• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Collective motion of active particles in environmental noise?

    2017-08-30 08:26:58QiushiChen陳秋實(shí)andMingJi季銘
    Chinese Physics B 2017年9期

    Qiu-shi Chen(陳秋實(shí))and Ming Ji(季銘)

    National Laboratory of Solid State Microstructures and Department of Physics,Nanjing University,Nanjing 210093,China

    Collective motion of active particles in environmental noise?

    Qiu-shi Chen(陳秋實(shí))?and Ming Ji(季銘)

    National Laboratory of Solid State Microstructures and Department of Physics,Nanjing University,Nanjing 210093,China

    We study the collective motion of active particles in environmental noise,where the environmental noise is caused by noise particles randomly diffusing in two-dimensional space.We show that active particles in a noisy environment can self organize into three typical phases:polar liquid,band,and disordered gas states.In our model,the transition between band and disordered gas states is discontinuous.Giant number fluctuation is observed in the polar liquid phase.We also compare our results with the Vicsek model and show that the interaction with noise particles can stabilize the band state to very low noise condition.This band structure could recruit most of the active particles in the system,which greatly enhances the coherence of the system.Our findings of complex collective behaviors in environmental noise help us to understand how individuals modify their self-organization by environmental factors,which may further contribute to improving the design of collective migration and navigation strategies.

    active matter,soft matter,self-organization

    1.Introduction

    Collective behavior of active matter has attracted many physicists’attention recently.It displays various fascinating patterns at every scale,down to molecular motors in the cell, up to large animal groups.[1]For example,actin filaments perform persistent random walk,wave-like structures,spirals and swirls,[2–5]the bacillus subtilis grows a peculiar concentric ring-like pattern,[6,7]E.coli in the lab self organizes into a highly ordered phase through growth and division in a dense colony.[8]Similarly,large living organisms such as locusts perform a disorder to order transition,[9]fish schools and bird flocks provide some complex patterns such as travelling band, milling,and cluster.[10–13]The reason why active matters form evolutionary patterns remains unclear.One possible explanation would be that there exists some inherent benefit to overcome environmental perturbations or other distractions.[14–17]However,there is scarce empirical information about the precise interaction rules between the components of active matters because of the technological difficulties.[18]Physicists are trying to find a minimal model to study these unexpected collective properties.[19,20]

    Vicsek and collaborators provided a metric interaction self-propelled particles model that exhibits a disorder to order phase transition.[21]In this model,particles move in a constant speed and interact locally with their neighbors within a certain radius to keep alignment with the group members.It is interesting that a collective pattern occurs with large particle density and small noise intensity.Some theoretical description of the dynamics of the flocking behavior for self-propelled particles was proposed by Toner and Tu.[22,23]Beyond the previous investigation on the nature of the original Vicsek model,people proposed many variants to describe other kinds of active matter systems.Most of these models only change the angular interaction rules with their neighbors,and usually these models can exhibit spectacular collective behaviors that are reminiscent to fascinating dynamic patterns.[24–33]Indeed,the collective behavior of organisms is responsive to two kinds of interactions:social interaction with their neighbors and interactions with the surrounding environment.[14,15]However, most previous studies in literature mainly focus on the collective motion in response to nearby neighbors,less concentrating on the environmental factor.Individuals may adopt appropriate moving patterns that facilitate group motion in an environmentally dependent way.[15]For example,under environmental stimuli or threat,bird flocks would align more strongly with their neighbors to keep cohesion.[14]Fish schools form a large size group in the alarm treatment and a small one in the food treatment.[34]Bacteria in colonies forms various patterns on artificial surfaces.[35]In particular,E.coli.employs run and tumble locomotion upon environmental stimuli.[36–38]In summary,environmental factors have a great effect on individual and collective behaviors.

    In this paper,we introduce a Vicsek-like model that contains two kinds of particles to investigate the collective motion of the system:active particles that keep alignment with their neighbors and the noise particles randomly diffusing in two dimensional space that lead to the environmental noise introduced here.We study the generic phase behavior of the active particles interacting with the noise particles,in competition with inherent noise and alignment interaction.We show that,under a noisy environment,the system exhibits three typical phases:polar liquid,band and disordered gas states.We also compare our results with the original Vicsek model.In our system,the band state can exist even in a relative low noise region.This effect could help to increase the spatial coherence in collective motion.

    2.Methods and models

    We consider a modified version of the Vicsek model for Naactive particles moving off lattice in a two-dimensional space of linear size L,with periodic boundary conditions,interacting via polar alignment with their neighbors[21]in competition with environmental noise.The noise intensity is proportional to the local density of noise particles.The form of environmental noise in the update rule is analogous to the vector noise introduced in Ref.[39]and inherent scalar noise is also considered.We express the evolution of the j-th particle according to

    3.Results

    Here,we mostly report on the system with v=0.5, ρa(bǔ)=Na/L2=1,R=1,γ=5,and time interval Δt=1. To characterize the global degree of orientational order,we consider the following order parameter,which is defined aswhere Nais the total number of active particles in the system.

    Fig.1.(color online)Phase diagram in the(ρnη)plane.The red region corresponds to the polar liquid state.The blue region corresponds to the band state.The green region corresponds to the disordered gas state.

    As we change the noise level η and noise particles’density ρn,we find three typical phases as shown in Fig.1:the polar ordered liquid state with no band structures in the small η and small ρnregion(Fig.2(a)),the band state with the coexistence of a polar liquid band and disordered gas in an intermediate region(Figs.2(b)–2(d)),and the disordered gas state in the large η and large ρnregion.

    We study the phase transition between different phases on the phase diagram in detail.Firstly,we show the phase transition from the band state to the disordered gas state by increasing noise η.The transition could be well characterized by the measurement of the polar order parameter.At the low noise region,as the noise intensity increases,the order parameter decreases slowly.Further increasing the noise intensity,when it is close to the transition point,the order parameter ? drops sharply to zero,as shown in Fig.3(a).This is the famous discontinuous phase transition from band state to disordered gas state in the original Vicsek model because of the existence of band structure.[39,40]For stronger environmental noise,i.e,the density of noise particles increases,the transition line of the order parameter moves down and the transition point moves left.As we show,the environmental noise decreases the polar order of active particles.

    Fig.3.(color online)(a)The time-averaged order parameter ? vs noise strength η for various densities of noise particles.(b)Binder cumulant value G.(c)Piece of order parameter time series around the transition point(ρn=0.3 and η=0.4).(d)Order parameter distribution around the transition point(ρn=0.3).

    We turn our attention to the question whether the order to disorder phase transition is discontinuous,the same as that in the Vicsek model.A direct method to distinguish first-order phase transition and second-order phase transition is to measure Binder cumulant value G,which is defined as G=1?〈?4〉/3〈?2〉2.If the phase transition is of first-order, G exhibits minimum near the threshold,while for the secondorder phase transition,G does not have minimum near the threshold.As we show in Fig.3(b),in different environmental noise conditions,all of the G curves fall to negative values near the transition point,suggesting a discontinuous transition.The minimum points in this figure indicate the transition points.It is interesting that G keeps a constant value of 0.66 in order state and 0.33 in disordered state,for different ρnvalues.This is the property of G distinguishing different states.

    We also show the time series of the order parameter around the transition point in Fig.3(c).The band state and the disordered gas state are bistable near the transition point.?(t) exhibits strong fluctuations between these two states.High ?(t)values correspond to the band state,while low ?(t)valuescorrespond to the disordered gasstate.The system can stay in both states for a long time and suddenly take a transition to the other state.We further characterize the probability distribution function(PDF)of the order parameter ? near the transition point in Fig.3(d).The blue and black curves with one hump indicate the disordered state and the ordered state,respectively.The red ? curve for η=0.4 demonstrates strongly a bimodal distribution,indicating a discontinuous phase transition.

    Secondly,we study the phase transition from the polar ordered liquid state to the band state on the phase diagram.It is difficult to observe this transition in the measurement of the polar order parameter,because both of these states are of high orientational order.The main difference between these two phases is the existence of the well organized band structures.A clear travelling band is observed in the band state in Figs.2(b)–2(d),while in the polar liquid state the particles are homogeneously distributed without any clear band-like structures(Fig.2(a)).We can distinguish these two states by measuring density fluctuationsand order fluctuationswith the increase of noise strength,[40]whereandAs we show in Figs.4(a)and 4(b),the polar liquid state in the small η region has relative small density fluctuations and order fluctuations with the change of η.When η>0.22,both density and order fluctuations grow rapidly with the increase of η.As we show in Fig.2(a),near the transition,the system has no clear band structures but are globally polar ordered.Further increasing the noise strength η,the system self-organizes into high density and high order band structures(Figs.2(b)–2(d)).We locate the transition point as the point that the fluctuations curve starts to increase;however,this point is hard to locate accurately.For the lower η region,the density fluctuation slowly increases,indicating strong density inhomogeneity created by non-band structures.While the order fluctuation decreases to zero,suggesting a homogeneous profile of order parameterfield.The decouple of density and polar fluctuations is because of the formation of many dense clusters which increases the inhomogeneity of the number density.At the same time, the system is highly ordered with small fluctuation of order parameter.

    Fig.4.(color online)(a)The time-averaged variances of density profiles as a function of noise strength η.(b)The time-averaged variances of order parameter profiles as a function of η.(c)The density profile in the band state.(d)Local order parameter profiles for panel(c).Only active particles are shown.Parameters:L=128,ρn=1,and η=0.3.

    For larger noise strength near η=0.33,robust band structures lead to strong spatial inhomogeneity.As shown in Figs.4(a)and 4(b),with the increase of η,a collective moving polar band emerges and the density fluctuation increases correspondingly in Fig.4(a).Correspondingly,the fluctuation of order parameter is also strong as shown in Fig.4(b).In this regime,particles inside the high density bands are highly ordered,while they are disordered in the background.That is why the spatial fluctuations of the order parameter follow the trend of fluctuations of density in the region 0.26<η<0.4. We now focus on the internal structure of the travelling band. As we show in Figs.4(c)and 4(d),the band does not consist of a single cluster that all particles inside the band move coherently.In fact,the band is a dynamical object made of many individual clusters.The band continuously absorbs clusters,at the same time,the clusters split and leave the band.The order parameter profile also shows that the local order inside the band is high,while it is lower in the background.

    As we further increase the noise intensity η,the bands vanish,leaving a spatially homogeneous disordered phase (Fig.3(a)).Both density fluctuationsand order fluctuationsdecrease to zero in Figs.4(a)and 4(b).The noise dominates the dynamics of the system.In the polar liquid regime,as shown in Fig.5(a),we measure the number fluctuation in a subsystem of various box sizes.For system sizes L=128 and L=256,we find the relationship Δn∝〈n〉αwith α=0.75,which is greater than a power law relation α=0.5 as expected in the equilibrium state.The giant density fluctuation is a typical phenomenon in an active system. The strong fluctuation is due to the formation of dense-packed clusters.The average-neighbor of each particle increases as we decrease the noise down to the polar liquid region,indi-cating the emergence of locally high packed coherent clusters. The formation of a band structure from the polar liquid state to the band state by increasing noise could be understood as the following process.Strong fluctuation of density breaks the liquid clusters,then these clusters reconnect and stabilize into band structures.We look at the density distribution function in the liquid region as shown in Fig.5(b),the probability distribution of high density clusters decreases as the cluster size increases.At the end of this curve,we observe an approximately exponential tail,which is in agreement with the Vicsek model.[41]

    Fig.5.(color online)(a)Giant number fluctuations that the root mean square Δn as a function of particles n contained in boxes of various linear sizes.The green line is a power-law of slope 0.75(ρn=0.1 and η=0.1).(b)PDF of coarse-grained density ρ with measured box size l=4(ρn=0.1 and η=0.1).

    Finally,we consider the limiting case when ρn=0.In this case our model reduces to the original Vicsek model. Recently,the order–disorder transition in the original Vicsek model could be understood as a liquid–gas transition rather than an order–disorder phase transition.[40]Our findings are in agreement with such a scenario that as the noise intensity η increases,the system exhibits three phases:polar liquid at low noise,micro-phase separation with band structure at mediate noise,disordered gas at high noise.In our simulation,we show a phase transition from a disordered state to an ordered one. This order-disorder transition is also observed in experiments on locusts and fish schools.As the density of noise particles increases,there is a rapid transition from highly synchronized behavior to disordered state.Our model is useful for a qualitative understanding of such phenomena.For a low ρncondition,each particle only interacts with a small number of noise particles.Thus,their behaviors mainly depend on the alignment interaction.As the number of noise particles increases, each particle has more“noise”neighbors rather than“active”neighbors.The noise leads to a lower alignment order.In the band state,the particles form some clusters and rapidly aggregate into ordered bands,travelling in a disordered background. We also show that the band state could be extended into a finite ρnregion,but the polar liquid phase as defined above would shrink with the increase of ρn.In general,the system may stay in the coherent moving band state at very low noise,with the introduction of noise particles.While in the original Vicsek model,the band state at the low noise condition already disappears because of the transition to a polar liquid state.

    4.Conclusion

    In this paper,we study the collective motion of self propelled particles in environmental noise.We explore the (ρn,η)parameters plane and show three typical phases:polar liquid,band,and disordered states.When ρnapproaches zero, the system reduces to the original Vicsek model.In comparison with the phase transition in the Vicsek model,we study the phase transition in noise particles condition and find that the transition from order to disorder state is strongly discontinuous,which is in agreement with the Vicsek model.For finite ρn,the disorder region becomes larger because the noise particle can be regarded as a noise source.At the same time, the transition point from band state to liquid phase also shifts to the low noise region.If η is low enough,for finite density of noise particles,active particles can recruit most of the particles into the band structure.This greatly enhances the spatial coherence of the system in the low η condition.However,in the original Vicsek model,the system is spatially homogeneous because of the transition to the polar liquid state. Our findings of complex collective behaviors in environmental noise help us to understand how individuals modify their self-organization by environmental factors,which may further contribute to improving the design of collective migration and navigation strategies.

    Acknowledgment

    We thank the soft matter laboratory in the department of physics,Nanjing University.

    [1]Vicsek T and Zafeiris A 2012 Physics Reports 517 71

    [2]Schaller V,Weber C Semmrich C,Frey E and Bausch A R 2010 Nature 467 73

    [3]Schaller V,Weber C,Frey E and Bausch A R 2011 Soft Matter 7 3213

    [4]Shi X Q and Ma Y Q 2010 Proc.Natl.Acad.Sci.USA 107 11709

    [5]Chen L M 2016 Acta Phys.Sin.65 186401(in Chinese)

    [6]Czirok A,Matsushita M and Vicsek T 2001 Phys.Rev.E 63 031915

    [7]Yamazaki Y,Ikeda T,Shimada H,Hiramatsu F,Kobayashi N,Wakita J,Itoh H,Kurosu S,Nakatsuchi M,Matsuyama T and Matsushita M 2005 Physica D 205 136

    [8]Chen C,Liu S,Shi X Q,Chaté H and Wu Y 2017 Nature 542 210

    [9]Buhl J,Sumpter D J T,Couzin I D,Hale J J,Despland E,Miller E R and Simpson S J 2006 Science 312 1402

    [10]Ballerini M,Calbibbo N,Candeleir R,Cavagna A,Cisbani E,Giardina I,Lecomte V,Orlandi A,Parisi G,Procaccini A,Viale M and Zdravkovic V 2008 Proc.Natl.Acad.Sci.USA 105 1232

    [11]Cavagna A,Cimarelli A,Giardina I,Parisi G,Santagati G,Stefanini G and Viale M 2010 Proc.Natl.Acad.Sci.USA 107 11865

    [12]Herbert-Read J E,Perna A,Mann R P,Schaerf T M,Sumpter D J T and Ward A J W 2011 Proc.Natl.Acad.Sci.USA 108 18726

    [13]Katz Y,Tunstrom K,Ioannou C C,Huepe C and Couzin I D 2011 Proc. Natl.Acad.Sci.USA 108 18720

    [14]Parrish J K and Edelstein-Keshet L 1999 Science 284 99

    [15]Couzin I 2007 Nature 445 715

    [16]Shi X Q,Chaté H and Ma Y Q 2014 New J.Phys.16 035003

    [17]Shi X Q and Ma Y Q 2007 J.Chem.Phys.126 125101

    [18]Nagy M,Akos Z,Biro D and Vicsek T 2010 Nature 464 890

    [19]Farkas I,Helbing D and Vicsek T 2002 Nature 419 131

    [20]Moussaid M,Helbing D and Theraulaz G 2011 Proc.Natl.Acad.Sci. USA 108 6884

    [21]Vicsek T,Czirok A,Jacob E B,Cohen I and Shochet O 1995 Phys.Rev. Lett.75 1226

    [22]Toner J and Tu Y H 1998 Phys.Rev.E 58 4828

    [23]Toner J and Tu Y H 1995 Phys.Rev.Lett.75 4326

    [24]Strombom D 2011 J.Theor.Biol.283 145

    [25]Shi X Q and Ma Y Q 2013 Nat.Commun.4 3013

    [26]Zhang B K,Li J,Chen K,Tian W D and Ma Y Q 2016 Chin.Phys.B 25 116101

    [27]Gregoire G,Chaté H and Tu Y H 2003 Physica D 181 157

    [28]Henkes S,Fily Y and Marchetti M C 2011 Phys.Rev.E 84 040301

    [29]Peruani F,Klauss T,Deutsch A and Voss-Boehme A 2011 Phys.Rev. Lett.106 128101

    [30]Helbing D,Johansson A and Al-Abideen H Z 2007 Phys.Rev.E 75 046109

    [31]Gopinath A,Hagan M F,Marchetti M C and Baskaran A 2012 Phys. Rev.E 85 061903

    [32]Ginelli F,Peruani F,Baer M and Chaté H 2010 Phys.Rev.Lett.104 184502

    [33]Golestanian R 2009 Phys.Rev.Lett.102 188305

    [34]Hoare D J,Couzin I D,Godin J G J and Krause J 2004 Anim.Behav. 67 155

    [35]Peruani F,Deutsch A and Bar M 2012 Phys.Rev.Lett.108 098102

    [36]Polin M,Tuval I,Drescher K,Gollub J P and Goldstein R E 2009 Science 325 487

    [37]Goldstein R E,Polin M and Tuval I 2009 Phys.Rev.Lett.103 168103

    [38]Tailleur J and Cates M E 2008 Phys.Rev.Lett.100 218103

    [39]Gregoire G and Chaté H 2004 Phys.Rev.Lett.92 025702

    [40]Solon A P,Chaté H and Tailleur J 2015 Phys.Rev.Lett.114 068101

    [41]Chaté H,Ginelli F,Gregoire G and Raynaud F 2008 Phys.Rev.E 77 046113

    26 April 2017;revised manuscript

    16 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/098903

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.91427302,91027040,and 11474155)and the National Basic Research Program of China(Grant No.2012CB821500).

    ?Corresponding author.E-mail:qs chen88926@sina.com

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    亚洲一级一片aⅴ在线观看| 免费观看的影片在线观看| 午夜精品在线福利| 亚洲不卡免费看| 91精品一卡2卡3卡4卡| 午夜福利在线观看免费完整高清在 | 91aial.com中文字幕在线观看| 国产精品三级大全| 男人的好看免费观看在线视频| 又爽又黄无遮挡网站| 中文字幕久久专区| 22中文网久久字幕| 五月玫瑰六月丁香| 人妻少妇偷人精品九色| 国产在线男女| 国产爱豆传媒在线观看| 床上黄色一级片| 性插视频无遮挡在线免费观看| 美女 人体艺术 gogo| 高清在线视频一区二区三区 | 少妇熟女aⅴ在线视频| 亚洲精品亚洲一区二区| 我要看日韩黄色一级片| 午夜激情欧美在线| 日韩在线高清观看一区二区三区| 日本五十路高清| 国产成人福利小说| 亚洲成人久久爱视频| 色尼玛亚洲综合影院| 免费看光身美女| 亚洲av中文av极速乱| 久久久久久久久大av| 国产高清有码在线观看视频| 国产精品伦人一区二区| 久久鲁丝午夜福利片| 12—13女人毛片做爰片一| 色吧在线观看| 老司机影院成人| 国产高清三级在线| 亚洲第一区二区三区不卡| 久久精品国产清高在天天线| 日本一二三区视频观看| 男女那种视频在线观看| 三级国产精品欧美在线观看| 亚洲欧洲日产国产| 99热全是精品| 日韩在线高清观看一区二区三区| 国产真实伦视频高清在线观看| 乱人视频在线观看| 如何舔出高潮| 在线a可以看的网站| 国产不卡一卡二| 最近视频中文字幕2019在线8| 可以在线观看的亚洲视频| 久久久精品大字幕| 日韩精品青青久久久久久| a级毛片免费高清观看在线播放| 国产人妻一区二区三区在| 中文在线观看免费www的网站| 波野结衣二区三区在线| 亚洲av男天堂| 欧美色视频一区免费| 十八禁国产超污无遮挡网站| 全区人妻精品视频| 精品久久久久久久久av| 精品人妻熟女av久视频| 亚洲成av人片在线播放无| 亚洲激情五月婷婷啪啪| 超碰av人人做人人爽久久| 色视频www国产| 日韩成人伦理影院| 日韩精品有码人妻一区| 最近手机中文字幕大全| 亚洲在线观看片| 精品一区二区三区人妻视频| 国产成人91sexporn| 国模一区二区三区四区视频| 亚洲三级黄色毛片| 国产三级在线视频| 欧美成人a在线观看| 中文字幕免费在线视频6| 天天一区二区日本电影三级| www.色视频.com| 一级毛片我不卡| av在线老鸭窝| 欧美又色又爽又黄视频| 国产黄片视频在线免费观看| 国产乱人偷精品视频| 在线观看66精品国产| 色综合亚洲欧美另类图片| 亚洲精品影视一区二区三区av| 国产一级毛片在线| 欧美最新免费一区二区三区| 天堂√8在线中文| 乱系列少妇在线播放| 久久久久久久久中文| 神马国产精品三级电影在线观看| 黄色视频,在线免费观看| a级毛色黄片| 亚洲欧美日韩东京热| 3wmmmm亚洲av在线观看| 日韩高清综合在线| 国产伦精品一区二区三区四那| 又粗又爽又猛毛片免费看| 狂野欧美激情性xxxx在线观看| 99热这里只有是精品在线观看| 搞女人的毛片| 国产蜜桃级精品一区二区三区| 久久久久九九精品影院| 国产精品人妻久久久久久| 只有这里有精品99| 六月丁香七月| 国产 一区 欧美 日韩| 亚洲欧美精品自产自拍| 青青草视频在线视频观看| 久久久国产成人精品二区| 人妻制服诱惑在线中文字幕| 亚洲欧洲国产日韩| 亚洲四区av| 久久这里有精品视频免费| 2022亚洲国产成人精品| 国产亚洲av嫩草精品影院| 国产色爽女视频免费观看| 国产极品精品免费视频能看的| 国产亚洲91精品色在线| 国产69精品久久久久777片| 免费看光身美女| 国产精品av视频在线免费观看| 禁无遮挡网站| 欧美人与善性xxx| 婷婷色综合大香蕉| 免费人成视频x8x8入口观看| 亚洲三级黄色毛片| 国产一区二区在线观看日韩| 国产真实乱freesex| 亚洲国产日韩欧美精品在线观看| 久久精品国产清高在天天线| 秋霞在线观看毛片| 国产老妇女一区| 久久精品影院6| 国产麻豆成人av免费视频| 亚洲性久久影院| 26uuu在线亚洲综合色| 插阴视频在线观看视频| 在线国产一区二区在线| 色综合亚洲欧美另类图片| 亚洲国产精品成人久久小说 | 一区二区三区免费毛片| 亚洲丝袜综合中文字幕| 日韩精品有码人妻一区| 美女 人体艺术 gogo| 看免费成人av毛片| 一边亲一边摸免费视频| 午夜福利成人在线免费观看| 两个人的视频大全免费| 一区二区三区四区激情视频 | 丰满乱子伦码专区| 啦啦啦啦在线视频资源| 欧美三级亚洲精品| 日本爱情动作片www.在线观看| 日韩欧美国产在线观看| 国产亚洲5aaaaa淫片| 免费搜索国产男女视频| 午夜精品一区二区三区免费看| 欧美又色又爽又黄视频| 国产成人影院久久av| 国内精品久久久久精免费| 蜜臀久久99精品久久宅男| 91久久精品国产一区二区成人| av在线老鸭窝| 日本色播在线视频| 一本久久中文字幕| 天天一区二区日本电影三级| 国产精品人妻久久久影院| 国产中年淑女户外野战色| 人妻制服诱惑在线中文字幕| 亚洲内射少妇av| 蜜桃亚洲精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 国内精品宾馆在线| 日韩在线高清观看一区二区三区| 我的女老师完整版在线观看| 成人二区视频| 成人毛片60女人毛片免费| 在线观看美女被高潮喷水网站| 亚洲国产精品国产精品| 男人舔奶头视频| 久久韩国三级中文字幕| 亚洲国产日韩欧美精品在线观看| 国产精品一区二区三区四区久久| 又爽又黄无遮挡网站| 欧美日韩一区二区视频在线观看视频在线 | 国产成人aa在线观看| 国产精品乱码一区二三区的特点| 日韩三级伦理在线观看| 午夜精品国产一区二区电影 | 国模一区二区三区四区视频| 久久久久久久久久成人| 久久这里只有精品中国| 少妇人妻精品综合一区二区 | 我要搜黄色片| 国产探花在线观看一区二区| 精品一区二区免费观看| 国产美女午夜福利| 亚洲电影在线观看av| 激情 狠狠 欧美| 在线播放国产精品三级| 又粗又爽又猛毛片免费看| 亚洲五月天丁香| 国产伦精品一区二区三区四那| 一区福利在线观看| 夜夜夜夜夜久久久久| 人体艺术视频欧美日本| 岛国在线免费视频观看| 免费av观看视频| 久久久成人免费电影| 国产黄色视频一区二区在线观看 | 丰满的人妻完整版| 国产精品一二三区在线看| 99视频精品全部免费 在线| 一级二级三级毛片免费看| 真实男女啪啪啪动态图| 国产 一区精品| 久久九九热精品免费| 91狼人影院| 亚洲自偷自拍三级| av.在线天堂| 淫秽高清视频在线观看| 高清毛片免费看| 22中文网久久字幕| 日本欧美国产在线视频| 欧美最新免费一区二区三区| 两个人视频免费观看高清| 国产精品电影一区二区三区| 久久久久久久久久黄片| 亚洲图色成人| 婷婷色综合大香蕉| 国产69精品久久久久777片| 寂寞人妻少妇视频99o| av在线播放精品| 亚洲av中文字字幕乱码综合| 波多野结衣高清作品| 如何舔出高潮| 日本与韩国留学比较| 老司机影院成人| 国产白丝娇喘喷水9色精品| 亚洲无线在线观看| 成人一区二区视频在线观看| 亚洲av免费在线观看| 亚洲欧美精品综合久久99| 日本免费一区二区三区高清不卡| 午夜福利视频1000在线观看| 国产精品一区二区在线观看99 | 久久99精品国语久久久| 能在线免费观看的黄片| 免费观看在线日韩| 一边摸一边抽搐一进一小说| 免费无遮挡裸体视频| 激情 狠狠 欧美| 亚洲在线观看片| 亚洲欧洲国产日韩| 老司机福利观看| 久久热精品热| 国产精品久久久久久精品电影小说 | 国产极品精品免费视频能看的| 亚洲七黄色美女视频| 少妇的逼水好多| 日本一二三区视频观看| 在线观看66精品国产| 青青草视频在线视频观看| 可以在线观看毛片的网站| 国产蜜桃级精品一区二区三区| 免费看av在线观看网站| 亚洲精品久久久久久婷婷小说 | 国产精品一二三区在线看| 色哟哟哟哟哟哟| 97热精品久久久久久| 国产伦在线观看视频一区| 亚州av有码| 免费黄网站久久成人精品| 99国产极品粉嫩在线观看| 国产老妇伦熟女老妇高清| 亚洲经典国产精华液单| 69av精品久久久久久| 97超碰精品成人国产| av又黄又爽大尺度在线免费看 | 99热精品在线国产| 日韩制服骚丝袜av| 又爽又黄无遮挡网站| 亚洲电影在线观看av| 一个人观看的视频www高清免费观看| 欧美高清成人免费视频www| 国产高清视频在线观看网站| 真实男女啪啪啪动态图| 99久久中文字幕三级久久日本| 精品日产1卡2卡| 国产精品久久久久久亚洲av鲁大| 国产美女午夜福利| 亚洲第一区二区三区不卡| 性插视频无遮挡在线免费观看| 特级一级黄色大片| 免费观看人在逋| 波多野结衣巨乳人妻| 中文精品一卡2卡3卡4更新| 日本在线视频免费播放| 深夜a级毛片| 最近的中文字幕免费完整| 精品熟女少妇av免费看| 最近手机中文字幕大全| 国产精品久久久久久久电影| 97热精品久久久久久| 国产毛片a区久久久久| 黄色视频,在线免费观看| 99热精品在线国产| 九色成人免费人妻av| 中文在线观看免费www的网站| 午夜a级毛片| 性欧美人与动物交配| 亚洲精品乱码久久久久久按摩| 99久国产av精品国产电影| 国产白丝娇喘喷水9色精品| 青青草视频在线视频观看| 在线国产一区二区在线| 麻豆国产97在线/欧美| 久久精品国产鲁丝片午夜精品| 国产不卡一卡二| 免费看日本二区| 免费看a级黄色片| 三级毛片av免费| 悠悠久久av| 久久国内精品自在自线图片| 在线天堂最新版资源| 一个人观看的视频www高清免费观看| 国产探花极品一区二区| 国产黄色小视频在线观看| 在线播放无遮挡| 综合色av麻豆| 尾随美女入室| 免费观看人在逋| 看黄色毛片网站| 亚洲av成人av| 精品国内亚洲2022精品成人| 亚洲内射少妇av| 亚洲三级黄色毛片| 亚洲欧洲日产国产| 国产精品人妻久久久久久| 欧美一区二区国产精品久久精品| 午夜免费男女啪啪视频观看| 九九热线精品视视频播放| 国产精品野战在线观看| 久久精品影院6| 黄色欧美视频在线观看| 床上黄色一级片| 日韩大尺度精品在线看网址| АⅤ资源中文在线天堂| 精品久久久久久成人av| 亚洲精品自拍成人| 悠悠久久av| 久久精品国产清高在天天线| 亚洲精品国产av成人精品| 国内精品久久久久精免费| 亚洲精品乱码久久久久久按摩| 国产黄色小视频在线观看| 久久久a久久爽久久v久久| 一个人看视频在线观看www免费| 国产极品精品免费视频能看的| 日本色播在线视频| 成人特级av手机在线观看| 亚洲精品久久国产高清桃花| 一级毛片aaaaaa免费看小| 久久人人精品亚洲av| a级毛色黄片| 亚洲真实伦在线观看| 秋霞在线观看毛片| 国产一区二区三区av在线 | 22中文网久久字幕| 免费在线观看成人毛片| 亚洲欧美日韩无卡精品| 精品久久久久久成人av| 亚洲av.av天堂| 国产大屁股一区二区在线视频| www.色视频.com| 天堂影院成人在线观看| av又黄又爽大尺度在线免费看 | av在线亚洲专区| 国产精品精品国产色婷婷| 91精品一卡2卡3卡4卡| 99九九线精品视频在线观看视频| 日本熟妇午夜| 六月丁香七月| 日本-黄色视频高清免费观看| 毛片女人毛片| 成人毛片a级毛片在线播放| 在线免费十八禁| 午夜福利高清视频| 亚洲成a人片在线一区二区| 中文欧美无线码| 免费看av在线观看网站| 成人国产麻豆网| 欧美高清性xxxxhd video| 热99在线观看视频| 国产又黄又爽又无遮挡在线| 一边亲一边摸免费视频| 欧美日本视频| 日日干狠狠操夜夜爽| 欧美高清成人免费视频www| av又黄又爽大尺度在线免费看 | 成人特级av手机在线观看| 亚洲美女搞黄在线观看| 人妻夜夜爽99麻豆av| 国产精品精品国产色婷婷| 国产91av在线免费观看| 久久精品国产亚洲av涩爱 | 成熟少妇高潮喷水视频| 草草在线视频免费看| 色尼玛亚洲综合影院| 亚洲av.av天堂| 亚洲在线自拍视频| 床上黄色一级片| 国产成人午夜福利电影在线观看| 99九九线精品视频在线观看视频| 国内精品一区二区在线观看| 久久韩国三级中文字幕| 成人亚洲欧美一区二区av| 国产精品久久视频播放| 麻豆久久精品国产亚洲av| 可以在线观看的亚洲视频| av天堂在线播放| 国产单亲对白刺激| 九九久久精品国产亚洲av麻豆| 午夜久久久久精精品| 精品午夜福利在线看| 免费观看精品视频网站| 舔av片在线| 伊人久久精品亚洲午夜| videossex国产| 国产极品精品免费视频能看的| 午夜爱爱视频在线播放| 亚洲欧美精品专区久久| 亚洲图色成人| 一边亲一边摸免费视频| 91狼人影院| 欧美在线一区亚洲| 欧美区成人在线视频| 久久久久网色| 最新中文字幕久久久久| 丝袜喷水一区| 欧美一区二区国产精品久久精品| 不卡视频在线观看欧美| 最后的刺客免费高清国语| 人妻夜夜爽99麻豆av| 免费在线观看成人毛片| 午夜a级毛片| 丝袜喷水一区| 狂野欧美激情性xxxx在线观看| 国产伦在线观看视频一区| 亚洲aⅴ乱码一区二区在线播放| 精品不卡国产一区二区三区| 亚洲四区av| 国产乱人视频| 久久精品国产亚洲网站| 久久精品国产自在天天线| 在线播放国产精品三级| 国产伦精品一区二区三区视频9| 成人二区视频| 日韩人妻高清精品专区| 午夜精品在线福利| 人妻制服诱惑在线中文字幕| 国国产精品蜜臀av免费| 国产成年人精品一区二区| 99热这里只有精品一区| 亚洲av免费在线观看| 亚洲三级黄色毛片| 久久久精品欧美日韩精品| 成人永久免费在线观看视频| 少妇猛男粗大的猛烈进出视频 | 简卡轻食公司| 成人三级黄色视频| 国产精品一二三区在线看| 久久精品人妻少妇| 亚洲高清免费不卡视频| 国产伦一二天堂av在线观看| 男女边吃奶边做爰视频| 久久久久久久亚洲中文字幕| 亚洲欧美日韩无卡精品| 日韩 亚洲 欧美在线| 国产成人精品久久久久久| 一个人免费在线观看电影| 国产欧美日韩精品一区二区| 免费电影在线观看免费观看| 国产精品野战在线观看| 成人午夜高清在线视频| 国产一级毛片七仙女欲春2| 秋霞在线观看毛片| 久久99热这里只有精品18| 美女被艹到高潮喷水动态| 一夜夜www| 熟女电影av网| 午夜激情欧美在线| 国产精品av视频在线免费观看| 青春草视频在线免费观看| 欧美一区二区亚洲| 国产精品久久久久久久电影| 麻豆精品久久久久久蜜桃| 男女下面进入的视频免费午夜| 亚洲欧美日韩高清在线视频| 观看美女的网站| 国产熟女欧美一区二区| 亚洲成a人片在线一区二区| 久久久成人免费电影| 成人午夜精彩视频在线观看| 岛国在线免费视频观看| 成人毛片60女人毛片免费| 国产一级毛片在线| 亚洲国产欧洲综合997久久,| 日韩国内少妇激情av| 给我免费播放毛片高清在线观看| 国产精品无大码| 久久人妻av系列| 我要看日韩黄色一级片| 美女脱内裤让男人舔精品视频 | 小说图片视频综合网站| 久久人人爽人人片av| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲欧美日韩东京热| 久久午夜亚洲精品久久| av国产免费在线观看| 亚洲在线自拍视频| 嫩草影院新地址| 天堂中文最新版在线下载 | 天天躁夜夜躁狠狠久久av| 久久久久性生活片| 人人妻人人澡欧美一区二区| 成年免费大片在线观看| 大型黄色视频在线免费观看| 国产真实乱freesex| 国产成人精品久久久久久| 日本一二三区视频观看| 免费观看在线日韩| 色播亚洲综合网| av福利片在线观看| 一个人观看的视频www高清免费观看| 国产探花极品一区二区| 亚洲av第一区精品v没综合| 久久久久国产网址| av在线播放精品| 黄色日韩在线| 一本久久中文字幕| 我的老师免费观看完整版| 午夜爱爱视频在线播放| 此物有八面人人有两片| 99热这里只有是精品在线观看| 久久国产乱子免费精品| 99热这里只有精品一区| 日日撸夜夜添| 亚洲欧美日韩高清在线视频| 男女边吃奶边做爰视频| 中国美白少妇内射xxxbb| 成人午夜高清在线视频| 国产精品一区二区在线观看99 | 国产成人freesex在线| av卡一久久| 永久网站在线| 欧美xxxx性猛交bbbb| 亚洲成人精品中文字幕电影| 99热这里只有精品一区| 亚洲一级一片aⅴ在线观看| 欧美+日韩+精品| 久久久久网色| 热99在线观看视频| 亚洲成av人片在线播放无| 男插女下体视频免费在线播放| 少妇人妻一区二区三区视频| 联通29元200g的流量卡| 夜夜爽天天搞| 国产av在哪里看| 亚洲av成人精品一区久久| 一区二区三区四区激情视频 | 校园春色视频在线观看| 九九热线精品视视频播放| 熟女电影av网| 如何舔出高潮| 一级毛片电影观看 | 亚洲,欧美,日韩| 日日干狠狠操夜夜爽| 亚洲经典国产精华液单| 18禁在线无遮挡免费观看视频| 一级黄色大片毛片| 国产亚洲av嫩草精品影院| 国产精品综合久久久久久久免费| 国产麻豆成人av免费视频| 久久热精品热| 人妻系列 视频| 国产 一区精品| 精品久久久久久久久久久久久| 偷拍熟女少妇极品色| 不卡一级毛片| 国产久久久一区二区三区| 欧美一区二区亚洲| 一区二区三区高清视频在线| 高清毛片免费看| 久久综合国产亚洲精品| 日韩欧美 国产精品| 高清毛片免费看| 国产精品女同一区二区软件| 成人特级黄色片久久久久久久| 老司机福利观看| 激情 狠狠 欧美| av在线蜜桃| 99久久成人亚洲精品观看| 嫩草影院新地址| 男人舔奶头视频| 欧美一级a爱片免费观看看| 天天躁日日操中文字幕| 国产午夜精品久久久久久一区二区三区|