录像| 肉色欧美久久久久久久蜜桃| 国产 一区精品| 可以免费在线观看a视频的电影网站 | 伊人久久大香线蕉亚洲五| 亚洲精华国产精华液的使用体验| 一级毛片黄色毛片免费观看视频| 一区二区av电影网| 久久久久国产一级毛片高清牌| 日本av手机在线免费观看| 国语对白做爰xxxⅹ性视频网站| 在线亚洲精品国产二区图片欧美| 日韩在线高清观看一区二区三区| 亚洲成色77777| 日韩人妻精品一区2区三区| 国产精品欧美亚洲77777| 免费黄网站久久成人精品| 91午夜精品亚洲一区二区三区| 久久精品国产综合久久久| 免费在线观看完整版高清| 大码成人一级视频| 欧美成人午夜免费资源| 少妇被粗大猛烈的视频| 妹子高潮喷水视频| 视频在线观看一区二区三区| 美女国产高潮福利片在线看| 欧美最新免费一区二区三区| 少妇猛男粗大的猛烈进出视频| 久久久精品免费免费高清| 国产麻豆69| 激情视频va一区二区三区| 亚洲国产精品一区二区三区在线| 男男h啪啪无遮挡| 欧美变态另类bdsm刘玥| av网站在线播放免费| 欧美成人午夜免费资源| 午夜av观看不卡| 97人妻天天添夜夜摸| 最近中文字幕2019免费版| 人人妻人人添人人爽欧美一区卜| 午夜免费男女啪啪视频观看| 亚洲精品国产一区二区精华液| 乱人伦中国视频| 成人手机av| 亚洲国产精品成人久久小说| 99国产综合亚洲精品| 最近中文字幕高清免费大全6| 日韩精品免费视频一区二区三区| 国产成人91sexporn| 18禁动态无遮挡网站| 婷婷色麻豆天堂久久| 国产精品久久久久成人av| 捣出白浆h1v1| 久久ye,这里只有精品| av在线老鸭窝| 女人精品久久久久毛片| av在线app专区| 免费高清在线观看视频在线观看| 久久青草综合色| 熟妇人妻不卡中文字幕| 久久婷婷青草| 免费高清在线观看日韩| 亚洲激情五月婷婷啪啪| 国产精品 欧美亚洲| 亚洲欧美中文字幕日韩二区| 女人被躁到高潮嗷嗷叫费观| 亚洲第一av免费看| 丝袜美腿诱惑在线| 一级毛片 在线播放| 又黄又粗又硬又大视频| 亚洲欧美色中文字幕在线| 日韩av不卡免费在线播放| 搡老乐熟女国产| 免费看av在线观看网站| 免费在线观看完整版高清| 最黄视频免费看| 午夜福利影视在线免费观看| 亚洲,欧美,日韩| 极品人妻少妇av视频| 国产在视频线精品| 熟女av电影| 26uuu在线亚洲综合色| 在线观看免费高清a一片| 亚洲国产毛片av蜜桃av| 亚洲人成电影观看| 久久久久久久久免费视频了| 色婷婷久久久亚洲欧美| 亚洲精品一区蜜桃| 十八禁网站网址无遮挡| 日韩av不卡免费在线播放| av片东京热男人的天堂| 99久久综合免费| 婷婷成人精品国产| 亚洲人成网站在线观看播放| 国产成人精品无人区| 精品一区二区三区四区五区乱码 | 男女高潮啪啪啪动态图| 人妻人人澡人人爽人人| 天天躁夜夜躁狠狠躁躁| 人妻一区二区av| 亚洲精品aⅴ在线观看| 少妇人妻久久综合中文| 亚洲精品久久午夜乱码| 亚洲国产精品成人久久小说| 99久久人妻综合| 亚洲成人av在线免费| 色哟哟·www| 久久人人97超碰香蕉20202| 一级毛片 在线播放| 色视频在线一区二区三区| 国产深夜福利视频在线观看| 国产精品av久久久久免费| 视频区图区小说| 中文字幕av电影在线播放| 欧美av亚洲av综合av国产av | 欧美日韩一区二区视频在线观看视频在线| 国产精品一区二区在线不卡| 黄网站色视频无遮挡免费观看| 久久久国产精品麻豆| 一本—道久久a久久精品蜜桃钙片| 在线 av 中文字幕| 18禁国产床啪视频网站| 日韩中字成人| 国语对白做爰xxxⅹ性视频网站| 美女午夜性视频免费| 国产一区二区三区av在线| 一二三四中文在线观看免费高清| 乱人伦中国视频| 亚洲av日韩在线播放| 久久久久人妻精品一区果冻| 少妇人妻精品综合一区二区| 国产伦理片在线播放av一区| 日韩中字成人| 又黄又粗又硬又大视频| 国产精品香港三级国产av潘金莲 | 夜夜骑夜夜射夜夜干| 精品亚洲成国产av| 男女免费视频国产| 啦啦啦中文免费视频观看日本| 国产精品久久久久久久久免| 成人亚洲欧美一区二区av| 2018国产大陆天天弄谢| 侵犯人妻中文字幕一二三四区| 人人妻人人爽人人添夜夜欢视频| 人人妻人人澡人人看| 中文字幕精品免费在线观看视频| 国产av一区二区精品久久| 亚洲成国产人片在线观看| 一边摸一边做爽爽视频免费| 人人妻人人澡人人爽人人夜夜| 免费观看性生交大片5| 两个人免费观看高清视频| 91aial.com中文字幕在线观看| 久久午夜福利片| 赤兔流量卡办理| 又大又黄又爽视频免费| 一本久久精品| 宅男免费午夜| 日本wwww免费看| 五月天丁香电影| 高清视频免费观看一区二区| 色吧在线观看| 一级黄片播放器| 欧美激情极品国产一区二区三区| 亚洲精品乱久久久久久| 成人二区视频| 汤姆久久久久久久影院中文字幕| 亚洲欧美清纯卡通| 国产探花极品一区二区| 久久久久人妻精品一区果冻| 天天影视国产精品| 69精品国产乱码久久久| 一区二区三区激情视频| 日韩熟女老妇一区二区性免费视频| 欧美精品国产亚洲| 亚洲精品成人av观看孕妇| 国产白丝娇喘喷水9色精品| 国产精品人妻久久久影院| 国产爽快片一区二区三区| 电影成人av| 国产免费视频播放在线视频| 亚洲第一av免费看| 一区二区av电影网| 日韩一区二区三区影片| 人成视频在线观看免费观看| 午夜福利影视在线免费观看| 看免费成人av毛片| 精品第一国产精品| 爱豆传媒免费全集在线观看| 亚洲av免费高清在线观看| 高清视频免费观看一区二区| 亚洲成国产人片在线观看| 婷婷成人精品国产| 边亲边吃奶的免费视频| 国产1区2区3区精品| 美女中出高潮动态图| 人人妻人人澡人人看| 97人妻天天添夜夜摸| 国产av精品麻豆| 最近中文字幕高清免费大全6| 精品一区二区三卡| 日韩精品有码人妻一区| 美女国产高潮福利片在线看| 国产精品一区二区在线观看99| av天堂久久9| 亚洲国产毛片av蜜桃av| 欧美人与性动交α欧美精品济南到 | 亚洲内射少妇av| 老熟女久久久| 欧美精品一区二区免费开放| 免费日韩欧美在线观看| 在线天堂中文资源库| 伦理电影免费视频| 免费少妇av软件| 国产熟女午夜一区二区三区| 美女国产高潮福利片在线看| 性高湖久久久久久久久免费观看| 丰满乱子伦码专区| 国产野战对白在线观看| 欧美人与性动交α欧美精品济南到 | 久久97久久精品| 国产探花极品一区二区| 黑人欧美特级aaaaaa片| 国产淫语在线视频| 伊人亚洲综合成人网| 咕卡用的链子| 久久亚洲国产成人精品v| 亚洲av成人精品一二三区| 少妇 在线观看| av网站免费在线观看视频| 老司机亚洲免费影院| 亚洲欧美一区二区三区黑人 | 伦理电影大哥的女人| 国产精品女同一区二区软件| 亚洲第一青青草原| 青青草视频在线视频观看| 欧美+日韩+精品| 啦啦啦中文免费视频观看日本| 欧美+日韩+精品| 国产av国产精品国产| 伦理电影大哥的女人| 久久精品国产综合久久久| 精品国产一区二区三区久久久樱花| 亚洲国产欧美网| 熟女电影av网| 亚洲精品国产av成人精品| 日本-黄色视频高清免费观看| 成年人午夜在线观看视频| 成人毛片a级毛片在线播放| 亚洲欧美中文字幕日韩二区| 美女大奶头黄色视频| 狂野欧美激情性bbbbbb| 电影成人av| 久久人人爽人人片av| 亚洲成色77777| 少妇猛男粗大的猛烈进出视频| 精品酒店卫生间| 国产成人免费无遮挡视频| 国产免费现黄频在线看| 看免费av毛片| 国产成人精品在线电影| 亚洲综合精品二区| 肉色欧美久久久久久久蜜桃| 亚洲精品国产av成人精品| 丝袜美腿诱惑在线| 国产精品熟女久久久久浪| 满18在线观看网站| av不卡在线播放| 中文天堂在线官网| 免费黄色在线免费观看| 久久99精品国语久久久| 久久人人爽人人片av| 日本色播在线视频| 熟妇人妻不卡中文字幕| av免费在线看不卡| 日韩精品免费视频一区二区三区| www.熟女人妻精品国产| 久久鲁丝午夜福利片| 色播在线永久视频| 免费观看在线日韩| 日本欧美国产在线视频| 久久精品国产亚洲av高清一级| 2021少妇久久久久久久久久久| 成人亚洲欧美一区二区av| 男男h啪啪无遮挡| www.av在线官网国产| 我的亚洲天堂| 91精品三级在线观看| 一区二区三区四区激情视频| 国产成人精品福利久久| 91在线精品国自产拍蜜月| 大香蕉久久网| 国产免费一区二区三区四区乱码| 狠狠婷婷综合久久久久久88av| 国产老妇伦熟女老妇高清| 男的添女的下面高潮视频| 亚洲精品日本国产第一区| 亚洲经典国产精华液单| 卡戴珊不雅视频在线播放| 五月开心婷婷网| 国产免费视频播放在线视频| 欧美激情极品国产一区二区三区| 又粗又硬又长又爽又黄的视频| 亚洲精品在线美女| 国产极品天堂在线| a级毛片黄视频| 国产精品.久久久| xxxhd国产人妻xxx| 亚洲,欧美,日韩| 在线观看美女被高潮喷水网站| 亚洲中文av在线| 欧美日韩国产mv在线观看视频| 久久精品国产亚洲av高清一级| 97人妻天天添夜夜摸| 欧美精品一区二区免费开放| 美女视频免费永久观看网站| 哪个播放器可以免费观看大片| 午夜福利视频在线观看免费| 一边亲一边摸免费视频| h视频一区二区三区| 精品第一国产精品| 伦理电影大哥的女人| 国产精品嫩草影院av在线观看| 18在线观看网站| 18禁动态无遮挡网站| 久久这里只有精品19| 一个人免费看片子| 亚洲内射少妇av| av视频免费观看在线观看| 欧美国产精品一级二级三级| 亚洲第一青青草原| 啦啦啦中文免费视频观看日本| 黄色一级大片看看| 国语对白做爰xxxⅹ性视频网站| 一级,二级,三级黄色视频|