• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO?

    2021-03-19 03:21:46ZhenyunZhang張振雲(yún)LeiXu許磊andJunjieQi齊俊杰
    Chinese Physics B 2021年3期
    關鍵詞:俊杰

    Zhenyun Zhang(張振雲(yún)), Lei Xu(許磊), and Junjie Qi(齊俊杰)

    School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China

    Keywords: perovskite solar cells ZnO nanorods, interface modification, preparation parameters, Mg doped ZnO

    1. Introduction

    The organic-inorganic perovskite light-harvesting materials have the advantages of inexpensive fabrication with solution techniques,strong absorption in the visible spectrum,and high carrier mobility.[1-3]Since the first use of the materials as dye sensitizers in dye-sensitized solar cells with the power conversion efficiency(PCE)of 3.8%,[4]perovskite solar cells(PSCs) have been widely investigated in recent years. The PCE of the PSCs is improving rapidly and now has reached more than 25%.[5-9]

    The structure of the PSCs usually includes an anode, a hole transportation layer (HTL), a light absorption layer, an electron transportation layer(ETL),and a cathode.[10-12]The ETL always plays a significant role in transporting electrons and blocking holes. Among different metal oxides applied as ETL,zinc oxide(ZnO)has garnered keen attention due to the superior opto-electronic properties,and they can be regulated by tuning the composition, doping, and morphology.[13-15]In addition, high-quality ZnO can be obtained via solutionprocessed at low temperature.[16]Many attempts have been made in facilitating the PCE of ZnO-based PSCs to over 20%.By tuning ZnO/perovskite interface with sulfidation,the PCE of the ZnO-based device was increased to 20.7%,[17]as well as protonated ethanolamine and MgO.[18]However, the PCE is still lower than the TiO2based PSCs. The difference in PCE may result from the non-optimized ZnO NR crystallinity(conductivity of NR) that impacts the electron transportation between the perovskite absorbing layer and ETL,[19]but may also be owning to the recombination originating from traps at the interface between ETL/perovskite. As a result, it is very important to improve the ZnO NR crystallinity and reduce the trap density at the interface between ETL/perovskite. MgO was applied as a passivation layer to reduce the interfacial traps.[18]Despite the improved efficiency of the device, the preparation process is not simple, and the ZnO-based PSCs are unsatisfactory to be persistent in the air without sealing.Polyvinylpyrrolidone(PVP)is a water-soluble polymer,which was incorporated between ETL and Ag cathode to improve electron transport for inverted PSCs.[20]While whether the PVP interlayer between perovskite and ETL would influence the device performance is interesting.

    It is well known that element doping is an effective method to modify the crystallinity and the electrical/optical properties of the material.[21]Magnesium (Mg) is an ideal doping element to regulate the energy band structure of ZnO owing to the similar radius of Mg and Zn. Mg doped ZnO nanocolloidal ETL was applied in PSC, achieving a PCE of 16.5%with low FF.[22]Few studies about Mg doped ZnO NRs in PSC fields were reported.

    In this paper,the PVP layer is inserted between ZnO NRs and perovskite material.Steady-state photoluminescence(PL)and x-ray diffraction(XRD)measurements show that the PVP layer helps reduce the interfacial defects and enhance perovskite crystallinity. Meanwhile,it also slows the PSC degradation,and 80%of primary PCE remains after being exposed to air for 30 d without encapsulation. In addition, we incorporate Mg in ZnO NRs and optimize the preparation parameters to improve ZnO NR crystallinity and promote the electron transportation. As a result,photovoltaic parameters of the ZnO NRs based PSCs are enhanced,and a PCE of 19.63%is attained.

    2. Experimental details

    We used fluorine-doped tin oxide(FTO)transparent glass as the electrode. After etching with zinc powder and hydrochloric acid (HCl) solution, the FTO was cleaned with alkaline detergent, deionized water, acetone, ethyl alcohol,and isopropanol in ultrasonic cleaners. The seed layer was first deposited by the sol-gel method as follows:[23]a solution of Zn(CH3COO)2·2H2O (10 mM) in ethylene glycol monomethyl ether was spin coated at 3000 rpm for 30 s on the FTO substrates, then the FTO substrates with ZnO seed layer were annealed at 350?C for 30 min. The ZnO NRs were prepared by hydrothermal method,[24]zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine(HMTA) were dissolved in deionized water in equimolar(30 mM). The magnesium nitrate (Mg(NO3)2·6H2O) (0, 1%,2%, 5%, 10%) was added into the precursor solution to induce Mg doping. The FTO substrates with the ZnO seed layer were immersed in the precursor solution and put into the highpressure reaction vessel. The seed layer at 30 mM precursor concentration was kept at 90?C for different growth time(2.5 h,3 h,3.5 h,4 h).Then the FTO substrates with ZnO NRs were rinsed with DI water several times and was annealed at 450?C for 30 min.A PVP solution in deionized water(1 wt%)was spin-coated on the ZnO NRs at 5000 rpm for 60 s and was annealed at 100?C for 10 min.

    Perovskite film was prepared by the twostep sequential deposition method[25]ZnO NRs were infiltrated with PbI2by spin-coating a PbI2solution in DMF (1 M) that was kept at 70?C, which adopted a spinning rate of 4000 rpm and a spinning period of 30 s. After keeping on the hot plate at 70?C for 30 min to dry PbI2and cooling to room temperature, the film was dipped into CH3NH3I (MAI) solution in 2-propanol (0.063 M) and then dried for 30 min to form in situ CH3NH3PbI3(MAPbI3) film. The Spiro-OMeTAD solution was prepared by mixing 72.3 mg Spiro-OMeTAD,30 μL 4-tert-butylpyridine and 35 μL bis(trifluoromethane)sulfonamide lithium salt(Li-TFSI)stock solution(260 mg/mL Li-TFSI in acetonitrile) in 1mL chlorobenzene. The Spiro-OMeTAD solution was spin coated on MAPbI3film at 4000 rpm for 30 s, and the HTL was formed. Finally, gold back contact was deposited on the surface of HTL using a thermal evaporator.

    3. Results and discussion

    To obtain high-quality ZnO NRs,we optimize the preparation parameters of ZnO NRs by varying the immersion time of the seed layer in a 30 mM precursor solution. Figures 1(a)-1(d) show that the surface and cross-sectional scanning electron micrograph(SEM)images of ZnO NRs in a 30 mM precursor solution for different growth time. The length of the ZnO NRs increases from about 450 nm to 600 nm, 850 nm,and 1000 nm as the growth time increases from 2.5 h to 3 h,3.5 h, and 4 h, respectively. While the diameter of the ZnO NRs is about 70 nm for the varying growth time. It suggests that changing the growth time at the fixed precursor concentration will only affect the length of the ZnO NRs and the influence on the diameter is not obvious. The result is in good agreement with the previous report for ZnO NRs.[24]

    Figure 1(e)presents that the absorbance of ZnO NRs improves with the increasing length. It has been reported that the length of the ZnO NRs may influence the infiltration and the formation of the perovskite material;[27]as shown in Fig.1(f),XRD patterns of perovskite deposited on different ZnO NRs show there are no PbI2peaks in ZnO NRs with the growth time of 2.5 h,3 h,3.5 h. Especially the XRD pattern of the sample with 3.5 h shows the strongest peaks of (110), (112), (220),and(310)planes of perovskite due to the most perovskite infiltrated in the longest ZnO NRs. It indicates the complete reaction of PbI2and MAI.Figure S1 presents the cross-sectional SEM image of MAPbI3film deposited on the ZnO NRs with different growth time. The whole thickness of the absorbing layer increases with the prolonged growth time of ZnO. We can see a compact and well crystallinity capping layer of the perovskite film is formed on the vertical ZnO NRs when the growth time is 3.5 h.However,when the growth time increases to 4 h,PbI2cannot completely convert to MAPbI3crystals and it is disadvantageous for the device performance.

    Figure 2 shows the fabrication procedure of PSC based on ZnO NRs.The schematic illustration of the prepared PSC with the structure of FTO/ZnO NRs/MAPbI3/Spiro-OMeTAD/Au and the cross-sectional SEM images of the device are shown in Figs. 3(a) and 3(b). The corresponding energy level diagram of the device based on related materials are shown in Fig.3(c).[22]We can see the perovskite absorption layer protects the ZnO NRs from contacting the HTL directly. The pores in the ZnO NRs are fully filled with perovskite. It is advantageous to collect carriers efficiently by ZnO NRs and Spiro-OMeTAD.

    Fig.1. Surface and cross-sectional SEM images of ZnO nanorod in a 30 mM precursor solution for different growth time (a) 2.5 h, (b)3 h,(c)3.5 h,(d)4 h. (e)Absorption spectra of ZnO NRs in a 30 mM precursor solution for different growth time. (f)XRD patterns of perovskite deposited on ZnO NRs with different growth time.

    Fig.2. Fabrication procedure of PSC based on ZnO NRs.

    We further compare the influence of the length on the device performance. As shown in Fig.3(d), the device performance changes with the length of ZnO NRs and the corresponding photovoltaic parameters are listed in Table S1. It is revealed that the optimal length of ZnO NRs is 850 nm corresponding to the growth time of 3.5 h. The optimal short circuit current density (JSC) of 18.27 mA/cm2, open circuit voltage(VOC) of 1.00 V, fill factor (FF) of 0.73, and the maximum PCE of 13.45%,which is better than other time of 2.5 h(PCE of 10.11%,JSCof 15.69 mA/cm2,VOCof 0.91V,FF of 0.70),3 h(PCE of 11.76%,JSCof 17.24 mA/cm2,VOCof 0.94 V,FF of 0.72)and 4 h(PCE of 12.98%,JSCof 18.03 mA/cm2,VOCof 0.97 V,FF of 0.73). After growing from 2.5 h to 3.5 h,the JSCincreases from 15.69 mA/cm2to 18.27 mA/cm2as the length increases from 450 nm to 850 nm. The increase of the length of ZnO NRs allows more perovskite to infiltrate into the space of the ZnO NRs,which improve the harvest efficiency of visible light and enhance the JSC.[24]However, when ZnO NRs grow to 1000 nm, they will be disorderly to hinder the infiltration of perovskite and increase the probability of charge recombination between the ZnO NRs/perovskite interface,leading to the decline of the device performance. Therefore, the following studies are focused on ZnO NRs with the length of 850 nm.

    Next, we prepared a layer of PVP coating between the ZnO NRs/perovskite interface. Figure S2 shows high resolution transmission electron microscopy (HRTEM) image of ZnO NRs with PVP coating, verifying the existence of PVP coating. In order to investigate the effect of the PVP layer on the MAPbI3film,surface morphologies of perovskite films were detected shown in Fig.S3. We can see both films are continuous and of full coverage. With the PVP coating, the average grain size turns larger. We infer this is ascribed to the solubilization and dispersion characteristic of PVP,improving surface hydrophilicity and reducing surface energy.[27]The XRD patterns of MAPbI3deposited on ZnO with/without PVP coating are shown in Fig.S4. The results present both films own tetragonal perovskite structure,and the sharper peaks for PVP coating imply the optimized MAPbI3crystallinity.[28]As shown in Table S4,the full width at half-maximum(FWHM)of (110) peak reduces from 0.200?to 0.173?after inserting the PVP layer. This result is in good agreement with the enlarged grain size, confirming the optimized MAPbI3crystallinity with PVP. Figure 4(a) presents the absorbance of MAPbI3films deposited on ZnO NRs and ZnO/PVP films.The sample with PVP exhibits a slightly higher absorbance near the short-wavelength region due to the enlarged grain size and optimized crystallinity. Trap states are always an issue in polycrystalline films, such as ZnO and perovskite materials.Decreasing them could improve the device performance. PL measurements were applied to investigate the trap states.[29]Figure 4(b) presents the PL spectra of perovskite films deposited on ZnO NRs and ZnO/PVP. The data shows that the former owns a higher PL intensity than the latter, indicating that the PVP coating reduces the defects density at the ZnO NRs/perovskite interface. It turns out that PVP coating could lower the carrier recombination losses,enhance the charge transportation,and facilitate the charge extraction from the perovskite absorption layer to ZnO ETL.In addition,electrochemical impedance spectroscopy (EIS) was implemented to investigate the origin of the improved electron transportation and suppressed carrier recombination after PVP inserting. Nyquist plots of the MAPbI3cells are shown in Fig.4(c).The radius of the semicircle in Nyquist plot represents the recombination resistance(Rrec)of the devices. The node of EIS semicircle with the x-axis gives series resistance (Rs) of the PSC.It is clear that PVP coating makes the Rsdecrease and the Rrecincrease,which can reduce the charge recombination and promote the charge transfer.[11]To further identify the physical origin of the charge separation and transportation, Mott-Schottky analysis was applied. The relationship between V and 1/C2is delivered by the following equation:[30]

    where ε, ε0are permittivity, q, A, N, V are the elementary charge,the active area,the free carrier concentration,and the applied bias, C is the dark measured capacitance, Vbiis the built-in potentials,which can be evaluated by the kink point of the linear region with the x-axis of the Mott-Schottky curve.We can see the ZnO/PVP based device presents a higher Vbithan that of ZnO,which matches well with the tendency of the VOCdiscussed later in Fig.6(a). It is well known that Vbiis beneficial to the charge separation and the suppressed carrier recombination.[30]The higher Vbiof the ZnO/PVP based device should be related to the decreased charge recombination,resulting from the elimination defects and the optimized interfacial between ZnO/perovskite. Combining the above analysis,PVP coating can suppress the non-radiative recombination loss in the cell,leading to a higher VOCcompared to the pristine devices. Therefore,the interface between ZnO/perovskite is meliorated with the reduced defects density and the improved charge transportation.

    Fig.3. (a)Cross-sectional SEM images and(b)schematics of the device structure. (c)Energetic diagram of PSC based on ZnO NRs with a length of 850 nm. (d)J-V plots of the devices based on ZnO NRs with different growth time.

    Fig.4. (a)Absorption spectra and(b)PL spectra of MAPbI3 film deposited on ZnO and ZnO/PVP films,(c)Nyquist plots of PSCs and(the inset depicts the equivalent circuit)(d)Mott-Schottky curves of the best devices based on ZnO and ZnO/PVP films.

    Fig.5. (a)EDS elemental mapping spectra of Mg: ZnO NRs on FTO(O,Mg, and Zn). (b)XPS of Mg(5%): ZnO NRs(c)high-resolution XPS spectra of Mg 1s peak.

    Mg doped ZnO NRs were prepared. Figure 5(a) shows the EDS elemental mapping of the Mg: ZnO film. The distributions of the film composition (Mg, ZnO, and O) imply Mg has been incorporated in the ZnO NRs uniformly. The existence of Mg in the film was further confirmed by the Xray photoelectron spectra(XPS)spectrum of the Mg 1s region(Figs.5(b)and 5(c)).

    Figure S5 shows that the XRD patterns of the ZnO NRs with different Mg doping concentration. All the diffraction peaks correspond to the wurtzite structure of ZnO,suggesting the absence of impurity phase in the samples,and Mg doping does not alter the structure of the ZnO. We infer Mg atoms mainly exist in the ZnO as substitutes or interstitials.[31]After doping Mg, all the peaks become much stronger and sharper compared with the pristine ZnO NRs,suggesting an enhanced crystallinity of the doping ETL.[32]It is beneficial to the electron transportation and improving FF and JSCof the device performance,which will be discussed later in Fig.S6.

    In order to further investigate the influence of Mg doping on the ZnO NRs, the band gap was calculated from the absorption spectra. As shown in Fig.6(a), after 5%Mg doping, the band gap increases. Based on the previous reports,the increased band gap is ascribed to the rise of the conduction band,[22,33]leading to a faster electron transportation at the interface. It is helpful to enhance the FF and JSC. Moreover,EIS measurements were performed to reveal the recombination dynamics and interfacial charge transfer of the doped and none doped PSCs. Figure 6(b)shows the Nyquist plots of the MAPbI3cells. Mg doping makes the Rrecincrease, leading to the lower carrier recombination. Rsappear to be lower than the pristine device, resulting in a faster electron injection. These results match well with the previous literature that Mg doping increased the conductivity, resulting mainly from the decreased internal resistance,which enhances the electron density in ZnO.[23]

    Fig.6.(a)The extrapolated plots of(αhν)2 as a function of hν got from the absorption spectra of ZnO NRs with different content(x=0%,5%)and applied to calculate their band gaps. (b) Nyquist plots of PSCs based on ZnO NRs with different Mg content(x=0%, 5%)(the inset depicts the equivalent circuit).

    Figure 7(a)depicts J-V plots of the champion PSCs based on pristine ZnO, ZnO/PVP, and ZnO: Mg (5%)/PVP layers.The performance parameters are listed in Table 1. After doping with Mg(5%),the device obtains the best PCE of 19.63%,the JSCincreases from 19.96 mA/cm2to 21.66 mA/cm2, the VOCrises from 1.13 V to 1.14 V, and the FF increases from 0.77 to 0.79. The effect of Mg doping concentration on the cells performance was also probed. The photovoltaic performance of solar cells based on the ZnO NRs with different Mg concentrations(0,1%,2%,5%,10%atomic percent)is shown in Fig.S6 and Table S3. It is clear that doping concentration significantly impacts the device performance. When the doping content increased to 10%, the photovoltaic performance of the device decreases to 15.78%, owing to a significant reduction in the JSCand FF. Obviously, 5% doping content is the optimized doping amount. With PVP coating, the performance of PSC is improved, yielding a PCE of 17.27%, the JSCincreases from 19.63 mA/cm2to 19.96 mA/cm2,the VOCand FF rise from 1.10 V to 1.13 V,0.75 to 0.77,respectively.Based on the above analysis, the obvious enhancement is ascribed to the optimized interface and the enhanced perovskite crystallinity. Both devices based on the PVP coating and the Mg doping present a higher reproducibility compared to the pristine devices(Fig.7(b)).

    Table 1. Summary of device characteristics of the cells based on modified ZnO NRs under 1 sun illumination(AM 1.5G,100 mW/cm2).

    The stability of PSCs based on Mg(5%): ZnO NRs with and without PVP coating were tested under lab conditions with a relative humidity of 30%-50% without encapsulation. As Fig.7(c)shows,the PCE of cell with PVP coating retains 80%of the initial PCE values after aging 30 days. While the PCE of cell without PVP coating only retains 57% after 20 days,indicating that the PVP coating contributes to the stability of the devices,which is possibly attributed to the enhanced crystallinity of MAPbI3[11]and the optimized interface.[17]

    Fig.7. (a)Current density-voltage curves of devices and(b)the PCEs distribution of the devices based on ZnO NRs,ZnO/PVP,and ZnO:Mg(5%)/PVP.(c)Evolution of PCE for unsealed PSCs with or without PVP coating under lab conditions with a relative humidity of 30%-50%.

    4. Conclusion

    We have fabricated the effective charge collection and transportation mesoscopic perovskite solar cells based on ZnO NRs by some key optimization of the ETL and ETL/perovskite interface,comprising optimization of the preparation parameters of the ZnO NRs, the use of PVP layer, and Mg doping.The superior length of the ZnO NRs was controlled by manipulating the growth time.By inserting the PVP layer,interfacial traps were reduced, certifying by PL and EIS measurements.Meanwhile, crystallization of MAPbI3was enhanced, identified by XRD and SEM measurements. EIS measurement reveals that Mg doping increases the conductivity of ZnO NRs and improves electron extraction and transportation. Combining together, the PCE of the device rises from 16.28% to 19.63%.The devices with the PVP inserting layer also present better stability than the pristine ones. Our study provides a facile approach to improve the efficiency and the stability of photovoltaic cells. In such a synergistic way, the PSCs based on ZnO NRs are promising in the solar cell field.

    猜你喜歡
    俊杰
    Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
    “畫家陳”
    Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow*
    Bian Que
    能自律者為俊杰
    文苑(2020年7期)2020-08-12 09:36:36
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    表演大師
    我的同桌
    我可是有主角光環(huán)的人
    我給桌子“洗臉”
    欧美一级a爱片免费观看看| 男女之事视频高清在线观看| 十八禁网站免费在线| 亚洲天堂国产精品一区在线| 少妇猛男粗大的猛烈进出视频 | 中文在线观看免费www的网站| 亚洲国产精品久久男人天堂| 久久久久久久亚洲中文字幕| 国内久久婷婷六月综合欲色啪| 欧美国产日韩亚洲一区| av在线老鸭窝| 国产精品野战在线观看| 欧美人与善性xxx| 国产 一区 欧美 日韩| 免费人成在线观看视频色| 天天一区二区日本电影三级| 日韩大尺度精品在线看网址| 伦精品一区二区三区| 在线观看66精品国产| 嫩草影视91久久| 村上凉子中文字幕在线| 男女啪啪激烈高潮av片| 18禁黄网站禁片免费观看直播| 免费av毛片视频| 成人特级av手机在线观看| a级毛片免费高清观看在线播放| 亚洲aⅴ乱码一区二区在线播放| 好男人在线观看高清免费视频| 成人二区视频| 日本一本二区三区精品| 亚洲欧美日韩高清在线视频| 中文资源天堂在线| 国产精品亚洲一级av第二区| 亚洲激情五月婷婷啪啪| 国产精品av视频在线免费观看| 国产av不卡久久| 搡老妇女老女人老熟妇| 99久国产av精品国产电影| 麻豆av噜噜一区二区三区| 一本精品99久久精品77| 午夜免费男女啪啪视频观看 | 99久久中文字幕三级久久日本| 国产av不卡久久| 国产一区二区三区在线臀色熟女| 久久天躁狠狠躁夜夜2o2o| 国产麻豆成人av免费视频| 夜夜夜夜夜久久久久| 成熟少妇高潮喷水视频| 别揉我奶头 嗯啊视频| 99热这里只有是精品50| 亚洲精华国产精华液的使用体验 | 国产在线男女| 精品久久久久久久人妻蜜臀av| 天天一区二区日本电影三级| 大型黄色视频在线免费观看| 色吧在线观看| 国产精品女同一区二区软件| 给我免费播放毛片高清在线观看| 亚洲国产欧洲综合997久久,| 国产高清视频在线观看网站| 国产一区二区亚洲精品在线观看| 国产精品三级大全| 乱人视频在线观看| 69av精品久久久久久| 性插视频无遮挡在线免费观看| 国产淫片久久久久久久久| 99热全是精品| 国产高清三级在线| av专区在线播放| av天堂中文字幕网| 色哟哟哟哟哟哟| 国产乱人视频| 久久国产乱子免费精品| 五月伊人婷婷丁香| 午夜福利在线在线| 在线观看66精品国产| 大香蕉久久网| 国产精品综合久久久久久久免费| 国产蜜桃级精品一区二区三区| 国产一区二区三区在线臀色熟女| 国产精品爽爽va在线观看网站| 男人的好看免费观看在线视频| 久久久久性生活片| 国产精品久久久久久久久免| 亚洲av中文字字幕乱码综合| 在线观看免费视频日本深夜| 中文亚洲av片在线观看爽| 2021天堂中文幕一二区在线观| 色在线成人网| 99久久中文字幕三级久久日本| 五月玫瑰六月丁香| 天堂动漫精品| 免费一级毛片在线播放高清视频| 人妻制服诱惑在线中文字幕| 成人永久免费在线观看视频| 久久久久国产精品人妻aⅴ院| 欧美日韩国产亚洲二区| 亚洲精品一卡2卡三卡4卡5卡| 悠悠久久av| 亚洲第一区二区三区不卡| 亚洲精品亚洲一区二区| 搡老岳熟女国产| www.色视频.com| 欧美日韩在线观看h| 久久久午夜欧美精品| 日本与韩国留学比较| 五月玫瑰六月丁香| 欧美在线一区亚洲| 国产亚洲精品久久久com| 久久草成人影院| 最近最新中文字幕大全电影3| 搡老熟女国产l中国老女人| 免费av不卡在线播放| 日韩精品青青久久久久久| 一进一出好大好爽视频| 欧美性感艳星| 麻豆成人午夜福利视频| 久久精品国产亚洲av天美| 18+在线观看网站| 国产一级毛片七仙女欲春2| 久久亚洲精品不卡| 久99久视频精品免费| 中国美白少妇内射xxxbb| 美女大奶头视频| 欧美xxxx黑人xx丫x性爽| 观看免费一级毛片| 免费看a级黄色片| 亚洲欧美日韩卡通动漫| 午夜久久久久精精品| 成人av一区二区三区在线看| 69人妻影院| 午夜久久久久精精品| 日韩欧美 国产精品| 成人漫画全彩无遮挡| 中出人妻视频一区二区| 国产免费一级a男人的天堂| or卡值多少钱| 国产aⅴ精品一区二区三区波| 悠悠久久av| 欧美性感艳星| 亚洲第一电影网av| 日日啪夜夜撸| 国产成人a∨麻豆精品| 国产又黄又爽又无遮挡在线| 亚洲真实伦在线观看| 一区二区三区四区激情视频 | 淫妇啪啪啪对白视频| 久久热精品热| av卡一久久| 联通29元200g的流量卡| 国产不卡一卡二| 给我免费播放毛片高清在线观看| 小蜜桃在线观看免费完整版高清| 国产蜜桃级精品一区二区三区| 1024手机看黄色片| 少妇熟女aⅴ在线视频| 99热网站在线观看| 亚洲成a人片在线一区二区| 欧美激情久久久久久爽电影| 久久久久久久久大av| 99在线视频只有这里精品首页| 亚洲成av人片在线播放无| 在线观看一区二区三区| 日韩 亚洲 欧美在线| 不卡视频在线观看欧美| 亚洲精品色激情综合| 久久人人爽人人片av| 内射极品少妇av片p| 99视频精品全部免费 在线| 午夜激情欧美在线| 国产真实乱freesex| 成熟少妇高潮喷水视频| 日韩一区二区视频免费看| 欧美日韩在线观看h| 在线观看午夜福利视频| 中国美白少妇内射xxxbb| 久久精品国产亚洲av香蕉五月| 亚洲av免费高清在线观看| 91狼人影院| 菩萨蛮人人尽说江南好唐韦庄 | 一区福利在线观看| 一级黄片播放器| 国产精品1区2区在线观看.| 亚洲内射少妇av| 国产v大片淫在线免费观看| 国产精品久久久久久久电影| 最近中文字幕高清免费大全6| 国产综合懂色| 亚洲精品一区av在线观看| videossex国产| 麻豆一二三区av精品| 欧美日韩精品成人综合77777| 男人的好看免费观看在线视频| 欧美日本视频| 久久人人爽人人爽人人片va| 欧洲精品卡2卡3卡4卡5卡区| 亚洲美女黄片视频| 国产美女午夜福利| 中文亚洲av片在线观看爽| 俄罗斯特黄特色一大片| 国内精品久久久久精免费| 美女免费视频网站| 狂野欧美白嫩少妇大欣赏| 老熟妇乱子伦视频在线观看| 最近视频中文字幕2019在线8| 精品久久久久久久久久久久久| 又粗又爽又猛毛片免费看| 校园人妻丝袜中文字幕| 男女那种视频在线观看| 一a级毛片在线观看| 麻豆成人午夜福利视频| .国产精品久久| 噜噜噜噜噜久久久久久91| 国内久久婷婷六月综合欲色啪| 国产三级中文精品| 久久九九热精品免费| 不卡视频在线观看欧美| 国产成人福利小说| 老师上课跳d突然被开到最大视频| 日日啪夜夜撸| 国产淫片久久久久久久久| 日韩精品中文字幕看吧| 亚洲精品粉嫩美女一区| 国产aⅴ精品一区二区三区波| 国产三级在线视频| 99久国产av精品国产电影| 国产精品乱码一区二三区的特点| 麻豆国产97在线/欧美| 欧美另类亚洲清纯唯美| 97碰自拍视频| av女优亚洲男人天堂| 欧美不卡视频在线免费观看| 欧美一区二区亚洲| 中文字幕av在线有码专区| 久久婷婷人人爽人人干人人爱| 国产成人aa在线观看| 亚洲精品一卡2卡三卡4卡5卡| 噜噜噜噜噜久久久久久91| 最近最新中文字幕大全电影3| 国产一区二区三区av在线 | 国产av麻豆久久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 国产麻豆成人av免费视频| 精品不卡国产一区二区三区| 狠狠狠狠99中文字幕| 大又大粗又爽又黄少妇毛片口| avwww免费| 国产高清三级在线| 日本 av在线| 国产真实乱freesex| 国内精品一区二区在线观看| or卡值多少钱| 亚洲av中文字字幕乱码综合| 天堂√8在线中文| 亚洲av电影不卡..在线观看| 亚洲美女黄片视频| aaaaa片日本免费| 日本成人三级电影网站| 欧美zozozo另类| 看黄色毛片网站| 久久亚洲精品不卡| 男人狂女人下面高潮的视频| 久久久午夜欧美精品| 亚洲最大成人手机在线| 亚洲欧美日韩东京热| 女生性感内裤真人,穿戴方法视频| 久久久久精品国产欧美久久久| 亚洲乱码一区二区免费版| 99久国产av精品国产电影| 网址你懂的国产日韩在线| 最近视频中文字幕2019在线8| 午夜精品一区二区三区免费看| 国产精品av视频在线免费观看| 色视频www国产| 国产免费一级a男人的天堂| 性插视频无遮挡在线免费观看| 国产成人一区二区在线| 亚洲无线在线观看| 99热这里只有是精品50| 丰满人妻一区二区三区视频av| 国产精品久久久久久久久免| 日韩欧美精品v在线| 欧美xxxx性猛交bbbb| 国产午夜福利久久久久久| 免费搜索国产男女视频| 伊人久久精品亚洲午夜| 99九九线精品视频在线观看视频| 亚洲人成网站在线观看播放| 变态另类丝袜制服| 99热精品在线国产| 久久中文看片网| 中文字幕免费在线视频6| 99国产极品粉嫩在线观看| 1024手机看黄色片| av在线蜜桃| 久久午夜福利片| 人妻制服诱惑在线中文字幕| 国产精品精品国产色婷婷| 美女被艹到高潮喷水动态| 我的女老师完整版在线观看| 中文在线观看免费www的网站| 午夜a级毛片| 性欧美人与动物交配| 欧美+亚洲+日韩+国产| 给我免费播放毛片高清在线观看| 久久精品91蜜桃| 欧美成人a在线观看| 国产精品乱码一区二三区的特点| 国产黄色小视频在线观看| 中文字幕av在线有码专区| 天堂√8在线中文| 久久人妻av系列| 国产蜜桃级精品一区二区三区| 精品日产1卡2卡| 午夜影院日韩av| 一级黄片播放器| 久久热精品热| 少妇人妻精品综合一区二区 | 亚洲欧美日韩无卡精品| 久久精品国产99精品国产亚洲性色| 国产三级中文精品| 久久精品国产亚洲网站| 欧美又色又爽又黄视频| 成人性生交大片免费视频hd| 国产高清视频在线播放一区| 国产淫片久久久久久久久| 日本-黄色视频高清免费观看| 一区二区三区免费毛片| 99视频精品全部免费 在线| 六月丁香七月| 三级男女做爰猛烈吃奶摸视频| 亚洲国产精品成人综合色| 欧美最黄视频在线播放免费| 亚洲国产精品sss在线观看| 99久久无色码亚洲精品果冻| 日本在线视频免费播放| 国内精品美女久久久久久| 国产黄色小视频在线观看| 搡老熟女国产l中国老女人| a级毛片a级免费在线| 成人欧美大片| 亚洲精品国产成人久久av| 99精品在免费线老司机午夜| 国产一区二区激情短视频| 一级毛片aaaaaa免费看小| 长腿黑丝高跟| 国产伦精品一区二区三区四那| 天堂动漫精品| 亚洲丝袜综合中文字幕| 久久精品综合一区二区三区| 国产精品野战在线观看| 露出奶头的视频| 午夜视频国产福利| 九九热线精品视视频播放| 日日摸夜夜添夜夜添小说| 天堂√8在线中文| 精品国内亚洲2022精品成人| 亚洲国产欧美人成| 在线国产一区二区在线| 99九九线精品视频在线观看视频| 搞女人的毛片| 岛国在线免费视频观看| 人人妻人人澡人人爽人人夜夜 | 精品少妇黑人巨大在线播放 | 一级毛片电影观看 | 久久99热6这里只有精品| 日日啪夜夜撸| 欧美3d第一页| 少妇被粗大猛烈的视频| 国产久久久一区二区三区| 久久亚洲精品不卡| 尤物成人国产欧美一区二区三区| 亚洲一级一片aⅴ在线观看| 国产综合懂色| 哪里可以看免费的av片| 99久久精品一区二区三区| 色综合站精品国产| 日日摸夜夜添夜夜添av毛片| 观看美女的网站| 国产伦一二天堂av在线观看| 一夜夜www| 亚洲最大成人中文| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久久电影| 久久久国产成人免费| 久久久久久九九精品二区国产| 久久久国产成人免费| 22中文网久久字幕| 少妇熟女欧美另类| 一级a爱片免费观看的视频| 老司机福利观看| 婷婷色综合大香蕉| 国产av一区在线观看免费| 我的女老师完整版在线观看| 联通29元200g的流量卡| 亚洲最大成人av| 国产精品不卡视频一区二区| 国产黄色小视频在线观看| 久久久久国产网址| 精品久久久久久久末码| 夜夜看夜夜爽夜夜摸| 国产精品嫩草影院av在线观看| 国产成人精品久久久久久| 国产淫片久久久久久久久| 久久热精品热| 女人被狂操c到高潮| eeuss影院久久| 高清毛片免费看| 国产私拍福利视频在线观看| 欧美最黄视频在线播放免费| 黄色视频,在线免费观看| 搞女人的毛片| 久久天躁狠狠躁夜夜2o2o| 亚洲中文字幕日韩| 午夜爱爱视频在线播放| 色在线成人网| 国产久久久一区二区三区| 国产精品一及| 日日摸夜夜添夜夜添小说| 久久久精品欧美日韩精品| 内射极品少妇av片p| 卡戴珊不雅视频在线播放| 免费av不卡在线播放| 美女cb高潮喷水在线观看| 三级国产精品欧美在线观看| 久久人人爽人人片av| 少妇人妻一区二区三区视频| 国产av一区在线观看免费| 亚州av有码| 免费一级毛片在线播放高清视频| 日韩欧美免费精品| 日韩精品中文字幕看吧| 午夜福利视频1000在线观看| 久久热精品热| 国产精品精品国产色婷婷| 伦精品一区二区三区| 91久久精品国产一区二区成人| 精品不卡国产一区二区三区| 久99久视频精品免费| 免费看a级黄色片| 成人亚洲精品av一区二区| 久久精品国产清高在天天线| 乱码一卡2卡4卡精品| 少妇的逼好多水| 亚洲国产日韩欧美精品在线观看| 丝袜美腿在线中文| 亚洲一区二区三区色噜噜| 中文字幕精品亚洲无线码一区| 国产 一区精品| 国内久久婷婷六月综合欲色啪| 国产一区亚洲一区在线观看| 赤兔流量卡办理| 嫩草影院新地址| 午夜激情欧美在线| 国产午夜精品久久久久久一区二区三区 | 国产av一区在线观看免费| 波多野结衣高清作品| 亚洲精华国产精华液的使用体验 | 精品久久久久久成人av| 亚州av有码| 久久久欧美国产精品| 搡老妇女老女人老熟妇| 99视频精品全部免费 在线| 欧美色视频一区免费| 午夜福利在线在线| 亚洲不卡免费看| 亚洲18禁久久av| 在线播放无遮挡| 夜夜爽天天搞| ponron亚洲| 亚洲一区高清亚洲精品| 国产成人91sexporn| av专区在线播放| 欧美日韩乱码在线| 在线观看免费视频日本深夜| 国产真实乱freesex| 国产一区二区三区av在线 | 免费观看在线日韩| 国产视频内射| 日韩欧美一区二区三区在线观看| 99精品在免费线老司机午夜| а√天堂www在线а√下载| 亚洲人成网站在线播放欧美日韩| 日韩 亚洲 欧美在线| 精华霜和精华液先用哪个| 国产 一区 欧美 日韩| 亚洲精品国产成人久久av| 又黄又爽又免费观看的视频| 久久九九热精品免费| 日本五十路高清| 亚洲不卡免费看| 亚洲熟妇熟女久久| 看免费成人av毛片| 午夜精品在线福利| 少妇人妻一区二区三区视频| 又黄又爽又刺激的免费视频.| 成人特级av手机在线观看| 婷婷亚洲欧美| 国产真实乱freesex| av国产免费在线观看| 久久久久久久亚洲中文字幕| 黑人高潮一二区| 丝袜喷水一区| 日韩av不卡免费在线播放| 日韩三级伦理在线观看| 久久精品国产鲁丝片午夜精品| 少妇人妻一区二区三区视频| 夜夜夜夜夜久久久久| 人人妻,人人澡人人爽秒播| 性色avwww在线观看| 亚洲成人av在线免费| 欧美成人a在线观看| 国内精品一区二区在线观看| 欧美一区二区亚洲| 尾随美女入室| or卡值多少钱| 中国美白少妇内射xxxbb| 免费看美女性在线毛片视频| 日韩成人伦理影院| 国产高清不卡午夜福利| 嫩草影院入口| 精品不卡国产一区二区三区| 亚洲va在线va天堂va国产| 亚洲中文字幕日韩| 久久国内精品自在自线图片| 日本黄大片高清| 久99久视频精品免费| 国产三级中文精品| 欧美丝袜亚洲另类| 国产精品久久久久久亚洲av鲁大| 久久人人爽人人片av| 亚洲自拍偷在线| 老司机福利观看| 波多野结衣高清无吗| 国产精品av视频在线免费观看| 欧美成人精品欧美一级黄| 国产一区二区三区av在线 | 12—13女人毛片做爰片一| 男人的好看免费观看在线视频| av.在线天堂| 国产亚洲av嫩草精品影院| 白带黄色成豆腐渣| 精品久久久久久久末码| av天堂中文字幕网| 亚洲av免费高清在线观看| 欧美日韩在线观看h| 精品久久久噜噜| 91在线精品国自产拍蜜月| 国产女主播在线喷水免费视频网站 | 日韩欧美 国产精品| 精品99又大又爽又粗少妇毛片| 国产一区二区激情短视频| h日本视频在线播放| 秋霞在线观看毛片| 91麻豆精品激情在线观看国产| 亚洲无线观看免费| 亚洲欧美日韩高清专用| 看非洲黑人一级黄片| 国产欧美日韩精品一区二区| 久久韩国三级中文字幕| 午夜福利在线在线| 又黄又爽又刺激的免费视频.| 国产黄色小视频在线观看| 亚洲成人久久性| 国产精品久久电影中文字幕| a级毛片a级免费在线| 在线天堂最新版资源| 女人被狂操c到高潮| АⅤ资源中文在线天堂| 亚洲经典国产精华液单| 国产视频内射| 十八禁网站免费在线| 久久久久国产精品人妻aⅴ院| 国产美女午夜福利| 国产精品一及| 亚洲欧美日韩东京热| 可以在线观看的亚洲视频| 国产蜜桃级精品一区二区三区| 搡老熟女国产l中国老女人| 男人和女人高潮做爰伦理| 黄片wwwwww| 亚洲人成网站在线观看播放| 男插女下体视频免费在线播放| 久久国产乱子免费精品| 国产激情偷乱视频一区二区| 午夜福利在线观看吧| 最好的美女福利视频网| 黄色欧美视频在线观看| 夜夜爽天天搞| 亚洲精品一区av在线观看| 国内精品久久久久精免费| 欧美成人a在线观看| 日本与韩国留学比较| 啦啦啦韩国在线观看视频| 欧美成人一区二区免费高清观看| 日韩欧美精品v在线| 日韩一区二区视频免费看| 99riav亚洲国产免费| 美女免费视频网站| 午夜免费男女啪啪视频观看 | 欧美日韩在线观看h| 日日摸夜夜添夜夜添小说| 插阴视频在线观看视频| av国产免费在线观看| 人人妻人人看人人澡| 国产亚洲av嫩草精品影院| 午夜a级毛片| 中国美白少妇内射xxxbb| 麻豆国产av国片精品| www.色视频.com| 日本熟妇午夜| 麻豆乱淫一区二区| 亚洲熟妇熟女久久| 在线天堂最新版资源| 精品久久久久久成人av|