• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthetical optimization of the structure dimension for the thermoacoustic regenerator

    2022-03-12 07:44:30HuifangKang康慧芳LingxiaoZhang張凌霄JunShen沈俊XiachenDing丁夏琛ZhenxingLi李振興andJunLiu劉俊
    Chinese Physics B 2022年3期
    關(guān)鍵詞:劉俊

    Huifang Kang(康慧芳) Lingxiao Zhang(張凌霄) Jun Shen(沈俊)Xiachen Ding(丁夏琛) Zhenxing Li(李振興) and Jun Liu(劉俊)

    1Beijing Institute of Technology,Beijing 100124,China

    2Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: thermoacoustic,regenerator,hydraulic radius,regenerator length

    1. Introduction

    Due to thermoacoustic effects, the thermoacoustic engine(TAE)can convert the heat to the acoustic wave,and the thermoacoustic cooler(TAC)can also pump heat through the acoustic wave. The regenerator for thermoacoustic conversions is the core of the thermoacoustic devices. In the TAE,acoustic waves are triggered when a steep temperature gradient is established along the regenerator. Acoustic waves cause gas parcels in the regenerator to go through a thermodynamic cycle consisting of compression,heating,expansion and cooling processes. As a result, the conversion process from heat to acoustic energy does not have any moving parts.[1]In the TAC,when the acoustic wave passes through the regenerator,a temperature gradient along the regenerator with a certain coefficient of performance(COP)is established. Gas parcels affected by acoustic waves in the regenerator undergo the thermodynamic cycle consisting of compression, cooling, expansion and heating processes. Thus, moving parts are not required in the heat pumping process,[2]as well.

    In 1962,Carter[3]enhanced the thermoacoustic effects by inserting a regenerator into the Sondhauss tube[4]and stimulated the investigation of the thermoacoustic regenerator function. In 1979, Ceperley[5]firstly described the thermoacoustic regenerator as an energy conversion apparatus, and experimentally testified the thermoacoustic conversion function.Fundamentals of physical principles underlying the regenerator were investigated and analyzed in previous papers,[6,7]while the regenerator’s parameters were optimized by several researchers.[7-12]

    Swift[7]studied the hydraulic radiusrhin the thermoacoustic system and obtained the empirical values:rh/δk~1 for standing wave engine andrh/δk ?1 for traveling wave engine,whereδkis the thermal penetration depth. Tijani[8]studied a standing wave thermoacoustic cooler and put forward thatrh=1.25δkwas optimal for the cooling power,rh=2.0δkled to the lowest temperature,and the highest efficiency could be reached whenrh=1.5δk. Yu[9]found that a measured optimal value wasrh≈(0.3~0.2)δvfor the excitation of the system with the viscous penetration depthδvin a traveling wave thermoacoustic engine. Raspet[10]presented the correlation of the coefficient of performance of the thermoacoustic cooler with the standing wave ratio and optimized the regenerator structure by adjusting the standing wave ratio. Tijani[11]experimentally investigated the effect of Prandtl number on the performance of a thermoacoustic refrigerator using gas mixtures. Kazuto[12]considered correlations of the local Nusselt number distribution and analyzed heat transfer characteristics of the oscillatory flow in the engine core via numerical simulations.

    However, those publications[7-12]were unilateral to understand the optimal condition for the thermoacoustic conversion. Most of those regenerator optimizations[7-12]analyzed parameters of the working field,working gas and the hydraulic radius,whereas the quantitative investigation of important parameters,for example,the length of the regenerator,on the behavior of thermoacoustic devices was still lacking. In the previous design,[13-25]the selection of the regenerator length was dependent on the experience, which caused the design with some blindness and results without prescient considerations,as well as the limited performance rather than the optimal.

    Thus,this paper presents a normalized parameter,the regenerator operation factor,based on the linear thermoacoustic theory for the small-amplitude condition without the nonlinear linearity involved. The influence of frequency on efficiency can be controlled and offset manually,while the thermoacoustic devices with various frequencies can perform the same efficiency. This is of significance to guide the miniaturization design of the thermoacoustic device. Moreover, by extracting and analyzing the regenerator operation factor in the basic thermoacoustic formulas,the parameters relative to the regenerator length are obtained and can be used to optimize the regenerator length. Finally, this paper synthetically optimizes the structure dimension of the thermoacoustic regenerator by combining the regenerator operation factor,relative hydraulic radius and acoustic field parameter.

    2. Thermoacoustic formula extracting

    2.1. Heat flow

    In the thermoacoustic regenerator model, ordinary thermal conduction in direction is neglectable. The time-averaged heat flow generated across regenerator due to the hydrodynamics transport is[26,27]

    where Im[ ] indicates the image part,U1is the volume flow rate,fvandfkare the spatially averaged Rott’s functions,which also depend on the specific channel geometry under consideration.

    Expressions offvandfkare known for most geometries[26]and the solutions for most of these geometries are actually very similar. Therefore,this paper only takes the parallel plate-type regenerator as a case,and other types of regenerators can be analyzed in the similar way. They=0 is defined at the centerline of the spacing between two adjacent parallel plates

    Theψis the regenerator operation factor, which is derived from the basic thermoacoustic formulas and reflects the human-operable factor in the regenerator, including not only the structure dimension (e.g.,lN), but also the operation parameter(e.g.,Th). By extracting and analyzing the regenerator operation factor in the basic thermoacoustic formulas,the parameters relative to the regenerator length are obtained,andψis defined as

    wherelNis the normalized length of the regenerator and is defined aslN=lreg/λ,the ratio of the length of the regeneratorlregto the wavelengthλ,This the temperature of the hot end,andTcis the temperature of the cool end.

    2.2. Acoustic power

    The average acoustic power d ˙E2produced in a length dxof the regenerator is expressed as[27]

    The first two terms in Eq. (12) are always negative because they have no concern with the temperature gradient alongxand describe the consumption of the acoustic power.The first term describes the viscous dissipation of the acoustic wave. It is proportional to|u1|2and independent of thermal conductivity. The second term describes the thermalrelaxation dissipation and is proportional to|p1|2and independent of viscosity. The third term is called the source term as it describes not only the production but also the consumption of acoustic power. Only if dTm/dx/=0 will the last term exist. As shown in Eq. (12), there are two means to produce more acoustic power:one is to reduce the viscous and thermalrelaxation dissipation,while the other is to increase the newly produced acoustic power.

    For simple analysis,the average acoustic power gain can be written as

    2.3. Second law efficiency of the TAE

    The first law efficiencyη1divided by the Carnot efficiencyηcequals the second law efficiencyη2,that is,

    According to Eqs.(9),(13)and(14),it can be yielded

    2.4. Second law coefficient-of-performance of the TAC

    The first law coefficient of performance COP1divided by the Carnot coefficient of performance COPcequals the second law coefficient of performance COP2,that is,

    As shown in Eqs. (7), (8), (15), and (17), the thermoacoustic conversion efficiency is determined by six parameters:the working gas parametersγandσ,the structural parametersζandψ,and the acoustic field parameters|ZN|andφZ.

    Due to extracting the factor ofψandζ, the frequency does not exist in the efficiency formula. The effect of the frequency on the efficiency can be transformed into the effect of the normalized length of the regenerator on the efficiency. It can be controlled and offset manually,which means that thermoacoustic devices with different frequencies can perform the same efficiency by adjusting the radius dimensions in proportion to the axis dimension to keepζandψconstant. This is significant to guide the miniaturization design of the thermoacoustic device.

    For example,there is a high-efficiency thermoacoustic device with the length ofl1, the frequency off1and the hydraulic radius ofr1h. For designing a miniature thermoacoustic device with the same efficiency,ζandψshould be kept constant in the structure designing. Consequently, according to the definitions ofζandψ,r2h,l1andf2can be gotten as follows:

    3. Results and discussion

    Under the condition of helium as the working gas and|ZN|=10,the second law efficiency of the engineη2and the second law coefficient of performance of cooler COP2are calculated within certain ranges of operation factor of regeneratorψ,relative hydraulic radiusζand leading phaseφZ.

    3.1. Regenerator of TAE

    In this section, the regenerator of the thermoacoustic prime mover is discussed. The case of d ˙E2/dx >0 is of significance, and elsewhere, the case of d ˙E2/dx ≤0 is neglected and assumed to be zero in the figures. According to Ref. [28], this section just discusses the acoustic field with-90° <φZ <0 in which region the TAE can gain a higher acoustic power and better efficiency.

    Figure 1 showsη2as a function ofζandψwith differentφZ. Furthermore,the maximumη2,the optimalζand the optimalψwith differentφZare summarized in Figs.2 and 3. It can be found that the maximumη2=0.786 operation occurs whenζ=0.15,ψ=42.1 andφZ=-9°.

    Fig.1. The effect of ζ,ψ and different φZ on η2: (a)φZ =0°,(b)φZ =-30°,(c)φZ =-60°,(d)φZ =-90°.

    Fig.2. The maximum η2 with different φZ.

    As shown in Fig.2, the maximumη2does not appear atφZ=0°, but atφZ=-9°. When gas works at the leading phaseφZ=0°, the regenerator achieves the reversible thermoacoustic conversion in theory. The reversible thermoacoustic conversion can be realized by the reversible thermal contact which requires an infinitesimal hydraulic radius of the regenerator. However, this will lead to infinite viscous dissipation which will weaken the thermoacoustic gain and efficiency. So the finite hydraulic radius is adopted in the real traveling wave device,which makes the oscillating temperature of gas parcels lag the oscillating displacement.It indicates that the phase difference between the oscillating temperature and the oscillating pressure deviates from 90°because of the thermo-relaxation.Under such condition, for improving the thermoacoustic efficiency and gain,φZ=-9°/=0°is of significance to match the phase deviation resulted by the thermo-relaxation.

    As shown in Fig.3,asφZincreases from-90°to 0°,the optimalψincreases, and thus the optimal length of regenerator decreases because oflN∝1/ψas shown in Eq. (11). It indicates that the optimal regenerator length of the standing wave engine is longer than that of the traveling wave engine.This property can explain the different lengths of the regenerators in the cascade TAE designed by Swift.[13]In 2003,Swift designed a cascade thermoacoustic engine consisting of three stages,and the lengths of the regenerator were 0.26 m,0.031 m and 0.042 m,separately.It indicates that the regenerator length of the first stage is much larger than those of the second stage and the third stage,because the first stage works in the standing wave field while the other two stages work in the traveling wave field.

    Fig.3. The optimal ζ and the optimal ψ for the maximum η2 versus φZ.

    Fig.4. The effect of ζ,ψ and φZ on COP2: (a)φZ =-180°,(b)φZ =-150°,(c)φZ =-120°,(d)φZ =-90°.

    3.2. Regenerator of TAC

    This section focuses the discussion on the regenerator of the TAC.The case of ˙Q >0 is significant,and elsewhere,the case of ˙Q ≤0 is neglected and to be assumed as zero in the figures. According to Ref.[19],this section just discusses the acoustic field with-180°<φZ <-90°in which the TAC can gain a higher cooling power and coefficient of performance.

    Figure 4 shows the variation of COP2with variousζ,ψandφZ. Furthermore,the maximum COP2,the optimalζand the optimalψwith differentφZare summarized in Figs.5 and 6. It is quite obvious that the maximum COP2=0.786 operation occurs whenζ=0.17,ψ=25.9 andφZ=-169°.

    Fig.5. The maximum COP2 with different φZ.

    Fig.6. The optimal ζ and the optimal ψ for the maximum COP2 versus φZ.

    As shown in Fig. 5, the maximum COP2does not appear atφZ=-180°,but atφZ=-169°. Similarly to the phenomenon that appears inη2optimization,the finite hydraulic radius valueζ=0.17 is accepted due to the viscous dissipation,and thenφZ=-169°/=-180°is important to match the phase deviation because of the thermo-relaxation.

    As shown in Fig. 6, withφZincreasing from-180°to-90°, the optimalψdecreases, and thus the optimal length of regenerator increases because oflN∝1/ψas shown in Eq. (11). It indicates that the optimal regenerator length of the standing wave cooler is longer than that of the traveling wave cooler.

    4. Conclusions

    Based on the linear thermoacoustic theory,this paper extracts a normalized parameter named the regenerator operation factor, and then synthetically optimizes the dimension of the thermoacoustic regenerator by combining the regenerator operation factor, relative hydraulic radius and acoustic field parameter.

    1)Due to extracting the regenerator operation factor and relative hydraulic radius, it is found that the influence of the frequency on the efficiency can be controlled and offset. Thermoacoustic devices with different frequencies can perform the same efficiency by adjusting the radius dimensions in proportion to the axis dimension. This is of significance to guide the miniaturization design of the thermoacoustic device.

    2) The parameters relative to the regenerator length appear in the basal thermoacoustic formulas by extracting and analyzing the regenerator operation factor. It can help us optimize the length of the regenerator more easily,and control the temperature more effectively in the running process.

    3)As the leading phase deviates from the traveling wave phase to the standing wave phase, the optimal length of the regenerator increases. It indicates that the optimal regenerator length of the standing wave device is longer than that of the traveling wave device.

    4) Under the condition of helium as the working gas and|ZN| = 10, the maximum second law efficiency of engineη2=0.786 operation happens whenζ=0.15,ψ=42.1 andφZ=-9°/=0°because of the thermo-relaxation. The maximum second law coefficient of performance of cooler COP2=0.786 operation happens whenζ=0.17,ψ=25.9 andφZ=-169°because of the thermo-relaxation.

    5) The finite hydraulic radius is selected because of viscous dissipation, and the optimization of the leading phase is not the traveling phase because of the thermo-relaxation.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant No.51925605).

    猜你喜歡
    劉俊
    Phase sensitivity with a coherent beam and twin beams via intensity difference detection
    Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
    Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
    劉俊
    In fluence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48?x Co2Mn38+x Sn12(x=0,1.0,1.5,2.0, and 2.5)ferromagnetic shape memory alloys?
    我和你打個賭
    小飯店,大飯店
    三月三(2014年11期)2014-11-05 03:24:03
    漫漫看
    只送你更貴的
    意林(2011年17期)2011-04-09 05:47:31
    方向盤被盜
    遼河(2009年3期)2009-05-04 10:15:20
    真人一进一出gif抽搐免费| 欧美丝袜亚洲另类 | 少妇裸体淫交视频免费看高清| 亚洲熟妇熟女久久| 日韩欧美一区二区三区在线观看| 精品一区二区三区人妻视频| 一个人看的www免费观看视频| 婷婷亚洲欧美| 少妇高潮的动态图| 精品日产1卡2卡| 五月玫瑰六月丁香| 亚洲成人久久性| 麻豆一二三区av精品| 亚洲av中文字字幕乱码综合| 国产成+人综合+亚洲专区| 小说图片视频综合网站| 日韩免费av在线播放| 91av网一区二区| 男女床上黄色一级片免费看| 90打野战视频偷拍视频| 亚洲国产精品成人综合色| а√天堂www在线а√下载| 亚洲av第一区精品v没综合| 国产成人影院久久av| 成人性生交大片免费视频hd| 99热6这里只有精品| 国产成人欧美在线观看| 亚洲天堂国产精品一区在线| 美女被艹到高潮喷水动态| 天天一区二区日本电影三级| 国产99白浆流出| 成人三级黄色视频| 日本精品一区二区三区蜜桃| 乱人视频在线观看| 亚洲精华国产精华精| 成人av在线播放网站| 99久久综合精品五月天人人| 两个人看的免费小视频| 好看av亚洲va欧美ⅴa在| 亚洲av二区三区四区| 嫩草影视91久久| 一a级毛片在线观看| 有码 亚洲区| 99久久无色码亚洲精品果冻| 久久九九热精品免费| 亚洲精品456在线播放app | 99久久精品热视频| 少妇的逼好多水| 香蕉丝袜av| 男插女下体视频免费在线播放| 精品一区二区三区视频在线 | 久久国产乱子伦精品免费另类| avwww免费| 五月玫瑰六月丁香| 国内毛片毛片毛片毛片毛片| 日韩av在线大香蕉| 久久久久国内视频| bbb黄色大片| 成熟少妇高潮喷水视频| 黑人欧美特级aaaaaa片| 成人精品一区二区免费| av天堂中文字幕网| 在线观看av片永久免费下载| www日本黄色视频网| 五月玫瑰六月丁香| 国产黄色小视频在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲国产色片| 国产单亲对白刺激| 男女那种视频在线观看| 一级毛片高清免费大全| 国产精品一区二区三区四区免费观看 | 欧美中文综合在线视频| 日日摸夜夜添夜夜添小说| 手机成人av网站| 99久久久亚洲精品蜜臀av| 日韩成人在线观看一区二区三区| 久久久成人免费电影| 国产亚洲欧美在线一区二区| 色播亚洲综合网| 午夜激情欧美在线| 精品久久久久久久久久久久久| 在线国产一区二区在线| 老司机深夜福利视频在线观看| 熟女电影av网| 国产男靠女视频免费网站| 男女做爰动态图高潮gif福利片| 久久久久久久午夜电影| 亚洲五月天丁香| 无人区码免费观看不卡| 精品久久久久久成人av| 99精品在免费线老司机午夜| 日韩精品中文字幕看吧| 我的老师免费观看完整版| 国产男靠女视频免费网站| 久久久久久久久久黄片| 免费大片18禁| 性色avwww在线观看| 午夜激情欧美在线| 一本精品99久久精品77| 麻豆一二三区av精品| 激情在线观看视频在线高清| 国产极品精品免费视频能看的| 欧美又色又爽又黄视频| 国产一区二区在线观看日韩 | 18禁裸乳无遮挡免费网站照片| 久久6这里有精品| 久久精品综合一区二区三区| 黄色视频,在线免费观看| 亚洲欧美日韩卡通动漫| 禁无遮挡网站| 美女 人体艺术 gogo| 国产精品亚洲av一区麻豆| 色尼玛亚洲综合影院| 真人做人爱边吃奶动态| 免费无遮挡裸体视频| 夜夜看夜夜爽夜夜摸| 波多野结衣高清无吗| 国产高清激情床上av| 亚洲精品粉嫩美女一区| 我要搜黄色片| 免费观看的影片在线观看| 日韩亚洲欧美综合| 国产69精品久久久久777片| 少妇的丰满在线观看| 天堂网av新在线| 白带黄色成豆腐渣| 欧美三级亚洲精品| 亚洲真实伦在线观看| 亚洲片人在线观看| 天堂动漫精品| 两个人视频免费观看高清| 久久久色成人| 99久久综合精品五月天人人| 国产激情欧美一区二区| 岛国在线观看网站| 午夜福利高清视频| 香蕉av资源在线| 最近视频中文字幕2019在线8| 中国美女看黄片| 在线免费观看不下载黄p国产 | 香蕉av资源在线| 欧美性猛交╳xxx乱大交人| 成年人黄色毛片网站| 精品99又大又爽又粗少妇毛片 | 国产高清有码在线观看视频| 男插女下体视频免费在线播放| 99热6这里只有精品| 国产精品一区二区免费欧美| netflix在线观看网站| 国产一区二区三区视频了| 丁香欧美五月| 97超视频在线观看视频| 午夜亚洲福利在线播放| 亚洲成人久久爱视频| 午夜久久久久精精品| 亚洲国产日韩欧美精品在线观看 | 国产亚洲av嫩草精品影院| www国产在线视频色| 日日夜夜操网爽| av天堂中文字幕网| 2021天堂中文幕一二区在线观| 精品乱码久久久久久99久播| 国产精品女同一区二区软件 | 亚洲欧美日韩无卡精品| 亚洲国产欧洲综合997久久,| 俄罗斯特黄特色一大片| 青草久久国产| 亚洲avbb在线观看| 久久久久久久久中文| 精品一区二区三区人妻视频| 丰满的人妻完整版| 亚洲av第一区精品v没综合| 熟女人妻精品中文字幕| 日本在线视频免费播放| 国产伦在线观看视频一区| 我的老师免费观看完整版| 亚洲,欧美精品.| 国产精品 国内视频| 国产单亲对白刺激| 日日夜夜操网爽| 久久久久国产精品人妻aⅴ院| 久久久久亚洲av毛片大全| 十八禁网站免费在线| 欧美成人a在线观看| 久久久久性生活片| 精品人妻一区二区三区麻豆 | 少妇的逼水好多| 女同久久另类99精品国产91| 免费看a级黄色片| 久久久国产精品麻豆| 好男人在线观看高清免费视频| 国内久久婷婷六月综合欲色啪| 久久精品国产亚洲av涩爱 | 国产伦精品一区二区三区四那| 手机成人av网站| 国产男靠女视频免费网站| 高清日韩中文字幕在线| 日本免费a在线| 国产日本99.免费观看| 一级毛片女人18水好多| 国产精品亚洲一级av第二区| 男人舔女人下体高潮全视频| 极品教师在线免费播放| 18禁黄网站禁片午夜丰满| 午夜精品一区二区三区免费看| 久久香蕉精品热| 婷婷六月久久综合丁香| 制服丝袜大香蕉在线| 在线观看日韩欧美| 精品久久久久久久久久免费视频| 欧美日韩精品网址| av国产免费在线观看| 精品人妻一区二区三区麻豆 | 美女被艹到高潮喷水动态| 精品不卡国产一区二区三区| 国内揄拍国产精品人妻在线| 超碰av人人做人人爽久久 | 亚洲中文日韩欧美视频| 国产高清视频在线播放一区| 国产蜜桃级精品一区二区三区| 亚洲五月天丁香| 国内久久婷婷六月综合欲色啪| 国产精品1区2区在线观看.| 男女做爰动态图高潮gif福利片| 午夜亚洲福利在线播放| 97超级碰碰碰精品色视频在线观看| 午夜视频国产福利| 成人国产一区最新在线观看| 亚洲精品粉嫩美女一区| 欧美日韩一级在线毛片| 一级毛片女人18水好多| 午夜两性在线视频| 精品国产亚洲在线| 国内揄拍国产精品人妻在线| 亚洲自拍偷在线| 国内精品一区二区在线观看| 观看免费一级毛片| 国产精品 欧美亚洲| 狂野欧美激情性xxxx| 国产成人av教育| 成人无遮挡网站| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩高清专用| 亚洲欧美日韩高清在线视频| 又紧又爽又黄一区二区| 美女免费视频网站| 中文字幕熟女人妻在线| 18禁黄网站禁片午夜丰满| 波多野结衣巨乳人妻| 亚洲真实伦在线观看| 国产精品精品国产色婷婷| 夜夜夜夜夜久久久久| 欧美乱码精品一区二区三区| 精品国产超薄肉色丝袜足j| 99热只有精品国产| 一本久久中文字幕| 黑人欧美特级aaaaaa片| 国产精品久久久久久久电影 | 非洲黑人性xxxx精品又粗又长| 中文字幕人妻熟人妻熟丝袜美 | 99国产综合亚洲精品| 99精品久久久久人妻精品| 怎么达到女性高潮| 一级黄色大片毛片| 黄色女人牲交| 夜夜爽天天搞| 少妇的丰满在线观看| 欧美激情久久久久久爽电影| 国产av在哪里看| 免费看美女性在线毛片视频| 日本黄色片子视频| 无限看片的www在线观看| 午夜免费成人在线视频| 超碰av人人做人人爽久久 | 国产伦一二天堂av在线观看| 精品人妻1区二区| 观看美女的网站| 蜜桃亚洲精品一区二区三区| 少妇熟女aⅴ在线视频| 一a级毛片在线观看| 精品久久久久久久末码| 中文在线观看免费www的网站| 国产老妇女一区| 黄色女人牲交| 中亚洲国语对白在线视频| 级片在线观看| 网址你懂的国产日韩在线| 久久婷婷人人爽人人干人人爱| 一区二区三区免费毛片| 精品人妻一区二区三区麻豆 | 怎么达到女性高潮| 亚洲人成网站在线播放欧美日韩| 久久中文看片网| 国产欧美日韩一区二区精品| 国产亚洲精品综合一区在线观看| 2021天堂中文幕一二区在线观| 超碰av人人做人人爽久久 | 亚洲无线观看免费| 此物有八面人人有两片| 国产精品女同一区二区软件 | 人人妻,人人澡人人爽秒播| 极品教师在线免费播放| 成年免费大片在线观看| 一区二区三区国产精品乱码| 久久久久久九九精品二区国产| 18禁在线播放成人免费| 少妇的丰满在线观看| 老司机在亚洲福利影院| 国产欧美日韩一区二区三| 精品一区二区三区视频在线 | 麻豆国产97在线/欧美| 熟女人妻精品中文字幕| netflix在线观看网站| 2021天堂中文幕一二区在线观| 精品免费久久久久久久清纯| 色综合欧美亚洲国产小说| 少妇高潮的动态图| 一进一出好大好爽视频| 国产欧美日韩一区二区精品| 在线国产一区二区在线| 国产午夜精品久久久久久一区二区三区 | 亚洲欧美日韩东京热| 日韩人妻高清精品专区| 又粗又爽又猛毛片免费看| 俄罗斯特黄特色一大片| 亚洲精品乱码久久久v下载方式 | 亚洲欧美一区二区三区黑人| 两人在一起打扑克的视频| 国产精品亚洲美女久久久| 在线视频色国产色| 国产亚洲av嫩草精品影院| 少妇的逼水好多| www日本黄色视频网| 老鸭窝网址在线观看| 午夜视频国产福利| 国产午夜福利久久久久久| 日韩欧美一区二区三区在线观看| 免费观看的影片在线观看| 麻豆一二三区av精品| 久久国产乱子伦精品免费另类| 欧美成人一区二区免费高清观看| 亚洲在线观看片| 男人舔奶头视频| 久久亚洲真实| 欧美一级a爱片免费观看看| 麻豆久久精品国产亚洲av| 精品久久久久久久毛片微露脸| 亚洲第一欧美日韩一区二区三区| 一级黄色大片毛片| 国产三级黄色录像| 亚洲人与动物交配视频| 亚洲欧美日韩东京热| 美女黄网站色视频| bbb黄色大片| 国内精品一区二区在线观看| 国产精品久久久人人做人人爽| 国产真实乱freesex| 午夜视频国产福利| 免费看a级黄色片| 中国美女看黄片| 窝窝影院91人妻| 丁香欧美五月| 男人的好看免费观看在线视频| 国产激情欧美一区二区| 国产成人系列免费观看| 久久亚洲真实| 美女被艹到高潮喷水动态| 欧美日本亚洲视频在线播放| 日本 欧美在线| 国产伦精品一区二区三区四那| 在线视频色国产色| 久久性视频一级片| 日韩欧美在线乱码| 日韩 欧美 亚洲 中文字幕| 给我免费播放毛片高清在线观看| 一级毛片女人18水好多| 精品久久久久久,| 嫁个100分男人电影在线观看| 91在线观看av| 国产真实伦视频高清在线观看 | 国产伦精品一区二区三区四那| 精品人妻1区二区| 亚洲精品久久国产高清桃花| 国产激情欧美一区二区| 欧美av亚洲av综合av国产av| 桃红色精品国产亚洲av| 成人精品一区二区免费| 国产精品av视频在线免费观看| 国产淫片久久久久久久久 | 亚洲男人的天堂狠狠| 国产99白浆流出| 国产黄色小视频在线观看| 黑人欧美特级aaaaaa片| 男女午夜视频在线观看| 午夜福利在线观看吧| 国产成人a区在线观看| 欧美av亚洲av综合av国产av| 黄片大片在线免费观看| 中文资源天堂在线| 婷婷六月久久综合丁香| 久9热在线精品视频| 国产精品国产高清国产av| 19禁男女啪啪无遮挡网站| 成熟少妇高潮喷水视频| 国产免费一级a男人的天堂| 听说在线观看完整版免费高清| 久久伊人香网站| 在线观看av片永久免费下载| 69av精品久久久久久| 窝窝影院91人妻| 一级a爱片免费观看的视频| 桃红色精品国产亚洲av| 91在线观看av| 国产精品免费一区二区三区在线| 一进一出抽搐动态| 欧美乱色亚洲激情| 天堂动漫精品| 成人鲁丝片一二三区免费| 日韩中文字幕欧美一区二区| 18禁在线播放成人免费| 天堂影院成人在线观看| 在线观看av片永久免费下载| 亚洲欧美日韩卡通动漫| 国产欧美日韩精品一区二区| 欧美日本亚洲视频在线播放| 嫁个100分男人电影在线观看| 99久久99久久久精品蜜桃| 黄色女人牲交| 国产亚洲欧美98| 午夜福利在线观看免费完整高清在 | 亚洲第一欧美日韩一区二区三区| av在线蜜桃| 久久亚洲真实| 搡老熟女国产l中国老女人| 色吧在线观看| 久久久久性生活片| av天堂中文字幕网| 90打野战视频偷拍视频| 国产伦精品一区二区三区视频9 | 国产v大片淫在线免费观看| 精品国产超薄肉色丝袜足j| 亚洲欧美日韩卡通动漫| 国产三级中文精品| 国产蜜桃级精品一区二区三区| 非洲黑人性xxxx精品又粗又长| 在线观看免费视频日本深夜| av视频在线观看入口| 久久精品国产综合久久久| 欧美黄色片欧美黄色片| 国产v大片淫在线免费观看| 麻豆久久精品国产亚洲av| 欧美xxxx黑人xx丫x性爽| 欧美乱码精品一区二区三区| 高清日韩中文字幕在线| 狂野欧美激情性xxxx| 国产高潮美女av| 亚洲精品影视一区二区三区av| 免费av观看视频| 97超视频在线观看视频| 精品午夜福利视频在线观看一区| 欧美日韩黄片免| 岛国在线免费视频观看| 日韩欧美在线乱码| 亚洲激情在线av| 欧美中文日本在线观看视频| 国产爱豆传媒在线观看| 久久久久国内视频| 亚洲av五月六月丁香网| 国产伦人伦偷精品视频| 看片在线看免费视频| 丰满人妻一区二区三区视频av | 一个人看视频在线观看www免费 | 啦啦啦观看免费观看视频高清| 国产高清激情床上av| 欧美丝袜亚洲另类 | 国产单亲对白刺激| 日本免费一区二区三区高清不卡| 嫁个100分男人电影在线观看| 一个人看的www免费观看视频| 午夜亚洲福利在线播放| 久久久久久久久中文| 天堂动漫精品| 中文字幕人妻熟人妻熟丝袜美 | 99久国产av精品| 欧美日本亚洲视频在线播放| 成人av在线播放网站| 国产亚洲精品久久久久久毛片| 成人午夜高清在线视频| 无限看片的www在线观看| 90打野战视频偷拍视频| 国内精品久久久久精免费| 国产欧美日韩一区二区三| 欧美一级毛片孕妇| 12—13女人毛片做爰片一| 日韩高清综合在线| 久久久久国产精品人妻aⅴ院| 成人特级av手机在线观看| 九色国产91popny在线| 午夜免费观看网址| 精品99又大又爽又粗少妇毛片 | 国产精品 欧美亚洲| 一级a爱片免费观看的视频| 国产成人欧美在线观看| 午夜免费成人在线视频| 午夜精品久久久久久毛片777| 激情在线观看视频在线高清| 免费大片18禁| 亚洲国产日韩欧美精品在线观看 | 国产精品电影一区二区三区| 久久久久久久久久黄片| www.熟女人妻精品国产| 国产主播在线观看一区二区| 精品日产1卡2卡| 成人三级黄色视频| 成年免费大片在线观看| 99国产极品粉嫩在线观看| 一进一出抽搐动态| 99久久久亚洲精品蜜臀av| 精品欧美国产一区二区三| 亚洲中文字幕日韩| 性色avwww在线观看| 女同久久另类99精品国产91| 亚洲国产精品成人综合色| 天天一区二区日本电影三级| 国产伦人伦偷精品视频| 搡老熟女国产l中国老女人| 精品久久久久久久毛片微露脸| 久久久久久久久中文| 成人特级av手机在线观看| 国产精品野战在线观看| 国产国拍精品亚洲av在线观看 | 三级男女做爰猛烈吃奶摸视频| 日日干狠狠操夜夜爽| 两性午夜刺激爽爽歪歪视频在线观看| 在线观看美女被高潮喷水网站 | 在线看三级毛片| 久久精品人妻少妇| 精品无人区乱码1区二区| 国产精品影院久久| 精品无人区乱码1区二区| 日韩免费av在线播放| 18禁黄网站禁片午夜丰满| 中文字幕av成人在线电影| 欧美日韩福利视频一区二区| 国产高清视频在线播放一区| 精品欧美国产一区二区三| 国内少妇人妻偷人精品xxx网站| 麻豆成人午夜福利视频| 12—13女人毛片做爰片一| 麻豆国产av国片精品| 一进一出抽搐gif免费好疼| 精品欧美国产一区二区三| 国产99白浆流出| 别揉我奶头~嗯~啊~动态视频| 国产爱豆传媒在线观看| 少妇人妻精品综合一区二区 | 国产亚洲精品久久久com| 精品不卡国产一区二区三区| a在线观看视频网站| 亚洲电影在线观看av| 18美女黄网站色大片免费观看| 亚洲色图av天堂| 午夜福利在线观看吧| 中文亚洲av片在线观看爽| 嫁个100分男人电影在线观看| 动漫黄色视频在线观看| 久久九九热精品免费| 精品一区二区三区人妻视频| 久久久色成人| 日韩免费av在线播放| 可以在线观看的亚洲视频| 99国产极品粉嫩在线观看| 成年免费大片在线观看| 五月伊人婷婷丁香| 亚洲男人的天堂狠狠| 18禁国产床啪视频网站| 久久久久久久亚洲中文字幕 | 亚洲国产欧洲综合997久久,| 啦啦啦韩国在线观看视频| 久久久国产精品麻豆| av中文乱码字幕在线| 日韩有码中文字幕| 国产av在哪里看| 欧美中文日本在线观看视频| 美女免费视频网站| 国内久久婷婷六月综合欲色啪| 国产精品,欧美在线| 亚洲在线自拍视频| 国产精品三级大全| 国产伦在线观看视频一区| 国内毛片毛片毛片毛片毛片| 伊人久久精品亚洲午夜| 精品免费久久久久久久清纯| 精品福利观看| 国产成人影院久久av| 两个人的视频大全免费| 18禁黄网站禁片午夜丰满| 日本免费一区二区三区高清不卡| 午夜激情欧美在线| 亚洲成人精品中文字幕电影| 亚洲第一欧美日韩一区二区三区| 久久精品国产自在天天线| www.熟女人妻精品国产| 精品乱码久久久久久99久播| 99精品在免费线老司机午夜| 十八禁网站免费在线| 99热精品在线国产| 国产精品精品国产色婷婷| 亚洲欧美日韩东京热| 午夜福利在线观看吧| 日本黄大片高清| 热99re8久久精品国产| 人人妻人人澡欧美一区二区| 特大巨黑吊av在线直播|