• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of cut vertex in the control of complex networks

    2023-03-14 08:46:46JieZhou周潔ChengYuan袁誠(chéng)ZuYuQian錢祖燏BingHongWang汪秉宏andSenNie聶森
    Chinese Physics B 2023年2期
    關(guān)鍵詞:周潔

    Jie Zhou(周潔) Cheng Yuan(袁誠(chéng)) Zu-Yu Qian(錢祖燏)Bing-Hong Wang(汪秉宏) and Sen Nie(聶森)

    1School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China

    2Department of Modern Physics,University of Science and Technology of China,Hefei 230026,China

    Keywords: cut vertex,controllability,control energy,structural characteristic,complex networks

    1.Introduction

    Research on complex networks has developed rapidly for decades, and is involved in the fields of biological,[1-3]social,[4-7]traffic,[8-10]and financial systems.[11,12]A complex network consists of nodes, which represent individuals in the complex system, and links, which symbolize the interactions between individuals.The study of complex networks is first related to networks structural characteristics,[13-16]and then refers to the performance and evaluations of systems.[17-21]If a dynamic system can be driven from any initial state to any desired state within finite time and inputs,then this system is controllable,and the minimal number of nodes that are imposed on external inputs to achieve full control can be used to measure the controllability of the system.[19]The minimal number of driver nodes which guarantees the full control of arbitrary networks has also been discussed.[22]Because the final goal of studying complex networks is to control and regulate them, many works have explained the inner relationship between structural characteristics and network control.[23-29]Furthermore,for practical problems in real control,control strategies,including energy requiring,[30-34]control modes,[35]and optimal control,[36-38]have also been considered.Reference[37]demonstrated that the control energy is involved with Gramian matrix and proposed optimal algorithm for driver nodes selection.Reference[38]analyzed the relationship between network structural characteristic and energy consumption,finding the control energy could be reduced by placing the driver nodes in a way to shorten the longest control chains for directed networks.The study of both linear and nonlinear dynamical systems has advanced network control in practical applications.[39-42]

    A cut vertex is a kind of node whose removal will disconnect the network and increases the number of connected components in a network.[43,44]Due to its significant role in network topological structures, its removal has a serious impact on network connectivity and robustness.[45-47]For example,in transportation systems,the failure of airports,which is cut vertexes in the corresponding network, will lead to largescale congestion in traffic.[48]Due to its vital position in network structure, the role of cut vertex in network controllability is also considered.Wanget al.[46]studied the influence of cut vertex removal on the controllability of network and found that the failure of cut vertex largely decreases controllability compared to the removal of other vertexes, and the network robustness results were similar.However, how cut vertex affects network control, especially for the control energy, has not yet been explained.According to the previous works on network control, the influence of nodal structure on network controllability and control energy is still insufficient and the role of nodes in control remains to be explored.

    In this paper,we discuss the relationship between the cut vertexes and the driver nodes, and find that cut vertexes are more likely to be redundant nodes for network control.Selecting cut vertexes as driver nodes is beneficial for the control energy.In addition, the removal of cut vertexes will largely increase the control energy since cut vertexes are nodes with larger degrees.The model and method are introduced in Sections 2 and 3.Section 4 is our results and Section 5 is conclusion.

    2.Model

    We firstly consider a linear time-invariant dynamical system withNnodes as[49]

    wherex(t)=(x1(t),x2(t),...,xN(t))Tdenotes the state of the nodes at timet.A=(ai j)N×Nis the adjacency matrix which represents the interactions between nodes, whereaijrepresents the link starting from nodeito nodej.B=(bij)N×Mis the input matrix, which describes how the external inputs affect nodes, andu(t)=(u1(t),u2(t),...,uM(t))Tis the vector of external inputs.

    If the dynamical system can be driven from any initial state to any desired state within a finite time by finite external inputs, then the system is controllable.[50]According to the Popov-Belevitch-Hautus(PBH)rank condition in control theory,[51]the system(1)is controllable if and only if

    which is satisfied for any complex numberc,whereINis the identity matrix of dimensionN.To find the setBto guarantee that Eq.(2) is satisfied, the minimal number of driver nodesNDshould equal the value of min{rankB},and it can be calculated as[22]

    whereλi(i=1,2,...,N)is the distinct eigenvalues of matrixA, andμ(λi) =N-rank(λiIN-A) is the geometric multiplicity of the eigenvalueλiofA.In practical terms,NDcan be considered as a metric to evaluate the controllability of networks.[19,22]

    3.Method

    3.1.Cut vertex

    The depth-first search is used to identify all the cut vertexesVi(i=1,2,...,m)in a network.[52]The steps are as follows.(1) Calculate the number of connected subgraphsCoin the original network, then remove nodeiand calculate the number of connected subgraphsCiof the current network.(2)CompareCiwithCo.IfCi&gt;Co,the number of connected subgraphs has increased, then nodeiis the cut vertex and marks it asVi.(3)Restore the original network,then repeat the steps from step(1)for the next node.After all nodes are traversed,the cut vertex setVi(i=1,2,...,m)is collected,andmis the total number of the cut vertexes.

    3.2.Driver nodes

    Identifying driver nodes According to the framework of exact controllability,[22]the minimal number of the driver nodesNDcan be obtained by the maximum geometric multiplicityμ(λi) of the adjacency matrixA.The control matrixB, which describes how nodes affect external inputs, should satisfy the equation rank[λMIN-A,B]=N,whereλMcorresponds to the maximum geometric multiplicityμ(λM).Thus,identifying the minimum set of driver nodes can be equivalent to setting rows ofBto ensure that the matrix[λMIN-A,B]is full rank.By implementing an elementary column transformation on the matrixλMIN-A, a set of linearly dependent rows is obtained.Then,inputs are imposed via control matrixBon the identified rows to eliminate the linear correlations and guarantee that the matrix [λMIN-A,B] is full rank.In matrixB, the nodes corresponding to the linearly dependent rows are the driver nodes.[22]For the same network,there are different combinations of the driver nodes,however,the minimal number of the driver nodes is identified.

    Node categories According to the different control roles,nodes can be classified into three categories.[22,23]Critical:the nodes are always selected as driver nodes.Their removal will lead to the increment ofND.Redundant: the nodes can never appear in the minimal driver node set.If a redundant node is selected as a driver node,thenNDwill be increased.Intermittent: the nodes which are not critical or redundant.They can be chosen as driver nodes in some control configurations.

    4.Result

    Since cut vertexes play an important role in the topological structure of network,the minimal number of driver nodes is also determined by the network’s structural characteristics.We first explore the distribution of the different categories of nodes in cut vertexes to determine whether there is any relationship between the driver nodes and the cut vertexes.The cut vertexes are identified by the deep-first search (see Subsection 3.1).For both undirected Erd¨os-R′enyi (ER) random graphs[53]and scale-free(SF)networks,[54]the distribution of the node categories is shown in Figs.1(a)and 1(b).Comparing the distributions of the critical,intermittent,and redundant nodes in the network, we find that most nodes are redundant.The cut vertex set consists of only intermittent and redundant nodes, in which the predominant node category is the redundant one.Although cut vertexes are essential for network connectivity,the driver nodes are more likely to avoid them.Similar results are found for directed Erd¨os-R′enyi(DER)random graphs and directed scale-free (DSF) networks in Figs.1(c)and 1(d).

    Furthermore,we examine the role of cut vertexes in network control.We employ three strategies to identify theqdriver nodes in the network withmcut vertexes.Strategy 1:qdriver nodes are chosen randomly.Strategy 2: Ifq ≥m(mis the number of cut vertexes),mdriver nodes are chosen based on the descending order of the nodes’degree,and the remaining nodesq-mare chosen randomly.Ifq&lt;m,qdriver nodes are chosen based on the descending order of the nodes’ degree.Strategy 3:Ifq ≥m,all cut vertexes are chosen as driver nodes,and the remaining vertexesq-mare chosen randomly.Ifq&lt;m,qdriver nodes are chosen randomly from the cut vertexes set.

    Fig.1.Node category distribution.(a)Undirected random graph,(b)undirected scale-free network,(c)directed random graph,and(d)directed scale-free network.The network size is N=300,average degree is K=3,and degree exponent for the undirected scale-free network is γ=2.5 and for the directed scale-free network is γin=γout=2.5. N represents all nodes in the network,and C represents the cut vertex set.We obtain the node categories for 100 networks and obtain the average value of the distribution.

    Fig.2.Control energy as a function of the number of driver nodes q with different control strategies for undirected random networks.(a)The network size is N=300,and the average degree is K=3.(b)The network size is N=500,and the average degree is K=3.(c)The network size is N=300,and the average degree is K=6.(d)The network size is N=500,and the average degree is K=6.The insert figure shows the control energy among random networks with three strategies for different network size.The average degree is K=3 and q is 85%of network size.For(a)and(b),the starting point of q is 70%of network size.The error bars represent standard deviations and each data point is the mean of 100 independent realizations.

    The results show that cut vertexes are significant for the control energy in random networks (see Fig.2).Driving cut vertexes will reduce the energy required compared to driving randomly chosen nodes or hub nodes.As the number of driver nodes increases, the differences of control energy obtained by the varied strategies decrease.This is because the proportion of the cut vertexes in the driver nodes decreases asqincreases.Furthermore,the difference in energy requirements among networks with the three control strategies is similar for different network size.The insert figure shows the control energy is the lowest one as cut vertexes are selected as the driver nodes with increasing network size.Meanwhile, because the number of cut vertexes is affected by network density,the energy gaps among the three strategies are smaller with denser networks.

    Similar results are found for scale-free networks and are shown in Fig.3.The control energy is the lowest when driving cut vertexes is preferred with a small amount of driver nodesq(q&lt;230 for Fig.3(a),q&lt;150 for Fig.3(b)).As the number of driver nodes increases,the energy gap among the three control strategies is almost gone.In addition,the advantage of cut vertexes in reducing the control energy is weakened in more homogeneous network.Due to their structural characteristic,cut vertexes are the connections of the connected subgraphs of networks and are more likely to be the intermediate nodes in control chains.For directed networks,a chain starts from a driver node and ends at a non-driver node, along the shortest path between these two nodes is the control chain.[38]Control energy flows through the control chains, and the longest control chains (LCCs) determine the control energy.Thus,shorter LCCs lead to the lower control energy.For undirected networks, choosing cut vertexes as driver nodes result in the shorter control chains as well.A control chain starting from a cut vertex to a non-driver node will be shorter than that of a chain that starts at a node in one connected subgraph and goes to a non-driver node in another connected subgraph.Thus,the control energy is markedly reduced.

    Fig.3.Control energy as a function of the number of driver nodes q with different control strategies for undirected scale-free networks.(a)The network size is N=300,and the degree exponent is γ =2.5.(b)The network size is N =300, and the degree exponent is γ =3.The average degree for both networks are K =6.The error bars represent standard deviations and each data point is the mean of 100 independent realizations.

    According to the previous findings,[46]the failure of cut vertex affects the robustness and controllability of network.Here, we explore the effect of cut vertex failure on network control energy.To disable cut vertexes(CV-preferred),we execute the following steps.(1) Identify all cut vertexes in the current network by the depth-first search(see Subsection 3.1)and mark them asVi.(2) Calculate the number of connected subgraphsC'iin the current network if each cut vertexViis removed.(3) Disable a fraction of the cut vertexes based on the descending order of theC'ivalue,remove all the edges connected with them,and then calculate the control energy needed to steer all nodes from the initial state to the final state.(4)Repeat the steps from step(1)until there are no more cut vertexes in the current network.

    In addition, we employ another two node-failure strategies[55,56]to compare the effect of nodal failures on control energy.(1)Random: disable nodes randomly and remove all the edges connected with them.(2)Degree-preferred: disable nodes based on the descending order of the nodes’degree and remove the corresponding edges.The other steps for repeatedly calculating the control energy and disabling nodes in the current network are all similar to those of the CV-preferred strategy.Furthermore, the number of disabled nodes at each step must be the same for all three strategies, and then the comparison of the control energy can be valid.

    The results in Fig.4 show that the sparse random network requires more energy to drive the whole network with the degree-preferred failure strategy.However, it is easiest to control the network with the random failure strategy.For dense network, with a proper fraction of disabled nodes, the control energy for the driving network is the lowest with the CV-preferred failure strategy (see Fig.4(b)).Similar results can be found for scale-free networks, and they are shown in Figs.4(c)and 4(d).The network costs less energy to achieve full control with the Random failure strategy,while the energy requirements are higher for networks with CV-preferred and degree-preferred failure strategies.For more homogeneous network(see Fig.4(d)),the difference in control energy among the networks with the three failure strategies is smaller.

    To explain the result of the CV-preferred strategy in Fig.4,the average degree of the failed nodes in the failure process is investigated.We define Δk=(kf-ka)/kato describe the degree difference between the failed nodes and the other nodes in network.kfis the average degree of failed nodes at each step of node-failure process andkais the average degree of all nodes at each step of node-failure process.For each strategy, we calculate Δkat the first step of failuret=tf, the intermediate stept=ti,and the last stept=tl.Figure 5 shows the results of random network and scale-free network, and it illustrates that cut vertexes are nodes with larger degrees in the network.The gap of Δkbetween the random strategy and the CV-preferred strategy is small,leading to a small difference in control energy,which is shown in Fig.4(b).For the scale-free network, Δkof the random strategy is always small.While for the CV-preferred and the degree-preferred strategies,Δkis large at the first step then decreases markedly in the following steps.Thus, the gap of Δkbetween the random strategy and the others two strategies is large,resulting in the large energy gap as shown in Fig.4(c).

    Fig.4.Control energy as a function of the number of disabled nodes Nf with three failure strategies for directed networks.(a)The network size is N =300, average degree is K =1.(b) N =300 and K =3.(c) N =300, K =3, and the degree exponent is γin =γout =2.(d)N=300,K=3,and the degree exponent is γin=γout=2.5.The error bars represent standard deviations and each data point is the mean of 100 independent realizations.

    Finally, we test our results on real networks.[57,58]Figure 6 shows the control energy for driving real networks with the different control strategies.The results are similar to those of the synthetic networks, where driving cut vertexes favors control energy.With an increasing number of inputs, the difference in the energy required with the three control strategies disappears.

    Fig.6.Control energy as a function of the number of driver nodes q with different control strategies for real networks.(a)Game characters.A network of coappearances of the characters in the Game of Thrones series.[57] The network size is N=107,and the number of edges is L=353.(b)Dolphins.An undirected social network of frequent associations is observed among 62 dolphins.[58] The network size is N =62, and the number of edges is L=159.The error bars represent standard deviations and each data point is the mean of 100 independent realizations.

    5.Conclusion

    Considering that cut vertexes play a vital role in the network structure, we discover the correlation between cut vertexes and driver nodes and explore the influence of cut vertexes on the network control energy.Our results show that the minimal driver node set,based on exact controllability framework, tends to avoid cut vertexes.However, compared with random nodes and hub nodes,driving cut vertexes can reduce control energy.Imposing inputs on cut vertexes will shorten the control chains, which determine the control energy.Furthermore, being the larger-degree nodes in network, the cut vertexes’failure affects the control energy more than the failure of random nodes.Finally, the results are verified on real networks.Though our results indicate the role of cut vertexes play in controlling, some specific control constraints need to be taken into account in the future, such as the control time and control trajectory.Moreover, nodal dynamics is simplified in our model and how does it impact the controllability and control energy is still a crucial issue for controlling which remains to be solved.In conclusion,this work bridges the gap between structural characteristics and network control, and it will be helpful for understanding the nodal importance in optimal control.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.61763013), the Natural Science Foundation of Jiangxi Province of China (Grant No.20202BABL212008),the Jiangxi Provincial Postdoctoral Preferred Project of China (Grant No.2017KY37), and the Key Research and Development Project of Jiangxi Province of China(Grant No.20202BBEL53018).

    猜你喜歡
    周潔
    公共圖書(shū)館科普閱讀推廣服務(wù)現(xiàn)狀與對(duì)策研究
    河南科技(2022年9期)2022-05-31 00:42:40
    A self-powered and sensitive terahertz photodetection based on PdSe2
    自我管理干預(yù)對(duì)血液透析患者正性情緒和生活質(zhì)量的影響
    Optimization of the beam quality in ionization injection by a tailoring gas profile?
    護(hù)理干預(yù)在老年反流性食管炎患者護(hù)理中的運(yùn)用分析
    周潔作品
    2018兩會(huì)將這樣改變你的生活
    新民周刊(2018年11期)2018-04-02 04:29:06
    微信考勤惹禍
    莫愁(2016年26期)2016-12-05 18:27:06
    張石匠的羅曼史
    行走中國(guó)拍美景,女醫(yī)生“跨界”玩出人生精彩
    婦女(2015年9期)2015-09-09 01:07:30
    久久久久久人人人人人| 免费女性裸体啪啪无遮挡网站| 十八禁人妻一区二区| 亚洲一区高清亚洲精品| netflix在线观看网站| 国产高清视频在线播放一区| 人人妻人人爽人人添夜夜欢视频| 两性夫妻黄色片| 午夜久久久在线观看| 日韩免费高清中文字幕av| 黄色 视频免费看| 亚洲精品一二三| 久久亚洲真实| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产综合久久久| 亚洲专区中文字幕在线| 大香蕉久久网| 精品一区二区三区四区五区乱码| 天天躁日日躁夜夜躁夜夜| 午夜精品国产一区二区电影| 亚洲熟妇熟女久久| 欧美乱妇无乱码| www.熟女人妻精品国产| 久久香蕉精品热| 热99久久久久精品小说推荐| 中文欧美无线码| 在线播放国产精品三级| 亚洲成人免费电影在线观看| 亚洲熟妇中文字幕五十中出 | 成年人黄色毛片网站| 黄色丝袜av网址大全| 欧美日韩av久久| 巨乳人妻的诱惑在线观看| 国产亚洲精品久久久久5区| 国产精品秋霞免费鲁丝片| 日日夜夜操网爽| 老汉色∧v一级毛片| 国产精品二区激情视频| 欧美日韩一级在线毛片| av电影中文网址| 女人高潮潮喷娇喘18禁视频| 国产有黄有色有爽视频| 成熟少妇高潮喷水视频| 亚洲五月色婷婷综合| 久久精品aⅴ一区二区三区四区| 一个人免费在线观看的高清视频| 亚洲一区高清亚洲精品| 亚洲色图av天堂| 国产一区在线观看成人免费| 国产精品 国内视频| 亚洲精品国产一区二区精华液| 国产精品国产高清国产av | 国产人伦9x9x在线观看| 久久久久久免费高清国产稀缺| 国产不卡av网站在线观看| 亚洲国产欧美一区二区综合| 久久ye,这里只有精品| 在线观看66精品国产| 久久精品aⅴ一区二区三区四区| 久久久久久久久久久久大奶| 91大片在线观看| 一区二区三区激情视频| 岛国毛片在线播放| 亚洲成a人片在线一区二区| 王馨瑶露胸无遮挡在线观看| 在线观看一区二区三区激情| 国产精品 国内视频| 丰满人妻熟妇乱又伦精品不卡| 一级a爱视频在线免费观看| 成年动漫av网址| 啪啪无遮挡十八禁网站| 久久久久久久久免费视频了| 亚洲av成人不卡在线观看播放网| а√天堂www在线а√下载 | 露出奶头的视频| 性少妇av在线| 国产亚洲精品一区二区www | 免费一级毛片在线播放高清视频 | 激情视频va一区二区三区| 亚洲第一青青草原| 一区在线观看完整版| 免费在线观看日本一区| 婷婷精品国产亚洲av在线 | 女同久久另类99精品国产91| 日本黄色日本黄色录像| 日本vs欧美在线观看视频| 在线观看舔阴道视频| 男女午夜视频在线观看| 久久精品国产亚洲av高清一级| 欧美一级毛片孕妇| 麻豆成人av在线观看| 国产不卡av网站在线观看| 香蕉国产在线看| 十八禁网站免费在线| 18禁裸乳无遮挡免费网站照片 | 精品少妇久久久久久888优播| av免费在线观看网站| 丁香欧美五月| 老司机影院毛片| 日韩有码中文字幕| 一级毛片女人18水好多| 激情视频va一区二区三区| 亚洲视频免费观看视频| 啪啪无遮挡十八禁网站| 亚洲一区高清亚洲精品| 国产熟女午夜一区二区三区| 最新美女视频免费是黄的| 国产精品乱码一区二三区的特点 | 色尼玛亚洲综合影院| av天堂久久9| 咕卡用的链子| 国产乱人伦免费视频| 乱人伦中国视频| 人妻 亚洲 视频| 午夜福利免费观看在线| 亚洲五月天丁香| 国产亚洲欧美98| 欧洲精品卡2卡3卡4卡5卡区| 丁香六月欧美| 少妇 在线观看| 极品少妇高潮喷水抽搐| 久久中文看片网| 亚洲av第一区精品v没综合| 久9热在线精品视频| 少妇的丰满在线观看| 黑人欧美特级aaaaaa片| 又紧又爽又黄一区二区| 国产野战对白在线观看| 人人妻人人澡人人爽人人夜夜| 麻豆国产av国片精品| 欧美国产精品一级二级三级| 亚洲精品一卡2卡三卡4卡5卡| 他把我摸到了高潮在线观看| 欧美日韩福利视频一区二区| 色婷婷久久久亚洲欧美| 男女床上黄色一级片免费看| 国产区一区二久久| 一级黄色大片毛片| videosex国产| 日韩欧美在线二视频 | 欧美日韩福利视频一区二区| 国产精品国产高清国产av | 精品高清国产在线一区| 精品视频人人做人人爽| 欧美日韩一级在线毛片| 老司机在亚洲福利影院| 在线天堂中文资源库| 操美女的视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕人妻丝袜一区二区| 成人国语在线视频| 欧美精品亚洲一区二区| 欧美黑人欧美精品刺激| 亚洲成国产人片在线观看| 欧美精品亚洲一区二区| 精品久久久久久久毛片微露脸| 老司机午夜福利在线观看视频| 欧美日韩av久久| 欧美黄色片欧美黄色片| 最新在线观看一区二区三区| 久久久精品区二区三区| 久久人妻福利社区极品人妻图片| 国产成人av激情在线播放| 亚洲精品在线观看二区| 久久久久国内视频| 亚洲色图综合在线观看| 一区福利在线观看| 一级作爱视频免费观看| 免费日韩欧美在线观看| 日本精品一区二区三区蜜桃| 操出白浆在线播放| 九色亚洲精品在线播放| 视频区欧美日本亚洲| 成熟少妇高潮喷水视频| 伊人久久大香线蕉亚洲五| 满18在线观看网站| 在线观看免费高清a一片| 免费少妇av软件| 黄片大片在线免费观看| 无限看片的www在线观看| 91麻豆精品激情在线观看国产 | 黄色毛片三级朝国网站| 一进一出好大好爽视频| 亚洲人成伊人成综合网2020| 建设人人有责人人尽责人人享有的| 国产成人精品在线电影| 亚洲情色 制服丝袜| www.自偷自拍.com| a在线观看视频网站| 国产精品电影一区二区三区 | 成人三级做爰电影| 91字幕亚洲| 日本a在线网址| 91大片在线观看| 精品人妻1区二区| 亚洲五月天丁香| 久久国产亚洲av麻豆专区| 久久狼人影院| e午夜精品久久久久久久| 欧美成人午夜精品| 国产伦人伦偷精品视频| 国产成人免费无遮挡视频| 一级a爱片免费观看的视频| 高清毛片免费观看视频网站 | 国产精品99久久99久久久不卡| 啦啦啦 在线观看视频| 777米奇影视久久| 国产亚洲一区二区精品| 老鸭窝网址在线观看| 亚洲精品av麻豆狂野| 国产xxxxx性猛交| 香蕉国产在线看| 不卡av一区二区三区| 国产精品二区激情视频| 国产成人啪精品午夜网站| 国产精品综合久久久久久久免费 | 久久精品国产亚洲av香蕉五月 | 精品视频人人做人人爽| 夜夜夜夜夜久久久久| 又紧又爽又黄一区二区| 男女之事视频高清在线观看| 91精品国产国语对白视频| 亚洲国产看品久久| 国产成人免费观看mmmm| 日韩中文字幕欧美一区二区| 欧美黄色淫秽网站| 美女视频免费永久观看网站| 久久久久国内视频| 热re99久久国产66热| 久久精品aⅴ一区二区三区四区| 黄色片一级片一级黄色片| 手机成人av网站| 久久久久精品人妻al黑| 校园春色视频在线观看| av天堂在线播放| 国产精品偷伦视频观看了| 午夜福利影视在线免费观看| 五月开心婷婷网| 亚洲国产中文字幕在线视频| 天天躁夜夜躁狠狠躁躁| 欧美精品一区二区免费开放| 欧美性长视频在线观看| 免费高清在线观看日韩| 精品国产乱子伦一区二区三区| 涩涩av久久男人的天堂| 制服诱惑二区| 麻豆成人av在线观看| 久久人妻福利社区极品人妻图片| 人人妻人人添人人爽欧美一区卜| 在线永久观看黄色视频| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三区视频在线观看免费 | 国产精品九九99| 国产国语露脸激情在线看| 男男h啪啪无遮挡| 悠悠久久av| 久久精品人人爽人人爽视色| 99久久精品国产亚洲精品| 王馨瑶露胸无遮挡在线观看| 精品少妇一区二区三区视频日本电影| 午夜福利视频在线观看免费| 欧美日韩中文字幕国产精品一区二区三区 | 啪啪无遮挡十八禁网站| 在线播放国产精品三级| 一进一出抽搐gif免费好疼 | 午夜免费观看网址| 成年女人毛片免费观看观看9 | a在线观看视频网站| 两性午夜刺激爽爽歪歪视频在线观看 | 在线免费观看的www视频| 在线av久久热| 国产男靠女视频免费网站| 91国产中文字幕| 热99国产精品久久久久久7| 国产欧美亚洲国产| 国产人伦9x9x在线观看| 人妻 亚洲 视频| 成人国语在线视频| 婷婷精品国产亚洲av在线 | 国产一区有黄有色的免费视频| 欧美色视频一区免费| 老司机在亚洲福利影院| 亚洲av熟女| 天天躁日日躁夜夜躁夜夜| 日韩三级视频一区二区三区| 淫妇啪啪啪对白视频| 两个人免费观看高清视频| 首页视频小说图片口味搜索| 亚洲av成人不卡在线观看播放网| 一进一出抽搐动态| 老熟妇仑乱视频hdxx| 高清毛片免费观看视频网站 | 国产成人欧美| 香蕉国产在线看| 久热爱精品视频在线9| 中文字幕另类日韩欧美亚洲嫩草| 美国免费a级毛片| 久久久水蜜桃国产精品网| 色尼玛亚洲综合影院| 国产在线观看jvid| 国产单亲对白刺激| 亚洲成人免费av在线播放| 18禁黄网站禁片午夜丰满| 国产亚洲精品久久久久久毛片 | 每晚都被弄得嗷嗷叫到高潮| 久久精品成人免费网站| 欧美精品啪啪一区二区三区| 久久精品国产亚洲av高清一级| 国产成人精品久久二区二区免费| videosex国产| 精品高清国产在线一区| 久久久久精品人妻al黑| 精品国内亚洲2022精品成人 | 国产精品免费大片| 精品一区二区三卡| 一级片'在线观看视频| 极品少妇高潮喷水抽搐| av片东京热男人的天堂| 婷婷精品国产亚洲av在线 | 美女午夜性视频免费| 国产成人免费观看mmmm| 午夜福利视频在线观看免费| 亚洲成国产人片在线观看| 国产在线一区二区三区精| 一区在线观看完整版| 精品国产超薄肉色丝袜足j| 中亚洲国语对白在线视频| 岛国在线观看网站| 亚洲一码二码三码区别大吗| 欧美性长视频在线观看| 亚洲av日韩在线播放| 好看av亚洲va欧美ⅴa在| 国产三级黄色录像| 日日摸夜夜添夜夜添小说| 在线免费观看的www视频| 亚洲精品国产色婷婷电影| 精品视频人人做人人爽| 欧美一级毛片孕妇| 久久狼人影院| 国产精品欧美亚洲77777| 天天影视国产精品| av网站在线播放免费| 国产一区有黄有色的免费视频| 女人精品久久久久毛片| 涩涩av久久男人的天堂| 久久精品国产99精品国产亚洲性色 | 老司机午夜十八禁免费视频| www.自偷自拍.com| 亚洲成a人片在线一区二区| 嫩草影视91久久| 99精品久久久久人妻精品| 黄色 视频免费看| tocl精华| 999精品在线视频| 成年人黄色毛片网站| 天堂俺去俺来也www色官网| 中国美女看黄片| 午夜激情av网站| 啪啪无遮挡十八禁网站| 久久国产精品影院| 视频在线观看一区二区三区| 黄网站色视频无遮挡免费观看| 日韩大码丰满熟妇| 亚洲三区欧美一区| 香蕉国产在线看| 999精品在线视频| 亚洲熟女精品中文字幕| 国产精品综合久久久久久久免费 | 欧美日韩中文字幕国产精品一区二区三区 | 国产三级黄色录像| 亚洲国产欧美网| 亚洲av日韩精品久久久久久密| 日日夜夜操网爽| 亚洲精品美女久久av网站| 精品一区二区三区av网在线观看| 亚洲熟妇中文字幕五十中出 | 精品电影一区二区在线| 精品一区二区三卡| 欧洲精品卡2卡3卡4卡5卡区| 国产精品国产av在线观看| 国产精品免费大片| 久久精品国产清高在天天线| 夜夜躁狠狠躁天天躁| 天堂动漫精品| 国产精品电影一区二区三区 | 亚洲国产精品合色在线| 久久天躁狠狠躁夜夜2o2o| 一级黄色大片毛片| 香蕉国产在线看| 麻豆成人av在线观看| 色94色欧美一区二区| 一区二区三区精品91| 亚洲av熟女| 久久人人爽av亚洲精品天堂| 亚洲成人免费av在线播放| 久久天躁狠狠躁夜夜2o2o| 91九色精品人成在线观看| 亚洲第一青青草原| 99久久综合精品五月天人人| 日韩免费av在线播放| 这个男人来自地球电影免费观看| 美国免费a级毛片| 亚洲av成人av| 黄色丝袜av网址大全| 亚洲国产精品sss在线观看 | 欧美老熟妇乱子伦牲交| 可以免费在线观看a视频的电影网站| 国产高清视频在线播放一区| 午夜福利在线观看吧| 美国免费a级毛片| 19禁男女啪啪无遮挡网站| 国产精品欧美亚洲77777| 久久久国产欧美日韩av| 国产欧美日韩一区二区精品| 黄色成人免费大全| 免费观看人在逋| 真人做人爱边吃奶动态| 精品国产乱码久久久久久男人| 国产精品乱码一区二三区的特点 | 中文字幕人妻丝袜制服| 午夜激情av网站| 日韩大码丰满熟妇| ponron亚洲| 亚洲欧美激情综合另类| 国产在线观看jvid| 亚洲精品国产色婷婷电影| 美女高潮喷水抽搐中文字幕| 一区二区三区国产精品乱码| 精品免费久久久久久久清纯 | 欧美人与性动交α欧美精品济南到| 国产高清视频在线播放一区| 最新在线观看一区二区三区| 久久精品aⅴ一区二区三区四区| 搡老乐熟女国产| 深夜精品福利| 午夜日韩欧美国产| 满18在线观看网站| 日韩中文字幕欧美一区二区| 国产国语露脸激情在线看| 亚洲美女黄片视频| 黑人猛操日本美女一级片| 人妻一区二区av| 亚洲 欧美一区二区三区| 亚洲av电影在线进入| 亚洲va日本ⅴa欧美va伊人久久| a级毛片在线看网站| 国产亚洲一区二区精品| 精品国产一区二区久久| 亚洲国产看品久久| 精品久久久久久久久久免费视频 | 亚洲av欧美aⅴ国产| 亚洲中文字幕日韩| 视频区图区小说| 亚洲国产毛片av蜜桃av| 91九色精品人成在线观看| 欧美日韩乱码在线| 欧美精品亚洲一区二区| 午夜精品久久久久久毛片777| 久久精品国产a三级三级三级| 91麻豆av在线| 欧美黄色片欧美黄色片| 精品国产国语对白av| 亚洲一码二码三码区别大吗| 久久久精品区二区三区| 很黄的视频免费| 欧美在线黄色| 国产精品一区二区免费欧美| 久久国产精品大桥未久av| 又黄又爽又免费观看的视频| 成年人黄色毛片网站| 老熟女久久久| 欧洲精品卡2卡3卡4卡5卡区| 欧美日本中文国产一区发布| 国产免费男女视频| 麻豆av在线久日| 国产高清视频在线播放一区| 亚洲第一欧美日韩一区二区三区| 欧美激情 高清一区二区三区| 日日摸夜夜添夜夜添小说| 欧美激情高清一区二区三区| 一级黄色大片毛片| 99久久国产精品久久久| 成年动漫av网址| 午夜免费鲁丝| 午夜亚洲福利在线播放| 中文亚洲av片在线观看爽 | avwww免费| 黄色怎么调成土黄色| 久久中文字幕人妻熟女| 一级黄色大片毛片| 人人妻人人澡人人看| 在线观看一区二区三区激情| xxx96com| 国内毛片毛片毛片毛片毛片| 国产精品亚洲一级av第二区| 国产麻豆69| 亚洲精品久久成人aⅴ小说| xxxhd国产人妻xxx| 亚洲精品中文字幕一二三四区| 精品少妇一区二区三区视频日本电影| 无人区码免费观看不卡| 精品人妻在线不人妻| 啦啦啦在线免费观看视频4| 亚洲av第一区精品v没综合| 成人特级黄色片久久久久久久| 精品无人区乱码1区二区| 久久精品熟女亚洲av麻豆精品| 精品一区二区三区av网在线观看| 香蕉丝袜av| 女同久久另类99精品国产91| 亚洲欧美激情综合另类| 他把我摸到了高潮在线观看| 亚洲av成人一区二区三| 久久精品成人免费网站| 亚洲伊人色综图| www.精华液| 大香蕉久久网| 777久久人妻少妇嫩草av网站| 亚洲熟女精品中文字幕| 亚洲欧美色中文字幕在线| 丰满迷人的少妇在线观看| 久久国产精品大桥未久av| 国产乱人伦免费视频| 欧美色视频一区免费| 亚洲国产毛片av蜜桃av| 高潮久久久久久久久久久不卡| 午夜亚洲福利在线播放| 国产精品久久久久久精品古装| 久久精品国产99精品国产亚洲性色 | 精品久久蜜臀av无| 男女床上黄色一级片免费看| 两性午夜刺激爽爽歪歪视频在线观看 | 一级,二级,三级黄色视频| 亚洲国产欧美日韩在线播放| 成年女人毛片免费观看观看9 | 男女高潮啪啪啪动态图| 国产一区二区三区在线臀色熟女 | 人妻 亚洲 视频| 一区二区三区国产精品乱码| 免费人成视频x8x8入口观看| 久久香蕉精品热| 夜夜夜夜夜久久久久| 一区福利在线观看| 一区二区三区国产精品乱码| 中国美女看黄片| 亚洲少妇的诱惑av| 丰满迷人的少妇在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产无遮挡羞羞视频在线观看| 老司机午夜福利在线观看视频| 91精品三级在线观看| 咕卡用的链子| 香蕉国产在线看| 欧美在线黄色| 91精品国产国语对白视频| 一级,二级,三级黄色视频| 婷婷精品国产亚洲av在线 | 90打野战视频偷拍视频| 久久国产精品影院| 夜夜夜夜夜久久久久| 人妻一区二区av| 欧美性长视频在线观看| 99香蕉大伊视频| 欧美黑人精品巨大| 99久久99久久久精品蜜桃| 男人的好看免费观看在线视频 | 亚洲一码二码三码区别大吗| 亚洲全国av大片| 成熟少妇高潮喷水视频| 一二三四社区在线视频社区8| 欧美性长视频在线观看| 欧美日韩福利视频一区二区| 国产又色又爽无遮挡免费看| 人人妻人人添人人爽欧美一区卜| 69av精品久久久久久| 好男人电影高清在线观看| 欧美精品av麻豆av| 免费女性裸体啪啪无遮挡网站| 国产99白浆流出| 欧美日韩亚洲国产一区二区在线观看 | 久久九九热精品免费| 巨乳人妻的诱惑在线观看| 久久 成人 亚洲| 母亲3免费完整高清在线观看| 亚洲伊人色综图| 9色porny在线观看| 亚洲欧美一区二区三区黑人| 国产高清视频在线播放一区| www.熟女人妻精品国产| 欧美日韩乱码在线| 纯流量卡能插随身wifi吗| 国产精品 欧美亚洲| 久久中文字幕人妻熟女| 丝袜在线中文字幕| 成人18禁在线播放| 欧美日韩乱码在线| 精品电影一区二区在线| 91大片在线观看| 最近最新中文字幕大全免费视频| 伊人久久大香线蕉亚洲五| 黄色丝袜av网址大全| 国产伦人伦偷精品视频| 久久久久久人人人人人| 久久ye,这里只有精品| 久久精品国产亚洲av高清一级| 自线自在国产av| 久久久久久久久免费视频了| 欧美精品人与动牲交sv欧美| 涩涩av久久男人的天堂| 国产精品电影一区二区三区 | 日韩欧美国产一区二区入口| 黑人欧美特级aaaaaa片| av网站免费在线观看视频| 人人妻,人人澡人人爽秒播| 夜夜躁狠狠躁天天躁|