• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging

    2023-03-13 09:20:22LiMingZhao趙立明TianXiangWang王天祥RunKangMa馬潤康YaoGu顧瑤MengSiLuo羅夢絲HengChen陳恒ZhiLiWang王志立andXinGe葛昕
    Chinese Physics B 2023年2期

    Li-Ming Zhao(趙立明) Tian-Xiang Wang(王天祥) Run-Kang Ma(馬潤康) Yao Gu(顧瑤)Meng-Si Luo(羅夢絲) Heng Chen(陳恒) Zhi-Li Wang(王志立) and Xin Ge(葛昕)

    1Department of Optical Engineering,School of Physics,Hefei University of Technology,Anhui 230009,China

    2Institute of Biomedical Engineering,Shenzhen Bay Laboratory,Shenzhen 518067,China

    Keywords: x-ray imaging,analyzer-based imaging,image artefacts

    1.Introduction

    X-ray phase-contrast imaging has gained popularity owing to the ability of imaging weakly absorbing objects with a high contrast at high x-ray energies.In hard x-ray regime,the sensitivity of phase-contrast imaging is expected to be at least two orders higher than that of absorption imaging for samples made of light elements.[1]During the past two decades,x-ray phase contrast imaging relies on several interference or analyzer methods to transform the phase shifts into measurable intensity modulations in the detector plane.These techniques include x-ray crystal interferometer,[2]analyzerbased imaging,[3-6]propagation-based imaging,[7]gratingbased interferometric imaging[8-14]and edge-illumination imaging.[15,16]In recent years, the great potential of x-ray analyzer-based imaging has been explored, including but not limited to noninvasive soft tissue engineering,[17]functional lung imaging,[18]damage evolution,[19]detection of 3D printing technology,[20]measuring the airway size of emphysema[21]and imaging of fresh agricultural products.[22]

    In x-ray analyzer-based imaging, x-ray refraction and scattering images have been demonstrated to provide complementary information to conventional attenuation-based radiography and computed tomography.[23]However, the sample’s absorption, refraction, and scattering signals are measured simultaneously in the acquired radiographic images.[24]This information superposition can make the image interpretation ambiguous in practical applications.Therefore,several algorithms have been developed in order to separate the three different signals and accurately quantify them.[5,25-32]Quite recently, Gaussian generalized diffraction enhanced imaging(G2DEI)algorithm has been presented to retrieve the absorption,refraction,and scattering properties of an object by use of only three intensity measurements.[31]Owing to the extended angular acceptance range,G2DEI algorithm is expected to be a quantitative characterization tool with sufficient structural sensitivity on a submicron length scale.[31]Previous studies demonstrated that precise angular positioning of the analyzer crystal within sub-arcseconds was indispensable for the precise detection of phase shifts.[33]However,external vibrations of experimental environments,as well as mechanical imprecisions of system components,e.g.,the precision of motor,can induce deviations of analyzer angular positions,and hence errors in the acquired raw data.

    Image artefacts will deteriorate image quality,and hence hinders future practical applications of x-ray analyzer-based imaging.Therefore,it becomes quite necessary to quantify the refraction and scattering image artefacts resulting from deviations of analyzer angular positions.To the best of our knowledge,this topic has not been adequately studied in previous literatures.We note that in x-ray grating interferometry,stepping errors due to external vibration,thermal drift or mechanical inaccuracies will cause obvious Moir′e artefacts in the retrieved refraction and dark-field images.[34]Theoretical expressions of Moir′e artefacts were derived by using a Taylor series expansion.Based on those expressions,a simple algorithm was presented for correction and removal of these artefacts.[35]Laboratory experimental results confirmed the feasibility of the algorithm.

    In this work, we present analysis of image artefacts resulting from deviations of analyzer angular positions.For refraction and scattering retrieval, we consider the G2DEI algorithm.[31]A Taylor series expansion is utilized to establish theoretical models to correlate deviations of analyzer angular positions with artefacts in the retrieved refraction and scattering images.Finally, theoretical models are verified by synchrotron radiation experiments and the obtained results are discussed.The results of this work can be useful for further development of advanced algorithms to suppress image artefacts, and for correct image interpretation, especially in applications of in-laboratory x-ray analyzer-based imaging instruments.[36-38]

    2.Theoretical analysis of image artefacts

    In the following, we will theoretically analyze the correlation between deviations of analyzer angular positions and artefacts in the refraction and scattering images retrieved by G2DEI algorithm.As detailed explained by Aefelliet al.,[31]the G2DEI algorithm can be traced back to the fact that the sample’s refraction generates a shift of the center of the local rocking curve by ΔθR, while Gaussian scattering with a standard deviationσ2sincreases the width of the measured local rocking curve.[25,26]The power of G2DEI algorithm relies on the Gaussian approximation of the measured rocking curve(RC).Under this approximation,three intensity measurements are acquired at three well separated analyzer angular positions for multi-contrast image retrieval.When the analyzer is set to a given angular positionθi, the intensity measured by the detectorI(θi)can be written as follows:[29,31,39,40]

    whereσ2is the standard deviation of Gaussian approximated intrinsic rocking curve.Equation(1)contains three unknown parameters, including the absorptionIR, the refraction ΔθR,and the scatteringσ2s.With three acquired intensity measurementsI(θi) (i=1,2,3), the G2DEI algorithm allows quantitatively retrieval of the refraction and scattering signals on a pixel-by-pixel basis,

    For further analysis, we define Δθi(i=1,2,3) as deviations of analyzer angular positions with respect to the target positions.A Taylor series expansion is used to examine the effects of deviations Δθion retrieved refraction and scattering images.In the case of slight analyzer angular position deviations, a Taylor series expansion can be reasonably truncated after the first order.This results in the following approximation of the influence of analyzer angular position deviations Δθion the retrieved refraction ΔθR:

    where Δ(ΔθR)is specified as the refraction image artefact.By use of Eqs.(1)and(2), the derivative of the refraction image with respect to analyzer angular positionsθican be calculated as follows:

    Substituting Eqs.(5)-(7)into Eq.(4)yields the following analytical expression of the refraction image artefact:

    3.Experimental results

    To verify the analytical results of image artefacts and visualize effects of analyzer angular position deviations on the retrieved refraction and scattering images, synchrotron radiation experiments were performed at the 4W1A beamline of Beijing Synchrotron Radiation Facility.[41]As schematically shown in Fig.1,x-ray ABI setup utilized a first Si(111)crystal to monochromize the incident x-rays.The beam with a photon energy of 15 keV was then selected and incident on the sample.The beam exiting from the sample was analyzed by a second Si(111)crystal.Finally,the intensities were recorded by a high-resolution x-ray digital camera system FDS694 by Photonic Science Ltd.,which has a small pixel size of 4.5μm.A demineralized mouse joint was used as the sample.A total of 85 intensity measurements were acquired,with the analyzer angular position ranging from-84μrad to 84μrad with an increment of 2 μrad.At each analyzer angular position,a flat-field image without sample was acquired.Three intensity measurements were selected and processed by the G2DEI algorithm, and the retrieved refraction and scattering images served as the ground truth,and were used as inputs for calculations of Eqs.(8)and(13),respectively.

    Fig.1.Schematic diagram of x-ray ABI setup.

    Fig.2.(a)Experimental refraction image with artefact.(b)Experimental refraction image without artefact.(c) Experimental artefact image.(d)Calculated artefact image.Scale bar is 0.45 mm.

    Definingθi+Δθi(i=1,2,3)as the target positions without deviations,we can retrieve the refraction image with artefacts by applying the G2DEI algorithm to three measured intensities with analyzer angular position deviations.The retrieved refraction image with artefacts is shown in Fig.2(a)(additional subscript ‘img, art’).As a comparison, the corresponding refraction image without artefacts is shown Fig.2(b)(additional subscript ‘img, gt’).The pixelwise difference of Figs.2(a)and 2(b)is calculated,and thus the artefact image resulting from analyzer angular position deviations is deduced.While Fig.2(c)(additional subscript‘exp’)shows experimental artefact image, Fig.2(d) (additional subscript ‘cal’) displays the calculated artefact image by using Eq.(8) and the ground truth image.Qualitatively, the visual equivalence between Figs.2(c) and 2(d) verifies the validity of Eq.(8) for calculating the refraction image artefact.

    For a quantitative evaluation, Fig.3 shows a line profile comparison along the line marked by the dashed line in Figs.2(c)and 2(d).The solid blue line corresponds to the experimental result, while the magenta line corresponds to theoretically calculated result.The agreement of the two line profiles is quantitatively excellent, confirmed by that the calculated correlation coefficient has a great value of 0.9981.However, the existence of some locally minor discrepancies between experimental and calculated line profiles can be explained by the first-order truncation of the Taylor series expansion used in the derivation of Eq.(8).

    Fig.3.Line profile comparison of refraction image artefact along the dotted line in Figs.2(c)and 2(d).

    Figure 4 shows the results of scattering images,retrieved by the G2DEI algorithm using the same experimental data as Fig.2.The scattering image with artefacts is shown in Fig.4(a) (additional subscript ‘img, art’), while the corresponding scattering image without artefacts is presented in Fig.4(b) (additional subscript ‘img, gt’), as the ground truth image for artefact image calculation.Figure 4(c) (additional subscript‘exp’)displays the experimental artefact image,obtained by the difference between Figs.4(a) and 4(b), and Fig.4(d) (additional subscript ‘cal’) depicts the calculated artefact image by use of Eq.(13),Figs.2(b)and 4(b).A qualitative comparison of Figs.4(c)and 4(d)clearly demonstrates that theoretically calculated artefact image agrees well the experimental image.

    To obtain a quantitative evaluation, Fig.5 shows a line profile comparison of the scattering image artefacts along the dotted line in Figs.4(c) and 4(d).Despite a few slight local deviations, the two line profiles exhibit a quantitatively good agreement, supported by a calculated correlation coefficient of 0.9862.The consistence between the two line profiles confirms the validity of theoretical models of the scattering image artefact.

    Fig.4.(a)Experimental scattering image with artefact.(b)Experimental scattering image without artefact.(c) Experimental artefact image.(d)Calculated artefact image.Scale bar is 0.45 mm.

    Fig.5.Line profile comparison of scattering image artefact along the dotted line in Figs.4(c)and 4(d).

    Finally, due to stochastic nature of analyzer angular position deviations, several other sets of deviations are also investigated,and the corresponding line profile comparisons are performed.The analyzer angular position deviations used for evaluations are listed in Table 1.Note that those deviations correspond to a misalignment of less than 10%of analyzer angular intervals during intensity measurements.The calculated correlation coefficients are listed in Table 2 for refraction and scattering images,respectively.

    Table 1.Several other sets of deviations in units ofμrad used for evaluations.

    Table 2.Calculated correlation coefficients between experimental and calculated artefacts.

    As summarized in Table 2,the calculated correlation coefficient has a mean value of 0.9874 with a standard deviation of 0.0071 for the refraction image artefact, and a mean value of 0.9921 with a standard deviation of 0.0074 for the scattering image artefact, respectively.Those results again confirm the good agreement between experimental results and theoretical calculations,thus validating our theoretical analysis results,i.e.,Eqs.(8)and(13).

    4.Discussion

    Equation (8) revealed that the refraction image artefact is dependent on the three analyzer angular positions and their deviations, and also the sample’s refraction.However, it is expected that the three deviations contribute differently to the magnitude of image artefact.As shown in Eq.(8), the contribution is determined by the three defined coefficients.Figure 6(a) displays the coefficients of refraction image artefact as a function of the refraction signal.For the calculations,we have usedθ1=-13.6μrad,θ2=1.9μrad andθ3=15.5μrad from a recent literature.[31]These three analyzer angular positions are close to low-angle 48%, high-angle 98%, and highangle 31%,respectively.[31]The values of the coefficients have been normalized by the term (θ2-θ1)·(θ2-θ3)·(θ1-θ3).The results demonstrate that the magnitude of the coefficients can be comparable to that of refraction signal.Besides,the analyzer angular position deviations contribute quite differently for different features characterized by different refraction signals.And Eq.(8) can be used for predictions before experiments and experimental optimization.

    Similarly, Eq.(13) showed that artefact of the scattering image is dependent on analyzer angular positions and their deviations, and both the sample’s refraction and scattering, but not on absorption.However, the three angular position deviations contribute differently to the artefact magnitude.Figures 6(b) and 6(c) show the three defined coefficients as a function of refraction and scattering, respectively.The same parameters as that of Fig.6(a) were used, and the coefficient values were also normalized.Different from Fig.6(a),a linear behavior is observed, with a smaller value.However, noting the difference in the magnitude of refraction and scattering,the magnitude of scattering artefact can also be comparable to that of scattering signal.Moreover, the contribution of analyzer angular position deviations is quite different for different refraction and scattering.Thus,Eq.(13)provides a simple tool for error estimations and experimental optimizations.

    In experimental applications,especially for laboratory xray analyzer-based imaging instruments, deviations of analyzer angular positions can be easily induced by vibrations and other external influences.It is difficult to increase the stability of x-ray ABI setup sufficiently in experiments.And therefore, development of enhanced retrieval algorithms becomes quite necessary,which can effectively suppress the artefacts in the retrieved refraction and scattering images.On this sense,this work provides the foundation to develop advanced multicontrast retrieval algorithms.This will be one of our forthcoming work.

    Fig.6.(a) Coefficient of refraction image artefact as a function of refraction.(b) Coefficient of scattering image artefact as a function of refraction.(c)Coefficient of scattering image artefact as a function of scattering.

    5.Conclusion

    In this work,we presented analysis of refraction and scattering image artefacts resulting from analyzer angular position deviations in x-ray analyzer-based imaging.A first-order Taylor series expansion is utilized to establish theoretical models to correlate deviations of analyzer angular positions with artefacts in the retrieved refraction and scattering images.Theoretical models were validated by synchrotron radiation experiments.The results revealed that for the refraction image,the artefact was independent of the object’s absorption and scattering signals.By contrast, artefacts of the scattering images were dependent on both the object’s refraction and scattering signals,but not on absorption signal.The derived dependency of image artefacts on deviations of analyzer angular positions could be used to develop advanced multi-contrast image retrieval algorithms that suppress image artefacts,and for correct image interpretation especially in laboratory x-ray analyzerbased imaging instruments.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.U1532113, 11475170, and 11905041), the Fundamental Research Funds for the Central Universities (Grant No.PA2020GDKC0024), and Anhui Provincial Natural Science Foundation, China (Grant No.2208085MA18).

    av一本久久久久| 岛国毛片在线播放| 黄色配什么色好看| 伊人亚洲综合成人网| 国产精品国产三级专区第一集| 国产一区二区在线观看av| 中文精品一卡2卡3卡4更新| 男女国产视频网站| 校园人妻丝袜中文字幕| 日韩免费高清中文字幕av| 久久久久精品性色| 97在线人人人人妻| 麻豆精品久久久久久蜜桃| 十八禁高潮呻吟视频| 国产精品国产av在线观看| 国产一区二区三区综合在线观看| 1024视频免费在线观看| 最近最新中文字幕免费大全7| 一本色道久久久久久精品综合| 精品第一国产精品| 成年人午夜在线观看视频| 国产成人欧美| 18+在线观看网站| 美女脱内裤让男人舔精品视频| 免费高清在线观看视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 黄色怎么调成土黄色| 亚洲av免费高清在线观看| 欧美亚洲日本最大视频资源| 热99久久久久精品小说推荐| 色网站视频免费| 国产精品偷伦视频观看了| 最新中文字幕久久久久| 国产免费一区二区三区四区乱码| 中文字幕亚洲精品专区| 少妇的逼水好多| 国产精品av久久久久免费| 久久99蜜桃精品久久| av免费在线看不卡| 国产精品久久久久成人av| 国产成人欧美| 99re6热这里在线精品视频| 国产女主播在线喷水免费视频网站| 26uuu在线亚洲综合色| 日本午夜av视频| 一级作爱视频免费观看| 亚洲国产精品一区二区三区在线| 又黄又粗又硬又大视频| 99精品在免费线老司机午夜| 激情视频va一区二区三区| e午夜精品久久久久久久| 久热爱精品视频在线9| 99国产精品99久久久久| 欧美最黄视频在线播放免费 | 美国免费a级毛片| 99香蕉大伊视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av第一区精品v没综合| 欧美在线一区亚洲| 精品国产乱码久久久久久男人| 18禁美女被吸乳视频| 最近最新中文字幕大全免费视频| 天堂中文最新版在线下载| 女性生殖器流出的白浆| 国产欧美日韩精品亚洲av| 丰满的人妻完整版| 岛国视频午夜一区免费看| 亚洲视频免费观看视频| 国产精品一区二区三区四区久久 | 在线观看一区二区三区激情| 97碰自拍视频| 两个人看的免费小视频| 免费高清视频大片| netflix在线观看网站| 亚洲第一欧美日韩一区二区三区| 中文字幕人妻熟女乱码| 99riav亚洲国产免费| 在线看a的网站| 五月开心婷婷网| 久久香蕉国产精品| 精品国产乱码久久久久久男人| 男女床上黄色一级片免费看| 亚洲精品一二三| 久久久久久久午夜电影 | 国产精品av久久久久免费| 少妇裸体淫交视频免费看高清 | 国产精品成人在线| 久久精品91无色码中文字幕| 日本免费a在线| 国产伦人伦偷精品视频| 久久精品aⅴ一区二区三区四区| 在线天堂中文资源库| 啦啦啦 在线观看视频| 亚洲精品国产精品久久久不卡| 女性生殖器流出的白浆| 亚洲中文av在线| 国产精品国产av在线观看| 亚洲av日韩精品久久久久久密| 亚洲九九香蕉| 欧美日韩乱码在线| 日韩高清综合在线| 亚洲av熟女| 久久久国产成人免费| 亚洲成a人片在线一区二区| 桃红色精品国产亚洲av| 欧美日韩视频精品一区| 欧美乱妇无乱码| 亚洲五月婷婷丁香| 久久久精品欧美日韩精品| 国产真人三级小视频在线观看| 80岁老熟妇乱子伦牲交| 国产av一区二区精品久久| 国产精品国产av在线观看| 国产成人系列免费观看| 精品人妻1区二区| 波多野结衣高清无吗| 欧美在线黄色| 国产av一区二区精品久久| 国产一区二区三区综合在线观看| 性色av乱码一区二区三区2| 香蕉丝袜av| 久久精品国产亚洲av高清一级| 午夜亚洲福利在线播放| 久久人妻福利社区极品人妻图片| 国产伦人伦偷精品视频| videosex国产| 一个人免费在线观看的高清视频| 欧美日韩中文字幕国产精品一区二区三区 | 嫁个100分男人电影在线观看| 亚洲人成电影观看| 高清黄色对白视频在线免费看| 久久午夜亚洲精品久久| 很黄的视频免费| 成年女人毛片免费观看观看9| 国产av一区在线观看免费| 色综合婷婷激情| 国产精品一区二区精品视频观看| 麻豆久久精品国产亚洲av | 亚洲性夜色夜夜综合| 国产伦人伦偷精品视频| 欧美激情高清一区二区三区| 国产黄a三级三级三级人| 亚洲av美国av| 国产三级黄色录像| 18禁国产床啪视频网站| 啦啦啦 在线观看视频| 黄频高清免费视频| 亚洲国产精品一区二区三区在线| 亚洲五月婷婷丁香| 后天国语完整版免费观看| av福利片在线| 国产精品成人在线| 国产国语露脸激情在线看| 亚洲免费av在线视频| 国产亚洲欧美精品永久| 国产精品亚洲av一区麻豆| 人妻久久中文字幕网| 香蕉国产在线看| 欧美人与性动交α欧美精品济南到| 美女 人体艺术 gogo| 国产精品秋霞免费鲁丝片| 极品人妻少妇av视频| 丝袜人妻中文字幕| 在线观看免费日韩欧美大片| 亚洲第一欧美日韩一区二区三区| 久久久久九九精品影院| 一夜夜www| 老鸭窝网址在线观看| 亚洲精华国产精华精| 久久久久久久久久久久大奶| 99riav亚洲国产免费| 免费在线观看亚洲国产| 熟女少妇亚洲综合色aaa.| 桃色一区二区三区在线观看| 波多野结衣一区麻豆| 午夜精品在线福利| av福利片在线| 极品人妻少妇av视频| 精品欧美一区二区三区在线| 国内久久婷婷六月综合欲色啪| 亚洲男人的天堂狠狠| 精品高清国产在线一区| 中文字幕精品免费在线观看视频| 亚洲中文字幕日韩| 夜夜看夜夜爽夜夜摸 | 丁香六月欧美| 精品久久久久久久久久免费视频 | 操美女的视频在线观看| 国产欧美日韩综合在线一区二区| 国产欧美日韩一区二区精品| 亚洲avbb在线观看| 欧美最黄视频在线播放免费 | 很黄的视频免费| 亚洲欧美精品综合久久99| 50天的宝宝边吃奶边哭怎么回事| 亚洲中文日韩欧美视频| 欧美乱码精品一区二区三区| 9热在线视频观看99| 99久久人妻综合| 一进一出好大好爽视频| 久久香蕉国产精品| 国产成人精品久久二区二区91| 国产欧美日韩综合在线一区二区| 色综合欧美亚洲国产小说| 可以免费在线观看a视频的电影网站| 欧美另类亚洲清纯唯美| 国产1区2区3区精品| 又黄又粗又硬又大视频| 成人特级黄色片久久久久久久| 波多野结衣av一区二区av| 在线免费观看的www视频| 午夜福利在线免费观看网站| 日韩三级视频一区二区三区| 1024视频免费在线观看| 在线观看免费午夜福利视频| 久久伊人香网站| 丝袜美足系列| av免费在线观看网站| 夜夜看夜夜爽夜夜摸 | 久久人人精品亚洲av| 免费在线观看完整版高清| 国产成人精品久久二区二区91| 在线观看免费午夜福利视频| 黄色丝袜av网址大全| 热re99久久精品国产66热6| 日韩成人在线观看一区二区三区| 19禁男女啪啪无遮挡网站| 在线观看免费日韩欧美大片| 天堂影院成人在线观看| 欧美精品啪啪一区二区三区| www.自偷自拍.com| 亚洲视频免费观看视频| 国产精品自产拍在线观看55亚洲| 成在线人永久免费视频| 久久人妻福利社区极品人妻图片| 一区二区三区精品91| 两人在一起打扑克的视频| 日本三级黄在线观看| 黑人操中国人逼视频| 一区二区三区激情视频| 国产精品爽爽va在线观看网站 | 九色亚洲精品在线播放| 一二三四社区在线视频社区8| 18禁黄网站禁片午夜丰满| 又黄又粗又硬又大视频| 亚洲av美国av| 欧美乱妇无乱码| 久久热在线av| av中文乱码字幕在线| 69av精品久久久久久| 久久人妻av系列| 午夜视频精品福利| 国产成人精品无人区| 久久国产精品人妻蜜桃| 老熟妇仑乱视频hdxx| 欧美激情高清一区二区三区| av天堂久久9| ponron亚洲| 天堂中文最新版在线下载| 国产人伦9x9x在线观看| 午夜视频精品福利| 久久人妻熟女aⅴ| √禁漫天堂资源中文www| 国产成人欧美| 久久人妻熟女aⅴ| 在线播放国产精品三级| 国产男靠女视频免费网站| 久久久久久久精品吃奶| 免费在线观看日本一区| 日韩精品免费视频一区二区三区| 男人操女人黄网站| 美女国产高潮福利片在线看| 黄色视频不卡| 校园春色视频在线观看| 亚洲精品在线美女| 国产精品av久久久久免费| 成人18禁在线播放| 韩国精品一区二区三区| 久久精品国产亚洲av高清一级| 最新美女视频免费是黄的| 女人高潮潮喷娇喘18禁视频| 成人手机av| 精品卡一卡二卡四卡免费| 在线观看免费视频网站a站| 成年人黄色毛片网站| 国产99久久九九免费精品| 新久久久久国产一级毛片| 午夜福利在线观看吧| 日日爽夜夜爽网站| 国产野战对白在线观看| 午夜免费激情av| 亚洲精品av麻豆狂野| 美女大奶头视频| 桃红色精品国产亚洲av| 99国产精品99久久久久| av欧美777| 久久香蕉激情| 亚洲国产精品合色在线| 91精品三级在线观看| 两人在一起打扑克的视频| 亚洲午夜精品一区,二区,三区| 午夜a级毛片| 如日韩欧美国产精品一区二区三区| 亚洲av成人一区二区三| 在线永久观看黄色视频| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区精品视频观看| 嫩草影院精品99| 可以免费在线观看a视频的电影网站| 亚洲成人免费电影在线观看| 亚洲精品中文字幕一二三四区| 黄片播放在线免费| 午夜福利欧美成人| 人人妻人人澡人人看| 水蜜桃什么品种好| 亚洲人成77777在线视频| 日本三级黄在线观看| 日本免费一区二区三区高清不卡 | 日韩精品免费视频一区二区三区| 国产成人一区二区三区免费视频网站| 一二三四在线观看免费中文在| 国产亚洲欧美在线一区二区| 国产精品永久免费网站| 国产野战对白在线观看| 国产精品偷伦视频观看了| 精品国产国语对白av| 他把我摸到了高潮在线观看| 色婷婷av一区二区三区视频| 中文亚洲av片在线观看爽| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久久久免费视频 | 亚洲精品在线观看二区| 麻豆av在线久日| 久久久久久久久中文| 久久亚洲精品不卡| 女警被强在线播放| 亚洲人成网站在线播放欧美日韩| 五月开心婷婷网| 黑人猛操日本美女一级片| 波多野结衣高清无吗| 午夜免费激情av| 亚洲欧美一区二区三区久久| 91麻豆精品激情在线观看国产 | 成年版毛片免费区| 亚洲狠狠婷婷综合久久图片| 一级毛片女人18水好多| 80岁老熟妇乱子伦牲交| 夜夜夜夜夜久久久久| 欧美国产精品va在线观看不卡| 午夜精品国产一区二区电影| 日韩欧美国产一区二区入口| 亚洲av成人不卡在线观看播放网| 日韩欧美一区视频在线观看| 麻豆av在线久日| 99久久综合精品五月天人人| 一区二区三区国产精品乱码| 一二三四在线观看免费中文在| 丁香欧美五月| 嫩草影院精品99| 在线观看日韩欧美| 国产1区2区3区精品| 成人av一区二区三区在线看| 亚洲成av片中文字幕在线观看| 母亲3免费完整高清在线观看| 夫妻午夜视频| 女同久久另类99精品国产91| 久热这里只有精品99| 亚洲精华国产精华精| 国产高清国产精品国产三级| 丝袜在线中文字幕| 啦啦啦免费观看视频1| 国产黄色免费在线视频| 亚洲专区字幕在线| 亚洲熟妇中文字幕五十中出 | 国产成年人精品一区二区 | 久久中文字幕人妻熟女| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕另类日韩欧美亚洲嫩草| www日本在线高清视频| 黄频高清免费视频| 老熟妇乱子伦视频在线观看| 久久精品91无色码中文字幕| 亚洲欧美激情在线| 麻豆国产av国片精品| 久久婷婷成人综合色麻豆| 国产欧美日韩一区二区精品| 韩国精品一区二区三区| 女人被狂操c到高潮| 丁香欧美五月| 免费av中文字幕在线| 国产精品久久久人人做人人爽| 夫妻午夜视频| 亚洲男人天堂网一区| 人人澡人人妻人| 老汉色av国产亚洲站长工具| 久久 成人 亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久亚洲精品国产蜜桃av| 国产成人系列免费观看| svipshipincom国产片| 免费av毛片视频| 国产日韩一区二区三区精品不卡| 欧美日本中文国产一区发布| 久久精品国产综合久久久| 国产精品自产拍在线观看55亚洲| 成人永久免费在线观看视频| 免费人成视频x8x8入口观看| 少妇 在线观看| 桃红色精品国产亚洲av| ponron亚洲| x7x7x7水蜜桃| 欧美在线黄色| 在线播放国产精品三级| 91精品三级在线观看| 中文字幕av电影在线播放| 91成年电影在线观看| 在线观看舔阴道视频| 日本免费a在线| 岛国在线观看网站| 国产成人影院久久av| 国产无遮挡羞羞视频在线观看| 欧美日韩一级在线毛片| av中文乱码字幕在线| 狂野欧美激情性xxxx| 亚洲国产看品久久| xxx96com| 久久久国产精品麻豆| 99久久99久久久精品蜜桃| 国产伦人伦偷精品视频| 少妇 在线观看| 欧美乱妇无乱码| 男人舔女人的私密视频| 成人国语在线视频| www.精华液| 日韩精品免费视频一区二区三区| 久久人妻av系列| 啦啦啦 在线观看视频| netflix在线观看网站| 性色av乱码一区二区三区2| 久久久久国产精品人妻aⅴ院| 久久亚洲真实| 人妻丰满熟妇av一区二区三区| 国产精品一区二区三区四区久久 | 国产麻豆69| 午夜影院日韩av| 欧美另类亚洲清纯唯美| 亚洲av美国av| 国产亚洲精品综合一区在线观看 | 一边摸一边做爽爽视频免费| 99热国产这里只有精品6| 国产男靠女视频免费网站| 老司机福利观看| 男女做爰动态图高潮gif福利片 | 好看av亚洲va欧美ⅴa在| 性色av乱码一区二区三区2| 国产精品99久久99久久久不卡| 一区二区三区精品91| 18禁观看日本| 成人三级做爰电影| 亚洲成人国产一区在线观看| 窝窝影院91人妻| 国产av精品麻豆| 国产精品乱码一区二三区的特点 | 久久影院123| 天堂√8在线中文| 国产激情欧美一区二区| 黄频高清免费视频| 国产精品亚洲一级av第二区| 久久香蕉激情| 丁香欧美五月| 9色porny在线观看| 成人亚洲精品一区在线观看| 欧美不卡视频在线免费观看 | 亚洲成人免费av在线播放| 高清av免费在线| 亚洲,欧美精品.| 亚洲中文日韩欧美视频| cao死你这个sao货| 丝袜在线中文字幕| 少妇的丰满在线观看| 少妇被粗大的猛进出69影院| 国产1区2区3区精品| 精品免费久久久久久久清纯| 中文亚洲av片在线观看爽| 一进一出抽搐动态| 男人舔女人下体高潮全视频| 一级毛片女人18水好多| 黄频高清免费视频| 激情视频va一区二区三区| 国产精品美女特级片免费视频播放器 | 男女下面进入的视频免费午夜 | 99精品久久久久人妻精品| 波多野结衣av一区二区av| 国产高清videossex| 黄色视频不卡| 日韩精品中文字幕看吧| 香蕉国产在线看| 欧美日本亚洲视频在线播放| 天堂影院成人在线观看| 精品久久久久久久毛片微露脸| 手机成人av网站| 一区在线观看完整版| 午夜影院日韩av| 亚洲欧洲精品一区二区精品久久久| 琪琪午夜伦伦电影理论片6080| 757午夜福利合集在线观看| 中文欧美无线码| 91成人精品电影| 级片在线观看| 精品久久久久久久毛片微露脸| 国产精品99久久99久久久不卡| 久久香蕉激情| 亚洲国产看品久久| 窝窝影院91人妻| 51午夜福利影视在线观看| 久久精品91蜜桃| 女人精品久久久久毛片| 黄片小视频在线播放| 咕卡用的链子| 丝袜人妻中文字幕| 亚洲少妇的诱惑av| 国产aⅴ精品一区二区三区波| 亚洲人成77777在线视频| 黄色成人免费大全| tocl精华| 亚洲国产毛片av蜜桃av| 久久人妻av系列| 亚洲九九香蕉| 热re99久久精品国产66热6| 成人国语在线视频| 深夜精品福利| 国产精品乱码一区二三区的特点 | 日日夜夜操网爽| 99国产精品一区二区蜜桃av| 女人被躁到高潮嗷嗷叫费观| 亚洲avbb在线观看| 琪琪午夜伦伦电影理论片6080| 手机成人av网站| 日韩有码中文字幕| 日韩精品免费视频一区二区三区| 久久国产亚洲av麻豆专区| 大型av网站在线播放| 老司机靠b影院| 校园春色视频在线观看| 琪琪午夜伦伦电影理论片6080| 欧美日韩精品网址| 日本wwww免费看| 午夜福利一区二区在线看| 精品卡一卡二卡四卡免费| 久久久久国内视频| 村上凉子中文字幕在线| 久久人妻av系列| 日本免费a在线| 老汉色∧v一级毛片| 欧美一级毛片孕妇| 啦啦啦 在线观看视频| 欧美日韩av久久| 女警被强在线播放| 他把我摸到了高潮在线观看| 国产亚洲精品综合一区在线观看 | ponron亚洲| 国产精品 欧美亚洲| 久久久久久久午夜电影 | 如日韩欧美国产精品一区二区三区| av天堂在线播放| 搡老乐熟女国产| 国产有黄有色有爽视频| 欧美亚洲日本最大视频资源| 亚洲avbb在线观看| 午夜福利在线免费观看网站| 女同久久另类99精品国产91| 亚洲成a人片在线一区二区| 国产一卡二卡三卡精品| 国产亚洲精品一区二区www| 男人的好看免费观看在线视频 | 欧美中文综合在线视频| 久久久国产精品麻豆| 久久香蕉精品热| 操美女的视频在线观看| 天堂动漫精品| 9热在线视频观看99| 精品一区二区三区四区五区乱码| 欧美激情 高清一区二区三区| 日韩国内少妇激情av| 男人操女人黄网站| 国产高清激情床上av| 在线观看舔阴道视频| 午夜精品在线福利| 亚洲片人在线观看| 亚洲av成人一区二区三| 两性夫妻黄色片| 男人舔女人下体高潮全视频| 国产亚洲精品综合一区在线观看 | 久久人人精品亚洲av| 亚洲在线自拍视频| 69av精品久久久久久| 99国产极品粉嫩在线观看| 久久影院123| 高清黄色对白视频在线免费看| 国产深夜福利视频在线观看| 欧美大码av| 满18在线观看网站| 乱人伦中国视频| 人人妻人人添人人爽欧美一区卜| 国产成人精品久久二区二区91| 国产深夜福利视频在线观看| 亚洲情色 制服丝袜| 日日干狠狠操夜夜爽| 大型黄色视频在线免费观看| 夫妻午夜视频| 欧美激情高清一区二区三区| 精品国产亚洲在线| 美女扒开内裤让男人捅视频| 久久中文字幕人妻熟女| 一进一出抽搐gif免费好疼 |