• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO?

    2021-03-19 03:21:46ZhenyunZhang張振雲(yún)LeiXu許磊andJunjieQi齊俊杰
    Chinese Physics B 2021年3期
    關鍵詞:俊杰

    Zhenyun Zhang(張振雲(yún)), Lei Xu(許磊), and Junjie Qi(齊俊杰)

    School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China

    Keywords: perovskite solar cells ZnO nanorods, interface modification, preparation parameters, Mg doped ZnO

    1. Introduction

    The organic-inorganic perovskite light-harvesting materials have the advantages of inexpensive fabrication with solution techniques,strong absorption in the visible spectrum,and high carrier mobility.[1-3]Since the first use of the materials as dye sensitizers in dye-sensitized solar cells with the power conversion efficiency(PCE)of 3.8%,[4]perovskite solar cells(PSCs) have been widely investigated in recent years. The PCE of the PSCs is improving rapidly and now has reached more than 25%.[5-9]

    The structure of the PSCs usually includes an anode, a hole transportation layer (HTL), a light absorption layer, an electron transportation layer(ETL),and a cathode.[10-12]The ETL always plays a significant role in transporting electrons and blocking holes. Among different metal oxides applied as ETL,zinc oxide(ZnO)has garnered keen attention due to the superior opto-electronic properties,and they can be regulated by tuning the composition, doping, and morphology.[13-15]In addition, high-quality ZnO can be obtained via solutionprocessed at low temperature.[16]Many attempts have been made in facilitating the PCE of ZnO-based PSCs to over 20%.By tuning ZnO/perovskite interface with sulfidation,the PCE of the ZnO-based device was increased to 20.7%,[17]as well as protonated ethanolamine and MgO.[18]However, the PCE is still lower than the TiO2based PSCs. The difference in PCE may result from the non-optimized ZnO NR crystallinity(conductivity of NR) that impacts the electron transportation between the perovskite absorbing layer and ETL,[19]but may also be owning to the recombination originating from traps at the interface between ETL/perovskite. As a result, it is very important to improve the ZnO NR crystallinity and reduce the trap density at the interface between ETL/perovskite. MgO was applied as a passivation layer to reduce the interfacial traps.[18]Despite the improved efficiency of the device, the preparation process is not simple, and the ZnO-based PSCs are unsatisfactory to be persistent in the air without sealing.Polyvinylpyrrolidone(PVP)is a water-soluble polymer,which was incorporated between ETL and Ag cathode to improve electron transport for inverted PSCs.[20]While whether the PVP interlayer between perovskite and ETL would influence the device performance is interesting.

    It is well known that element doping is an effective method to modify the crystallinity and the electrical/optical properties of the material.[21]Magnesium (Mg) is an ideal doping element to regulate the energy band structure of ZnO owing to the similar radius of Mg and Zn. Mg doped ZnO nanocolloidal ETL was applied in PSC, achieving a PCE of 16.5%with low FF.[22]Few studies about Mg doped ZnO NRs in PSC fields were reported.

    In this paper,the PVP layer is inserted between ZnO NRs and perovskite material.Steady-state photoluminescence(PL)and x-ray diffraction(XRD)measurements show that the PVP layer helps reduce the interfacial defects and enhance perovskite crystallinity. Meanwhile,it also slows the PSC degradation,and 80%of primary PCE remains after being exposed to air for 30 d without encapsulation. In addition, we incorporate Mg in ZnO NRs and optimize the preparation parameters to improve ZnO NR crystallinity and promote the electron transportation. As a result,photovoltaic parameters of the ZnO NRs based PSCs are enhanced,and a PCE of 19.63%is attained.

    2. Experimental details

    We used fluorine-doped tin oxide(FTO)transparent glass as the electrode. After etching with zinc powder and hydrochloric acid (HCl) solution, the FTO was cleaned with alkaline detergent, deionized water, acetone, ethyl alcohol,and isopropanol in ultrasonic cleaners. The seed layer was first deposited by the sol-gel method as follows:[23]a solution of Zn(CH3COO)2·2H2O (10 mM) in ethylene glycol monomethyl ether was spin coated at 3000 rpm for 30 s on the FTO substrates, then the FTO substrates with ZnO seed layer were annealed at 350?C for 30 min. The ZnO NRs were prepared by hydrothermal method,[24]zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine(HMTA) were dissolved in deionized water in equimolar(30 mM). The magnesium nitrate (Mg(NO3)2·6H2O) (0, 1%,2%, 5%, 10%) was added into the precursor solution to induce Mg doping. The FTO substrates with the ZnO seed layer were immersed in the precursor solution and put into the highpressure reaction vessel. The seed layer at 30 mM precursor concentration was kept at 90?C for different growth time(2.5 h,3 h,3.5 h,4 h).Then the FTO substrates with ZnO NRs were rinsed with DI water several times and was annealed at 450?C for 30 min.A PVP solution in deionized water(1 wt%)was spin-coated on the ZnO NRs at 5000 rpm for 60 s and was annealed at 100?C for 10 min.

    Perovskite film was prepared by the twostep sequential deposition method[25]ZnO NRs were infiltrated with PbI2by spin-coating a PbI2solution in DMF (1 M) that was kept at 70?C, which adopted a spinning rate of 4000 rpm and a spinning period of 30 s. After keeping on the hot plate at 70?C for 30 min to dry PbI2and cooling to room temperature, the film was dipped into CH3NH3I (MAI) solution in 2-propanol (0.063 M) and then dried for 30 min to form in situ CH3NH3PbI3(MAPbI3) film. The Spiro-OMeTAD solution was prepared by mixing 72.3 mg Spiro-OMeTAD,30 μL 4-tert-butylpyridine and 35 μL bis(trifluoromethane)sulfonamide lithium salt(Li-TFSI)stock solution(260 mg/mL Li-TFSI in acetonitrile) in 1mL chlorobenzene. The Spiro-OMeTAD solution was spin coated on MAPbI3film at 4000 rpm for 30 s, and the HTL was formed. Finally, gold back contact was deposited on the surface of HTL using a thermal evaporator.

    3. Results and discussion

    To obtain high-quality ZnO NRs,we optimize the preparation parameters of ZnO NRs by varying the immersion time of the seed layer in a 30 mM precursor solution. Figures 1(a)-1(d) show that the surface and cross-sectional scanning electron micrograph(SEM)images of ZnO NRs in a 30 mM precursor solution for different growth time. The length of the ZnO NRs increases from about 450 nm to 600 nm, 850 nm,and 1000 nm as the growth time increases from 2.5 h to 3 h,3.5 h, and 4 h, respectively. While the diameter of the ZnO NRs is about 70 nm for the varying growth time. It suggests that changing the growth time at the fixed precursor concentration will only affect the length of the ZnO NRs and the influence on the diameter is not obvious. The result is in good agreement with the previous report for ZnO NRs.[24]

    Figure 1(e)presents that the absorbance of ZnO NRs improves with the increasing length. It has been reported that the length of the ZnO NRs may influence the infiltration and the formation of the perovskite material;[27]as shown in Fig.1(f),XRD patterns of perovskite deposited on different ZnO NRs show there are no PbI2peaks in ZnO NRs with the growth time of 2.5 h,3 h,3.5 h. Especially the XRD pattern of the sample with 3.5 h shows the strongest peaks of (110), (112), (220),and(310)planes of perovskite due to the most perovskite infiltrated in the longest ZnO NRs. It indicates the complete reaction of PbI2and MAI.Figure S1 presents the cross-sectional SEM image of MAPbI3film deposited on the ZnO NRs with different growth time. The whole thickness of the absorbing layer increases with the prolonged growth time of ZnO. We can see a compact and well crystallinity capping layer of the perovskite film is formed on the vertical ZnO NRs when the growth time is 3.5 h.However,when the growth time increases to 4 h,PbI2cannot completely convert to MAPbI3crystals and it is disadvantageous for the device performance.

    Figure 2 shows the fabrication procedure of PSC based on ZnO NRs.The schematic illustration of the prepared PSC with the structure of FTO/ZnO NRs/MAPbI3/Spiro-OMeTAD/Au and the cross-sectional SEM images of the device are shown in Figs. 3(a) and 3(b). The corresponding energy level diagram of the device based on related materials are shown in Fig.3(c).[22]We can see the perovskite absorption layer protects the ZnO NRs from contacting the HTL directly. The pores in the ZnO NRs are fully filled with perovskite. It is advantageous to collect carriers efficiently by ZnO NRs and Spiro-OMeTAD.

    Fig.1. Surface and cross-sectional SEM images of ZnO nanorod in a 30 mM precursor solution for different growth time (a) 2.5 h, (b)3 h,(c)3.5 h,(d)4 h. (e)Absorption spectra of ZnO NRs in a 30 mM precursor solution for different growth time. (f)XRD patterns of perovskite deposited on ZnO NRs with different growth time.

    Fig.2. Fabrication procedure of PSC based on ZnO NRs.

    We further compare the influence of the length on the device performance. As shown in Fig.3(d), the device performance changes with the length of ZnO NRs and the corresponding photovoltaic parameters are listed in Table S1. It is revealed that the optimal length of ZnO NRs is 850 nm corresponding to the growth time of 3.5 h. The optimal short circuit current density (JSC) of 18.27 mA/cm2, open circuit voltage(VOC) of 1.00 V, fill factor (FF) of 0.73, and the maximum PCE of 13.45%,which is better than other time of 2.5 h(PCE of 10.11%,JSCof 15.69 mA/cm2,VOCof 0.91V,FF of 0.70),3 h(PCE of 11.76%,JSCof 17.24 mA/cm2,VOCof 0.94 V,FF of 0.72)and 4 h(PCE of 12.98%,JSCof 18.03 mA/cm2,VOCof 0.97 V,FF of 0.73). After growing from 2.5 h to 3.5 h,the JSCincreases from 15.69 mA/cm2to 18.27 mA/cm2as the length increases from 450 nm to 850 nm. The increase of the length of ZnO NRs allows more perovskite to infiltrate into the space of the ZnO NRs,which improve the harvest efficiency of visible light and enhance the JSC.[24]However, when ZnO NRs grow to 1000 nm, they will be disorderly to hinder the infiltration of perovskite and increase the probability of charge recombination between the ZnO NRs/perovskite interface,leading to the decline of the device performance. Therefore, the following studies are focused on ZnO NRs with the length of 850 nm.

    Next, we prepared a layer of PVP coating between the ZnO NRs/perovskite interface. Figure S2 shows high resolution transmission electron microscopy (HRTEM) image of ZnO NRs with PVP coating, verifying the existence of PVP coating. In order to investigate the effect of the PVP layer on the MAPbI3film,surface morphologies of perovskite films were detected shown in Fig.S3. We can see both films are continuous and of full coverage. With the PVP coating, the average grain size turns larger. We infer this is ascribed to the solubilization and dispersion characteristic of PVP,improving surface hydrophilicity and reducing surface energy.[27]The XRD patterns of MAPbI3deposited on ZnO with/without PVP coating are shown in Fig.S4. The results present both films own tetragonal perovskite structure,and the sharper peaks for PVP coating imply the optimized MAPbI3crystallinity.[28]As shown in Table S4,the full width at half-maximum(FWHM)of (110) peak reduces from 0.200?to 0.173?after inserting the PVP layer. This result is in good agreement with the enlarged grain size, confirming the optimized MAPbI3crystallinity with PVP. Figure 4(a) presents the absorbance of MAPbI3films deposited on ZnO NRs and ZnO/PVP films.The sample with PVP exhibits a slightly higher absorbance near the short-wavelength region due to the enlarged grain size and optimized crystallinity. Trap states are always an issue in polycrystalline films, such as ZnO and perovskite materials.Decreasing them could improve the device performance. PL measurements were applied to investigate the trap states.[29]Figure 4(b) presents the PL spectra of perovskite films deposited on ZnO NRs and ZnO/PVP. The data shows that the former owns a higher PL intensity than the latter, indicating that the PVP coating reduces the defects density at the ZnO NRs/perovskite interface. It turns out that PVP coating could lower the carrier recombination losses,enhance the charge transportation,and facilitate the charge extraction from the perovskite absorption layer to ZnO ETL.In addition,electrochemical impedance spectroscopy (EIS) was implemented to investigate the origin of the improved electron transportation and suppressed carrier recombination after PVP inserting. Nyquist plots of the MAPbI3cells are shown in Fig.4(c).The radius of the semicircle in Nyquist plot represents the recombination resistance(Rrec)of the devices. The node of EIS semicircle with the x-axis gives series resistance (Rs) of the PSC.It is clear that PVP coating makes the Rsdecrease and the Rrecincrease,which can reduce the charge recombination and promote the charge transfer.[11]To further identify the physical origin of the charge separation and transportation, Mott-Schottky analysis was applied. The relationship between V and 1/C2is delivered by the following equation:[30]

    where ε, ε0are permittivity, q, A, N, V are the elementary charge,the active area,the free carrier concentration,and the applied bias, C is the dark measured capacitance, Vbiis the built-in potentials,which can be evaluated by the kink point of the linear region with the x-axis of the Mott-Schottky curve.We can see the ZnO/PVP based device presents a higher Vbithan that of ZnO,which matches well with the tendency of the VOCdiscussed later in Fig.6(a). It is well known that Vbiis beneficial to the charge separation and the suppressed carrier recombination.[30]The higher Vbiof the ZnO/PVP based device should be related to the decreased charge recombination,resulting from the elimination defects and the optimized interfacial between ZnO/perovskite. Combining the above analysis,PVP coating can suppress the non-radiative recombination loss in the cell,leading to a higher VOCcompared to the pristine devices. Therefore,the interface between ZnO/perovskite is meliorated with the reduced defects density and the improved charge transportation.

    Fig.3. (a)Cross-sectional SEM images and(b)schematics of the device structure. (c)Energetic diagram of PSC based on ZnO NRs with a length of 850 nm. (d)J-V plots of the devices based on ZnO NRs with different growth time.

    Fig.4. (a)Absorption spectra and(b)PL spectra of MAPbI3 film deposited on ZnO and ZnO/PVP films,(c)Nyquist plots of PSCs and(the inset depicts the equivalent circuit)(d)Mott-Schottky curves of the best devices based on ZnO and ZnO/PVP films.

    Fig.5. (a)EDS elemental mapping spectra of Mg: ZnO NRs on FTO(O,Mg, and Zn). (b)XPS of Mg(5%): ZnO NRs(c)high-resolution XPS spectra of Mg 1s peak.

    Mg doped ZnO NRs were prepared. Figure 5(a) shows the EDS elemental mapping of the Mg: ZnO film. The distributions of the film composition (Mg, ZnO, and O) imply Mg has been incorporated in the ZnO NRs uniformly. The existence of Mg in the film was further confirmed by the Xray photoelectron spectra(XPS)spectrum of the Mg 1s region(Figs.5(b)and 5(c)).

    Figure S5 shows that the XRD patterns of the ZnO NRs with different Mg doping concentration. All the diffraction peaks correspond to the wurtzite structure of ZnO,suggesting the absence of impurity phase in the samples,and Mg doping does not alter the structure of the ZnO. We infer Mg atoms mainly exist in the ZnO as substitutes or interstitials.[31]After doping Mg, all the peaks become much stronger and sharper compared with the pristine ZnO NRs,suggesting an enhanced crystallinity of the doping ETL.[32]It is beneficial to the electron transportation and improving FF and JSCof the device performance,which will be discussed later in Fig.S6.

    In order to further investigate the influence of Mg doping on the ZnO NRs, the band gap was calculated from the absorption spectra. As shown in Fig.6(a), after 5%Mg doping, the band gap increases. Based on the previous reports,the increased band gap is ascribed to the rise of the conduction band,[22,33]leading to a faster electron transportation at the interface. It is helpful to enhance the FF and JSC. Moreover,EIS measurements were performed to reveal the recombination dynamics and interfacial charge transfer of the doped and none doped PSCs. Figure 6(b)shows the Nyquist plots of the MAPbI3cells. Mg doping makes the Rrecincrease, leading to the lower carrier recombination. Rsappear to be lower than the pristine device, resulting in a faster electron injection. These results match well with the previous literature that Mg doping increased the conductivity, resulting mainly from the decreased internal resistance,which enhances the electron density in ZnO.[23]

    Fig.6.(a)The extrapolated plots of(αhν)2 as a function of hν got from the absorption spectra of ZnO NRs with different content(x=0%,5%)and applied to calculate their band gaps. (b) Nyquist plots of PSCs based on ZnO NRs with different Mg content(x=0%, 5%)(the inset depicts the equivalent circuit).

    Figure 7(a)depicts J-V plots of the champion PSCs based on pristine ZnO, ZnO/PVP, and ZnO: Mg (5%)/PVP layers.The performance parameters are listed in Table 1. After doping with Mg(5%),the device obtains the best PCE of 19.63%,the JSCincreases from 19.96 mA/cm2to 21.66 mA/cm2, the VOCrises from 1.13 V to 1.14 V, and the FF increases from 0.77 to 0.79. The effect of Mg doping concentration on the cells performance was also probed. The photovoltaic performance of solar cells based on the ZnO NRs with different Mg concentrations(0,1%,2%,5%,10%atomic percent)is shown in Fig.S6 and Table S3. It is clear that doping concentration significantly impacts the device performance. When the doping content increased to 10%, the photovoltaic performance of the device decreases to 15.78%, owing to a significant reduction in the JSCand FF. Obviously, 5% doping content is the optimized doping amount. With PVP coating, the performance of PSC is improved, yielding a PCE of 17.27%, the JSCincreases from 19.63 mA/cm2to 19.96 mA/cm2,the VOCand FF rise from 1.10 V to 1.13 V,0.75 to 0.77,respectively.Based on the above analysis, the obvious enhancement is ascribed to the optimized interface and the enhanced perovskite crystallinity. Both devices based on the PVP coating and the Mg doping present a higher reproducibility compared to the pristine devices(Fig.7(b)).

    Table 1. Summary of device characteristics of the cells based on modified ZnO NRs under 1 sun illumination(AM 1.5G,100 mW/cm2).

    The stability of PSCs based on Mg(5%): ZnO NRs with and without PVP coating were tested under lab conditions with a relative humidity of 30%-50% without encapsulation. As Fig.7(c)shows,the PCE of cell with PVP coating retains 80%of the initial PCE values after aging 30 days. While the PCE of cell without PVP coating only retains 57% after 20 days,indicating that the PVP coating contributes to the stability of the devices,which is possibly attributed to the enhanced crystallinity of MAPbI3[11]and the optimized interface.[17]

    Fig.7. (a)Current density-voltage curves of devices and(b)the PCEs distribution of the devices based on ZnO NRs,ZnO/PVP,and ZnO:Mg(5%)/PVP.(c)Evolution of PCE for unsealed PSCs with or without PVP coating under lab conditions with a relative humidity of 30%-50%.

    4. Conclusion

    We have fabricated the effective charge collection and transportation mesoscopic perovskite solar cells based on ZnO NRs by some key optimization of the ETL and ETL/perovskite interface,comprising optimization of the preparation parameters of the ZnO NRs, the use of PVP layer, and Mg doping.The superior length of the ZnO NRs was controlled by manipulating the growth time.By inserting the PVP layer,interfacial traps were reduced, certifying by PL and EIS measurements.Meanwhile, crystallization of MAPbI3was enhanced, identified by XRD and SEM measurements. EIS measurement reveals that Mg doping increases the conductivity of ZnO NRs and improves electron extraction and transportation. Combining together, the PCE of the device rises from 16.28% to 19.63%.The devices with the PVP inserting layer also present better stability than the pristine ones. Our study provides a facile approach to improve the efficiency and the stability of photovoltaic cells. In such a synergistic way, the PSCs based on ZnO NRs are promising in the solar cell field.

    猜你喜歡
    俊杰
    Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
    “畫家陳”
    Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow*
    Bian Que
    能自律者為俊杰
    文苑(2020年7期)2020-08-12 09:36:36
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    表演大師
    我的同桌
    我可是有主角光環(huán)的人
    我給桌子“洗臉”
    在线免费观看不下载黄p国产 | 此物有八面人人有两片| 久久久久久久久大av| 18禁在线播放成人免费| 美女cb高潮喷水在线观看| 一级黄片播放器| 亚洲人成网站在线播| 国产亚洲精品一区二区www| 日本黄大片高清| 3wmmmm亚洲av在线观看| 国内毛片毛片毛片毛片毛片| 久久久久性生活片| 免费av观看视频| 老汉色∧v一级毛片| 国产欧美日韩一区二区三| 69av精品久久久久久| 日本黄色片子视频| 9191精品国产免费久久| 亚洲真实伦在线观看| 88av欧美| 别揉我奶头~嗯~啊~动态视频| 国产 一区 欧美 日韩| 黄色日韩在线| 高清日韩中文字幕在线| 18禁裸乳无遮挡免费网站照片| 欧美一级毛片孕妇| 亚洲欧美日韩东京热| 日本五十路高清| 亚洲精品国产精品久久久不卡| 黄片大片在线免费观看| 九色国产91popny在线| 老司机在亚洲福利影院| 男女午夜视频在线观看| 俄罗斯特黄特色一大片| 成年免费大片在线观看| 国产亚洲精品av在线| 国产爱豆传媒在线观看| 亚洲内射少妇av| 欧美乱妇无乱码| 99久久成人亚洲精品观看| 久久久久国产精品人妻aⅴ院| 最好的美女福利视频网| 国产精品女同一区二区软件 | 亚洲五月天丁香| 校园春色视频在线观看| 免费av不卡在线播放| 人人妻,人人澡人人爽秒播| 国产精品久久久久久精品电影| 黄色视频,在线免费观看| 免费观看的影片在线观看| 国产精品久久久久久久久免 | www国产在线视频色| 99热精品在线国产| 国产视频一区二区在线看| 日韩欧美精品v在线| 琪琪午夜伦伦电影理论片6080| 久久久久久久精品吃奶| 青草久久国产| 在线观看免费午夜福利视频| 亚洲精品乱码久久久v下载方式 | 露出奶头的视频| 一本一本综合久久| 国产伦精品一区二区三区视频9 | 中国美女看黄片| 一本一本综合久久| 久久性视频一级片| 成人亚洲精品av一区二区| 色综合婷婷激情| 亚洲最大成人中文| 97碰自拍视频| 国产av不卡久久| 午夜亚洲福利在线播放| 午夜免费激情av| 黄色片一级片一级黄色片| 久久人妻av系列| 欧美乱色亚洲激情| 国产探花极品一区二区| 国产乱人伦免费视频| 91九色精品人成在线观看| 色综合亚洲欧美另类图片| 嫩草影视91久久| 国产一区在线观看成人免费| 成人av一区二区三区在线看| 国产成人a区在线观看| 狂野欧美白嫩少妇大欣赏| 日本 欧美在线| 一个人免费在线观看电影| 90打野战视频偷拍视频| 一区福利在线观看| 国产伦精品一区二区三区视频9 | 国产欧美日韩一区二区三| 日韩欧美精品v在线| 国产国拍精品亚洲av在线观看 | 亚洲男人的天堂狠狠| 国产中年淑女户外野战色| 久久6这里有精品| 国产一区二区亚洲精品在线观看| avwww免费| 欧美在线黄色| 成人国产综合亚洲| 91麻豆av在线| 最近在线观看免费完整版| 日本一二三区视频观看| 国产三级黄色录像| 天堂动漫精品| 日韩欧美一区二区三区在线观看| 国产真人三级小视频在线观看| www日本黄色视频网| www日本黄色视频网| 色综合亚洲欧美另类图片| 女生性感内裤真人,穿戴方法视频| 最后的刺客免费高清国语| 欧美成人免费av一区二区三区| 国产av麻豆久久久久久久| 亚洲色图av天堂| 精品电影一区二区在线| 婷婷精品国产亚洲av| 老汉色∧v一级毛片| 国产精品,欧美在线| 岛国视频午夜一区免费看| 日本免费a在线| av女优亚洲男人天堂| 真人做人爱边吃奶动态| 亚洲专区中文字幕在线| 女生性感内裤真人,穿戴方法视频| 亚洲精品久久国产高清桃花| 亚洲第一电影网av| h日本视频在线播放| 少妇人妻一区二区三区视频| 亚洲欧美一区二区三区黑人| 国产亚洲欧美98| 99久久99久久久精品蜜桃| 老熟妇仑乱视频hdxx| 精品国产美女av久久久久小说| 久久精品综合一区二区三区| 两个人视频免费观看高清| 国产成人影院久久av| 成人性生交大片免费视频hd| 亚洲五月婷婷丁香| av女优亚洲男人天堂| 在线观看日韩欧美| 女警被强在线播放| 非洲黑人性xxxx精品又粗又长| 男人和女人高潮做爰伦理| 性欧美人与动物交配| 国产伦人伦偷精品视频| 波多野结衣高清作品| 在线免费观看的www视频| 一进一出好大好爽视频| 欧美av亚洲av综合av国产av| 97超视频在线观看视频| 精品国产美女av久久久久小说| 九色成人免费人妻av| 午夜精品在线福利| 中文资源天堂在线| 在线视频色国产色| 亚洲熟妇熟女久久| 免费在线观看成人毛片| 看片在线看免费视频| 国产黄片美女视频| 国产一区二区激情短视频| 麻豆成人午夜福利视频| 国产精品美女特级片免费视频播放器| 精品人妻一区二区三区麻豆 | 日韩欧美一区二区三区在线观看| 亚洲国产欧美人成| 亚洲狠狠婷婷综合久久图片| 久久久色成人| 黑人欧美特级aaaaaa片| 免费搜索国产男女视频| av片东京热男人的天堂| 国产午夜精品论理片| 国产精品久久久久久亚洲av鲁大| 久久精品国产亚洲av香蕉五月| 久久午夜亚洲精品久久| 99久久99久久久精品蜜桃| 女人高潮潮喷娇喘18禁视频| 亚洲性夜色夜夜综合| 国模一区二区三区四区视频| 欧美黑人巨大hd| 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看影片大全网站| 淫秽高清视频在线观看| 国产成人欧美在线观看| 内射极品少妇av片p| 精品久久久久久,| 天堂√8在线中文| 成人性生交大片免费视频hd| netflix在线观看网站| 久久精品国产亚洲av香蕉五月| 一区二区三区免费毛片| 中文字幕久久专区| 3wmmmm亚洲av在线观看| 成人无遮挡网站| 无人区码免费观看不卡| 国产亚洲欧美98| 国产成人a区在线观看| 国产毛片a区久久久久| 麻豆久久精品国产亚洲av| 一区福利在线观看| 国产精品久久久久久人妻精品电影| 日韩亚洲欧美综合| 亚洲精品456在线播放app | 亚洲av成人不卡在线观看播放网| 久久人人精品亚洲av| 国产成年人精品一区二区| 日韩欧美免费精品| 中文字幕久久专区| 神马国产精品三级电影在线观看| 最近视频中文字幕2019在线8| 欧美国产日韩亚洲一区| 亚洲 欧美 日韩 在线 免费| 深夜精品福利| 又爽又黄无遮挡网站| 国产毛片a区久久久久| 国产精品av视频在线免费观看| 在线观看免费午夜福利视频| 亚洲欧美日韩东京热| 在线免费观看的www视频| 亚洲成av人片免费观看| 精品国内亚洲2022精品成人| 久久久久亚洲av毛片大全| 香蕉丝袜av| 精品日产1卡2卡| 99精品在免费线老司机午夜| 2021天堂中文幕一二区在线观| 极品教师在线免费播放| 最近最新中文字幕大全电影3| 久久久久久人人人人人| 国产高清有码在线观看视频| 精品国内亚洲2022精品成人| 97人妻精品一区二区三区麻豆| 国产成人福利小说| 欧美另类亚洲清纯唯美| 精品国产超薄肉色丝袜足j| 90打野战视频偷拍视频| ponron亚洲| 午夜福利欧美成人| 欧美成人一区二区免费高清观看| 国产伦精品一区二区三区四那| 国产三级中文精品| 最近最新免费中文字幕在线| 99久久精品一区二区三区| av中文乱码字幕在线| 天美传媒精品一区二区| 色综合婷婷激情| 国产真实伦视频高清在线观看 | 在线视频色国产色| 给我免费播放毛片高清在线观看| 日韩精品中文字幕看吧| 老汉色av国产亚洲站长工具| 丰满人妻熟妇乱又伦精品不卡| av天堂中文字幕网| 3wmmmm亚洲av在线观看| 日韩 欧美 亚洲 中文字幕| 成年女人看的毛片在线观看| 天天一区二区日本电影三级| 91字幕亚洲| 精华霜和精华液先用哪个| 丝袜美腿在线中文| 欧美日韩福利视频一区二区| 少妇的丰满在线观看| 免费观看精品视频网站| 美女被艹到高潮喷水动态| 国内久久婷婷六月综合欲色啪| 欧美一级a爱片免费观看看| 欧美日本视频| 成人av一区二区三区在线看| 亚洲国产精品sss在线观看| 久久久久久久精品吃奶| 免费在线观看成人毛片| 国产欧美日韩精品一区二区| 欧美三级亚洲精品| 少妇人妻一区二区三区视频| 18禁美女被吸乳视频| 亚洲人成伊人成综合网2020| 精品久久久久久久久久免费视频| 国产成+人综合+亚洲专区| 日韩欧美国产一区二区入口| 亚洲精品国产精品久久久不卡| 高清在线国产一区| 免费看a级黄色片| 亚洲av免费高清在线观看| 久久久国产成人免费| 久久久久免费精品人妻一区二区| 中文字幕人妻丝袜一区二区| 老司机午夜福利在线观看视频| 成人高潮视频无遮挡免费网站| 亚洲精品粉嫩美女一区| 精品99又大又爽又粗少妇毛片 | 一个人免费在线观看电影| 欧美国产日韩亚洲一区| 午夜福利欧美成人| 午夜精品久久久久久毛片777| 免费无遮挡裸体视频| www.999成人在线观看| 99久久精品国产亚洲精品| 一本综合久久免费| 18禁国产床啪视频网站| 亚洲成人久久爱视频| 国产伦一二天堂av在线观看| 亚洲av免费在线观看| 亚洲成人久久爱视频| 国产一级毛片七仙女欲春2| 亚洲性夜色夜夜综合| 色av中文字幕| 日韩免费av在线播放| 亚洲五月婷婷丁香| 亚洲无线观看免费| 亚洲精品色激情综合| www.熟女人妻精品国产| 一进一出抽搐gif免费好疼| a在线观看视频网站| 久久精品国产综合久久久| 日本 av在线| 亚洲一区高清亚洲精品| 日本黄大片高清| 免费大片18禁| 亚洲国产欧美网| 婷婷六月久久综合丁香| 夜夜夜夜夜久久久久| 在线观看av片永久免费下载| 午夜福利在线观看吧| 9191精品国产免费久久| 亚洲精品美女久久久久99蜜臀| 国产精品久久久久久久久免 | 窝窝影院91人妻| 搡老岳熟女国产| www.www免费av| 国产熟女xx| 美女黄网站色视频| 欧美另类亚洲清纯唯美| 一级a爱片免费观看的视频| 男人和女人高潮做爰伦理| 熟女电影av网| av视频在线观看入口| 欧美一级a爱片免费观看看| 国产私拍福利视频在线观看| 国产日本99.免费观看| av福利片在线观看| 偷拍熟女少妇极品色| 制服人妻中文乱码| 国产午夜精品久久久久久一区二区三区 | 亚洲 国产 在线| 精品久久久久久久末码| 亚洲一区二区三区不卡视频| 露出奶头的视频| 尤物成人国产欧美一区二区三区| 97人妻精品一区二区三区麻豆| 夜夜夜夜夜久久久久| 午夜福利在线观看免费完整高清在 | 精品福利观看| 亚洲熟妇熟女久久| 精品国内亚洲2022精品成人| 99久久精品热视频| 嫁个100分男人电影在线观看| 亚洲专区国产一区二区| 精品免费久久久久久久清纯| 国内精品一区二区在线观看| 90打野战视频偷拍视频| 九色国产91popny在线| 国产91精品成人一区二区三区| 性欧美人与动物交配| 亚洲自拍偷在线| 男人和女人高潮做爰伦理| 日本熟妇午夜| 最近最新中文字幕大全免费视频| 亚洲国产日韩欧美精品在线观看 | 日本三级黄在线观看| 又粗又爽又猛毛片免费看| 99在线视频只有这里精品首页| 亚洲无线观看免费| 国内揄拍国产精品人妻在线| 欧美日韩亚洲国产一区二区在线观看| 日本黄大片高清| 99riav亚洲国产免费| 日日摸夜夜添夜夜添小说| 老汉色av国产亚洲站长工具| 亚洲不卡免费看| 久久欧美精品欧美久久欧美| 免费在线观看成人毛片| 日本免费一区二区三区高清不卡| 在线免费观看不下载黄p国产 | 欧美xxxx黑人xx丫x性爽| 老司机在亚洲福利影院| 精品免费久久久久久久清纯| 岛国在线观看网站| 偷拍熟女少妇极品色| 国产伦一二天堂av在线观看| 国产一区二区亚洲精品在线观看| 欧美一级a爱片免费观看看| 亚洲精品美女久久久久99蜜臀| 欧美中文日本在线观看视频| ponron亚洲| 露出奶头的视频| 法律面前人人平等表现在哪些方面| av欧美777| 在线免费观看不下载黄p国产 | 看免费av毛片| 999久久久精品免费观看国产| 欧美乱妇无乱码| 久久久久国产精品人妻aⅴ院| 丝袜美腿在线中文| 日韩国内少妇激情av| 色吧在线观看| www.熟女人妻精品国产| 在线视频色国产色| svipshipincom国产片| 国产三级在线视频| 久久久国产成人精品二区| ponron亚洲| 日韩高清综合在线| av天堂中文字幕网| 精品免费久久久久久久清纯| 日韩国内少妇激情av| 国产精品三级大全| 欧美+日韩+精品| 久久久久久国产a免费观看| 99久久99久久久精品蜜桃| 变态另类丝袜制服| 在线观看舔阴道视频| 国产av不卡久久| 亚洲av不卡在线观看| 变态另类成人亚洲欧美熟女| 老鸭窝网址在线观看| 99久久精品一区二区三区| 黄片小视频在线播放| 一卡2卡三卡四卡精品乱码亚洲| 12—13女人毛片做爰片一| www.www免费av| 日本熟妇午夜| 欧美成人性av电影在线观看| 亚洲精品一卡2卡三卡4卡5卡| 欧美zozozo另类| 国产亚洲精品av在线| 久久精品人妻少妇| 在线十欧美十亚洲十日本专区| 岛国在线观看网站| 18禁黄网站禁片免费观看直播| 欧美成人a在线观看| 午夜日韩欧美国产| 淫秽高清视频在线观看| 亚洲国产中文字幕在线视频| 欧美日韩精品网址| 午夜a级毛片| bbb黄色大片| 白带黄色成豆腐渣| 国产高清视频在线观看网站| 国产高清有码在线观看视频| 欧美日韩亚洲国产一区二区在线观看| 熟女电影av网| 免费观看人在逋| 欧美极品一区二区三区四区| 女同久久另类99精品国产91| 国产一区二区在线观看日韩 | 看黄色毛片网站| 一级a爱片免费观看的视频| 两个人视频免费观看高清| 亚洲人成网站高清观看| 亚洲精品日韩av片在线观看 | 国产精品野战在线观看| 国产精品影院久久| 欧美zozozo另类| 国产精品野战在线观看| 日韩欧美精品v在线| 日本一二三区视频观看| 亚洲在线观看片| 麻豆久久精品国产亚洲av| 亚洲精品国产精品久久久不卡| xxxwww97欧美| 欧美激情久久久久久爽电影| 亚洲av成人av| 美女高潮的动态| 亚洲精品亚洲一区二区| 啪啪无遮挡十八禁网站| 久久久久久久亚洲中文字幕 | 欧美+日韩+精品| 国产免费av片在线观看野外av| 美女cb高潮喷水在线观看| 波野结衣二区三区在线 | 久久精品影院6| 美女高潮的动态| 麻豆久久精品国产亚洲av| 一级黄片播放器| 亚洲精品亚洲一区二区| 国产日本99.免费观看| 最新中文字幕久久久久| 国产成人啪精品午夜网站| 99精品欧美一区二区三区四区| 久久国产精品人妻蜜桃| 床上黄色一级片| 亚洲avbb在线观看| 大型黄色视频在线免费观看| 黄色视频,在线免费观看| 中文字幕久久专区| 最好的美女福利视频网| 18美女黄网站色大片免费观看| 麻豆一二三区av精品| 午夜免费成人在线视频| 成人无遮挡网站| 91九色精品人成在线观看| 高清日韩中文字幕在线| 亚洲第一电影网av| 人人妻人人澡欧美一区二区| 国产亚洲av嫩草精品影院| 久久国产精品影院| 国产一区二区三区在线臀色熟女| 国产在视频线在精品| 中文字幕av成人在线电影| 18禁美女被吸乳视频| 日韩国内少妇激情av| 亚洲七黄色美女视频| 午夜视频国产福利| 免费搜索国产男女视频| h日本视频在线播放| 在线观看免费午夜福利视频| 波多野结衣高清无吗| 日本三级黄在线观看| 国产欧美日韩一区二区三| 久久久久久久久中文| 国产伦人伦偷精品视频| 成年女人看的毛片在线观看| 一级作爱视频免费观看| 五月伊人婷婷丁香| 成人18禁在线播放| 久久香蕉国产精品| 亚洲国产欧美网| 性色av乱码一区二区三区2| 18+在线观看网站| 久久精品综合一区二区三区| 一个人看的www免费观看视频| 中亚洲国语对白在线视频| 嫩草影视91久久| 最新在线观看一区二区三区| 久久精品国产清高在天天线| 天堂网av新在线| 亚洲七黄色美女视频| 欧美日韩精品网址| 在线免费观看不下载黄p国产 | 18+在线观看网站| 最近视频中文字幕2019在线8| 精品不卡国产一区二区三区| 日韩高清综合在线| 2021天堂中文幕一二区在线观| 亚洲一区高清亚洲精品| 97碰自拍视频| www.熟女人妻精品国产| 高清日韩中文字幕在线| 久久精品亚洲精品国产色婷小说| 69人妻影院| 欧美日韩黄片免| 精品熟女少妇八av免费久了| 亚洲片人在线观看| 国产 一区 欧美 日韩| 俄罗斯特黄特色一大片| 99久久九九国产精品国产免费| 可以在线观看的亚洲视频| av天堂在线播放| 国产高清videossex| 亚洲,欧美精品.| 日韩国内少妇激情av| 色精品久久人妻99蜜桃| 婷婷精品国产亚洲av在线| 久久精品国产99精品国产亚洲性色| 久久久久久久久久黄片| 美女被艹到高潮喷水动态| 嫩草影院入口| 亚洲 欧美 日韩 在线 免费| 亚洲精品影视一区二区三区av| 国产一区二区三区视频了| 婷婷丁香在线五月| 中文字幕人成人乱码亚洲影| 成人亚洲精品av一区二区| 亚洲av免费在线观看| 午夜久久久久精精品| 久久精品影院6| 欧美成人a在线观看| 日本黄色片子视频| 精品国产超薄肉色丝袜足j| 一个人观看的视频www高清免费观看| 日韩大尺度精品在线看网址| 他把我摸到了高潮在线观看| 午夜激情福利司机影院| 成年女人看的毛片在线观看| 亚洲五月天丁香| 亚洲 欧美 日韩 在线 免费| x7x7x7水蜜桃| 一进一出抽搐gif免费好疼| 男人的好看免费观看在线视频| 身体一侧抽搐| 国产精华一区二区三区| 又黄又粗又硬又大视频| 一个人观看的视频www高清免费观看| 国产精品久久视频播放| 成人永久免费在线观看视频| 噜噜噜噜噜久久久久久91| 欧美乱色亚洲激情| 欧美一区二区国产精品久久精品| 日韩欧美国产在线观看| 亚洲国产精品sss在线观看| 最新在线观看一区二区三区| 五月伊人婷婷丁香| 欧美3d第一页| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久久久免 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 18+在线观看网站| 天天躁日日操中文字幕| 色哟哟哟哟哟哟| 国产成人av教育| 88av欧美| 男女那种视频在线观看| 欧美激情在线99| 身体一侧抽搐| 尤物成人国产欧美一区二区三区|