• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hall conductance of a non-Hermitian two-band system with k-dependent decay rates

    2023-03-13 09:17:40JunjieWang王俊杰FudeLi李福德andXuexiYi衣學喜
    Chinese Physics B 2023年2期
    關鍵詞:俊杰

    Junjie Wang(王俊杰) Fude Li(李福德) and Xuexi Yi(衣學喜)

    1Center for Quantum Sciences and School of Physics,Northeast Normal University,Changchun 130024,China

    2Center for Advanced Optoelectronic Functional Materials Research,and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education,Northeast Normal University,Changchun 130024,China

    Keywords: Hall conductance,non-Hermitian,topological insulators

    1.Introduction

    Since the discovery of quantum Hall effect in the 1980s,the topological band theory has been extensively developed and applied in various systems, ranging from insulator and semimetal to superconductor.[1-4]In theory,the Chern number captures the winding of the eigenstates and is defined via the integral of the Berry curvature over the first Brillouin zone.It can not only be used to classify topological materials,but also quantify the response of the system to an external field.For example, the Hall conductance is quantized and proportional to the sum of the Thouless-Kohmoto-Nightingale-den Nijs(TKNN)invariants(or Chern numbers)of all filled bands.[5-7]This theory is previously established in closed systems, and one may wonder if it holds valid for open systems.

    Open systems can be described effectively by the non-Hermitian Hamiltonian.Recently, the non-Hermitian topological theories have been introduced and experiments have been conducted in dozens of open systems.[8-47]Many interesting features are predicted and observed in the non-Hermitian systems, including the band defined on the complex plane,[11]the breakdown of the conventional bulkboundary correspondence,[12-17]and the non-Hermitian skin effect.[13,18-25]The definition of the topological invariance for the non-Hermitian systems has also been discussed.[11,32]

    From the side of response, the impact of the non-Hermitian on observable has been studied using fieldtheoretical techniques within the linear response theory (e.g.,the Kubo formula).[35-39]They found that there is no link between the non-Hermitian topological invariants and the quantization of observables[35]and the observables are no longer quantized in general otherwise requiring more strict conditions than that of a nonzero non-Hermitian Chern number.[36]In these studies, the non-Hermitian term was introduced via self-energy in the low-energy limit,[37]or phenomenologically introduced to add into the system, so a non-Hermitian version of the TKNN could be derived to show the topological contribution.[36]This rises a question that how the decay rate depends on the momentum of the electron,and how the decay depends on the couplings between the system and the environment, and how a non-Hermitian system withk-dependent decay rate responses to an external stimulus.

    In this work, we will answer these questions and shed more light on the response theory for the non-Hermitian twoband systems by the adiabatic perturbation theory.[48-50]The reminder of this paper is organized as follows.In Section 2,we introduce the system-environment couplings and derive a master equation by which we obtain a non-Hermitian Hamiltonian to describe the two-band system subjected to environments.The dependence of the decay rates on the Bloch vectors is also derived and discussed.In Section 3,we work out the response of the non-Hermitian two-band systems to a constant electric field using the adiabatic perturbation theory.The results show that the response of the system can be divided into two terms.The first term is proportional to the non-Hermitian Chern number for two-band systems, which is reminiscent of the relationship between the Chern number and the Hall conductance of closed systems.While the second term can be treated as a correction that suggests the relationship between the Chern number and the conductance might fail for open systems.In Section 4,taking a tight-binding electron in a two-dimensional lattice as an example,we calculate and plot the complex-band structures as a function of the momentum of the electron,kxandky.The Hall conductance of the system is also shown and analyzed.We find that Hall conductance depends on the strength of the decay rate and the electron occupation on the Bloch band,which no longer leads to a quantized Hall conductance in general and a delay in the response of the system to the constant electric field appears.We also compare the Hall conductance of the open systems by the non-Hermitian Hamiltonian and by master equation in this section.In Section 5,we conclude the paper with discussions.

    2.Master equation and effective non-Hermitian Hamiltonian

    We start with a two-band Chern insulator,whose Hamiltonian can be expressed as(setting ˉh=1)

    Here,γ(k) is the decay rate that depends on the Bloch vectors.N(ωn)={exp[ωn/kBT]-1}-1represents the average number of photons in the system.In the Weisskopf-Wigner approximation,N(k) ={exp[2d(k)/kBT]-1}-1.In order to obtain an effective non-Hermitian Hamiltonian, the master equation can be written as

    This type of master equation has been studied in Ref.[54],where the environmental electromagnetic field along thexaxis is assumed,Ax=Ext.In the following discussion, we lift this restriction and consider the field along thexandydirections.When the quantum-jump term in Eq.(9) can be neglected,the system reduces to a system described by an effective non-Hermitian Hamiltonian

    This situation holds valid when we consider the dynamics in a sufficiently short period of time,[57-59]which greatly simplifies the calculation, because it suffices to study the eigenvectors and eigenvalues of an effective Hamiltonian, instead of performing a time-resolved calculation of the density matrix.Here, we consider a Bose reservoir as an environment.Similarly,we also obtain an effective non-Hermitian Hamiltonian for the Fermi reservoir(see Eq.(A5)).

    In the limitT →0, we find thatN(k)→0.With this consideration and a unitary transformation,we have

    whereαis the dimensionless coupling strength,andωcis the hard upper cutoff.The indexsaccounts for various physical situations,for example for Ohmic spectrum,s=1.We have

    3.Hall conductance

    In order to derive the response to a constant electric field?, one can introduce a uniform vector potentialA(t) that changes in time such that?tA(t)=-?, which can modify the Bloch vectors, i.e.,k(t)=k+eA(t).The Hamiltonian ?Heff(k(t))satisfies the following time-dependent Schr¨odinger equation:

    Consider a crystal under the perturbation of a weak electric field.We can write the total Hamiltonian as ?Heff(k(t)) =?Heff+ ?H', where ?H'stands for the perturbation Hamiltonian.If the system is initially in the ground band,it will always stay in this band if the adiabatic condition is met.But now,we consider the case that there is still a small probability for particles to move from ground to excited band.So we can use the adiabatic perturbation theory with the perturbation Hamiltonian ?H'=-i?/?t.The corresponding ground band wave function up to the first order in the field strength satisfies[49]

    wherehstands for the Planck constant andNis known as the non-Hermitian Chern number defined in Ref.[11].We observe that this response can no longer be proportional to the Chern number of the non-Hermitian system.The responseσHfor the non-Hermitian system can be divided into two terms.The first term is the Chern number of the non-Hermitian system,while the second term can be treated as a correction that suggests the relationship between the Chern number and the conductance might fail for open systems,which is not quantized and a delay in the response can be found.[66]Specific details will be clearer after simplifying Eq.(24),leading to

    which is the key result of this work.Re(σH)and Im(σH)are the real and imaginary parts ofσH,respectively.The first part Re(σH)is related to the non-Hermitian Chern number, and it is no longer quantized in general.The second part Im(σH)can be understood as the environment induced delay for the system in its response to the electric field, which is reminiscent of the complex admittance in a delay circuit with capacitor and inductor.The energy bands of the non-Hermitian systems are complex in general, which indicates that energy and particle may exchange between system and environment.Due to the decay effect, the Hall conductance is generalized to Hall admittance.So we define the real part of theσHas the Hall conductance and the imaginary part as the Hall susceptance.WhenΓ(k)=0,the Hall conductance returns to the quantized result and the delay disappears,

    Next we present a more detailed analysis for the Hall conductance in Eq.(25).First, for a general non-Hermitian two bands system,the Berry connectionAiu-(k)for band|u-(k)〉with energyE-is defined as

    In this case, we prove that non-Hermitian Berry curvatures withk-dependent decay rateΩu±(k)and(k)are real and equal to the curvature of the Hermitian system due to thatΓ(k)andd(k)have the same direction, leading to quantization of the non-Hermitian Chern number.

    Meanwhile theP(k) term in Eq.(25) depends onΓ(k),withP(k)→1 whenΓ(k)→0.Therefore Re(σH) is not quantized in general and it is no longer proportional to the Chern number of the non-Hermitian system.However, whenΓ(k)→0,we can obtain a nearly quantized Hall conductance.And if the spectral density of the environmentJζ(k)andd(k)is linearly dependent such thatΓζ(k) =ζd(k), whereζis ak-independent constant, we can get a Hall conductance as Re(σH)=[1/(1+ζ2)]n,n ∈(0,±1), i.e., it is not quantized due to the rate[1/(1+ζ2)]in the Hall conductance,but it still possesses a plateau in the dependence of the conductance on the parameter of the system.

    From Eqs.(25)and(26),we can find that ath(k)=0 the phase transition occurs

    BeacuseΓ(k)/d(k)?1, the phase transition occurs whend(k)=0 (where the energy gaps close).This condition of phase transition is the same as the corresponding closed systems.Hence, the phase transition points remain unchanged comparing to the isolated system.

    Assuming the decay rates are very small, we can ignore the quadratic term of the decay ratesΓ2.In this situation,the Hall conductance reads

    In this case,it can be seen that Hall conductance(Re(σH))is proportional to the non-Hermitian Chern number, and it takes quantized values as the change of the parameter.In order to show the validity of the above conclusions,we compare the above results with the Hall conductance by solving the steadystate solution of the master equation,[54,67]

    where

    with

    Although the Hall conductance can be calculated by the master equation description, it can not establish a direct relationship between the Hall conductance and the topological invariant even if we ignore the quadratic term of the decay rates.

    4.Example

    To demonstrate the response theory of the non-Hermitian two-band system,we consider the following example ofdα(k)

    This model describes a time reversal symmetry-breaking system,which might be a magnetic semiconductor with Rashbatype spin-orbit coupling,spin-dependent effective mass,and a uniform magnetization in thezdirection.[68]This model can be realized in graphene with Fe atoms are adsorbed on top,which possesses quantum anomalous Hall effect in the presence of both Rashba spin-orbit coupling and an exchange field.[69]

    The corresponding complex band structuresE+=d(k)-2iΓ(k) andE-=-d(k), are shown in Fig.1.Considering that the mode density isξ(k), both Re(E±) and Im(E±) are zero (see Figs.1(a) and 1(b)) at (kx,ky)=(0,π) in the tours surface with the parameterm=2.We conclude that the phase transition point is atm=2,the same as in the closed system.Real and imaginary parts ofE+andE-for allkwithm=3(see Figs.1(c) and 1(d)) have a gap between them and the band structures are the topological nontrivial.The imaginary part of the energy eigenvalueE+, the decay rate, depends on the Bloch vectork(see Fig.1(b)),which indicates that the relaxation time of the particle is different at different positions in the momentum space.Comparing Re(E±)and Im(E±)with the same parameters, we find that they have similar distribution in the momentum space,which is easy to understand because the relaxation time of the particle is relatively short at a higher energy Bloch band under the influence of the environment.

    Fig.1.Complex band structures of the non-Hermitian Chern insulator Re(E)± =±d(k), |Im(E+)|=2Γ(k), and |Im(E-)|=0.The mode density ξ(k) is taken to plot this figure.(a), (b) Real and imaginary parts of the gapless bands with an exceptional point on(kx,ky)=(0,π)in the tours surface with chosen parameters m=2,δ =0.05,and t=1.(c), (d) Real and imaginary parts of the gapped bands with m = 3,δ =0.05,and t=1.

    The Hall conductance and Hall susceptance defined in Eq.(25) are shown in Fig.2.In the isolated system limit,i.e.,Γ(k)→0, the Hamiltonian model reduces to a Hermitian model.In this case, the real part of the Hall conductance Re(σH) =-1 for 0&lt;m&lt; 2, while for 2&lt;m&lt; 4,Re(σH) = 1, and Im(σH) remains zero for closed systems,namely,the Hall conductance is quantized without delay.For the open system, however, as shown in Fig.2(a), we find that the phase transition points, i.e.,m=0, 2, 4, remain unchanged,but the Hall conductance is no longer quantized under the influence of the environment.Although the Hall conductance is nearly quantized withδ=0.1.The feature of nonquantization can be clearly observed whenδis increased to 0.3 and beyond.Besides,as Eq.(12)shows,the parameterβisk-dependent, which leads the Hall conductance no longer possesses a plateau in its dependence on the system parameter.The details of the dependence are closely related to the choice of the model and the spectral density of the environment.In Fig.2(b), we show the Hall susceptance Im(σH)which can be understood a delay in the response due to the system-environment couplings.Im(σH)increases withδ(we show here from 0.1 to 0.3), while Re(σH) decreases asδchanging from 0.1 to 0.3.

    Fig.2.The Hall conductance Re(σH)and the Hall susceptance Im(σH)(in units of e2/h)as a function of m with different δ given by Eq.(25)and with ξ(k) as the mode density.For comparison, the red solid line corresponds to the conventional Hall conductance of closed system(t=1).

    Fig.3.The Hall conductance Re(σH)(in units of e2/h)as a function of m with different ζ given by Eq.(25) with spectral density of the environment Jζ(k).For comparison, the red solid line corresponds to the conventional Hall conductance of the corresponding closed system(t=1).

    In Fig.3, we show the Hall conductance of the non-Hermitian two-band systems Re(σH)for differentζ.We consider the spectral density of the environmentJζ(k) andd(k)are linear.One can find that the Hall conductance still possesses a plateau as the change ofm,but its value is no longer an integer,for instance,Re(σH)=0.8 whenζ=0.5.

    In Fig.4, we show the Hall conductance for the non-Hermitian two-band systems Re(σH) and the Hall conductance for open systems by solving the master equationσME.The same mode densityξ(k)as that used in Fig.4(a)has been taken to calculate the results in Fig.4(a), while Fig.4(b) for the Ohmic spectral density.One can see that the Hall conductance obtained by the two methods is almost the same,because the quantum-jump term has negligible effect on the first-order steady-state solution of the master equation.Hence in this case,it is a good approximation to approximate the model by a non-Hermitian Hamiltonian.The non-Hermitian Hamiltonian is obviously more convenient to describe such a system, because it is easy to study the eigenvectors and eigenvalues of an effective Hamiltonian and the calculation is straightforward.

    Fig.4.The Hall conductance Re(σH)and the Hall conductance σME(in units of e2/h)as a function of m given by Eqs.(25) and(38), respectively.The red solid line is the Hall conductance for the non-Hermitian two-band systems, while the blue dashed line is for the Hall conductance obtained by solving the master equation.Panel(a)is plotted for mode density ξ(k)with δ =0.2,t=1,while(b)is for the Ohmic spectral density of the environment with α =0.2,ωc=1,and t=1.

    5.Conclusions

    We have developed the response theory for the non-Hermitian two-band systems and applied it into topological insulators subjected to environments.An effective non-Hermitian system is obtained by simplifying the Markov master equation by ignoring the jump terms and a decay rate that depends on the Bloch vector is given.Based on this formalism, the Hall conductance is calculated by the adiabatic perturbation theory.We find that although the phase transition point does not changes,the Hall conductance that depends on the strength of the decay rate and distribution of the electron on the Bloch band is a weighted integration of curvature of the ground band and it is not quantized in general.In addition, the system-environment coupling induces a delay in the response of the topological insulator to the constant electric field.Finally, comparing the Hall conductance obtained by the non-Hermitian two-band model with that by solving the master equation, we claim that the non-Hermitian Hamiltonian description is a good approximation and it can provide insight understanding for the response of open systems more than that of the master equation description.

    Appendix A:System coupled to Fermi reservoir

    Appendix C:Derivation of Eq.(C1)

    For the system thatΓ(k)andd(k)are proportional, the Berry curvatureΩu-(k)for the band|u-(k)〉with energyEcan be written as

    Acknowledgements

    The authors acknowledge Hongzhi Shen and Weijun Cheng for helpful comments.This work was supported by the National Natural Science Foundation of China (Grant Nos.12175033 and 12147206).

    猜你喜歡
    俊杰
    “畫家陳”
    Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow*
    Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO?
    Bian Que
    能自律者為俊杰
    文苑(2020年7期)2020-08-12 09:36:36
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    表演大師
    我的同桌
    我可是有主角光環(huán)的人
    我給桌子“洗臉”
    一夜夜www| 三上悠亚av全集在线观看| 亚洲精品粉嫩美女一区| 久久精品国产亚洲av香蕉五月 | av线在线观看网站| 欧美精品高潮呻吟av久久| 在线观看免费视频网站a站| 中文亚洲av片在线观看爽 | 高清毛片免费观看视频网站 | 国产欧美日韩精品亚洲av| 村上凉子中文字幕在线| 啦啦啦免费观看视频1| 欧美最黄视频在线播放免费 | 人人澡人人妻人| 91精品国产国语对白视频| 国产1区2区3区精品| 天天躁日日躁夜夜躁夜夜| 在线国产一区二区在线| 国产精品98久久久久久宅男小说| 三上悠亚av全集在线观看| 久久国产精品男人的天堂亚洲| 免费在线观看视频国产中文字幕亚洲| 国产成人免费观看mmmm| 色精品久久人妻99蜜桃| 久久天躁狠狠躁夜夜2o2o| 桃红色精品国产亚洲av| 日本wwww免费看| 最新在线观看一区二区三区| 国产精品免费大片| xxxhd国产人妻xxx| av不卡在线播放| 美女国产高潮福利片在线看| 中文亚洲av片在线观看爽 | 在线观看午夜福利视频| 无人区码免费观看不卡| 成人18禁在线播放| 人人妻人人添人人爽欧美一区卜| 色播在线永久视频| tube8黄色片| 国产精品av久久久久免费| 精品国产一区二区久久| 国产成人av激情在线播放| 在线国产一区二区在线| x7x7x7水蜜桃| 巨乳人妻的诱惑在线观看| 男女午夜视频在线观看| 日本五十路高清| 亚洲国产看品久久| 精品人妻熟女毛片av久久网站| 国产成人精品在线电影| 久久久久久久精品吃奶| 免费观看a级毛片全部| 亚洲一区高清亚洲精品| 最新美女视频免费是黄的| 窝窝影院91人妻| 老熟妇乱子伦视频在线观看| 亚洲精品中文字幕在线视频| 在线视频色国产色| 久久中文看片网| 国产伦人伦偷精品视频| 久久午夜亚洲精品久久| 老司机午夜福利在线观看视频| 怎么达到女性高潮| 九色亚洲精品在线播放| 国产精品影院久久| 在线免费观看的www视频| 欧美在线一区亚洲| 日本一区二区免费在线视频| 国产高清videossex| 亚洲自偷自拍图片 自拍| 美女视频免费永久观看网站| 1024香蕉在线观看| 黑丝袜美女国产一区| 高清毛片免费观看视频网站 | 男女免费视频国产| 亚洲人成伊人成综合网2020| 久久精品国产99精品国产亚洲性色 | 操出白浆在线播放| 多毛熟女@视频| 丝袜美足系列| 国产亚洲一区二区精品| 涩涩av久久男人的天堂| 亚洲成av片中文字幕在线观看| 亚洲七黄色美女视频| 麻豆国产av国片精品| 国产精品久久电影中文字幕 | 精品国产一区二区三区四区第35| 国产男女超爽视频在线观看| 在线观看免费日韩欧美大片| 色综合欧美亚洲国产小说| 亚洲精品久久午夜乱码| 亚洲专区国产一区二区| 亚洲国产毛片av蜜桃av| 国产一区二区激情短视频| 在线观看午夜福利视频| 久9热在线精品视频| 国产又爽黄色视频| 自线自在国产av| 日本欧美视频一区| 国产一区二区三区综合在线观看| 久久精品人人爽人人爽视色| 日韩熟女老妇一区二区性免费视频| 中文字幕另类日韩欧美亚洲嫩草| 欧美成狂野欧美在线观看| 中文字幕色久视频| 啦啦啦在线免费观看视频4| 欧美精品亚洲一区二区| 日韩欧美国产一区二区入口| 18禁国产床啪视频网站| 精品国产乱码久久久久久男人| 男人操女人黄网站| 欧美国产精品一级二级三级| 女人爽到高潮嗷嗷叫在线视频| 黄色 视频免费看| 久久久精品免费免费高清| 国产有黄有色有爽视频| 欧美成狂野欧美在线观看| 黑人猛操日本美女一级片| 亚洲欧美一区二区三区久久| 韩国精品一区二区三区| 交换朋友夫妻互换小说| 国产在线精品亚洲第一网站| 亚洲精品在线观看二区| 久久精品国产亚洲av高清一级| √禁漫天堂资源中文www| 中文亚洲av片在线观看爽 | 精品一区二区三区av网在线观看| 村上凉子中文字幕在线| 久久九九热精品免费| 国产激情欧美一区二区| 啦啦啦免费观看视频1| 国产黄色免费在线视频| 一区二区三区国产精品乱码| 久久精品aⅴ一区二区三区四区| 嫁个100分男人电影在线观看| 国产99久久九九免费精品| 亚洲伊人色综图| 最近最新中文字幕大全免费视频| 国产在线精品亚洲第一网站| 国产男靠女视频免费网站| cao死你这个sao货| 日日爽夜夜爽网站| 欧美黑人精品巨大| 精品国产一区二区久久| 精品少妇一区二区三区视频日本电影| 日韩熟女老妇一区二区性免费视频| 18禁裸乳无遮挡动漫免费视频| 午夜激情av网站| 天堂动漫精品| 人妻久久中文字幕网| 午夜两性在线视频| av一本久久久久| 国产成人欧美| 亚洲aⅴ乱码一区二区在线播放 | 国产精华一区二区三区| 久久久久国产一级毛片高清牌| 高清欧美精品videossex| av线在线观看网站| 成人亚洲精品一区在线观看| 男女下面插进去视频免费观看| 午夜福利欧美成人| 在线观看一区二区三区激情| 狠狠狠狠99中文字幕| 国产精品免费大片| 欧美不卡视频在线免费观看 | 久久久久国产精品人妻aⅴ院 | 三级毛片av免费| 王馨瑶露胸无遮挡在线观看| av天堂在线播放| 成在线人永久免费视频| 中文字幕人妻熟女乱码| 最近最新中文字幕大全电影3 | 精品福利观看| 国产在线观看jvid| 欧美日韩乱码在线| x7x7x7水蜜桃| 黄色毛片三级朝国网站| 三上悠亚av全集在线观看| 男女床上黄色一级片免费看| 啪啪无遮挡十八禁网站| 女人被狂操c到高潮| 精品卡一卡二卡四卡免费| 国产欧美日韩一区二区三区在线| 男女床上黄色一级片免费看| 高清毛片免费观看视频网站 | 久久精品亚洲av国产电影网| 丰满迷人的少妇在线观看| 又紧又爽又黄一区二区| 欧美av亚洲av综合av国产av| 人人妻人人澡人人爽人人夜夜| 操出白浆在线播放| 99国产精品99久久久久| 伊人久久大香线蕉亚洲五| 啦啦啦 在线观看视频| 精品国产一区二区久久| 色综合婷婷激情| 国产视频一区二区在线看| 久久久国产成人精品二区 | 亚洲aⅴ乱码一区二区在线播放 | 亚洲成av片中文字幕在线观看| 中国美女看黄片| 色尼玛亚洲综合影院| 国产精品一区二区精品视频观看| 一区二区日韩欧美中文字幕| 久久亚洲真实| av网站在线播放免费| 老熟妇乱子伦视频在线观看| avwww免费| av超薄肉色丝袜交足视频| 午夜成年电影在线免费观看| 欧美日韩瑟瑟在线播放| 日韩 欧美 亚洲 中文字幕| 亚洲七黄色美女视频| 校园春色视频在线观看| 成年版毛片免费区| 1024香蕉在线观看| 午夜精品在线福利| 啦啦啦视频在线资源免费观看| 成人国产一区最新在线观看| 亚洲精品国产精品久久久不卡| 操出白浆在线播放| 午夜福利影视在线免费观看| 国产aⅴ精品一区二区三区波| 老司机亚洲免费影院| 国产亚洲欧美精品永久| 久久久久久免费高清国产稀缺| 黄色视频,在线免费观看| 精品午夜福利视频在线观看一区| 欧美乱色亚洲激情| 国产不卡一卡二| a在线观看视频网站| 伦理电影免费视频| 亚洲欧美日韩另类电影网站| 精品国产美女av久久久久小说| 亚洲色图 男人天堂 中文字幕| 日日摸夜夜添夜夜添小说| 国产亚洲一区二区精品| 国产精品久久久人人做人人爽| 亚洲一区二区三区欧美精品| 丰满人妻熟妇乱又伦精品不卡| 中文亚洲av片在线观看爽 | 精品久久久久久电影网| 国产亚洲精品一区二区www | 久久久国产成人精品二区 | 久久久精品区二区三区| 在线免费观看的www视频| 后天国语完整版免费观看| 日日爽夜夜爽网站| 老熟女久久久| 狠狠狠狠99中文字幕| 高清在线国产一区| 婷婷成人精品国产| 亚洲熟妇熟女久久| 亚洲人成电影免费在线| 欧美日韩一级在线毛片| 欧美日韩一级在线毛片| 精品高清国产在线一区| 国产真人三级小视频在线观看| cao死你这个sao货| 最新美女视频免费是黄的| 超碰97精品在线观看| 日韩三级视频一区二区三区| 一夜夜www| 国产极品粉嫩免费观看在线| 一级毛片女人18水好多| 国产高清视频在线播放一区| 在线天堂中文资源库| 女警被强在线播放| 无限看片的www在线观看| 丁香欧美五月| 超色免费av| 看免费av毛片| 91字幕亚洲| 男女之事视频高清在线观看| 最近最新中文字幕大全电影3 | 欧美日韩亚洲国产一区二区在线观看 | 高清在线国产一区| 黑人巨大精品欧美一区二区蜜桃| 交换朋友夫妻互换小说| 最近最新中文字幕大全电影3 | 狠狠狠狠99中文字幕| 久久久久视频综合| 亚洲熟女毛片儿| 亚洲性夜色夜夜综合| 中文字幕最新亚洲高清| 韩国精品一区二区三区| 亚洲黑人精品在线| av一本久久久久| 国产99白浆流出| 日本a在线网址| 日日爽夜夜爽网站| 国产精品久久久人人做人人爽| 精品无人区乱码1区二区| 手机成人av网站| 国产精品免费一区二区三区在线 | 亚洲情色 制服丝袜| 欧美日韩黄片免| 亚洲av成人av| 男人操女人黄网站| 久久 成人 亚洲| 亚洲成人免费av在线播放| 欧美在线一区亚洲| 欧美久久黑人一区二区| 999久久久国产精品视频| 欧美日韩亚洲综合一区二区三区_| 成人影院久久| 日韩精品免费视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久国产电影| 日韩有码中文字幕| 亚洲全国av大片| 欧美乱妇无乱码| 又紧又爽又黄一区二区| 又大又爽又粗| 精品福利观看| 久久久久久久精品吃奶| 激情在线观看视频在线高清 | 午夜两性在线视频| 麻豆av在线久日| 国产在视频线精品| 色94色欧美一区二区| 看免费av毛片| 亚洲精品国产精品久久久不卡| 亚洲欧美日韩高清在线视频| 国产欧美日韩精品亚洲av| 丰满迷人的少妇在线观看| 日韩欧美一区二区三区在线观看 | 亚洲美女黄片视频| 性少妇av在线| 女人高潮潮喷娇喘18禁视频| 色婷婷av一区二区三区视频| 村上凉子中文字幕在线| 国产单亲对白刺激| 99re在线观看精品视频| 高清av免费在线| 久久国产乱子伦精品免费另类| aaaaa片日本免费| 亚洲专区中文字幕在线| 欧美日韩一级在线毛片| 自线自在国产av| 免费在线观看黄色视频的| 久久婷婷成人综合色麻豆| 一区二区三区精品91| 黑人巨大精品欧美一区二区mp4| 精品福利永久在线观看| 国产精品免费视频内射| 国产黄色免费在线视频| 精品国产亚洲在线| 久久久国产成人免费| 国产成人欧美| 国产国语露脸激情在线看| 少妇粗大呻吟视频| 在线观看免费午夜福利视频| 嫩草影视91久久| 中文字幕人妻熟女乱码| 丝瓜视频免费看黄片| 国产成人av教育| 一区二区三区激情视频| 性色av乱码一区二区三区2| 中文字幕人妻丝袜一区二区| 女警被强在线播放| 不卡av一区二区三区| 久久精品国产亚洲av香蕉五月 | 咕卡用的链子| 久久中文看片网| 欧美黄色淫秽网站| 妹子高潮喷水视频| 午夜亚洲福利在线播放| 亚洲色图综合在线观看| 国产欧美日韩一区二区三| 国产成人欧美在线观看 | 青草久久国产| www.熟女人妻精品国产| 美女午夜性视频免费| 日韩大码丰满熟妇| 曰老女人黄片| 国产日韩欧美亚洲二区| 午夜亚洲福利在线播放| 中出人妻视频一区二区| 老熟女久久久| 免费观看a级毛片全部| 欧美人与性动交α欧美软件| 亚洲av日韩精品久久久久久密| 伦理电影免费视频| 国产av一区二区精品久久| 女警被强在线播放| 国产亚洲一区二区精品| 免费看十八禁软件| 美女国产高潮福利片在线看| 一夜夜www| 黑人操中国人逼视频| 国产成人精品在线电影| 亚洲情色 制服丝袜| 纯流量卡能插随身wifi吗| 亚洲国产欧美一区二区综合| 日日摸夜夜添夜夜添小说| 久久精品国产a三级三级三级| 亚洲精华国产精华精| 热99国产精品久久久久久7| 国产免费现黄频在线看| 亚洲 欧美一区二区三区| 亚洲第一青青草原| 在线av久久热| 韩国精品一区二区三区| 欧美日韩一级在线毛片| 12—13女人毛片做爰片一| 91国产中文字幕| 国产精品98久久久久久宅男小说| 午夜福利在线免费观看网站| 一级毛片女人18水好多| 亚洲视频免费观看视频| 欧洲精品卡2卡3卡4卡5卡区| 欧美在线黄色| 久99久视频精品免费| 黑人巨大精品欧美一区二区mp4| 多毛熟女@视频| 一区二区三区激情视频| 亚洲aⅴ乱码一区二区在线播放 | 久久草成人影院| 99久久人妻综合| 亚洲一卡2卡3卡4卡5卡精品中文| 一级a爱视频在线免费观看| 男女之事视频高清在线观看| 色播在线永久视频| 日韩三级视频一区二区三区| 久久午夜综合久久蜜桃| 国产高清激情床上av| 美女扒开内裤让男人捅视频| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美久久黑人一区二区| 亚洲少妇的诱惑av| 黄色片一级片一级黄色片| 国产精品综合久久久久久久免费 | 欧美日韩av久久| 欧美日韩中文字幕国产精品一区二区三区 | 曰老女人黄片| 免费高清在线观看日韩| 在线播放国产精品三级| 国产成人系列免费观看| 18禁黄网站禁片午夜丰满| 老汉色∧v一级毛片| 国产伦人伦偷精品视频| 啦啦啦在线免费观看视频4| 午夜福利欧美成人| 十八禁人妻一区二区| 首页视频小说图片口味搜索| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久久精品久久久| 国产一区二区激情短视频| 黄色怎么调成土黄色| 亚洲男人天堂网一区| 国产激情久久老熟女| 亚洲成人免费av在线播放| 视频区图区小说| 12—13女人毛片做爰片一| 成人手机av| 热re99久久精品国产66热6| 黄片大片在线免费观看| 麻豆成人av在线观看| а√天堂www在线а√下载 | 宅男免费午夜| 丰满迷人的少妇在线观看| 精品国产美女av久久久久小说| 亚洲精品国产色婷婷电影| 久久精品国产亚洲av香蕉五月 | 国产精品久久久av美女十八| 精品久久久久久电影网| ponron亚洲| 一区在线观看完整版| 在线观看www视频免费| 18在线观看网站| 一边摸一边做爽爽视频免费| 亚洲av欧美aⅴ国产| 欧美乱码精品一区二区三区| 免费在线观看完整版高清| 国产人伦9x9x在线观看| 国产精品久久久人人做人人爽| 国产精品久久电影中文字幕 | 天天添夜夜摸| 国产成人av激情在线播放| 宅男免费午夜| 成熟少妇高潮喷水视频| videos熟女内射| av片东京热男人的天堂| 村上凉子中文字幕在线| 成人国语在线视频| 国产欧美日韩一区二区三区在线| 精品熟女少妇八av免费久了| 悠悠久久av| 免费在线观看黄色视频的| 成年人午夜在线观看视频| 日本五十路高清| 久久性视频一级片| 久久久精品区二区三区| 1024视频免费在线观看| 激情在线观看视频在线高清 | 女人爽到高潮嗷嗷叫在线视频| 国产主播在线观看一区二区| 国产单亲对白刺激| 人人妻,人人澡人人爽秒播| 国产极品粉嫩免费观看在线| 国产高清视频在线播放一区| 后天国语完整版免费观看| 999精品在线视频| 制服诱惑二区| 欧美日韩黄片免| 成年人午夜在线观看视频| 中文字幕人妻丝袜制服| 精品国产国语对白av| 99精国产麻豆久久婷婷| 亚洲国产欧美网| 天天添夜夜摸| av电影中文网址| 久久人妻福利社区极品人妻图片| 天天躁日日躁夜夜躁夜夜| 极品教师在线免费播放| 热re99久久国产66热| 午夜福利在线免费观看网站| 黑人操中国人逼视频| 男女之事视频高清在线观看| 超碰97精品在线观看| 亚洲精品乱久久久久久| 亚洲成av片中文字幕在线观看| 搡老熟女国产l中国老女人| 丝袜人妻中文字幕| 新久久久久国产一级毛片| 欧美精品av麻豆av| 黑丝袜美女国产一区| 亚洲精品一卡2卡三卡4卡5卡| 免费在线观看黄色视频的| 一区福利在线观看| 免费一级毛片在线播放高清视频 | 人人妻人人澡人人爽人人夜夜| 国产精品一区二区精品视频观看| 无人区码免费观看不卡| 丰满的人妻完整版| 精品卡一卡二卡四卡免费| 视频在线观看一区二区三区| 丝瓜视频免费看黄片| 在线播放国产精品三级| 天天添夜夜摸| 天堂俺去俺来也www色官网| av片东京热男人的天堂| 美女高潮喷水抽搐中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 制服诱惑二区| 午夜福利欧美成人| 少妇猛男粗大的猛烈进出视频| 夜夜爽天天搞| 乱人伦中国视频| 久久ye,这里只有精品| 99精国产麻豆久久婷婷| 动漫黄色视频在线观看| 亚洲成国产人片在线观看| 91精品三级在线观看| 亚洲国产精品合色在线| 一进一出抽搐动态| 在线永久观看黄色视频| av电影中文网址| 欧美日韩视频精品一区| 久久人人97超碰香蕉20202| 国产精品免费大片| 90打野战视频偷拍视频| 亚洲成人免费电影在线观看| 国产成人欧美在线观看 | 亚洲欧美一区二区三区久久| 大香蕉久久成人网| 丁香欧美五月| 一级毛片精品| 免费看十八禁软件| 波多野结衣av一区二区av| 一级毛片女人18水好多| 久久亚洲真实| 国产日韩欧美亚洲二区| 夜夜躁狠狠躁天天躁| 天天操日日干夜夜撸| 亚洲专区中文字幕在线| 成人影院久久| 精品免费久久久久久久清纯 | 久久草成人影院| 欧美激情极品国产一区二区三区| 一级a爱视频在线免费观看| 99热网站在线观看| 亚洲熟妇中文字幕五十中出 | 国产蜜桃级精品一区二区三区 | 欧美日韩成人在线一区二区| 亚洲国产精品sss在线观看 | 一边摸一边抽搐一进一出视频| 99久久国产精品久久久| 黄片小视频在线播放| 女性被躁到高潮视频| 人人妻人人澡人人看| 国产精品免费一区二区三区在线 | 天天添夜夜摸| 亚洲精品国产区一区二| 国产成人啪精品午夜网站| 亚洲av电影在线进入| 国产99白浆流出| 国产成人啪精品午夜网站| 国产精品av久久久久免费| 亚洲精品中文字幕在线视频| 午夜成年电影在线免费观看| 久久人妻福利社区极品人妻图片| 国产精品综合久久久久久久免费 | 欧美成狂野欧美在线观看| 在线观看免费视频网站a站| 咕卡用的链子| 99精品久久久久人妻精品| 国产欧美日韩一区二区三| 久久精品亚洲熟妇少妇任你| 国产成人av教育| 亚洲av美国av| 成年版毛片免费区| 十分钟在线观看高清视频www| 天堂√8在线中文|