• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow*

    2021-07-30 07:39:14JunJieSu蘇俊杰JunWang王軍andGuoDongXia夏國(guó)棟
    Chinese Physics B 2021年7期
    關(guān)鍵詞:王軍俊杰

    Jun-Jie Su(蘇俊杰), Jun Wang(王軍), and Guo-Dong Xia(夏國(guó)棟)

    MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation,Beijing Key Laboratory of Heat Transfer and Energy Conversion,Beijing University of Technology,Beijing 100124,China

    Keywords: shear lift force,nanoparticle,temperature effect,gas kinetic theory

    1. Introduction

    Nanoparticles (NPs) play a crucial role in many industrial processes and natural phenomena in a variety of fields including aerosol technology,[1,2]material synthesis,[3,4]environmental science,[5,6]and biology.[7,8]In these applications,the nanoparticles are usually suspended in a gas. Owing to the gas-particle collisions,the nanoparticles are subjected to various forces. The force perpendiculars to the flow direction due to the flow velocity gradient in a shear flow is termed as shear lift force and was first observed by Poiseuille.[9]

    Since the shear lift phenomenon is of considerable importance in practical applications, many previous theoretical and experimental studies have been conducted to investigate the lift force on particles in a shear flow.[10,17]The theoretical challenge is to calculate the momentum transfer from the surrounding gas to the particle during the gas-particle collisions, which strongly depends on the flow regime of the particle. Since the molecular mean free path is in the order of 100 nm for the gas in standard conditions. Thus for nanoparticles with radius in a few nanometers,the flow regime should be in the free molecule regime (Kn=λ/Lc?1, whereλis the mean free path of a gas molecule andLcis the characteristic size of the particle). In the free molecule regime,the gas kinetic theory can be employed to evaluate the forces on the suspended particles.[18,19]For a spherical particle in a weak shear flow of a highly rarefied gas(withKn ?1),the expression for the shear lift force is given by Liu and Bogy[13,14]

    whereρis the density of the fluid,Gdenotes the velocity gradient of the shear flow,Ris the radius of the sphere, andVis the relative velocity between the particle and the fluid.In Eq. (1), the calculations are restricted to the case of rigidbody collisions(i.e.,hard collisions)between the gas molecule and the particle. However, it has been verified that the rigidbody collision assumption can be invalid as the particle size approaches to the nanoscale.The gas-nanoparticle intermolecular interactions(for example,van der Waals interactions[20,21]or the ion-induced dipole interactions when the particle is charged[22])should be taken into account.[23-26]Luoet al.[16]theoretically investigated the shear lift of spherical nanoparticles in a shear rarefied gas flow and obtained the analytical expression for the shear lift force

    In previous theoretical analyses on the shear lift,it is usually assumed that the particle temperatureTpis equal to the surrounding gas temperatureT, which is reasonable in most cases. However,in some particular cases,the suspended particles can be hotter or colder than the surrounding gas media.Examples include the high-temperature metal nanoparticles prepared by the vacuum evaporation method,[27]the heated magnetic nanoparticles are injected into tumors to kill the cancer cells in clinical applications,[28,29]the cooled nanoparticles in the optical tweezer technology,[30]and lower char surface temperature prolongs the burnout times under O2/CO2conditions.[31]Since there is a gas-particle temperature difference,the thermal energy can be transferred from the particle to the gas(or from the gas to the particle)by thermal convection and radiation.[32]In the free molecule regime, the forces on the particle can be given by the gas-particle momentum transfer in unit time,which is related to the gas-particle scattering scenario.[33]A part of the collisions is specular,while the remaining part is diffuse(first absorbed on the particle surface,and then re-emitted with a Maxwellian velocity distribution at the particle temperature). So, the forces on the particle can be affected by the particle temperature. It has been reported that the gas-particle temperature difference has a significant influence on the drag[34]and photophoresis of the suspended particle in a gas.[35,36]Therefore, it is necessary to analyze the shear lift force by considering the influence of the particle temperature.

    The present paper is devoted to the investigation of the particle temperature effect for the shear lift of spherical nanoparticles in a shear flow of rarefied gas. Based on the gas kinetic theory,analytical formulas of the shear lift force are derived under the non-rigid-body collision assumption,wherein the particle temperature effect is considered. In Section 2,the gas molecules-particle collision model is established,and the generalized expressions for the shear lift force are obtained based on the gas kinetic theory, in which the particle could be hotter or colder than the surrounding gas. Further, taking a spherical silver nanoparticle suspended in a diluted helium gas as an example,we present the analytical results of the particle temperature effect on the shear lift in Section 3. Finally,this paper is concluded with a brief summary and discussion in Section 4.

    2. Analytical expressions for shear lift forces on the spherical nanoparticles

    2.1. Analytical model

    The gas molecules-particle collision model is established in Fig. 1. Consider a spherical nanoparticle through into a shear flow with velocity gradientG. The coordinate system{X,Y,Z}is established with the origin is located at the mass center of the nanoparticle, whereZ-axis direction coincides with the direction ofVandVis the velocity vector of particle relative to the gas molecule.i,j, andkare the unit vectors alongX,Y, andZaxes, respectively. The incoming velocity and reflected velocity can be interpreted byg=v-Vandg′=v′-V′, whichv′andV′presented as the reflected velocity of the gas molecule and nanoparticle,respectively.

    Fig.1. Collision model between gas molecules and a nanoparticle in a linear shear flow.

    Since the mean free path of gas moleculesλis larger than the characteristic length of particleLc(hereLc=R,Ris the nanoparticle radius),the collisions between the impinging and reflected molecules can be neglected,and the presence of particle does not affect the gas molecular velocity distribution.According to the gas kinetic theory, the velocity distribution of the gas molecules in the shear flow with velocity gradient is given by[18]

    wheref0is the Maxwell velocity distribution of gas molecules in equilibrium,[37]andΦis the correction term owing to the velocity gradient in the shear flow,

    Hereμis the viscosity of gas, andβ=(2RgT)-1/2is the reciprocal of the most probable molecular speed, in whichRg=8.314 J/(mol·K)is the gas constant.V0is the local mass velocity of gas molecules. The superscript ‘°’ indicates that the divergence of the tensor°vvis zero. The scalar product of the two tensors°vv:?V0is defined as the scalar and is equal to the divergence of°vv·?V0.

    As mentioned above, the effect of the gas-particle temperature difference should be taken into account in the evaluation of the forces exerted on the nanoparticles suspended in a gas. In some applications,the gas-particle temperature difference can be maintained by a sustained external stimulus which supplies/removes energy to/from the particle.[38,39]For example,the particles can be heated up by the absorption of light[38]or cooled down by the optical tweezer technology.[39]In other cases, the energy source is not sustainable. Then, due to the heat transfer(including thermal convection and radiation)between the particle and surrounding gas, the gas-particle temperature difference decays exponentially with time. The characteristic time for a nanoparticle to adjust its motion to a new condition of forces is in the order of 10-8s-10-7s,[40]while the characteristic time of heat transfer is in the order of 10-3second.[32]Thus,the variation of the particle temperature can be much slower than that of the motion of the particle. In the present paper,to simplify the analytical mode,we assume that the particle temperature is a constant,which differs from the gas media temperature.

    2.2. Shear lift force on nanoparticles in the free molecule regime

    Following the pioneering work by Luoet al.,[16]equation(4)can be reduced as

    whereG=?V0z/?y,mris the reduced mass of the gas molecule and particle,mr=mgmp/(mg+mp), in whichmpis the mass of the particle (mp?mg), andkB=1.380649×10-23J/K is the Boltzmann constant.vYandvZare the components of velocityvin theYandZaxes,respectively.

    According to the momentum transfer between gas molecules and nanoparticle, the force on a nanoparticle can be expressed as

    Clearly,equation(6)includes two contributions.The first term is the drag force

    which has been proposed in our previous work.[34]The second one is the shear lift force

    whereQ(g) is the collision cross-section, which depends on the scattering scenarios of gas molecules upon the collision with the nanoparticle.

    The collision cross-section of the specular scattering is given by

    wherebdenotes the impact factor for the gas-particle collisions andW(r) is the gas-particle long-range interaction potential function.

    For diffuse scatterings,the velocity distribution of the reflected molecules obeys the Maxwell distribution in equilibrium at particle temperatureTp,

    wherecis a constant. According to the conservation of molecules mass before and after the collision, we getc=(mr/kBTp)2/2πandgf=g′g′f-dg′. The collision crosssection for the diffuse scattering can be written as

    wherebis the critical impact factor corresponding to the orbiting scattering,[41]ris the separation distance,andrmmeans the closest distance that the gas molecules and the particle can approach. For simplicity,equation(14)can be rewritten as

    Similarly, by using Eqs (5), (13), and (8), the shear lift force on nanoparticles for the diffuse scattering case can be written as

    where the reduced collision integral is defined as follows:

    Based on Eqs.(14)and(15),it is clear that the particle temperature only takes effect in the case of diffuse scatterings. This is because the incoming gas molecules are first absorbed on the particle surface(associated with momentum transfer from the gas molecules to the particle),and then re-emitted with an equilibrium Maxwell distribution at the particle surface temperature for diffuse scatterings. For specular scatterings, the collision between the gas molecule and the particle is elastic and the reflecting molecules still obey the velocity distribution at the gas temperature.

    It should be noted that equations (14) and (15) are expressed in the limiting cases of different scattering kernels.A momentum accommodation coefficientφshould be introduced to represent the proportion of reflected molecules in a diffuse manner.[42]φ=0 andφ=1 correspond to the specular and diffuse limiting cases, respectively. Commonly,φincreases with the particle size.φ=0.9 forR >20 μm was obtained from the Millikan’s oil drop experiment.[43,44]Except for the particle size,φalso depends upon many other factors,including surface property,temperature,and gas-particle interactions.[45,46]

    By using the momentum accommodation coefficient, a generalized expression for the shear lift force can be given by

    As the particle size increases, the effect of the gasparticle interaction is gradually suppressed and the rigid-body collision assumption is valid. In this case, the reduced collision integrals for specular and diffuse scatterings can be written as

    3. Evaluation of the shear lift force on spherical nanoparticles

    Based on Eq.(17),the shear lift force on a silver nanoparticle suspends in a shear flow of dilute helium gas is evaluated as an example to analyze the effect of particle temperature on the lift force. Rudyak-Krasnolutski (RK) potential function[47,48]is employed to represent the gas-particle interactions between the polyatomic nanoparticle and gas molecules, which is constructed by the summation of the classical Lennard-Jones (LJ) interactions between the gas molecules and each constituent atom of the particle. The RK potential consists of a repulsive potential termW9(r) in the short-range and an attractive potential termW3(r)in the longrange,

    Fig.2. The size-dependence of momentum accommodation coefficient when Kn=20. The blue dotted line denotes φ =0.9, which is corresponding to Millikan’s data.

    The size-dependent momentum accommodation coefficient is expressed as follows:[42]

    According to the above formula, the variation ofφwith increasing particle sizeRis plotted in Fig.2,whereinKn=20.It can be seen that there exists a transition from specular to diffuse scattering in the range ofR=2 nm-3 nm.φis approximately close to 0 for small particles(R <2 nm),and approaches to 0.9 for large particles (R >4 nm), which is the classical Millikan’s result for large particles according to the famous oil-drop experiment.

    3.1. Effect of the gas-particle interactions on the shear lift force

    Fig.3. Variation of the average reduced collision integral term *as a function of the tempereture T* for(a)R=1.28 nm,(b)R=2.1 nm,(c)R=2.4 nm,(d)R=3 nm,(e)R=8 nm,and(f)R=25.62 nm.

    the gas-particle specular scattering dominates, which is also shown in Fig.2. Therefore,the curves for varying temperature ratioωalmost overlap with each other. For the intermediate particle size(see Figs.3(c)-3(e)),the diffuse scattering begins to contribute to the gas-particle collisions and the particle temperature also takes effect. For large particles (see Fig. 3(f)),the rigid-body collision assumption is valid, and the particle temperature effect can be neglected.

    The size-dependence of the relative errorΔRthat is caused by neglecting the gas-particle interactions is shown in Fig. 4. Here,ΔR=(FT/FT,rigid)-1,FTandFT,rigidare respectively given by Eqs.(17)and(1), andσ′=σ/R. Due to the particle size is comparable to the characteristic scale of van der Waals interaction, therefore the gas-particle interactions are significant for small particles(R <2 nm),and the relative errorΔRis far beyond the acceptable range.ΔRgradually goes down and fluctuates slightly in the range of 2 nm-20 nm. The fluctuation of theΔRvalue in this range is due to the transition from specular to diffuse scattering. With increasingR,the momentum accommodation coefficient increases and the diffuse scattering gradually dominates the gas-particle collisions. On the other side, according to Eq. (13), the contribution of diffuse scatterings mainly takes effect in the range ofb <b0. However, with increasingR, the critical impact factorb0decreases,[41]which reduces the contribution of diffuse scatterings. Therefore, these two effects compete with each other, by which there exists a fluctuation ofΔRvalue. For largeR(R >20 nm),ΔRapproximately goes to a constant value which depends on the gas temperature under the rigidbody collision assumption.

    Fig.4. Variation of ΔR as a function of the particle size R for different temperature ratio ω.

    Fig.5. Variation of the reduced collision integral term(6Ω(1,2)*-5Ω(1,1)*)/as a function of temperature ratio ω for different particle size R.(a)R=1.28 nm,(b)R=2.1 nm,(c)R=2.4 nm,(d)R=3 nm,(e)R=8 nm,and(f)R=25.62 nm.

    3.2. Effect of the particle temperature on shear lift force

    Fig.6. Variation of ΔT as a function of the particle size R for different temperature ratio ω.

    To evaluate the influence of temperature difference on the shear lift force, figure 6 plots the relative errorΔTas a function of particle sizeRfor varying temperature ratioω, whichΔT=(FT/FT,Tp=T)-1, andFT,Tp=Tmeans the lift force in Eq. (17) in the case ofTp=T. It is reasonable thatΔT=0 forω=1. For other values ofω, the relative errorΔTvaries with the particle size. For small particles, the specular scattering dominates the non-rigid-body collision. According to Eq. (14), the lift force for the specular limiting case is independent of the particle temperatureTp, so|ΔT|<0.01 forR <2 nm. In the particle size range of 2 nm<R <20 nm,the diffuse scattering gradually dominates over the gas-particle collisions with increasingRand the effect of the particle temperature begins to take effect.So,|ΔT|is larger than that of the small particles. Here the wave-like curves are the result of the transition from specular to diffuse scattering. AsRincreases,it should be noted that|ΔT|decreases and approaches 0 again in the range ofR >20 nm. It has been illustrated that the gas-particle non-rigid-body collision could be neglected forR >20 nm. Therefore,the particle temperature does not influence the lift force in this particle size range andΔTapproaches to 0.

    4. Conclusion

    In summary,this work presents an analytical investigation on the effect of particle temperature on the shear lift force of nanoparticles. The generalized formula of shear lift force on a nanoparticle has been proposed based on the gas kinetic theory. As an example,the shear lift force on a silver nanoparticle suspended in a shear flow of dilute Helium gas is evaluated to analyze the effect of particle temperature on the shear lift force,which depends on the scattering scenario,particle size,and gas-particle interactions. Because the specular scattering dominates the molecular reflection scenario for small particles(R <2 nm) and the rigid-body collision assumption is valid for large particles(R >20 nm),the influence of particle temperature on lift force is weak and can be neglected. For the intermediate particle size(2 nm<R <20 nm),the relative error|ΔT|is significant.

    猜你喜歡
    王軍俊杰
    “畫家陳”
    石榴樹想法妙
    能自律者為俊杰
    文苑(2020年7期)2020-08-12 09:36:36
    我要好好來(lái)欣賞
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    可愛(ài)的小丫丫
    生態(tài)景觀在城市規(guī)劃中的應(yīng)用探索
    表演大師
    我的同桌
    Revisit submergence of ice blocks in front of ice cover-an experimental study *
    床上黄色一级片| 国产精品一及| 欧美一区二区国产精品久久精品| 一边摸一边抽搐一进一小说| 人妻久久中文字幕网| 一级毛片精品| 熟女电影av网| 久久婷婷人人爽人人干人人爱| 日本免费a在线| 欧美色视频一区免费| 久久午夜综合久久蜜桃| www国产在线视频色| 亚洲欧美精品综合一区二区三区| 国产在线精品亚洲第一网站| 亚洲成a人片在线一区二区| 国产欧美日韩一区二区精品| 亚洲色图 男人天堂 中文字幕| 99国产精品一区二区蜜桃av| 欧美成人性av电影在线观看| 男女视频在线观看网站免费| 嫩草影院入口| 99riav亚洲国产免费| 久久久久国内视频| 在线观看午夜福利视频| 精品欧美国产一区二区三| 精品午夜福利视频在线观看一区| 午夜精品一区二区三区免费看| 中文字幕高清在线视频| 久久久久免费精品人妻一区二区| 色在线成人网| 91在线精品国自产拍蜜月 | 成人无遮挡网站| 成熟少妇高潮喷水视频| 网址你懂的国产日韩在线| 一级a爱片免费观看的视频| 亚洲九九香蕉| 亚洲欧美精品综合久久99| 好看av亚洲va欧美ⅴa在| 日韩欧美国产一区二区入口| 成人特级av手机在线观看| 国产欧美日韩一区二区精品| 看免费av毛片| 午夜福利高清视频| 99国产综合亚洲精品| 午夜激情福利司机影院| 一本综合久久免费| 国产精品一区二区精品视频观看| 国产亚洲精品久久久久久毛片| 不卡av一区二区三区| 久久久久久久久中文| 免费观看精品视频网站| 天堂av国产一区二区熟女人妻| 一区二区三区国产精品乱码| 国产精品一区二区三区四区免费观看 | 亚洲精品一区av在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 宅男免费午夜| 18美女黄网站色大片免费观看| 成人三级做爰电影| 国产亚洲精品久久久久久毛片| 1024香蕉在线观看| 亚洲欧美日韩高清专用| 国产亚洲精品综合一区在线观看| 无遮挡黄片免费观看| 偷拍熟女少妇极品色| 桃色一区二区三区在线观看| 又黄又爽又免费观看的视频| 1024香蕉在线观看| 欧美日韩福利视频一区二区| 91在线观看av| 97人妻精品一区二区三区麻豆| 国产精品av久久久久免费| 欧美日韩福利视频一区二区| 亚洲成av人片在线播放无| 国产乱人视频| 嫩草影院精品99| 国内精品久久久久久久电影| 欧美日韩瑟瑟在线播放| 黄片小视频在线播放| 亚洲五月婷婷丁香| 一区二区三区国产精品乱码| 美女午夜性视频免费| 亚洲av熟女| 国产成人啪精品午夜网站| 国产精品99久久99久久久不卡| 黄色女人牲交| 精品欧美国产一区二区三| 亚洲 欧美一区二区三区| ponron亚洲| 久久久久久久午夜电影| 狂野欧美激情性xxxx| 搞女人的毛片| 日韩欧美一区二区三区在线观看| 亚洲欧美日韩高清专用| 美女被艹到高潮喷水动态| 国产爱豆传媒在线观看| 欧美性猛交黑人性爽| 午夜激情福利司机影院| 91九色精品人成在线观看| 2021天堂中文幕一二区在线观| 亚洲性夜色夜夜综合| 色视频www国产| 好看av亚洲va欧美ⅴa在| 亚洲国产精品999在线| 亚洲欧美日韩卡通动漫| 国产久久久一区二区三区| 亚洲欧美精品综合一区二区三区| 亚洲熟妇熟女久久| www国产在线视频色| 757午夜福利合集在线观看| avwww免费| 中国美女看黄片| 中文字幕最新亚洲高清| 一进一出抽搐gif免费好疼| 视频区欧美日本亚洲| 老司机午夜十八禁免费视频| h日本视频在线播放| 99久久精品热视频| 在线十欧美十亚洲十日本专区| 欧美日本视频| 国产欧美日韩精品一区二区| 啦啦啦观看免费观看视频高清| 美女被艹到高潮喷水动态| 婷婷精品国产亚洲av| 国产爱豆传媒在线观看| 在线永久观看黄色视频| 哪里可以看免费的av片| 欧美成狂野欧美在线观看| 欧美国产日韩亚洲一区| 757午夜福利合集在线观看| 亚洲乱码一区二区免费版| 久久中文看片网| 欧美zozozo另类| 1024手机看黄色片| 欧美极品一区二区三区四区| 久久久精品大字幕| 黑人操中国人逼视频| 老熟妇乱子伦视频在线观看| 又紧又爽又黄一区二区| 我的老师免费观看完整版| 午夜福利在线在线| 国内揄拍国产精品人妻在线| 淫秽高清视频在线观看| 中亚洲国语对白在线视频| 中文字幕精品亚洲无线码一区| 美女扒开内裤让男人捅视频| 中文字幕av在线有码专区| 全区人妻精品视频| 国内揄拍国产精品人妻在线| 久9热在线精品视频| 亚洲午夜理论影院| 久久精品夜夜夜夜夜久久蜜豆| 性色avwww在线观看| 中文字幕久久专区| 国产一区在线观看成人免费| 久久午夜亚洲精品久久| 亚洲欧美日韩东京热| 国产精品久久久久久精品电影| 国产成人影院久久av| 亚洲 欧美一区二区三区| 免费看a级黄色片| 久久久久久久精品吃奶| 国产av麻豆久久久久久久| 日韩欧美精品v在线| 天天躁日日操中文字幕| 亚洲国产欧美网| 18禁黄网站禁片免费观看直播| 男女视频在线观看网站免费| 久久久久久久久中文| 97人妻精品一区二区三区麻豆| 欧美成人一区二区免费高清观看 | 欧美一区二区国产精品久久精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一区二区三区色噜噜| 国产精品爽爽va在线观看网站| 国产v大片淫在线免费观看| 久久香蕉精品热| 琪琪午夜伦伦电影理论片6080| 国产69精品久久久久777片 | 国产日本99.免费观看| 亚洲va日本ⅴa欧美va伊人久久| 99久久精品热视频| 97超级碰碰碰精品色视频在线观看| 欧美激情久久久久久爽电影| www.999成人在线观看| 国产日本99.免费观看| 国产精品一区二区精品视频观看| 久久久久久久午夜电影| 中文在线观看免费www的网站| 国产高清视频在线播放一区| 色精品久久人妻99蜜桃| 久久精品亚洲精品国产色婷小说| 99精品欧美一区二区三区四区| 国产日本99.免费观看| 亚洲专区国产一区二区| 俄罗斯特黄特色一大片| 久久久精品大字幕| 美女大奶头视频| 国产亚洲av嫩草精品影院| 国产熟女xx| 国产精品av视频在线免费观看| 欧美日韩福利视频一区二区| 老司机在亚洲福利影院| 亚洲av电影在线进入| 一卡2卡三卡四卡精品乱码亚洲| 我的老师免费观看完整版| 搡老妇女老女人老熟妇| 免费观看精品视频网站| 精品国产美女av久久久久小说| 国产麻豆成人av免费视频| 白带黄色成豆腐渣| 亚洲九九香蕉| 国产在线精品亚洲第一网站| 国内揄拍国产精品人妻在线| 国产亚洲欧美98| 亚洲中文字幕日韩| 亚洲av熟女| 国产av麻豆久久久久久久| 色噜噜av男人的天堂激情| 1024手机看黄色片| 国内精品一区二区在线观看| 老汉色av国产亚洲站长工具| 级片在线观看| 国产不卡一卡二| 亚洲成人久久爱视频| 成年版毛片免费区| av在线天堂中文字幕| 国产综合懂色| 男人舔女人下体高潮全视频| 欧美色欧美亚洲另类二区| 九九在线视频观看精品| 香蕉丝袜av| 精品国产乱子伦一区二区三区| 97人妻精品一区二区三区麻豆| 1024手机看黄色片| 小说图片视频综合网站| 听说在线观看完整版免费高清| 真实男女啪啪啪动态图| 色在线成人网| 午夜激情福利司机影院| 全区人妻精品视频| 亚洲欧美一区二区三区黑人| 国产成人精品久久二区二区免费| 一进一出好大好爽视频| 亚洲avbb在线观看| 亚洲自拍偷在线| 国产精华一区二区三区| 欧美日韩精品网址| 午夜福利免费观看在线| 国产高清videossex| 91字幕亚洲| 成人无遮挡网站| 久久精品亚洲精品国产色婷小说| 久久久久久大精品| 九色国产91popny在线| 美女免费视频网站| 亚洲成a人片在线一区二区| 亚洲中文字幕一区二区三区有码在线看 | 精品国产乱子伦一区二区三区| 亚洲美女黄片视频| 久久中文字幕一级| 欧美中文日本在线观看视频| 国产又黄又爽又无遮挡在线| 国产精品亚洲美女久久久| 免费观看人在逋| 国模一区二区三区四区视频 | 国产精品一区二区精品视频观看| 国产一区在线观看成人免费| 欧美一区二区国产精品久久精品| 久久久久性生活片| 丁香六月欧美| 一进一出抽搐gif免费好疼| 九九热线精品视视频播放| 国产亚洲精品久久久com| 久久人妻av系列| 日本成人三级电影网站| 在线视频色国产色| 国产精品女同一区二区软件 | 国产熟女xx| 热99在线观看视频| 一本一本综合久久| 欧美成狂野欧美在线观看| 欧美激情在线99| 99久国产av精品| www日本在线高清视频| 午夜a级毛片| 国产精品久久视频播放| 亚洲第一电影网av| 免费无遮挡裸体视频| 午夜福利欧美成人| 亚洲av电影在线进入| 一进一出抽搐动态| 亚洲av成人精品一区久久| 好男人电影高清在线观看| 99在线人妻在线中文字幕| 精品一区二区三区视频在线 | 色视频www国产| 岛国在线观看网站| 在线视频色国产色| 少妇裸体淫交视频免费看高清| 久久久久性生活片| 亚洲午夜精品一区,二区,三区| 国产精品久久久久久精品电影| 久久久色成人| 国产精品99久久久久久久久| 偷拍熟女少妇极品色| 精品国内亚洲2022精品成人| 欧美黑人欧美精品刺激| 久久热在线av| 久久中文看片网| 日本三级黄在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 99久久精品国产亚洲精品| 成人av一区二区三区在线看| 香蕉丝袜av| 国产激情久久老熟女| 日本五十路高清| 免费观看的影片在线观看| 脱女人内裤的视频| 亚洲,欧美精品.| 欧美中文综合在线视频| 男女做爰动态图高潮gif福利片| 欧美中文日本在线观看视频| 午夜影院日韩av| 非洲黑人性xxxx精品又粗又长| 悠悠久久av| 黄片大片在线免费观看| 一区二区三区激情视频| 午夜免费激情av| 黄色日韩在线| 成人无遮挡网站| 曰老女人黄片| 亚洲国产精品成人综合色| 欧美绝顶高潮抽搐喷水| 亚洲精品中文字幕一二三四区| 午夜日韩欧美国产| 听说在线观看完整版免费高清| 国产激情偷乱视频一区二区| 琪琪午夜伦伦电影理论片6080| 免费在线观看日本一区| 19禁男女啪啪无遮挡网站| 天堂网av新在线| 国产精品一及| 黑人欧美特级aaaaaa片| 十八禁网站免费在线| 两个人看的免费小视频| 亚洲av免费在线观看| 日韩欧美国产在线观看| 国产私拍福利视频在线观看| xxx96com| АⅤ资源中文在线天堂| 免费观看精品视频网站| 亚洲精品粉嫩美女一区| 免费在线观看日本一区| 亚洲精品粉嫩美女一区| 一级毛片高清免费大全| 九九热线精品视视频播放| 日日摸夜夜添夜夜添小说| 九色成人免费人妻av| 日韩大尺度精品在线看网址| 国产精品一及| 亚洲第一欧美日韩一区二区三区| av天堂中文字幕网| 国产亚洲欧美在线一区二区| 婷婷丁香在线五月| 欧美日韩黄片免| 18禁裸乳无遮挡免费网站照片| 成年版毛片免费区| 午夜福利在线观看吧| 网址你懂的国产日韩在线| 99久久无色码亚洲精品果冻| 一级黄色大片毛片| 国产亚洲av嫩草精品影院| 成年女人看的毛片在线观看| 18禁裸乳无遮挡免费网站照片| 一级黄色大片毛片| 亚洲成av人片免费观看| 色哟哟哟哟哟哟| 精品一区二区三区视频在线 | 变态另类丝袜制服| 麻豆一二三区av精品| 麻豆国产97在线/欧美| 国产探花在线观看一区二区| 欧美一区二区国产精品久久精品| 亚洲无线观看免费| 国产精品av久久久久免费| 欧美日本视频| 日日干狠狠操夜夜爽| 久久精品亚洲精品国产色婷小说| 最近最新中文字幕大全免费视频| 亚洲专区国产一区二区| 国产亚洲av嫩草精品影院| 亚洲一区二区三区色噜噜| 精品欧美国产一区二区三| 两个人的视频大全免费| 亚洲人成伊人成综合网2020| 在线视频色国产色| 老司机福利观看| 男女下面进入的视频免费午夜| 欧洲精品卡2卡3卡4卡5卡区| 美女黄网站色视频| 啦啦啦韩国在线观看视频| 久久香蕉国产精品| 久久精品国产综合久久久| 舔av片在线| 在线观看舔阴道视频| 亚洲九九香蕉| 欧美不卡视频在线免费观看| 在线观看午夜福利视频| 人妻夜夜爽99麻豆av| 久99久视频精品免费| 久久欧美精品欧美久久欧美| 在线免费观看不下载黄p国产 | 欧美中文综合在线视频| 久久中文看片网| 淫妇啪啪啪对白视频| 19禁男女啪啪无遮挡网站| 成人精品一区二区免费| 精品久久久久久久毛片微露脸| 欧美日本视频| 亚洲国产精品成人综合色| 国产精品99久久99久久久不卡| 这个男人来自地球电影免费观看| 全区人妻精品视频| 国产精品久久视频播放| 亚洲一区二区三区色噜噜| 熟女人妻精品中文字幕| 久久久久亚洲av毛片大全| 欧美中文日本在线观看视频| 国内毛片毛片毛片毛片毛片| 黑人欧美特级aaaaaa片| 在线视频色国产色| 午夜a级毛片| 久久中文字幕一级| 午夜久久久久精精品| 免费看a级黄色片| 一级作爱视频免费观看| 少妇熟女aⅴ在线视频| 一二三四社区在线视频社区8| 成人亚洲精品av一区二区| 亚洲午夜精品一区,二区,三区| 午夜a级毛片| 狂野欧美白嫩少妇大欣赏| 国产乱人伦免费视频| 国产精品自产拍在线观看55亚洲| 欧美一级a爱片免费观看看| 亚洲精品一区av在线观看| av女优亚洲男人天堂 | 国产精品女同一区二区软件 | 免费大片18禁| 天天一区二区日本电影三级| 一边摸一边抽搐一进一小说| 三级国产精品欧美在线观看 | 国产又色又爽无遮挡免费看| 欧美大码av| 床上黄色一级片| 国产久久久一区二区三区| 亚洲,欧美精品.| 国产av麻豆久久久久久久| 国产精品精品国产色婷婷| 成人永久免费在线观看视频| 亚洲七黄色美女视频| 婷婷精品国产亚洲av| 亚洲欧美一区二区三区黑人| 亚洲成人免费电影在线观看| 在线观看免费午夜福利视频| 亚洲欧美日韩无卡精品| 一本精品99久久精品77| 国产欧美日韩精品亚洲av| 亚洲国产欧美网| 99国产精品一区二区蜜桃av| 亚洲电影在线观看av| 可以在线观看的亚洲视频| 村上凉子中文字幕在线| 亚洲国产中文字幕在线视频| 国产高清视频在线观看网站| 黑人操中国人逼视频| 亚洲av熟女| 精品国产超薄肉色丝袜足j| 热99re8久久精品国产| 日韩精品青青久久久久久| 老司机福利观看| 亚洲,欧美精品.| 亚洲中文日韩欧美视频| 夜夜爽天天搞| 动漫黄色视频在线观看| 精品无人区乱码1区二区| 一a级毛片在线观看| 中文字幕最新亚洲高清| a级毛片a级免费在线| 成人高潮视频无遮挡免费网站| 99riav亚洲国产免费| 男人舔女人的私密视频| 色综合欧美亚洲国产小说| 黄片小视频在线播放| 麻豆一二三区av精品| 亚洲欧美日韩卡通动漫| 精品一区二区三区视频在线观看免费| 免费在线观看亚洲国产| 国产免费av片在线观看野外av| 成人欧美大片| а√天堂www在线а√下载| 亚洲熟女毛片儿| 很黄的视频免费| 国产主播在线观看一区二区| 国产精品野战在线观看| 狠狠狠狠99中文字幕| 成人特级黄色片久久久久久久| 很黄的视频免费| 亚洲欧美日韩无卡精品| 精品久久蜜臀av无| 亚洲国产精品999在线| 免费看日本二区| 五月伊人婷婷丁香| 免费看日本二区| 亚洲精品一区av在线观看| 精品无人区乱码1区二区| 老熟妇仑乱视频hdxx| 两性夫妻黄色片| 国产视频一区二区在线看| 国产精品久久视频播放| 免费无遮挡裸体视频| 亚洲欧美日韩卡通动漫| 特级一级黄色大片| 午夜亚洲福利在线播放| 国产熟女xx| 听说在线观看完整版免费高清| 午夜日韩欧美国产| 嫩草影院精品99| 午夜日韩欧美国产| a级毛片a级免费在线| 波多野结衣巨乳人妻| АⅤ资源中文在线天堂| 99精品在免费线老司机午夜| 亚洲精品美女久久久久99蜜臀| 日韩大尺度精品在线看网址| 一个人免费在线观看电影 | 亚洲成a人片在线一区二区| 99久久精品热视频| 9191精品国产免费久久| 成人无遮挡网站| 久久久久亚洲av毛片大全| av黄色大香蕉| 欧美性猛交黑人性爽| av福利片在线观看| 黄色片一级片一级黄色片| 久久精品夜夜夜夜夜久久蜜豆| 亚洲 欧美一区二区三区| 亚洲欧美一区二区三区黑人| 亚洲成人久久性| 精品日产1卡2卡| 日韩三级视频一区二区三区| 亚洲午夜精品一区,二区,三区| 别揉我奶头~嗯~啊~动态视频| av国产免费在线观看| 国产精品一区二区免费欧美| 亚洲七黄色美女视频| 老汉色∧v一级毛片| 午夜福利成人在线免费观看| 麻豆国产97在线/欧美| 成人高潮视频无遮挡免费网站| 一级作爱视频免费观看| 一a级毛片在线观看| 精品久久久久久久人妻蜜臀av| 国产成人精品无人区| 午夜视频精品福利| 亚洲精品乱码久久久v下载方式 | 国产成人av教育| 在线观看一区二区三区| 色综合婷婷激情| 在线观看午夜福利视频| 无遮挡黄片免费观看| 亚洲av成人精品一区久久| 亚洲精品中文字幕一二三四区| 国产精品综合久久久久久久免费| 亚洲avbb在线观看| 露出奶头的视频| 三级男女做爰猛烈吃奶摸视频| 日本黄色片子视频| 免费高清视频大片| 白带黄色成豆腐渣| 亚洲欧美激情综合另类| 99热只有精品国产| 日韩精品中文字幕看吧| 可以在线观看的亚洲视频| 免费av毛片视频| 亚洲国产日韩欧美精品在线观看 | 91老司机精品| 欧美成人性av电影在线观看| 老熟妇仑乱视频hdxx| 国产人伦9x9x在线观看| 国产黄色小视频在线观看| 国内精品美女久久久久久| 色综合欧美亚洲国产小说| 国产亚洲欧美在线一区二区| 九九在线视频观看精品| 老司机午夜福利在线观看视频| 成年女人永久免费观看视频| av天堂中文字幕网| 又爽又黄无遮挡网站| 中文字幕人妻丝袜一区二区| 精品福利观看| 久久久久性生活片| 日本精品一区二区三区蜜桃| 欧美日韩精品网址| 夜夜夜夜夜久久久久| 亚洲av免费在线观看| 岛国在线观看网站| 国内精品久久久久久久电影| 欧美黄色片欧美黄色片| 757午夜福利合集在线观看| 99久久国产精品久久久| 美女高潮喷水抽搐中文字幕| 亚洲午夜精品一区,二区,三区| 两人在一起打扑克的视频|