• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gas-sensor property of single-molecule device:F2 adsorbing effect?

    2017-08-30 08:26:52ZongLiangLi李宗良JunJieBi畢俊杰RanLiu劉然XiaoHuaYi衣曉華HuanYanFu傅煥儼FengSun孫峰MingZhiWei魏明志andChuanKuiWang王傳奎
    Chinese Physics B 2017年9期
    關(guān)鍵詞:俊杰

    Zong-Liang Li(李宗良),Jun-Jie Bi(畢俊杰),Ran Liu(劉然),Xiao-Hua Yi(衣曉華),Huan-Yan Fu(傅煥儼), Feng Sun(孫峰),Ming-Zhi Wei(魏明志),2,and Chuan-Kui Wang(王傳奎)

    1 School of Physics and Electronics,Shandong Normal University,Jinan 250014,China

    2 School of Materials Science and Engineering,Qilu University of Technology,Jinan 250353,China

    Gas-sensor property of single-molecule device:F2adsorbing effect?

    Zong-Liang Li(李宗良)1,?,Jun-Jie Bi(畢俊杰)1,Ran Liu(劉然)1,Xiao-Hua Yi(衣曉華)1,Huan-Yan Fu(傅煥儼)1, Feng Sun(孫峰)1,Ming-Zhi Wei(魏明志)1,2,and Chuan-Kui Wang(王傳奎)1

    1 School of Physics and Electronics,Shandong Normal University,Jinan 250014,China

    2 School of Materials Science and Engineering,Qilu University of Technology,Jinan 250353,China

    The single thiolated arylethynylene molecule with 9,10-dihydroanthracene core(denoted as TADHA)possesses pronounced negative differential conductance(NDC)behavior at lower bias regime.The adsorption effects of F2molecule on the current and NDC behavior of TADHA molecular junctions are studied by applying non-equilibrium Green’s formalism combined with density functional theory.The numerical results show that the F2molecule adsorbed on the benzene ring of TADHA molecule near the electrode can dramatically suppresses the current of TADHA molecular junction.When the F2molecule adsorbed on the conjugated segment of 9,10-dihydroanthracene core of TADHA molecule,an obviously asymmetric effect on the current curves induces the molecular system showing apparent rectifier behavior.However,the current especially the NDC behavior have been significantly enlarged when F2addition reacted with triple bond of TADHA molecule.

    molecular device,negative differential conductance(NDC),F2adsorption,gas-sensor effect

    1.Introduction

    Thanks to the rapid development of single-molecule technologies,[1–3]the molecular electronics have achieved great progresses in the last decade.[4–12]Nowadays,various kind of single-molecule junctions have been fabricated and lots of potential electronic performances have been found,[10–20]such as molecular switch,[3,13]molecular rectifier,[10–12]molecular transistor,[14–18]molecular sensor,[19]molecular memory,[3]etc.Some of these performances originate from nonlinear electron-transport properties of molecular junctions,[10,11]while others need the responses of the electronic transport to the external influence on the molecular devices.[14–19]Besides these performances,negative differential conductance(NDC)behavior is promised to have potential applications as switch,amplifier,memory,and so forth.[10,21–23]In order to understand and improve the underlying functional properties,different strategies are developed to tune the electronic transport properties of molecular devices.[24–32]The effects of molecule electrode interface,[33–36]electrode distance,[22,37]molecular anchor,[38–43]side group,[13,44]external field,[14–19,45]external ambient,[46–49]doping,[50–53]and contamination[54]have been studied intensively.Among those,small-molecule adsorbing or doping is an excellent choice by which the performance of molecular device can be modified selectively.[30,48–54]Generally,the dipolar molecule or oxidative molecule can be applied as small molecule to adsorb on the molecular device to tune the performance of the molecular device.[29,49,53–55]Recently,the single thiolated arylethynylene molecule with 9,10-dihydroanthracene core(denoted as TADHA)have been investigated experimentally by Perrin et al.[21]They found that,due to the non-conjugated 9,10-dihydroanthracene core separating two conjugated branches,the TADHA shows large NDC behavior at lower bias regime.Moreover,this low-bias NDC behavior can be modulated by electrode distance or dipolar adsorbate.[21,22,55]Motivated by Perrin’s and our work,in this paper,we particularly study the modulation effect of single F2molecule adsorbed on the backbone of TADHA molecule.Our studies show that,F2adsorbate shows different modulation effects on the electronic transport of TADHA molecular junction,such as enhancing or suppressing the current of molecular junction,or even inducing rectifier behavior when the F2adsorbed on different positions of TADHA molecule backbone.

    2.Theoretical model and computational details

    In order to investigate the adsorption effect of F2on TADHA molecular junction,we sandwiched TADHA molecule into the separation of two gold electrodes with F2adsorbed on different sites of TADHA molecule backbone to form Au-TADHA+F2-Au systems.Here we denoted the molecular junction without F2molecule as M0.After geometric optimizations,we found that there are four typical sites for F2molecule to be adsorbed on(see Fig.1):(i)the benzene ring site on one branch of TADHA molecule nearthe electrode,denoted as M1;(ii)one benzene ring site of 9,10-dihydroanthracene core near the triple bond,denoted as M2;(iii)one benzene ring site of 9,10-dihydroanthracene core near the non-conjugated segment,denoted as M3;(iv)triple bond site on one branch of TADHA molecule where the F2molecule reacted with C–C triple bond by addition reaction as shown in Fig.1(b),denoted as M4.Figure 1(b)shows that,for M4 molecular system,due to the addition reaction, one bond in the C–C triple bond has been broken and each of the two C atoms has been connected by one F atom.Consequently,the C–C triple bond has been converted into double bond.The geometries of TADHA molecular junctions with or without F2molecules were optimized with a maximum force of 0.02 eV/?A in the SIESTA package.[56]The Troullier–Martin type norm-conserving pseudopotentials are applied to represent the core electrons,the generalized gradient approximation(GGA)with Perdew–Burke–Ernzerhof(PBE)formulation is applied as the exchange–correlation functional.[57]For Au atoms,a single-ζ plus polarization basis set is used,and for other atoms,a double-ζ plus polarization basis set is employed.

    Fig.1.(color online)(a)Schematic structure of TADHA molecular junctions without or with F2 molecule adsorbed on different sites; (b)process of F2 molecule reacting with TADHA molecule by addition reaction with C–C triple bond.

    According to the Landauer–Buttiker formula,[58]the current with different bias for the molecular junction is written as

    where T(E,V)is the transmission probability.μLandμRare the electrochemical potentials of the two electrodes.The transmission probability T(E,V)is calculated by the NEGF method employing the TranSIESTA module of the SIESTA package.After current calculations,the differential conductance is obtained by G=?I/?V.In the electron transport calculations,the convergence criterion for density matrix was set to 1.0×10?4.A 4×4 k-point grid was used for the Brillouinzone(BZ)sampling in the transverse directions.

    3.Results and discussion

    The ground-state-geometry optimization of the molecular junctions shows that the affinities for F2molecule adsorbed as M1,M2,and M3 molecular systems are about 0.24,0.29,and 0.24 eV,which indicates that the F2molecules in M1,M2,and M3 molecular systems are physically adsorbed on the TADHA molecule since the affinities are much less than 1 eV.While for M4 molecular system that the F2is reacted with TADHA molecule by addition reaction on the C–C triple bond,the reaction energy is 5.11 eV.Thus for M4 molecular system,the F2is evidently chemically adsorbed on TADHA molecule since the adsorption/reaction energy is obviously larger than 1 eV and more than one order of magnitude larger than the affinities of M1,M2,and M3 system.Here the adsorption affinity and the reaction energy are both defined as

    where EExtendedis the energy of Au-TADHA-Au extended molecular system,EF2is the energy of single F2molecule, and EComplexis the energy of each Au-TADHA+F2-Au complex molecular systems.

    Fig.2.(color online)Electronic transport properties of TADHA molecular junction with one F2 molecule adsorbate.(a)Current and(b)differential conductance as functions of applied bias voltage.The inset in panel(a) shows the rectification ratios(R)of the molecular systems versus bias voltage.

    Figure 2 shows the current and the differential conductance as functions of bias voltage for TADHA molecular junctions without or with F2adsorbate as M0,M1,M2,and M3 molecular systems.As shown by the experiment and our previous studies,[21,22]for the TADHA molecular junction without F2adsorbate(M0),the current shows peak value at about ±0.25 V,and the NDC behavior appears when the absolute value of the bias voltage is higher than 0.25 V,which is an excellent low-bias NDC behavior.When one F2molecule is adsorbed on TADHA molecule as M1,M2,and M3 systems, the currents in the lower bias regime are suppressed dramatically.Especially for the negative bias,the currents have been suppressed by more than one order of magnitude.However, forthe positive bias,the currents forthe M1,M2,and M3 obviously show different features.In detail,the current reaches the peak value swiftly at about 0.15 V and then decreases gradually in the lower bias regime.Correspondingly,the differential conductance and NDC are both very small for M1 junction. While for M2 and M3 systems,the currents reach their peak values at about 0.3 V and 0.4 V as well as the beginning bias of NDC behaviors,which are both larger than that of the system without F2molecule(M0 system).At the same time,the peak NDC values are also suppressed by the adsorption of F2molecule.It is noticeable that,the current curves of M2 and M3 show obvious rectifier features with the maximal rectif ication ratio up to 12.5 and 9.9,respectively,which is only 2.3 for M1 molecular system(see the inset of Fig.2).

    In order to understand the adsorption effect of F2molecule on TADHA molecular system,we presented the transmission spectra for the bias voltages of 0.0 V,±0.25 V, ±0.5 V,and the voltage of peak-current in Fig.3.The NDC behavior of TADHA molecular junction without F2adsorbate mainly due to the Stark effect of applied bias voltage which separated the degeneration of the highest occupied molecular orbital(HOMO)and HOMO-1.At zero bias,both HOMO and HOMO-1 are delocalized orbitals.After the separation of the degeneration,the HOMO and HOMO-1 are only localized on one branch of the TADHA molecule respectively(Fig.4), which correspondingly splits the high transmission peak located at?0.19 eV into two lower peaks(Fig.3(a)).When the F2molecule is adsorbed on TADHA molecule as M1,M2, and M3,in the lower negative bias regime,the transmission spectra shows similar character,that is,the transmission peaks corresponding to the HOMO shrink swiftly with the increase of the negative bias.Thus,in the lower negative bias regime, the currents of M1,M2,and M3 systems are very weak.

    Fig.3.(color online)Transmission spectra of TADHA molecular junctions.(a)Transmission spectra of TADHA molecular junction without F2 adsorbate;(b)–(d)transmission spectra of TADHA molecular junction with one F2 adsorbate as M1,M2,and M3 molecular systems that are shown in Fig.1.The red dashed lines in panels(b)–(d)are the transmission spectra of TADHA molecular junction without F2 adsorbate at 0.25 V bias voltage,which are used as reference curves in the four figures.

    However,the transmission spectra show obvious differences for these three molecular systems at zero bias or in the positive bias regime.Figure 3(b)shows that,there is a high transmission peak at?0.14 eV for M1 molecular system, which is attributed to the two degenerated molecular orbitals of HOMO and HOMO-1.However,for M2 and M3 molecular systems,due to the separation of HOMO and HOMO-1 by the adsorption of F2molecule,the transmission spectra show two peaks in the region of?0.4~?0.1 eV,which indicates that F2molecule adsorbed on the benzene ring site of 9,10-dihydroanthracene core destroys the degeneration of the HOMO and HOMO-1.However,with positive bias being applied,the HOMO is depressed,and at the same time the HOMO-1 is enhanced by bias,thus for M2 system,these two orbitals are re-degenerated and the transmission spectrum shows one high peak at 0.19 eV with bias of 0.10 V;for M3 system,the HOMO and HOMO-1 are re-degenerated and two corresponded transmission peaks are combined into one high peak at 0.23 eV with bias of 0.25 V.Attribute to the redegeneration of the HOMO and HOMO-1 at positive bias,the transmission spectra shrinking speeds are obviously slower for positive bias than for negative bias for M2 and M3 molecular systems.Thus,the M2 and M3 molecular systems show obvious rectifier behavior.

    Fig.4.(color online)Spatial distributions of HOMOs and HOMOs-1 for TADHA molecular junctions without or with F2 molecule,where the orbital energies relative to the Fermi level are also shown under each orbital.

    To gain deep insight into electronic transport properties of TADHA molecular junctions with or without F2adsorbates, we show spatial distributions of the HOMOs and HOMOs-1 for M0,M1,M2,and M3 molecular systemsat0.0 V,?0.25 V, ±0.5 V,and at the peak-current voltages in Fig.4.The figure shows that,at zero bias,the HOMOs and HOMOs-1 are well delocalized over the whole TADHA molecule for M0 and M1 molecular systems.However,for M3 molecular system,The HOMO and HOMO-1 are almost localized on one branch of TADHA molecule.With the increase of the positive bias,the HOMO and HOMO-1 are re-delocalized at about 0.10 V and 0.25 V respectively for M2 and M3 molecular junction.One can see that,the F2adsorbed on the core of TADHA molecule have larger influence on the frontier molecular orbitals than that of F2adsorbed on the benzene ring near electrode.When lower negative bias(e.g.,?0.25 V)is applied,due to the Stark effect,the HOMO and HOMO-1 are mainly localized on right or left branches respectively for M0,M1,M2,and M3 molecular system.However,the distribution of HOMO for M0 system shows an apparent difference from those of M1,M2,and M3 systems.In detail,a small proportion for the HOMO distributes on the left arm of TADHA molecule for M0 system. While for M1,M2,and M3 systems,due to the adsorptions of F2molecule,the distributions of HOMO on the left benzene ring are negligible.Thus,one can understand why the currents in the lower negative bias regime are very weak for M1,M2, and M3.For positive bias,such as 0.30 V for M2 system and 0.40 V for M3 system,although the HOMOs mainly distribute on the left branch of TADHA molecule,there are also a small proportions on the right arm.Hence,the M2 and M3 molecular system are more conductive than M1 molecular system in the positive bias regime and present obvious rectifier behavior.

    Fig.5.(color online)Electronic transport properties of the molecular junction for the triple bond of TADHA molecule being fluoridated by F2 molecule.(a)Current and differential conductance as functions of applied bias voltage.(b)Transmission spectra for fluoridated TADHA molecular junction at different bias voltage.The dashed lines in panel(a)are the corresponding curves of TADHA molecular junction without F2 adsorbate,and the red dashed line in panel(b)is the transmission spectrum of TADHA molecular junction without F2 adsorbate at 0.25 V,which are used as reference curves in the figures.

    Different from M1,M2,and M3 molecular system, when F2molecule reacts with TADHA molecule by addition reaction on the triple bond as M4 molecular system,the current and the NDC behavior are both enhanced dramatically. Figure 5(a)shows that except for the current value being enlarged by a factor of about 1.8,the variation trend of the current curve as well as the differential conductance curve of M4 molecular system are changed very slightly.Meanwhile,the peak NDC value is also doubled by the addition reaction of F2molecule.From Fig.5(b)one can see that,the transmission features of M4 system are very similar to those of M0 system. The main difference is the transmission spectra near the Fermi energy being enhanced a little,which is due to the fact the HOMO and HOMO-1 are slightly raised by the reaction of F2.

    4.Conclusions

    Based on density functional theory and NEGF method, the F2adsorption effects on the electron-transport properties and NDC behavior of TADHA molecular junctions are investigated theoretically.It is shown that F2molecule adsorbed on the conjugated part of TADHA molecule can suppress the current and the NDC behavior of the molecular systems asymmetrically which further induces the molecular system showing apparent rectifier behavior,especially for the F2molecule on the conjugated segment of 9,10-dihydroanthracene core of TADHA molecule.However,the current and the NDC behavior have been dramatically enlarged when F2addition reacted with triple bond of TADHA molecule.

    [1]Cui X D,Primak A,Zarate X,Tomfohr J,Sankey O F,Moore A L, Moore T A,Gust D,Harris G and Lindsay S M 2001 Science 294 571

    [2]Xiang D,Jeong H,Lee T and Mayer D 2013 Adv.Mater.25 4845

    [3]Wang Q,Liu R,Xiang D,Sun M,Zhao Z,Sun L,Mei T,Wu P,Liu H, Guo X,Li Z L and Lee T 2016 ACS Nano 10 9695

    [4]Jiang J,Kula M and Luo Y 2006 J.Chem.Phys.124 034708

    [5]Zhang X J,Chen K Q,Tang L M and Long M Q 2011 Phys.Lett.A 375 3319

    [6]Liu R,Wang C K and Li Z L 2016 Sci.Rep.6 21946

    [7]Dou K P,Fu X X,De Sarkar A and Zhang R Q 2016 Nano Res.9 1480

    [8]Zhang X J,Chen K Q,Long M Q,He J and Gao Y L 2015 Mod.Phys. Lett.B 29 1550106

    [9]Li Z L 2011 Chin.J.Chem.Phys.24 194

    [10]Zhang Z,Guo C,Kwong D J,Li J,Deng X and Fan Z 2013 Adv.Funct. Mater.23 2765

    [11]Hu G C,Zhang Z,Li Y,Ren J F and Wang C K 2016 Chin.Phys.B 25 057308

    [12]Zhang G P,Wang S,Wei M Z,Hu G C and Wang C K 2017 J.Phys. Chem.C 121 7643

    [13]Fu X X,Zhang L X,Li Z L and Wang C K 2013 Chin.Phys.B 22 028504

    [14]Xu B Q,Li X L,Xiao X Y,Sakaguchi H and Tao N J 2005 Nano Lett. 5 1491

    [15]Li Z L,Zhang G P and Wang C K 2011 J.Phys.Chem.C 115 15586

    [16]Li Z L,Fu X X,Zhang G P and Wang C K 2013 Chin J.Chem.Phys. 26 185

    [17]Su W,Jiang J,Lu W and Luo Y 2006 Nano Lett.6 2091

    [18]Xiang D,Jeong H,Kim D,Lee T,Cheng Y,Wang Q and Mayer D 2013 Nano Lett.13 2809

    [19]Xu B Q,Xiao X Y,Yang X M,Zang L and Tao N J 2005 J.Am.Chem. Soc.127 2386

    [20]Wang F Y and Li G Q 2016 Chin.Phys.B 25 077304

    [21]Perrin M L,Frisenda R,Koole M,Seldenthuis J S,Gil J A C,Valkenier H,Hummelen J C,Renaud N,Grozema F C,Thijssen J M and Duli? D 2014 Nat.Nanotech.9 830 2014 Nat.Nanotech.9 830

    [22]Yi X H,Liu R,Bi J J,Jiao Y,Wang C K and Li Z L 2016 Chin.Phys. B 25 128503

    [23]Li Y H,Yan Q,Zhou L P and Han Q 2015 Acta Phys.Sin.64 057301 (in Chinese)

    [24]Xiang D,Zhang Y,Pyatkov F,Offenh?usser A and Mayer D 2011 Chem.Commun.47 4760

    [25]Xu B Q and Tao N J 2003 Science 301 1221

    [26]Liu R,Bao D L,Jiao Y,Wan L W,Li Z L and Wang C K 2014 Acta Phys.Sin.63 068501(in Chinese)

    [27]Zhang Y F,Yi X H,Zhang Z,Sun J X and Li Z L 2015 J.At.Mol.Sci. 6 263

    [28]Xiang D,Lee T,Kim Y,Mei T T and Wang Q L 2014 Nanoscale 6 13396

    [29]Zhao W K,Cui B,Fang C F,Ji G M,Zhao J F,Kong X R,Zou D Q, Jiang X H,Li D M and Liu D S 2015 Phys.Chem.Chem.Phys.17 3115

    [30]Song Y,Xie Z,Ma Y,Li Z L and Wang C K 2014 J.Phys.Chem.C 118 18713

    [31]Zou D,Zhao W,Fang C,Cui B and Liu D 2016 Phys.Chem.Chem. Phys.18 11513

    [32]Wang S,Wei M Z,Hu G C,Wang C K and Zhang G P 2017 Org. Electron.49 76

    [33]Zhao W K,Ji G M and Liu D S 2014 Phys.Lett.A 378 446

    [34]Li Y,Zhang G P,Xie Z,Zhang Z,Ren J F,Wang C K and Hu G C 2016 Chin.J.Chem.Phys.29 344

    [35]Jiang Z L,Wang H,Shen Z Y,Sanvito S and Hou S M 2016 J.Chem. Phys.145 044701

    [36]Hu G C,Zuo M Y,Li Y,Zhang Z,Ren J F and Wang C K 2015 Chin. Phys.B 24 077308

    [37]Zhang G P,Hu G C,Song Y,Xie Z and Wang C K 2013 J.Chem.Phys. 139 094702

    [38]Li M J,Xu H,Chen K Q and Long M Q 2012 Phys.Lett.A 376 1692

    [39]Hong W,Manrique D Z,Moreno-Garcia P,Gulcur M,Mishchenko A, Lambert C J,Bryce M R and Wandlowski T 2012 J.Am.Chem.Soc. 134 2292

    [40]Hong W,Li H,Liu S X,Fu Y,Li J,Kaliginedi V,Decurtins S and Wandlowski T 2012 J.Am.Chem.Soc.134 19425

    [41]Bao D L,Liu R,Leng J C,Zuo X,Jiao Y,Li Z L and Wang C K 2014 Phys.Lett.A 378 1290

    [42]Chen F,Li X,Hihath J,Huang Z and Tao N 2006 J.Am.Chem.Soc. 128 15874

    [43]Yokota K,Taniguchi M,Tsutsui M and Kawai T 2010 J.Am.Chem. Soc.132 17364

    [44]Xiang D,Pyatkov F,Schr?per F,Offenh?usser A,Zhang Y and Mayer D 2011 Chem.Eur.J.17 13166

    [45]Na J S,Ayres J,Chandra K L,Gorman C B and Parsons G N 2007 Nanotech.18 424001

    [46]Cao H,Ma J and Luo Y 2010 Nano Res.3 350

    [47]Lin X N,Zhang G P,Ren J F,Yuan X B and Hu G C 2014 Acta Phys. Sin.63 068502(in Chinese)

    [48]Li Z L,Li H Z,Ma Y,Zhang G P and Wang C K 2010 Chin.Phys.B 19 067305

    [49]Long D P,Lazorcik J L,Mantooth B A,Moore M H,Ratner M A, Troisi A,Yao Y X,Ciszek J W,Tour J M and Shashidhar R 2006 Nat. Mater.5 901

    [50]Zou D Q,Song Y,Xie Z,Li Z L and Wang C K 2015 Phys.Lett.A 379 1842

    [51]Tian W,Yuan P F,Yu Z L,Tao B K,Hou S Y,Ye C and Zhang Z H 2015 Acta Phys.Sin.64 046102(in Chinese)

    [52]Chen Y,Hu H F,Wang X W,Zhang Z J and Cheng C P 2015 Acta Phys. Sin.64 196101(in Chinese)

    [53]Yang Z,Lang N D and Di Ventra M 2003 Appl.Phys.Lett.82 1938

    [54]Zhang Z H,Deng X Q,Tan X Q,Qiu M and Pan J B 2010 Appl.Phys. Lett.97 183105

    [55]Li Z L,Yi X H,Liu R,Bi J J,Fu H Y,Zhang G P,Song Y Z and Wang C K 2017 Sci.Rep.7 4195

    [56]Brandbyge M,Mozos J L,Ordejn P,Taylor J and Stokbro K 2002 Phys. Rev.B 65 165401

    [57]Perdew J P,Burke K and Ernzerhof M 1996 Phys.Rev.Lett.77 3865

    [58]Buttiker M,Imry Y,Landauer R and Pinhas S 1985 Phys.Rev.B 31 6207

    6 June 2017;revised manuscript

    30 June 2017;published online 11 August 2017)

    10.1088/1674-1056/26/9/098508

    ?Project supported by the National Natural Science Foundation of China(Grant No.11374195),the Taishan Scholar Project of Shandong Province,China,and the Jinan Youth Science and Technology Star Project,China(Grant No.201406004).

    ?Corresponding author.E-mail:lizongliang@sdnu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    俊杰
    Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
    “畫家陳”
    Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow*
    Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO?
    Bian Que
    能自律者為俊杰
    文苑(2020年7期)2020-08-12 09:36:36
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    表演大師
    我的同桌
    我可是有主角光環(huán)的人
    午夜激情久久久久久久| 大片电影免费在线观看免费| 国产av又大| 国产精品美女特级片免费视频播放器 | 后天国语完整版免费观看| 亚洲国产精品一区二区三区在线| 俄罗斯特黄特色一大片| 露出奶头的视频| 99精品欧美一区二区三区四区| 精品国产超薄肉色丝袜足j| 成年版毛片免费区| a级毛片黄视频| 最新在线观看一区二区三区| 高清毛片免费观看视频网站 | 青草久久国产| 狠狠狠狠99中文字幕| 欧美精品一区二区大全| 欧美人与性动交α欧美精品济南到| 久久久国产成人免费| 欧美日韩视频精品一区| 亚洲精品中文字幕一二三四区 | 亚洲精品美女久久久久99蜜臀| 一边摸一边抽搐一进一出视频| 久久精品亚洲精品国产色婷小说| 在线 av 中文字幕| 一级毛片女人18水好多| 老司机午夜福利在线观看视频 | 老司机深夜福利视频在线观看| 变态另类成人亚洲欧美熟女 | 国产不卡av网站在线观看| h视频一区二区三区| 日韩免费高清中文字幕av| 亚洲av国产av综合av卡| 18禁国产床啪视频网站| 国产主播在线观看一区二区| 蜜桃国产av成人99| 麻豆成人av在线观看| 精品一区二区三区视频在线观看免费 | 久久ye,这里只有精品| a级毛片在线看网站| 成年动漫av网址| 超碰97精品在线观看| 国产精品98久久久久久宅男小说| 高清欧美精品videossex| 国产亚洲欧美精品永久| 女人精品久久久久毛片| 国产精品免费大片| 天堂8中文在线网| 中文字幕高清在线视频| 婷婷成人精品国产| 一区福利在线观看| 欧美老熟妇乱子伦牲交| 人妻一区二区av| 欧美变态另类bdsm刘玥| 成年人午夜在线观看视频| 老司机午夜十八禁免费视频| 天天操日日干夜夜撸| 亚洲国产毛片av蜜桃av| 十八禁高潮呻吟视频| 精品国产一区二区三区四区第35| 99精品欧美一区二区三区四区| 久久人妻福利社区极品人妻图片| 国产精品偷伦视频观看了| 日本wwww免费看| 亚洲天堂av无毛| 欧美激情 高清一区二区三区| 在线观看www视频免费| 中文字幕高清在线视频| 国产日韩一区二区三区精品不卡| 精品第一国产精品| 黄色毛片三级朝国网站| 五月天丁香电影| 999精品在线视频| 日韩欧美一区视频在线观看| av有码第一页| 久久99一区二区三区| 国产精品二区激情视频| 亚洲全国av大片| 亚洲五月色婷婷综合| 亚洲一区中文字幕在线| 国产高清国产精品国产三级| 久久ye,这里只有精品| 色综合婷婷激情| 侵犯人妻中文字幕一二三四区| 免费看a级黄色片| 国产精品麻豆人妻色哟哟久久| 我要看黄色一级片免费的| 国产99久久九九免费精品| 亚洲av片天天在线观看| 成人影院久久| 夜夜爽天天搞| 老熟女久久久| 大型黄色视频在线免费观看| 在线亚洲精品国产二区图片欧美| 激情视频va一区二区三区| 亚洲一区中文字幕在线| 王馨瑶露胸无遮挡在线观看| 久久久久精品国产欧美久久久| 欧美国产精品一级二级三级| 精品一区二区三区av网在线观看 | 日韩精品免费视频一区二区三区| 亚洲第一青青草原| 国产精品自产拍在线观看55亚洲 | 亚洲一区二区三区欧美精品| 久久久久久久精品吃奶| 波多野结衣av一区二区av| 日韩成人在线观看一区二区三区| 国产精品久久久av美女十八| 一进一出好大好爽视频| 老汉色av国产亚洲站长工具| 国产成人影院久久av| 国产单亲对白刺激| 99精品在免费线老司机午夜| 色老头精品视频在线观看| 午夜视频精品福利| 80岁老熟妇乱子伦牲交| 免费高清在线观看日韩| 欧美乱妇无乱码| 久久久久国产一级毛片高清牌| 免费一级毛片在线播放高清视频 | 免费在线观看视频国产中文字幕亚洲| 亚洲熟女毛片儿| 亚洲第一av免费看| 国产欧美亚洲国产| 母亲3免费完整高清在线观看| 日本一区二区免费在线视频| 成人18禁在线播放| 国产免费视频播放在线视频| 免费在线观看视频国产中文字幕亚洲| 大型黄色视频在线免费观看| 18禁国产床啪视频网站| 精品免费久久久久久久清纯 | 黄色片一级片一级黄色片| 色尼玛亚洲综合影院| av电影中文网址| 久久久久久久大尺度免费视频| 80岁老熟妇乱子伦牲交| 免费观看人在逋| tocl精华| 人妻久久中文字幕网| 色播在线永久视频| 丰满饥渴人妻一区二区三| 丁香六月天网| 成年人免费黄色播放视频| 一级,二级,三级黄色视频| 两人在一起打扑克的视频| 91大片在线观看| a级毛片黄视频| 亚洲成人免费av在线播放| 亚洲精品国产精品久久久不卡| 久久精品91无色码中文字幕| 国产成人欧美在线观看 | 一本综合久久免费| 在线亚洲精品国产二区图片欧美| 宅男免费午夜| av网站免费在线观看视频| 国产精品秋霞免费鲁丝片| 久久国产精品人妻蜜桃| 激情在线观看视频在线高清 | 精品国产一区二区三区四区第35| 亚洲人成77777在线视频| 波多野结衣一区麻豆| 久久久久精品国产欧美久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 悠悠久久av| 久久久欧美国产精品| 男女下面插进去视频免费观看| 夜夜夜夜夜久久久久| 国产99久久九九免费精品| 久久久精品区二区三区| 肉色欧美久久久久久久蜜桃| 久久久久国产一级毛片高清牌| 老司机亚洲免费影院| av天堂在线播放| 在线永久观看黄色视频| 国产av精品麻豆| 日韩有码中文字幕| 久久狼人影院| 黄色片一级片一级黄色片| 老汉色∧v一级毛片| 怎么达到女性高潮| av电影中文网址| 久久亚洲真实| 亚洲情色 制服丝袜| 亚洲国产欧美日韩在线播放| 中文字幕制服av| 一夜夜www| 99国产精品99久久久久| 亚洲全国av大片| 日日爽夜夜爽网站| 9热在线视频观看99| 日韩成人在线观看一区二区三区| 成人亚洲精品一区在线观看| 国产精品一区二区精品视频观看| 夜夜骑夜夜射夜夜干| 精品亚洲乱码少妇综合久久| 久久性视频一级片| 色婷婷久久久亚洲欧美| 亚洲精品一二三| 久久精品91无色码中文字幕| 久久精品国产综合久久久| 久久久国产欧美日韩av| 别揉我奶头~嗯~啊~动态视频| 欧美日本视频| 无遮挡黄片免费观看| 久久天躁狠狠躁夜夜2o2o| 法律面前人人平等表现在哪些方面| 又紧又爽又黄一区二区| 色综合站精品国产| 精品福利观看| 夜夜爽天天搞| 婷婷亚洲欧美| 99在线人妻在线中文字幕| 两人在一起打扑克的视频| 日本与韩国留学比较| 中国美女看黄片| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品爽爽va在线观看网站| 丰满人妻熟妇乱又伦精品不卡| 97人妻精品一区二区三区麻豆| 很黄的视频免费| 好男人电影高清在线观看| 97超级碰碰碰精品色视频在线观看| 日韩欧美三级三区| 免费在线观看视频国产中文字幕亚洲| 色精品久久人妻99蜜桃| 好男人电影高清在线观看| 国产精品自产拍在线观看55亚洲| 成人鲁丝片一二三区免费| 国产免费男女视频| 婷婷六月久久综合丁香| 日本 欧美在线| 真实男女啪啪啪动态图| 午夜视频精品福利| 露出奶头的视频| 99热6这里只有精品| 欧美绝顶高潮抽搐喷水| 日本 av在线| 香蕉av资源在线| 亚洲欧美日韩高清专用| 久久久久久久久中文| 国产野战对白在线观看| 成人午夜高清在线视频| 日韩欧美国产在线观看| 国产一级毛片七仙女欲春2| 男女下面进入的视频免费午夜| 色精品久久人妻99蜜桃| 男女那种视频在线观看| 久久久久久九九精品二区国产| 日韩欧美国产一区二区入口| 久久精品影院6| 嫩草影院入口| 欧美大码av| 国产爱豆传媒在线观看| 免费高清视频大片| 国产成人av教育| 一个人看视频在线观看www免费 | 亚洲中文日韩欧美视频| 久久久久国产精品人妻aⅴ院| 变态另类成人亚洲欧美熟女| 悠悠久久av| 亚洲欧美日韩无卡精品| 午夜免费观看网址| 国产三级黄色录像| 男女之事视频高清在线观看| 丝袜人妻中文字幕| 亚洲人与动物交配视频| 在线免费观看不下载黄p国产 | 在线看三级毛片| 成人18禁在线播放| 亚洲av中文字字幕乱码综合| 亚洲国产精品合色在线| 免费在线观看影片大全网站| 久久人人精品亚洲av| 精品国产三级普通话版| 久久香蕉国产精品| 成人午夜高清在线视频| 国产蜜桃级精品一区二区三区| av国产免费在线观看| 高清毛片免费观看视频网站| 夜夜躁狠狠躁天天躁| 国产精品98久久久久久宅男小说| 久久久久久人人人人人| 中文字幕人成人乱码亚洲影| 欧美黑人欧美精品刺激| 一夜夜www| 亚洲国产色片| www.精华液| 色综合婷婷激情| 亚洲欧美精品综合一区二区三区| 99久久久亚洲精品蜜臀av| 国产又色又爽无遮挡免费看| 国产欧美日韩精品亚洲av| 一个人免费在线观看电影 | 成人高潮视频无遮挡免费网站| 动漫黄色视频在线观看| 91av网一区二区| 国产三级黄色录像| 日韩欧美免费精品| 十八禁人妻一区二区| 色视频www国产| 久久久精品大字幕| 免费看光身美女| 日韩人妻高清精品专区| 亚洲片人在线观看| 中文字幕熟女人妻在线| 免费观看的影片在线观看| 成年女人毛片免费观看观看9| 午夜精品一区二区三区免费看| 老熟妇乱子伦视频在线观看| 色哟哟哟哟哟哟| 久久久成人免费电影| 一夜夜www| 最近在线观看免费完整版| 老司机午夜福利在线观看视频| 国产精品电影一区二区三区| 婷婷精品国产亚洲av| 天天躁狠狠躁夜夜躁狠狠躁| 老汉色av国产亚洲站长工具| 久久久久久久精品吃奶| 可以在线观看的亚洲视频| www.熟女人妻精品国产| 国产伦在线观看视频一区| 在线a可以看的网站| 超碰成人久久| 免费在线观看影片大全网站| 国产精品久久久久久久电影 | 国产男靠女视频免费网站| 国产精品一及| 亚洲精品中文字幕一二三四区| 亚洲成人久久爱视频| 亚洲人成网站高清观看| 国产乱人伦免费视频| 村上凉子中文字幕在线| 国产精品一区二区三区四区久久| 欧美激情在线99| 夜夜夜夜夜久久久久| 国产在线精品亚洲第一网站| 欧美乱色亚洲激情| 亚洲专区中文字幕在线| 欧美黄色片欧美黄色片| 亚洲七黄色美女视频| 老司机午夜十八禁免费视频| 午夜精品一区二区三区免费看| 国语自产精品视频在线第100页| 亚洲自拍偷在线| 琪琪午夜伦伦电影理论片6080| 成年人黄色毛片网站| 日本三级黄在线观看| 日韩国内少妇激情av| 99国产极品粉嫩在线观看| 欧美黄色片欧美黄色片| 男女视频在线观看网站免费| 久久久久国产一级毛片高清牌| 99久久99久久久精品蜜桃| 色哟哟哟哟哟哟| 国产精品,欧美在线| 国产精品 国内视频| 国产v大片淫在线免费观看| 亚洲午夜理论影院| 99久久久亚洲精品蜜臀av| 岛国视频午夜一区免费看| 老鸭窝网址在线观看| 亚洲欧美精品综合久久99| 欧美日本视频| 亚洲中文字幕一区二区三区有码在线看 | 久久国产乱子伦精品免费另类| 日韩三级视频一区二区三区| 成人无遮挡网站| 国内久久婷婷六月综合欲色啪| 少妇熟女aⅴ在线视频| 国产男靠女视频免费网站| 九九热线精品视视频播放| 欧美日韩福利视频一区二区| xxx96com| 全区人妻精品视频| 丰满的人妻完整版| a级毛片在线看网站| 99热这里只有精品一区 | 欧美又色又爽又黄视频| 十八禁网站免费在线| 欧美乱妇无乱码| 亚洲在线观看片| 美女免费视频网站| a在线观看视频网站| 一级毛片精品| 日韩免费av在线播放| 淫秽高清视频在线观看| 精品久久蜜臀av无| 亚洲成人免费电影在线观看| АⅤ资源中文在线天堂| 色综合欧美亚洲国产小说| 午夜视频精品福利| 麻豆av在线久日| 韩国av一区二区三区四区| 午夜免费观看网址| 精品人妻1区二区| 亚洲五月婷婷丁香| 熟妇人妻久久中文字幕3abv| 久久精品国产亚洲av香蕉五月| 亚洲欧美激情综合另类| 国产精品一区二区三区四区免费观看 | 国产激情偷乱视频一区二区| 欧美av亚洲av综合av国产av| 欧美日韩福利视频一区二区| 在线a可以看的网站| 少妇裸体淫交视频免费看高清| 国产精品 欧美亚洲| 亚洲精品一区av在线观看| 精品久久久久久久末码| 脱女人内裤的视频| 欧美在线黄色| 久久这里只有精品19| 国产一级毛片七仙女欲春2| 天天躁日日操中文字幕| 欧美乱色亚洲激情| 亚洲中文av在线| 男女那种视频在线观看| 国产伦精品一区二区三区视频9 | 国模一区二区三区四区视频 | 99久久无色码亚洲精品果冻| 一本综合久久免费| 亚洲av日韩精品久久久久久密| 国产综合懂色| 久久99热这里只有精品18| 亚洲一区高清亚洲精品| 18禁观看日本| 高清毛片免费观看视频网站| 色老头精品视频在线观看| 90打野战视频偷拍视频| 天堂网av新在线| 国产高清激情床上av| 亚洲一区高清亚洲精品| 18禁观看日本| 最近在线观看免费完整版| 熟女电影av网| 一a级毛片在线观看| 中文字幕精品亚洲无线码一区| 久久久国产欧美日韩av| 色尼玛亚洲综合影院| 亚洲av免费在线观看| 一级毛片精品| 性色av乱码一区二区三区2| 婷婷亚洲欧美| 夜夜爽天天搞| 人妻夜夜爽99麻豆av| 很黄的视频免费| 丁香欧美五月| 伦理电影免费视频| 亚洲精品粉嫩美女一区| 熟妇人妻久久中文字幕3abv| 免费看十八禁软件| 午夜视频精品福利| 欧美中文日本在线观看视频| 一进一出好大好爽视频| 国产欧美日韩精品一区二区| 性色av乱码一区二区三区2| 亚洲精品一卡2卡三卡4卡5卡| 久久午夜亚洲精品久久| 2021天堂中文幕一二区在线观| 午夜福利成人在线免费观看| 久久中文看片网| 看免费av毛片| 精品国产乱码久久久久久男人| 精品福利观看| 久9热在线精品视频| 女人高潮潮喷娇喘18禁视频| 国产精品 欧美亚洲| 亚洲精品美女久久久久99蜜臀| 国产亚洲精品综合一区在线观看| 欧美zozozo另类| 亚洲国产高清在线一区二区三| 亚洲人成电影免费在线| 18禁黄网站禁片免费观看直播| 亚洲天堂国产精品一区在线| 90打野战视频偷拍视频| 老司机在亚洲福利影院| 一级作爱视频免费观看| 丁香欧美五月| 久久久久久久久免费视频了| 俄罗斯特黄特色一大片| 国语自产精品视频在线第100页| 亚洲色图 男人天堂 中文字幕| 女人高潮潮喷娇喘18禁视频| 成人18禁在线播放| 久久久久久国产a免费观看| 不卡av一区二区三区| 国模一区二区三区四区视频 | 色综合欧美亚洲国产小说| 国产精品,欧美在线| 少妇的逼水好多| 99国产精品一区二区蜜桃av| 老汉色∧v一级毛片| 亚洲成a人片在线一区二区| 久久这里只有精品中国| 午夜精品一区二区三区免费看| 99国产综合亚洲精品| 一级黄色大片毛片| 精品熟女少妇八av免费久了| 中文字幕人成人乱码亚洲影| 啦啦啦观看免费观看视频高清| 日韩欧美免费精品| 一区二区三区激情视频| e午夜精品久久久久久久| 丰满的人妻完整版| 在线国产一区二区在线| 国产精品久久视频播放| 国产三级中文精品| 法律面前人人平等表现在哪些方面| 国产欧美日韩精品亚洲av| 熟妇人妻久久中文字幕3abv| 国产亚洲av嫩草精品影院| 亚洲精品一区av在线观看| 国内久久婷婷六月综合欲色啪| 变态另类丝袜制服| 成人高潮视频无遮挡免费网站| 久久午夜亚洲精品久久| 国产成人系列免费观看| 夜夜躁狠狠躁天天躁| 少妇裸体淫交视频免费看高清| 亚洲熟女毛片儿| 99久久精品国产亚洲精品| 国产欧美日韩一区二区三| 久久久久久久久中文| 欧美黑人巨大hd| 大型黄色视频在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美一区二区国产精品久久精品| 国产精品99久久99久久久不卡| 可以在线观看的亚洲视频| 国产不卡一卡二| 中文字幕久久专区| 欧美激情在线99| 国产高清视频在线播放一区| 精品久久久久久成人av| 亚洲中文av在线| 网址你懂的国产日韩在线| 熟女人妻精品中文字幕| 久久亚洲精品不卡| 一区二区三区国产精品乱码| 欧美黑人巨大hd| 欧美+亚洲+日韩+国产| 国产精品永久免费网站| 嫩草影院精品99| 久久香蕉精品热| 美女高潮的动态| 岛国视频午夜一区免费看| 熟妇人妻久久中文字幕3abv| 亚洲色图 男人天堂 中文字幕| 五月伊人婷婷丁香| 国产精品电影一区二区三区| 色播亚洲综合网| www.自偷自拍.com| 国产人伦9x9x在线观看| 天天添夜夜摸| 精品国产亚洲在线| 精品久久蜜臀av无| 亚洲精品粉嫩美女一区| 亚洲精品一卡2卡三卡4卡5卡| x7x7x7水蜜桃| 亚洲,欧美精品.| 日韩国内少妇激情av| 久9热在线精品视频| 一区福利在线观看| 人人妻人人看人人澡| 99riav亚洲国产免费| 欧美日本亚洲视频在线播放| 99热这里只有是精品50| 亚洲av熟女| 欧美+亚洲+日韩+国产| 伦理电影免费视频| 久久中文字幕一级| 人妻夜夜爽99麻豆av| 国产激情久久老熟女| 一个人免费在线观看的高清视频| 日韩中文字幕欧美一区二区| 婷婷丁香在线五月| 视频区欧美日本亚洲| 欧美日韩综合久久久久久 | 男人舔女人的私密视频| 日韩欧美国产在线观看| 搡老妇女老女人老熟妇| 免费在线观看影片大全网站| 法律面前人人平等表现在哪些方面| 中文字幕熟女人妻在线| 国产极品精品免费视频能看的| 老司机午夜福利在线观看视频| 19禁男女啪啪无遮挡网站| 久久国产精品影院| 国产69精品久久久久777片 | 日韩国内少妇激情av| 亚洲第一电影网av| av在线天堂中文字幕| 精品国产超薄肉色丝袜足j| 女人被狂操c到高潮| 久久精品影院6| 免费av不卡在线播放| 女人被狂操c到高潮| 久久香蕉国产精品| 熟女电影av网| 成熟少妇高潮喷水视频| 一个人免费在线观看的高清视频| 精品一区二区三区视频在线观看免费| 国产97色在线日韩免费| 亚洲熟妇中文字幕五十中出| 婷婷精品国产亚洲av| 成人鲁丝片一二三区免费| 国产一区二区在线av高清观看| 小说图片视频综合网站| 精品久久蜜臀av无| 久久久久久大精品| 国产99白浆流出| svipshipincom国产片| 国产伦人伦偷精品视频| 午夜福利高清视频|