• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components?

    2017-08-30 08:27:00PengchengZhao趙朋程andLixinGuo郭立新
    Chinese Physics B 2017年9期

    Pengcheng Zhao(趙朋程)and Lixin Guo(郭立新)

    School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,China

    Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components?

    Pengcheng Zhao(趙朋程)?and Lixin Guo(郭立新)?

    School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,China

    The air breakdown is easily caused by the high-power microwave,which can have two mutually orthogonal and heterophase electric field components.For this case,the electron momentum conservation equation is employed to deduce the electric field power and effective electric field for heating electrons.Then the formula of the electric field power is introduced into the global model to simulate the air breakdown.The breakdown prediction from the global model agrees well with the experimental data.Simulation results show that the electron temperature is sensitive to the phase difference between the two electron field components,while the latter can affect obviously the growth of the electron density at low electron temperature amplitudes.The ionization of nitrogen and oxygen induces the growth of electron density,and the density loss due to the dissociative attachment and dissociative recombination is obvious only at low electron temperatures.

    high power microwave,air breakdown,effective electric field,global model

    1.Introduction

    The high-power microwave easily causes the air breakdown because of its strong electric field.[1–5]The air breakdown is involved in many important applications,such as high power microwave systems,biomedical applications,and surface treatments.[6]In order to improve these applications,we must master the characteristics of the air breakdown,which include the breakdown formation time,breakdown electric field, breakdown plasma dynamics and pattern,and the microwave transmission in the breakdown plasma.

    In recent years,many scholars have studied the air breakdown caused by the high-power microwave.[7–10]Nam et al.introduced the pressure-independent enhanced electron energy distribution function into the global model,and improved fidelity for modeling the gas breakdown.[7]The two dimensional model coupling Maxwell equations with plasma fluid equations was developed by Boeuf et al.to simulate the patterns of breakdown plasma,in which the accurate diffusion coefficient was adopted.[8]Ford et al.used the finite difference time-domain method to solve a one-dimensional model similar to that of Boeuf et al.,and predicted the breakdown formation time and the microwave transmission in the breakdown plasma.[9]The Poisson and Boltzmann equations were utilized by Zhu et al.to describe the air breakdown near the dielectric window,and the results showed that the range can be roughly divided into at least two regions,sheath region and plasma region.[10]Most of these studies above focused on the case in which the microwave has one electric field component or two mutually orthogonal and in phase electric field components.However,the microwave with two mutually orthogonal and heterophase electric field components frequently appears in the waveguide or the near field region of the antenna.We still know little about the air breakdown caused by such microwave.

    In this paper,we use the global model consisting of spatially averaged continuity equations for charged particles and an electron energy equation to describe the air breakdown due to its great advantages in speed and simplicity.The global model requires the knowledge of the electric field power heating the electrons.In order to study the air breakdown caused by the microwave with the two mutually orthogonal and heterophase electric field components,we deduce the corresponding electric field power from the electron momentum conservation equation.We focus on how the phase difference between the two electron field components affects the electron temperature and electron density in the breakdown process. The dependence of the electron density on the reaction sets of oxygen and nitrogen is considered.In addition,the breakdown prediction from the global model is compared with the previous experimental data.

    2.Global model

    2.1.Basic equations

    The global model consists of spatially averaged continuity equations for electron,and O?,and an electron energy equation.[7]When the background gas is air,theseequations can be written as

    where ne,nN2,and nO2are the electron,N2,and O2densities,and nO?are theand O?densities,Teis the electron temperaturewhere ε is the electron energy and f(ε)is the normalized electron energy distribution function,εtiand Ki(i=N2–N25 in Table 1 and O2–O15 in Table 2)are the threshold energy and reaction coefficient of the reactions in Tables 1 and 2,is the energy transfer rate coefficient in the dissociative attachment collision process,PEis the electric field power for heating the electrons.

    Table 1.Oxygen reaction set,εt is the threshold energy.[11]

    Table 2.Nitrogen reaction set,εt is the threshold energy.[12]

    These rate coefficients can be obtained by integrating the corresponding collision cross section over the electron energy distribution function.For example,the rate coefficient for the ionization of oxygen can be obtained as

    where meis the electron mass,and σO14is the collision ion-ization cross section in oxygen.The detailed definition of these rate coefficients can refer to the work of Nam et al.[7]The electron energy distribution function is obtained from the Boltzmann equation solver Bolsig+at the low Te,[13],and is assumed as the Maxwellian distribution at the high Te.Next we deduce the electric field power of the microwave with the two mutually orthogonal and heterophase electric field components.

    2.2.Electric field power

    The two mutually orthogonal and heterophase electric field components of the microwave in time are written as

    where Exmand Eymare the electron field amplitudes in xand y-axis direction,respectively,ω is the microwave angular frequency,and Δφ is the phase difference between the two electron field components.When ignoring the magnetic field force,which is much smaller than the electric field force,the electron momentum conservation equation can be written as

    where e is the electron charge,and νmis the momentum transfer collision frequency whose definition is similar to Kiabove. By using Eqs.(7)–(9),the electron velocity is solved as

    Then the electric field power is obtained as

    Utilizing Eq.(13),we can deduce the average electricfield power as follows:

    where〈〉denotes the time average operation.It can be found from Eq.(14)that PEadoes not depend on Δφ.By comparing PEain Eq.(14)with that of the dc electric field,[14]the effective electric field of the microwave can be defined as

    By introducing the effective electric field into the empirical formulas for the ionization rate,one can easily estimate the breakdown formation time and threshold.[15]However,to obtain more physical characters,we introduce PEof Eq.(13)into the global model to simulate the air breakdown in this paper.

    In order to well understand the following results,we can further simplify Eq.(13).At intermediate and high pressures, νm?ω.Let Exm=Eym=Em,equation(13)is simplified as follows:

    It can be found from Eq.(16)that PEdepends obviously on Δφ.

    3.Results and discussion

    When using the global model to simulate the air breakdown,the initial conditions are taken as follows:ne= 106m?3,nN+2=7.8×105m?3,nO+2=2×105m?3,and nO?=2×104m?3.In this case,the electric neutrality holds in the air at the initial time.We assume that the air is composed of 20%oxygen and 80%nitrogen since the amounts of other gases are very small in the air.The dependence of the air number density on the pressure is nair(m?3)=p(Torr)/760× 2.44×1025.

    Since the oscillation frequency of PEis two times larger than that of the electric field(see Eq.(16)),we can consider the case of 0≤Δφ≤π.Figure 1 shows the variation of electron temperature and density with time at P=760 Torr, f=2.85 GHz,Exm=Eym=2.5 MV/m,and different Δφ.The electric field components of the incident microwave in time can refer to Eqs.(7)and(8).We see from Fig.1(a)that the electron temperature oscillates with time,and its oscillation frequency is two times larger than that of the electric field.It can be found from Eq.(16)that the electric field power PEcan reach the maximum when Δφ=kπ(k=0,±π,±2π,...). Therefore,among the four electron temperature amplitudes corresponding to different Δφ,the one at Δφ=0 is maximum, as shown in Fig.1(a).At Δφ=π/2,PEcan be approximated as constant(see Eq.(16)),and therefore the electron temperature Teremains almost unchanged with time.In this case, the electron temperature amplitude is minimum.At other Δφ such as 0.25π and 0.75π,the electron temperature amplitude lies between the maximum and the minimum.

    We see from Fig.1(b)that the phase difference Δφ plays an important role in the electron density growth since the former affects the electron temperature obviously.At the high pressure,the electron temperature is low,and the ionization occurs only at the electron temperatures higher than the critical value.At the larger electron temperature amplitude,the ionization rate is larger and the time of electron density growth over one temperature period is longer.Therefore,the larger the electron temperature amplitude is,the faster the electron density grows.It can also be expected that the electron density growth is fastest at Δφ=0,as shown in Fig.1(b).We see from Fig.1(b)that the growth rate of the electron density is close to a constant at Δφ=π/2.This is due to the fact that the electron temperature remains almost unchanged with time.

    Fig.1.(color online)(a)Variation of electron temperature with time. (b)Variation of electron density with time.P=760 Torr,f=2.85 GHz, Exm=Eym=2.5 MV/m,and Δφ=0,0.25π,0.5π,0.75π.

    Figure 2 shows the variation of electron temperature and density with time at P=76 Torr,f=2.85 GHz,Exm=Eym= 2.5 MV/m,and different Δφ.At 76 Torr,the electron temperature amplitude is higher than that at 760 Torr.This is due to the increase in the collision interval during which the electrons are accelerated by the microwave and can gain energy.The effect of Δφ on the electron temperature at 76 Torr is similar to the case of 760 Torr.However,the difference among the electron densities corresponding to different Δφ is small.This can be attributed to the fact that the average electric field powers in Eq.(14)for different Δφ are the same,and with high electron temperature amplitudes,the reaction rate coefficients are not sensitive to the electron temperature oscillation.

    Fig.2.(color online)(a)Variation of electron temperature with time. (b)Variation of electron density with time.P=76 Torr,f=2.85 GHz, Exm=Eym=2.5 MV/m,and Δφ=0,0.25π,0.5π,0.75π.

    Figure 3 shows the breakdown formation time tbas a function of air pressure at f=2.85 GHz,Exm=Eym= 2.5 MV/m,and Δφ=0,0.25π,0.5π,0.75π.The breakdown formation time is defined as the time in which the electron density reaches 108times the initial density.[16]From the analysis of Figs.1 and 2,it can be expected that at high pressures,the phase difference Δφ has an obvious impact on the breakdown formation time tband as the pressure decreases the impact becomes small,as shown in Fig.3.In Fig.4,corresponding to the case of Fig.3,the effective electric field(see Eq.(15)) normalized to the pressure is shown as a function of P·tb(the pressure times the breakdown formation time).The simulation results show the same trend as that in the experiment of Foster et al.[17]

    Fig.3.(color online)Breakdown formation time t b as a function of air pressure at f=2.85 GHz,Exm=Eym=2.5 MV/m,and Δφ=0,0.25π, 0.5π,0.75π.

    Fig.4.(color online)Effective electric field normalized to the air pressure E eff/P vs.P·t b at f=2.85 GHz,Exm=Eym=2.5 MV/m,and Δφ=0,0.25π,0.5π,0.75π.

    Fig.5.(color online)Reaction rates as a function of pressure when the electron density reaches 108 times the initial density.f=2.85 GHz, Exm=Eym=2.5 MV/m,and Δφ=0.5π.

    It can be seen from Eq.(1)and Tables 1 and 2 that the variation of the electron density with time is related to the ionization of nitrogen(N25),ionization of oxygen(O14),dissociative attachment in oxygen(O9),dissociative recombination in oxygen(O16),electron impact detachment(O17), and detachment in oxygen(O19).Figure 5 shows how these reaction sets affect the variation of the electron density at f=2.85 GHz,Exm=Eym=2.5 MV/m,and Δφ=0.5π.It is clear that the ionization of nitrogen and oxygen causes the growth of the electron density.At low and moderate pressures,the ionization rate of oxygen is lower than that of nitrogen,since the oxygen number density is smaller than that of nitrogen.However,at high pressures,the ionization rate of oxygen is close to or higher than that of nitrogen.This is because Teis low,and then the tail of the electron energy distribution locates in the low energy region,which causes higher oxygen ionization due to its lower ionization threshold energy (12.06 eV for oxygen and 15.6 eV for nitrogen).We also see from Fig.5 that the electron density loss due to the dissociative attachment and dissociative recombination is obvious only at high air pressures.The results similar to Fig.5 can also be observed at other Δφ.

    4.Conclusion

    When the microwave has two mutually orthogonal and heterophase electric field components,the electron momentum conservation equation is employed to deduce its electric field power and effective electric field for heating electrons.The formula of electric field power,which depends obviously on the phase difference between the electric field components,is introduced into the global model to simulate the air breakdown caused by the microwave.The breakdown prediction from the global model agrees well with the previous experimental data. The simulation results show that the electron temperature oscillates with time,and its amplitude depends obviously on the phase difference between the two electric field components. The phase difference has an important impact on the time evolution of the electron density at low electron temperature amplitudes,and as the amplitudes increases,this impact becomes small.This can be attributed to the fact that the average electric field powers for different phase differences are the same, and with high electron temperature amplitudes,the reaction rate coefficients are not sensitive to the electron temperature oscillation.In addition,we find that the ionization of nitrogen and oxygen induces the growth of electron density,and the density loss due to the dissociative attachment and dissociative recombination is obvious only at high air pressures.

    [1]Krile J T,Mcquage L,Edmiston G F,Walter J and Neuber A A 2009 IEEE Trans.Plasma Sci.2009 37 2139

    [2]Cook A M,Hummelt J S,Shapiro M A and Temkin R J 2013 Phys. Plasmas 20 043507

    [3]Zhao P,Guo L and Shu P 2017 Chin.Phys.B 26 029201

    [4]Zhou Q H,Sun H F,Dong Z W and Zhou H J 2015 Acta Phys.Sin.64 0175202(in Chinese)

    [5]Zhao P,Guo L and Li H 2015 Chin.Phys.B 24 105102

    [6]Oda Y,Komurasaki K and Takahashi K 2006 J.Appl.Phys.100 113307

    [7]Nam S K and Verboncoeur J P 2009 Comput.Phys.Comm.180 628

    [8]Boeuf J P,Chaudhury B and Zhu G Q 2010 Phys.Rev.Lett.104 015002

    [9]Ford P J,Beeson S R,Krompholz H G and Neuber A A 2012 Phys. Plasmas 19 073503

    [10]Zhu M,Chang C,Yan K,Liu C and Chen C 2015 IEEE Trans.Plasma Sci.43 1670

    [11]Vahedi V and Surendra M 1995 Comput.Phys.Comm.87 179

    [12]The Siglo Data Base,CPAT and Kinema Software, http://www.csn.net/siglo,1998

    [13]Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci.Technol. 14 722

    [14]Khodataev K V 2013 Tech.Phys.58 294

    [15]Ali A W 1988 Laser and Particle Beams 6 105

    [16]Nam S K and Verboncoeur J P 2008 Appl.Phys.Lett.92 231502

    [17]Foster J,Edmiston G,Thomas M and Neuber A 2008 Rev.Sci.Instrum. 79 114701

    6 March 2017;revised manuscript

    13 April 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/099201

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.61501358,61431010,and 61627901)and the Fundamental Research Funds for the Central Universities,China.

    ?Corresponding author.E-mail:pczhao@xidian.edu.cn

    ?Corresponding author.E-mail:lxguo@xidian.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    两人在一起打扑克的视频| 亚洲 国产 在线| 无遮挡黄片免费观看| 国产伦理片在线播放av一区| 久久久久久久久久久久大奶| 性少妇av在线| 啦啦啦中文免费视频观看日本| 中文乱码字字幕精品一区二区三区| 男人舔女人的私密视频| 19禁男女啪啪无遮挡网站| 色精品久久人妻99蜜桃| 免费久久久久久久精品成人欧美视频| 亚洲午夜精品一区,二区,三区| 男人舔女人的私密视频| 久久精品人人爽人人爽视色| 国产极品粉嫩免费观看在线| av国产精品久久久久影院| 侵犯人妻中文字幕一二三四区| 亚洲少妇的诱惑av| videosex国产| 精品国产一区二区久久| 国产成人精品久久二区二区免费| 国产黄色视频一区二区在线观看| 国产av一区二区精品久久| 一级毛片黄色毛片免费观看视频| 亚洲av男天堂| 日韩免费高清中文字幕av| 天天躁夜夜躁狠狠躁躁| 女人久久www免费人成看片| 亚洲精品自拍成人| 激情五月婷婷亚洲| 久热爱精品视频在线9| 亚洲成人免费av在线播放| 黄色一级大片看看| 黄色片一级片一级黄色片| 50天的宝宝边吃奶边哭怎么回事| 另类精品久久| 久久精品国产亚洲av涩爱| 亚洲一区二区三区欧美精品| 男女国产视频网站| 久久国产精品影院| 成人午夜精彩视频在线观看| 亚洲一区二区三区欧美精品| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美中文字幕日韩二区| 一区福利在线观看| 一级,二级,三级黄色视频| av又黄又爽大尺度在线免费看| 99久久99久久久精品蜜桃| 国产一级毛片在线| 亚洲中文av在线| 亚洲熟女精品中文字幕| 久久青草综合色| 亚洲熟女毛片儿| 精品人妻在线不人妻| 亚洲国产精品一区二区三区在线| 美女扒开内裤让男人捅视频| 水蜜桃什么品种好| 国产欧美日韩一区二区三 | 亚洲第一青青草原| 大香蕉久久成人网| 亚洲av电影在线观看一区二区三区| 午夜激情av网站| 国产免费又黄又爽又色| 精品福利永久在线观看| 大片电影免费在线观看免费| 欧美精品啪啪一区二区三区 | 亚洲人成网站在线观看播放| 亚洲五月婷婷丁香| 校园人妻丝袜中文字幕| 久久久久久久国产电影| 亚洲人成77777在线视频| 性少妇av在线| 欧美日韩精品网址| 欧美激情 高清一区二区三区| 免费人妻精品一区二区三区视频| 啦啦啦视频在线资源免费观看| 亚洲精品在线美女| 亚洲成色77777| 日韩制服骚丝袜av| 我要看黄色一级片免费的| 日本91视频免费播放| 性色av乱码一区二区三区2| 久久久久视频综合| 曰老女人黄片| 亚洲久久久国产精品| 男人操女人黄网站| 9191精品国产免费久久| 日韩视频在线欧美| 国产精品成人在线| 91精品伊人久久大香线蕉| 亚洲图色成人| 亚洲黑人精品在线| 丰满迷人的少妇在线观看| 久久久精品区二区三区| 久久女婷五月综合色啪小说| 久久久国产一区二区| a 毛片基地| 国产精品国产av在线观看| 只有这里有精品99| 丝袜美足系列| 大片免费播放器 马上看| 女人被躁到高潮嗷嗷叫费观| 精品国产乱码久久久久久男人| 首页视频小说图片口味搜索 | 香蕉国产在线看| 色视频在线一区二区三区| 国产视频一区二区在线看| 免费在线观看完整版高清| 制服诱惑二区| 我要看黄色一级片免费的| 国产精品香港三级国产av潘金莲 | 久久久久久人人人人人| 中文字幕人妻丝袜制服| 伦理电影免费视频| 黑人巨大精品欧美一区二区蜜桃| 满18在线观看网站| 中文字幕最新亚洲高清| 亚洲av在线观看美女高潮| 香蕉丝袜av| 精品欧美一区二区三区在线| 韩国高清视频一区二区三区| 亚洲人成77777在线视频| 日韩中文字幕视频在线看片| 午夜激情av网站| 国产伦理片在线播放av一区| 精品一区二区三区四区五区乱码 | 性高湖久久久久久久久免费观看| 久久久国产一区二区| 99热全是精品| 国产亚洲欧美在线一区二区| 色综合欧美亚洲国产小说| 国产精品一区二区精品视频观看| av视频免费观看在线观看| 欧美亚洲 丝袜 人妻 在线| 看免费av毛片| 午夜影院在线不卡| 最新的欧美精品一区二区| 亚洲欧美日韩高清在线视频 | 少妇粗大呻吟视频| 大话2 男鬼变身卡| 免费在线观看日本一区| 久久国产精品男人的天堂亚洲| 永久免费av网站大全| 搡老乐熟女国产| 丝袜在线中文字幕| 男女免费视频国产| 日日爽夜夜爽网站| 欧美在线黄色| 波多野结衣一区麻豆| 丝袜美足系列| 91麻豆精品激情在线观看国产 | 少妇猛男粗大的猛烈进出视频| 男女午夜视频在线观看| 国产黄频视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产看品久久| 婷婷色综合大香蕉| 亚洲国产精品成人久久小说| 五月开心婷婷网| 首页视频小说图片口味搜索 | 亚洲欧美成人综合另类久久久| 老司机亚洲免费影院| 亚洲精品一二三| 亚洲人成电影免费在线| 午夜激情av网站| 国产在线视频一区二区| 国产成人91sexporn| 热99国产精品久久久久久7| 国产精品国产av在线观看| 这个男人来自地球电影免费观看| 一区二区三区乱码不卡18| 在线观看免费视频网站a站| 欧美日韩视频精品一区| 亚洲一区中文字幕在线| 一二三四社区在线视频社区8| av片东京热男人的天堂| 99热全是精品| 国产成人精品久久久久久| 国产高清国产精品国产三级| 女人高潮潮喷娇喘18禁视频| 亚洲国产欧美一区二区综合| av国产久精品久网站免费入址| 男女无遮挡免费网站观看| 91国产中文字幕| 国产成人a∨麻豆精品| 免费少妇av软件| 91国产中文字幕| 一本久久精品| 国产一区二区三区综合在线观看| 国产激情久久老熟女| 欧美日韩黄片免| 肉色欧美久久久久久久蜜桃| 脱女人内裤的视频| 男女无遮挡免费网站观看| 欧美日韩视频精品一区| 国产黄色视频一区二区在线观看| 亚洲成色77777| 一级毛片电影观看| 亚洲成人免费av在线播放| 嫁个100分男人电影在线观看 | 国产精品 国内视频| 久久精品久久精品一区二区三区| 午夜免费观看性视频| 日本午夜av视频| 亚洲精品日本国产第一区| 高清视频免费观看一区二区| 国产精品免费大片| 女人高潮潮喷娇喘18禁视频| 婷婷色综合大香蕉| 欧美成人午夜精品| 亚洲一码二码三码区别大吗| 午夜日韩欧美国产| 亚洲av美国av| 亚洲欧洲日产国产| 亚洲少妇的诱惑av| 日韩伦理黄色片| 老司机深夜福利视频在线观看 | 一区在线观看完整版| 一本久久精品| 日韩熟女老妇一区二区性免费视频| 成人三级做爰电影| 亚洲国产欧美日韩在线播放| a级毛片在线看网站| 久久国产亚洲av麻豆专区| 午夜福利乱码中文字幕| 免费不卡黄色视频| 久久久久久免费高清国产稀缺| 少妇裸体淫交视频免费看高清 | 人妻人人澡人人爽人人| 亚洲第一青青草原| 国产亚洲午夜精品一区二区久久| 涩涩av久久男人的天堂| 国产一区二区三区av在线| 欧美精品啪啪一区二区三区 | 在线看a的网站| 亚洲 欧美一区二区三区| 久久精品熟女亚洲av麻豆精品| 在线观看免费午夜福利视频| 日韩一区二区三区影片| cao死你这个sao货| 国产成人精品久久二区二区免费| 精品人妻熟女毛片av久久网站| 色综合欧美亚洲国产小说| 亚洲精品成人av观看孕妇| 国产欧美日韩精品亚洲av| 久久久久久亚洲精品国产蜜桃av| 久久久久久久大尺度免费视频| 精品福利永久在线观看| 2021少妇久久久久久久久久久| 国产在线视频一区二区| 免费久久久久久久精品成人欧美视频| 亚洲成人免费av在线播放| 日本色播在线视频| 99热全是精品| a级毛片在线看网站| 欧美日韩国产mv在线观看视频| 亚洲第一青青草原| 久久久国产一区二区| 18禁观看日本| 一区二区三区精品91| 国产精品熟女久久久久浪| 黄色视频不卡| 伦理电影免费视频| 久久精品熟女亚洲av麻豆精品| 日韩制服骚丝袜av| 男人舔女人的私密视频| 观看av在线不卡| 国产精品99久久99久久久不卡| 国产男女超爽视频在线观看| 两个人看的免费小视频| 考比视频在线观看| 中文精品一卡2卡3卡4更新| 在线亚洲精品国产二区图片欧美| 大香蕉久久成人网| 久热爱精品视频在线9| 黄频高清免费视频| 在线观看免费高清a一片| 国产又色又爽无遮挡免| 日本猛色少妇xxxxx猛交久久| 涩涩av久久男人的天堂| 亚洲伊人久久精品综合| 亚洲精品中文字幕在线视频| 久久性视频一级片| 亚洲欧美日韩另类电影网站| 美女大奶头黄色视频| 夜夜骑夜夜射夜夜干| 国产三级黄色录像| 日本av手机在线免费观看| 人妻 亚洲 视频| 成人国产av品久久久| 黄片播放在线免费| 国产又色又爽无遮挡免| av一本久久久久| 在线观看一区二区三区激情| 七月丁香在线播放| 久久久久久久国产电影| 精品熟女少妇八av免费久了| 黄色 视频免费看| 久久精品成人免费网站| 欧美日韩精品网址| 欧美精品人与动牲交sv欧美| 9热在线视频观看99| 美女脱内裤让男人舔精品视频| 高清不卡的av网站| 欧美激情极品国产一区二区三区| 亚洲色图综合在线观看| 欧美老熟妇乱子伦牲交| 久久久久精品国产欧美久久久 | 男女床上黄色一级片免费看| 久久久久久久久免费视频了| 蜜桃在线观看..| 成人三级做爰电影| 男女无遮挡免费网站观看| 在线av久久热| 国产精品麻豆人妻色哟哟久久| 国产精品秋霞免费鲁丝片| 欧美日韩黄片免| 汤姆久久久久久久影院中文字幕| 欧美成人午夜精品| 久久99精品国语久久久| 亚洲欧美激情在线| 久久性视频一级片| 婷婷色av中文字幕| 香蕉国产在线看| 日韩一区二区三区影片| 一区二区三区精品91| 亚洲专区国产一区二区| 久久久久久久久久久久大奶| 狂野欧美激情性bbbbbb| 视频在线观看一区二区三区| 久热爱精品视频在线9| cao死你这个sao货| 五月天丁香电影| 欧美日韩亚洲综合一区二区三区_| 午夜福利视频精品| 亚洲av日韩精品久久久久久密 | 午夜免费男女啪啪视频观看| 国产高清国产精品国产三级| 欧美激情 高清一区二区三区| 精品一区在线观看国产| 国产不卡av网站在线观看| 91麻豆av在线| 国产亚洲av片在线观看秒播厂| 一区二区av电影网| 日本五十路高清| 亚洲国产av新网站| 国产亚洲精品第一综合不卡| 十分钟在线观看高清视频www| 午夜免费成人在线视频| 色婷婷av一区二区三区视频| 日本91视频免费播放| 桃花免费在线播放| 亚洲成人免费av在线播放| 操美女的视频在线观看| videos熟女内射| 国产精品秋霞免费鲁丝片| 91字幕亚洲| 中文字幕人妻熟女乱码| 成年av动漫网址| 又大又黄又爽视频免费| 黑人巨大精品欧美一区二区蜜桃| 性少妇av在线| 国产在线观看jvid| 午夜久久久在线观看| 国产xxxxx性猛交| 亚洲成国产人片在线观看| 极品少妇高潮喷水抽搐| 日本vs欧美在线观看视频| 老熟女久久久| 最新在线观看一区二区三区 | 亚洲人成电影免费在线| 久久精品国产a三级三级三级| 女警被强在线播放| 新久久久久国产一级毛片| 亚洲免费av在线视频| 精品人妻一区二区三区麻豆| 久久久久国产一级毛片高清牌| 天天躁狠狠躁夜夜躁狠狠躁| 又粗又硬又长又爽又黄的视频| 日本欧美视频一区| 亚洲国产中文字幕在线视频| 国产精品久久久人人做人人爽| svipshipincom国产片| 80岁老熟妇乱子伦牲交| 亚洲av电影在线观看一区二区三区| 宅男免费午夜| 久久精品久久精品一区二区三区| 90打野战视频偷拍视频| 欧美人与性动交α欧美软件| 伊人亚洲综合成人网| 国产精品久久久久久精品电影小说| 欧美精品一区二区大全| 国产黄色视频一区二区在线观看| 国产黄频视频在线观看| 午夜精品国产一区二区电影| 少妇人妻久久综合中文| 国产日韩欧美在线精品| 国产亚洲欧美精品永久| 国产不卡av网站在线观看| 久久热在线av| 国产在线视频一区二区| 9191精品国产免费久久| 在线看a的网站| 777久久人妻少妇嫩草av网站| 欧美精品人与动牲交sv欧美| 国产精品一二三区在线看| 亚洲色图 男人天堂 中文字幕| 女人被躁到高潮嗷嗷叫费观| 色婷婷av一区二区三区视频| 日韩 欧美 亚洲 中文字幕| 亚洲国产中文字幕在线视频| 尾随美女入室| 日日夜夜操网爽| 国产成人精品在线电影| av不卡在线播放| 纵有疾风起免费观看全集完整版| 一级黄色大片毛片| 观看av在线不卡| 国产深夜福利视频在线观看| 一本色道久久久久久精品综合| 亚洲国产看品久久| 亚洲国产精品一区三区| 欧美日本中文国产一区发布| 亚洲av片天天在线观看| 久久99一区二区三区| 久热爱精品视频在线9| 大香蕉久久成人网| 伊人久久大香线蕉亚洲五| 欧美成狂野欧美在线观看| 国产视频一区二区在线看| 十八禁人妻一区二区| 亚洲av综合色区一区| 别揉我奶头~嗯~啊~动态视频 | 国产精品av久久久久免费| 热99国产精品久久久久久7| 美女大奶头黄色视频| 黄网站色视频无遮挡免费观看| 69精品国产乱码久久久| 精品亚洲乱码少妇综合久久| 又粗又硬又长又爽又黄的视频| 国产午夜精品一二区理论片| xxxhd国产人妻xxx| 色网站视频免费| 国产老妇伦熟女老妇高清| 日韩人妻精品一区2区三区| 激情视频va一区二区三区| 国产国语露脸激情在线看| 丁香六月天网| 国产成人啪精品午夜网站| 欧美黄色片欧美黄色片| 国产成人免费无遮挡视频| 99国产综合亚洲精品| 不卡av一区二区三区| 国产精品久久久久久人妻精品电影 | 中文字幕人妻丝袜制服| 侵犯人妻中文字幕一二三四区| 亚洲色图 男人天堂 中文字幕| 丝瓜视频免费看黄片| 精品欧美一区二区三区在线| 久久亚洲国产成人精品v| 久久久久久久精品精品| 99精国产麻豆久久婷婷| 狂野欧美激情性bbbbbb| 在线观看免费午夜福利视频| 亚洲国产毛片av蜜桃av| 久久ye,这里只有精品| 亚洲国产日韩一区二区| 无限看片的www在线观看| 美女大奶头黄色视频| 另类精品久久| 久久久久久亚洲精品国产蜜桃av| 赤兔流量卡办理| av在线播放精品| 中文字幕人妻丝袜制服| 亚洲熟女毛片儿| 国产成人av教育| 国产免费又黄又爽又色| 天堂8中文在线网| 国产男女超爽视频在线观看| 国产精品一区二区精品视频观看| 99香蕉大伊视频| 国产野战对白在线观看| 国产精品 欧美亚洲| 高清视频免费观看一区二区| 一区二区三区乱码不卡18| a级毛片在线看网站| 欧美成人精品欧美一级黄| 欧美黄色淫秽网站| 免费看不卡的av| 中文字幕av电影在线播放| 性色av乱码一区二区三区2| 一边摸一边做爽爽视频免费| 精品一区二区三区四区五区乱码 | 最新在线观看一区二区三区 | 成人三级做爰电影| 精品少妇黑人巨大在线播放| 国产在视频线精品| 久久99精品国语久久久| av在线app专区| 男女高潮啪啪啪动态图| 国产一区二区激情短视频 | 伊人久久大香线蕉亚洲五| 啦啦啦在线观看免费高清www| 人妻一区二区av| 午夜91福利影院| 久久天躁狠狠躁夜夜2o2o | 熟女少妇亚洲综合色aaa.| 中文字幕人妻丝袜一区二区| 精品久久久精品久久久| 亚洲人成电影观看| av在线app专区| 欧美精品av麻豆av| 亚洲av电影在线进入| 国产黄色视频一区二区在线观看| 又大又黄又爽视频免费| 人妻 亚洲 视频| 午夜福利视频精品| a级毛片在线看网站| 天天躁夜夜躁狠狠躁躁| 国产成人啪精品午夜网站| 欧美日本中文国产一区发布| 久久久久网色| 在线观看免费午夜福利视频| avwww免费| 脱女人内裤的视频| 男女下面插进去视频免费观看| 美女视频免费永久观看网站| 91麻豆av在线| 在线天堂中文资源库| 一本久久精品| 香蕉国产在线看| 午夜影院在线不卡| 看免费av毛片| 天天操日日干夜夜撸| 中文字幕制服av| 国产男女内射视频| 九草在线视频观看| 欧美精品亚洲一区二区| 精品国产一区二区久久| 国产不卡av网站在线观看| 亚洲国产最新在线播放| 久久性视频一级片| 午夜影院在线不卡| 国产99久久九九免费精品| 欧美xxⅹ黑人| 午夜视频精品福利| www.精华液| 色94色欧美一区二区| 一级黄色大片毛片| 女人精品久久久久毛片| 久久亚洲国产成人精品v| 午夜福利影视在线免费观看| 欧美成狂野欧美在线观看| 天天影视国产精品| 久久精品久久精品一区二区三区| 狠狠婷婷综合久久久久久88av| 韩国高清视频一区二区三区| 日韩中文字幕视频在线看片| 日韩,欧美,国产一区二区三区| 国产老妇伦熟女老妇高清| 操出白浆在线播放| 久久毛片免费看一区二区三区| 91九色精品人成在线观看| 只有这里有精品99| 亚洲第一av免费看| 国产av国产精品国产| 国产精品 国内视频| 亚洲伊人色综图| av天堂久久9| 久久人妻熟女aⅴ| 女人被躁到高潮嗷嗷叫费观| 亚洲欧洲日产国产| 欧美日韩综合久久久久久| 性色av一级| 成年女人毛片免费观看观看9 | 精品一区二区三区av网在线观看 | av在线老鸭窝| 国产99久久九九免费精品| 老鸭窝网址在线观看| 男人舔女人的私密视频| 久久久久久亚洲精品国产蜜桃av| 久久久久精品人妻al黑| 丰满少妇做爰视频| 只有这里有精品99| 欧美精品高潮呻吟av久久| 日本av手机在线免费观看| 老鸭窝网址在线观看| av在线app专区| 校园人妻丝袜中文字幕| 亚洲国产欧美一区二区综合| videos熟女内射| 一级毛片女人18水好多 | 国产高清视频在线播放一区 | 国产精品一二三区在线看| 亚洲国产欧美在线一区| 黄色一级大片看看| 国产视频一区二区在线看| 精品久久蜜臀av无| 五月开心婷婷网| 亚洲熟女毛片儿| 成人三级做爰电影| 亚洲人成77777在线视频| 欧美日韩黄片免| 亚洲欧洲日产国产| 久久人妻福利社区极品人妻图片 | 中文精品一卡2卡3卡4更新| 成人亚洲精品一区在线观看| 亚洲精品在线美女| 亚洲欧洲日产国产| 欧美激情高清一区二区三区| 建设人人有责人人尽责人人享有的| 又粗又硬又长又爽又黄的视频| 亚洲人成77777在线视频| 999精品在线视频|